浙教版八年级上数学期末复习考点

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙教版八年级上数学期

末复习考点

文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

八年级上期末复习资料

第十一章三角形

一、知识框架

二、知识概念

1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.

2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.

3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.

4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.

5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.

6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.

7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.

8.多边形的内角:多边形相邻两边组成的角叫做它的内角.

9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.

10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.

11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.

12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,

13.公式与性质:

⑴三角形的内角和:三角形的内角和为180°。

⑵三角形外角的性质:

性质1:三角形的一个外角等于和它不相邻的两个内角的和.

性质2:三角形的一个外角大于任何一个和它不相邻的内角.

⑶多边形内角和公式:n边形的内角和等于(n-2)·180°。

⑷多边形的外角和:多边形的外角和为360°.

⑸多边形对角线的条数:①从边形的一个顶点出发可以引(n-3)条对角

线,把多边形分成(n-2)个三角形.②边形共有n(n-3)/2条对角线.

7、全等三角形

(1)全等三角形的概念

能够完全重合的两个三角形叫做全等三角形。。

(2)三角形全等的判定

三角形全等的判定定理:

(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)

(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)

(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。

直角三角形全等的判定:

对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)

(3)全等变换

只改变图形的位置,不改变其形状大小的图形变换叫做全等变换。

全等变换包括一下三种:

(1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。

(2)对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。

(3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。

中考规律盘点及预测

三角形的两边之和大于第三边的性质历年来是经常考到的填空题的类型,三角形角度的计算也是考到的填空题的类型,三角形全等的判定是很重要的知识点,在考试中往往会考到。

典例分析

例1 如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是

()

A、AB=AC

B、BD=CD

C、∠B=∠C

D、∠BDA=∠CDA 考点:全等三角形的判定。

例2 1、在△ABC中,已知∠B = 40°,∠C = 80°,则∠A = 2、在△ABC中,∠A = 60°,∠C = 50°,则∠B的外角= 。

考点:1、2两题均为三角形的内角之和为180°

3、下列长度的三条线段能组成三角形的是()

,4cm,8cm ,6cm,11cm ,6cm,10cm ,8cm,12cm

4、小华要从长度分别为5cm、6cm、11cm、16cm的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒的长度分别是_ ..

考点:3、4两题是三角形的两边之和大于第三边的性质

例3 如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG 和△AED的面积分别为50和39,则△EDF的面积为()

A、11

B、

C、7

D、

考点:角平分线的性质;全等三角形的判定与性质。

例4 如图,在下列条件中,不能证明△ABD≌△ACD的是()

=DC,AB=AC B.∠ADB=∠ADC,BD=DC

C.∠B=∠C,∠BAD=∠CAD

D.∠B=∠C,BD=DC

考点:全等三角形的判定.

例5 如图,点B、F、C、E在同一条直线上,点A、D在直线BE的两侧,AB∥DE,BF=CE,请添加一个适当的条件:,使得

AC =DF.

考点:全等三角形的判定与性质.

第二章特殊三角形

复习总目标

1、掌握等腰三角形的性质及判定定理

2、了解直角三角形的基本性质

2、掌握勾股定理的计算方法

知识点概要

1、图形的轴对称性质:对称轴垂直平分连接两个对称点的线段;成轴对称的两个图形是全等图形

2、等腰三角形的性质

(1)等腰三角形的性质定理及推论:

定理:等腰三角形的两个底角相等(简称:等边对等角)

推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。

推论2:等边三角形的各个角都相等,并且每个角都等于60°。

3、三角形中的中位线

连接三角形两边中点的线段叫做三角形的中位线。

(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。(2)要会区别三角形中线与中位线。

三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。

三角形中位线定理的作用:

位置关系:可以证明两条直线平行。

数量关系:可以证明线段的倍分关系。

常用结论:任一个三角形都有三条中位线,由此有:

结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。结论2:三条中位线将原三角形分割成四个全等的三角形。

结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。

结论4:三角形一条中线和与它相交的中位线互相平分。

相关文档
最新文档