积分中值定理的推广与应用

合集下载

积分中值定理与推广积分中值定理区间问题

积分中值定理与推广积分中值定理区间问题

积分中值定理与推广积分中值定理区间问题一、积分中值定理的基本概念1.1 积分中值定理的定义积分中值定理是微积分中的重要定理之一,它是对函数在闭区间上的平均值与极限值之间的关系进行了精确的描述。

积分中值定理的内容主要包括了两个部分:第一部分是零点定理,即如果函数在闭区间上连续,并且在该闭区间上取得了最大值和最小值,那么在该闭区间上一定存在至少一个点使得函数的导数等于零;第二部分是平均值定理,即如果一个函数在一个闭区间上连续,那么一定存在至少一个点,使得该点的导数等于函数在该区间上的平均增量。

积分中值定理的内容简单而深刻,它为我们理解函数在闭区间上的性质提供了重要的依据。

1.2 积分中值定理的应用积分中值定理在实际问题中有着广泛的应用,它不仅可以帮助我们理解函数的性质,还可以为我们提供在实际问题中对函数的特定取值进行估计的依据。

比如在物理学中,积分中值定理可以用来描述物体在某一时刻的速度与位移之间的关系;在经济学中,积分中值定理可以用来解释市场上产品的供求关系;在生物学中,积分中值定理可以用来分析生物体在生长过程中的变化规律等等。

积分中值定理是微积分中的基础定理之一,它在我们的日常生活和各个学科领域中都有着重要的地位。

二、推广积分中值定理区间问题2.1 区间问题的提出在积分中值定理的基础上,我们可以进一步进行推广,即考虑函数在开区间上的性质。

具体来说,我们可以考虑以下问题:如果一个函数在一个开区间上连续,那么它在该开区间上是否一定存在着一个点,使得该点的导数等于函数在该开区间上的平均增量呢?这个问题就是推广积分中值定理区间问题。

2.2 区间问题的解决针对区间问题,我们可以通过微积分中的基本原理进行研究。

我们可以利用函数的连续性和导数的存在性来证明函数在开区间上的平均增量一定存在,然后利用积分中值定理的零点定理和平均值定理来证明在该开区间上一定存在着一个点,使得该点的导数等于函数在该开区间上的平均增量。

积分中值定理的证明及其推广

积分中值定理的证明及其推广

积分中值定理的证明及其推广我们来介绍积分中值定理的基本概念。

积分中值定理是微积分中的一个重要定理,它表明在某些条件下,函数在一个闭区间上的平均值等于函数在该区间上的某一点的函数值。

具体而言,如果函数f(x)在闭区间[a, b]上连续,那么存在一个点c,使得f(c)等于函数在[a, b]上的平均值。

下面我们来证明积分中值定理。

根据积分的定义,我们可以将闭区间[a, b]分成无穷多个小区间,并在每个小区间上取一个代表点xi。

然后,我们将各个小区间的长度相加,并乘以各个代表点的函数值,得到一个和S。

同样,我们可以将函数在整个闭区间[a, b]上的积分记为I。

根据积分的定义,我们知道I可以看作是S的极限,当小区间的数量趋向于无穷大时,S趋向于I。

现在,我们要证明存在一个点c,使得f(c)等于函数在[a, b]上的平均值。

假设函数在闭区间[a, b]上的最大值为M,最小值为m。

根据连续函数的性质,我们知道函数在闭区间[a, b]上一定可以取到最大值和最小值。

那么我们可以将函数的取值范围限制在[m, M]之间。

根据取值范围的限制,我们知道S的值介于[m(b-a), M(b-a)]之间。

而I的值等于函数在闭区间[a, b]上的平均值乘以区间长度(b-a)。

由于函数在闭区间[a, b]上连续,根据介值定理,我们知道函数在[m, M]之间可以取到任何一个值。

因此,存在一个点c,使得f(c)等于函数在闭区间[a, b]上的平均值。

至此,我们完成了积分中值定理的证明。

接下来,我们来讨论积分中值定理的推广应用。

积分中值定理的推广应用非常广泛,其中一个重要的应用是求解定积分。

根据积分中值定理,我们可以通过求解函数在闭区间上的平均值来求解定积分。

具体而言,我们可以将函数在闭区间上的平均值乘以区间的长度,得到定积分的值。

除了求解定积分,积分中值定理还可以应用于证明其他数学定理。

例如,我们可以利用积分中值定理证明柯西-施瓦茨不等式,该不等式是复变函数中的重要定理,用于限制复变函数的积分值。

积分中值定理的推广及应用(论文)

积分中值定理的推广及应用(论文)

衡阳师范学院毕业论文(设计)题目:积分中值定理的推广及应用学号:姓名:年级:学院:信息科学技术学院系别:数学系专业:信息与计算科学指导教师:完成日期:年月日摘要本论文讲述的主要内容是积分中值定理及其应用,我们将它主要分为以下几个方面:积分中值定理、积分中值定理的推广、积分中值定理中值点ξ的渐进性,积分中值定理的应用。

有关ξ点的渐进性,我们对第一积分中值定理的ξ点的做了详细的讨论,给出详细清楚的证明过程。

而第二积分中值定理的渐进性问题只证明了其中的一种情形,其它证明过程只做简要说明。

对于应用,我们给出了一些较简单的情形如估计积分值,求含有定积分的极限,确定积分号,比较积分大小,证明函数的单调性还有对阿贝尔判别法和狄理克莱判别法这两个定理的证明。

我们讨论了定积分中值定理、第一积分中值定理、第二积分中值定理,而且还给出了这些定理的详细证明过程。

在此基础上,我们还讨论了在几何形体Ω上的黎曼积分第一中值定理,它使得积分中值定理更加一般化,此情形对于讨论一般实际问题有很显著作用。

在积分中值定理的推广方面,我们由最初的在闭区间[,]f x的积分中值a b讨论函数()定理情形转换为在开区间(,)a b上讨论函数()f x上的积分中值定理,这个变化对于解决一些实际的数学问题更为方便。

不仅如此,我们还将几何形体Ω上的黎曼积分第一中值定理推广到第一、第二曲线型积分中定理和第一、第二曲面型积分中值定理情形。

关键词:积分中值定理;推广;应用;渐进性AbstractThe main content of this paper are the mean-value theorem and its application, it will be mainly divided into the following respects: integral mean-value theorem, the generalation of integral mean-value theorem, the asymptotic property of the “intermediate point”of integral median point, the application of integral mean-value theorem.About the Progressive of ξpoint, we have discussed the ξpoint of the mean-value theorem in detail and give clear proof of the process. While the gradual issues of the secondintegral mean value theorem has been demonstrated one of these situations. And the otherprocess of proving has been expressed in brief.According to application,we presented a simple situation, for example, estimate integralvalue ,solve the limits of definite integral, define integral sign, compare the magnitude of integralvalue, prove the monotonic of function and Abel test and Dirichlet testWe have discussed the definite integral mean-value theorem, the first mean value theorem,the second integral mean-value theorem, and have given a detailed proof of these theoremsprocess. On this basis, we also have discussed the Riemann first integral mean-value theorem onthe geometryΩ. It makes the integral mean-value theorem is more general, the case has asignificant role in the discussion of practical issues in general.In the promotion of integral mean value theorem, we have discussed the integralmean-value theorem of function ()a b in the case off x in the initial closed interval [,]discussing it in the open interval(,)a b, the change has more convenience in solving some practical mathematical problem. In addition, we will promote the Riemann first integral mean-value theorem on the geometryΩto the situation of the first and second type curve in integral theorem and The second type surface integral mean-value theorem.Key words: integral mean-value; theorem promotion ;apply;progressive目录1 引言 (1)2 积分中值定理的证明 (2)2.1 定积分中值定理 (2)2.2 积分第一中值定理 (3)2.3 积分第二中值定理 (3)2.4 几何形体上黎曼积分第一中值定理 (6)3 积分中值定理的推广 (9)3.1 定积分中值定理的推广 (9)3.2 定积分第一中值定理的推广 (9)3.3 定积分第二中值定理的推广 (11)3.4 第一曲线积分中值定理 (12)3.5 第二曲线积分中值定理 (12)3.6 第一曲面积分中值定理 (13)3.7 第二曲面积分中值定理 (14)4 第一积分中值定理中值点的渐进性 (16)5 第二积分中值定理中值点的渐进性 (20)6 积分中值定理的应用 (23)6.1 估计积分值 (23)6.2 求含定积分的极限 (24)6.3 确定积分号 (24)6.4 比较积分大小 (25)6.5 证明函数的单调性 (25)6.6 证明定理 (25)7 结论 (29)谢辞 (30)参考文献 (31)1引言随着时代的发展,数学也跟着时代步伐大迈步前进。

积分第一中值定理的推广研究

积分第一中值定理的推广研究

积分第一中值定理的推广研究积分第一中值定理是微积分中的重要定理,它描述了定积分在函数连续条件下的一种性质。

在实际应用中,我们经常需要对函数在某个区间上的平均值进行研究,而积分第一中值定理提供了帮助。

该定理在某些特定情况下可能不适用,因此我们有必要进行进一步的研究,对其进行推广。

我们来回顾一下积分第一中值定理的内容。

设函数f(x)在闭区间[a, b]上连续,那么在区间[a, b]上存在一点c,使得定积分∫[a, b] f(x) dx 等于函数f(x)在[c, d]上的平均值,即∫[a, b] f(x) dx = f(c) * (b - a).这个定理是微积分中的重要性质,它告诉我们,如果函数在某个区间上连续,那么在这个区间上的定积分就等于函数在某一点上的值乘以这个区间的长度。

这个性质在实际问题中有很多应用,比如在统计学中,我们经常需要求解某个变量在某个区间上的平均值,而积分第一中值定理提供了一种便捷的方法。

在对积分第一中值定理进行推广研究时,我们可以考虑以下几个方面:1. 函数的可导性:积分第一中值定理要求函数在闭区间上连续,但如果函数在闭区间上可导,我们是否可以得到类似的性质呢?换句话说,在可导的条件下,定积分是否仍然等于函数在某个点上的值乘以区间长度呢?这需要我们对可导函数的性质进行深入研究,寻找可能的推广定理。

2. 函数的间断点:在实际问题中,我们经常遇到函数在某些点上不连续的情况,这时积分第一中值定理是不适用的。

我们可以尝试寻找一种更一般的条件,使得函数在某些点上可以是间断的,但定积分仍然具有某种性质。

这样的推广定理对于实际问题的解决会有很大帮助。

3. 特殊函数的适用性:在实际问题中,我们经常需要研究特殊的函数,比如带有参数的函数或者带有特殊性质的函数。

我们可以尝试将积分第一中值定理推广到这些特殊函数的情况下,研究它们的性质和适用条件。

积分中值定理的推广及其应用

积分中值定理的推广及其应用

目录摘要····································································错误!未定义书签。

关键词····································································错误!未定义书签。

积分中值定理推广

积分中值定理推广

积分中值定理推广一、引言积分中值定理是微积分中的重要定理之一,它可以用来证明许多重要的数学结论。

本文将对积分中值定理进行推广,探讨其更广泛的应用。

二、积分中值定理首先,我们需要回顾一下积分中值定理的基本形式。

设$f(x)$在$[a,b]$上连续,则存在$c\in(a,b)$使得$\int_a^bf(x)dx=f(c)(b-a)$。

这个定理的意义是:在一个区间上,函数的平均值等于它在某个点处的函数值。

这个结论非常直观易懂,并且具有广泛的应用。

三、一般化积分中值定理然而,在实际问题中,我们经常遇到不连续或不可导的函数。

此时,我们需要将积分中值定理进行推广。

设$f(x)$在$[a,b]$上满足以下条件:1. $f(x)$在$(a,b)$内可导;2. $\lim\limits_{x\to a^+}f(x)$和$\lim\limits_{x\to b^-}f(x)$存在;3. $\int_a^bf'(x)dx$存在。

则存在$c\in(a,b)$使得$\int_a^bf'(x)dx=f(c)-f(a)+f(b)-f(c)=f(b)-f(a)$。

这个结论的意义是:在一个区间上,函数的平均变化率等于它在某个点处的导数值。

四、推广应用这个定理可以用来证明许多重要的数学结论。

下面列举几个例子。

1. 泰勒展开式设$f(x)$在$x_0$处$n$阶可导,则存在$c\in(x_0,x)$使得$f(x)=\sum_{k=0}^{n-1}\dfrac{f^{(k)}(x_0)}{k!}(x-x_0)^k+\dfrac{f^{(n)}(c)}{n!}(x-x_0)^n$。

这个结论可以通过将$f(x)$在$x_0$处展开为$n$次泰勒多项式,然后应用一般化积分中值定理得到。

2. 柯西中值定理设$f(x)$和$g(x)$在$[a,b]$上连续且在$(a,b)$内可导,并且$g'(x)\neq 0$,则存在$c\in(a,b)$使得$\dfrac{f(b)-f(a)}{g(b)-g(a)}=\dfrac{f'(c)}{g'(c)}$。

积分中值定理的推广及应用

积分中值定理的推广及应用

㊀㊀㊀㊀数学学习与研究㊀2022 31积分中值定理的推广及应用积分中值定理的推广及应用Һ丁建华㊀(甘肃有色冶金职业技术学院教育系,甘肃㊀金昌㊀737100)㊀㊀ʌ摘要ɔ本文首先对积分中值定理的几何特征进行详细介绍,并对该定理中f(x)在[a,b]上恒为常数㊁f(x)在[a,b]上不为常数函数做出一定的补充,并证明此结论也是成立的;其次,对第一积分中值定理和第二积分中值定理进行了推广,并进一步证明了结论的准确性;最后,通过不等式的证明㊁极限的求值进一步验证了改进结论的正确性.ʌ关键词ɔ中值定理;连续性;不等式一㊁积分中值定理的几何特征与补充积分中值定理的几何意义可以理解为:若函数f(x)在闭区间[a,b]上非负连续时,定积分ʏbaf(x)dx在几何上可以表示为y=f(x),x=a,x=b及x轴所围成的曲边梯形面积(如图1,定积分ʏbaf(x)dx表示曲边梯形AabB的面积).根据闭区间上连续函数的性质,f(x)在[a,b]上存在最大值M和最小值m,即∀xɪ[a,b],有mɤf(x)ɤM,从而m(b-a)ɤʏbaf(x)dxɤM(b-a).它可以化为mɤ1b-aʏbaf(x)dxɤM.由连续函数的介值定理,则至少有这样的一个点ξɪ[a,b],使得f(ξ)=1b-aʏbaf(x)dx,则ʏbaf(x)dx=f(ξ)(b-a).根据上面知识点,我们可以获得数学分析中常用的重要积分学性质和定理.积分中值定理㊀若函数f(x)在[a,b]上连续,则在[a,b]上至少存在一点ξ,使得ʏbaf(x)dx=f(ξ)(b-a)(aɤξɤb).这里要求函数f(x)在[a,b]上连续即可,对函数没有严格要求.进一步地,我们可将f(x)在[a,b]上连续的这一条件更改为f(x)在[a,b]上可积,其结论仍然成立.当f(x)在[a,b]上连续且非负时,积分公式ʏbaf(x)dx=f(ξ)(b-a)有着明显的几何意义,即y=f(x)在[a,b]上的曲边梯形面积等于以图1所示的f(ξ)为高㊁[a,b]为底的矩形面积,即以f(ξ)为高的矩形AabD的面积.㊀图1通过对上面图1进一步分析,我们可以发现定理中的ξɪ[a,b]可以改为ξɪ(a,b),事实上,若ξ仅取在[a,b]的端点上,不妨设ξ=a,则可从图2中看出,曲边梯形AabB的面积ʏbaf(x)dx与矩形AabD的面积不可能相等.㊀图2本文给出如下两种证明.证法一:若函数f(x)在闭区间[a,b]上恒为常数,则ξ取(a,b)内任意一点,结论都是成立的.若f(x)在[a,b]上为一个变量函数,设M,m分别为f(x)在[a,b]上的最大值与最小值,则存在x0ɪ(a,b),使得mɤf(x0)ɤM.事实上,若这样的x0不存在,则在[a,b]上必存在一点x1,使得f(x)在a,x1[]上恒有f(x)=m或f(x)=M(),在[x1,b]上恒有f(x)=M(或f(x)=m).这样一来,x1是间断点,与f(x)在区间[a,b]上连续矛盾.又f(x)在x0连续,则存在δ>0,x0-δ,x0+δ()⊂[a,b],当x-x0<δ时,有f(x)-f(x0)<M-f(x0)2和f(x)-f(x0)<f(x0)-m2,从而M-f(x0)>M-f(x0)2>0,f(x0)-m>f(x0)-m2>0,于是ʏx0+δx0-δ[M-f(x)]dxȡʏx0+δx0-δM-f(x0)2éëêùûúdx,即ʏx0+δx0-δf(x)dxɤM-f(x0)2ʏx0+δx0-δdx,又f(x0)<M,ʏx0+δx0-δf(x)dx<Mʏx0+δx0-δdx,同理有ʏx0+δx0-δf(x)dx>mʏx0+δx0-δdx,于是ʏbaf(x)dx=ʏx0-δaf(x)dx+ʏx0+δx0-δf(x)dx+ʏbx0+δf(x)dx<Mʏx0-δadx+Mʏx0+δx0-δdx+Mʏbx0+δdx=M(b-a).同理可得ʏbaf(x)dx>m(b-a),㊀㊀㊀㊀㊀数学学习与研究㊀2022 31因此m(b-a)<ʏbaf(x)dx<M(b-a),即m<1b-aʏbaf(x)dx<M.由介值定理,存在ξɪ(a,b),使得f(ξ)=1b-aʏbaf(x)dx,即ʏbaf(x)dx=f(ξ)(b-a),其中ξɪ(a,b).证法二:作辅助函数F(x)=ʏxaf(t)dt,xɪ[a,b],则F(x)是[a,b]上的可微函数,且Fᶄ(x)=f(x),由微分中值定理,至少存在一点ξɪ(a,b),使得F(a)-F(b)=Fᶄ(ξ)(b-a).注意到,F(b)=ʏbaf(x)dx,F(a)=0,则有ʏbaf(x)dx=f(ξ)(b-a),ξɪ(a,b).于是,我们可以进一步将积分中值定理进行推广.设f(x),g(x)在[a,b]上连续,g(x)在[a,b]上不能等于零,同时符号不会改变,在这样特殊的情形下,可以得到如下的结论,ʏbaf(x)g(x)dx=f(ξ)ʏbag(x)dx,ξɪ(a,b).令F(x)=ʏxaf(t)g(t)dt,G(x)=ʏxag(t)dt,则由微分学的柯西中值定理知,F(b)-f(a)G(b)-G(a)=Fᶄ(ξ)G(ξ),ξɪ(a,b),即有ʏbaf(x)g(x)dxʏbag(x)dx=f(ξ)g(ξ)g(ξ),ʏbaf(x)g(x)dx=f(ξ)ʏbag(x)dx,ξɪ(a,b).但当g(x)在[a,b]只是可积分,并且恒为正或恒为负时,前面我们进行推导的思路完全行不通,即不可能成立,因为可积不变号时,g(x)可以等于零,我们就不能使用上面的结论了.二㊁第一㊁第二积分中值定理的推广及其证明积分第一中值定理设函数f(x)在[a,b]上连续,g(x)在[a,b]上可积不变号,则在[a,b]存在一点ξ,使得ʏbaf(x)g(x)dx=f(ξ)ʏbag(x)dx.积分第二中值定理设(ⅰ)g(x)在[a,b]上连续;(ⅱ)f(x)在[a,b]上单调递增且连续;(ⅲ)f(x)ȡ0,则必有ξɪ[a,b],使得ʏbaf(x)g(x)dx=f(b)ʏbξg(x)dx.推论1.若积分第二中值定理中的递增改为递减,其他条件不变的情况下,则必有ξɪ[a,b],使得ʏbaf(x)g(x)dx=f(a)ʏξag(x)dx.2.若积分第二中值定理中的f(x)ȡ0去掉,则必有ξɪ[a,b],使得ʏbaf(x)g(x)dx=f(a)ʏξag(x)dx+f(b)ʏbξg(x)dx.当ξ所在区间[a,b]变为(a,b),其余条件㊁结论不变,我们就可以将积分中值定理进一步推广.接下来,我们进一步证明积分中值定理的推广定理,先验证积分第一中值定理的推广.证明㊀由于f(x)在[a,b]上连续.设M为f(x)在[a,b]上的最大值,m为f(x)在[a,b]上的最小值,即有mɤf(x)ɤM,又由于g(x)在[a,b]上定号,不妨令g(x)ȡ0(g(x)ɤ0的情况同理),从而有mf(x)ɤf(x)g(x)ɤMg(x),即mʏbag(x)dxɤMʏbag(x)dx.(1)ʏbag(x)dx=0,由上面不等式的结论可知,ʏbaf(x)g(x)dx=0,因此有ξɪ(a,b),使得ʏbaf(x)g(x)dx=f(ξ)ʏbag(x)dx.(2)ʏbag(x)dx>0.(ⅰ)如果mʏbag(x)dx<ʏbaf(x)g(x)dx<Mʏbag(x)dx,即m<ʏbaf(x)g(x)dxʏbag(x)dx<M时,由闭区间上连续函数的介值定理我们可以知道,有一ξɪ(a,b),使得f(ξ)=ʏbaf(x)g(x)dxʏbag(x)dx,即ʏbaf(x)g(x)dx=f(ξ)ʏbag(x)dx.(ⅱ)如果mʏbag(x)dx=ʏbaf(x)g(x)dx,(a)假如有一ξɪ(a,b),都有f(ξ)=m,我们可以得到mʏbag(x)dx=f(ξ)ʏbag(x)dx结论成立.(b)除此之外,对任意的xɪ(a,b),都有f(x)>m,而由ʏbag(x)dx>0,必定存在充分小的数η,使得ʏb-ηa+ηg(x)dx>0(倘若不然的话,对于任意的正数η,都有ʏb-ηa+ηg(x)dxɤ0,从而ʏbag(x)dx=limηң0ʏb-ηa+ηg(x)dxɤ0与ʏbag(x)dx>0矛盾).于是得到0=ʏba[f(x)-m]g(x)dxȡʏb-ηa+η[f(x)-m]g(x)dx.利用原积分中值定理,得ʏb-ηa+η[f(x)-m]g(x)dx=[f(ξᶄ)-m]ʏb-ηa+ηg(x)dx>0,ξᶄɪ[a+η,b-η]⊂(a,b).与之比较,知矛盾.(ⅲ)Mʏbag(x)dx=ʏbaf(x)g(x)dx,这个证明类似于证㊀㊀㊀㊀数学学习与研究㊀2022 31明(ⅱ)的过程.综上所述,存在ξɪ(a,b),使得ʏbaf(x)g(x)dx=f(ξ)ʏbag(x)dx成立.证毕!根据积分第一中值定理的推广证明,我们同样可以对积分第二中值定理的推广进行证明.接下来,我们试证积分第二中值定理的推广结果.证明㊀由f(x)在[a,b]上连续,F(x)=ʏxaf(t)dt在[a,b]上可导,从而有ʏbaf(x)g(x)dx=ʏbag(x)dF(x)=g(b)F(b)-ʏbaF(x)gᶄ(x)dx-g(a)F(a)=g(b)ʏbaf(x)dx-ʏbaF(x)gᶄ(x)dx.对于ʏbaF(x)gᶄ(x)dx应用推广的第一积分中值定理,得到ʏbaF(x)gᶄ(x)dx=F(ξ)[g(b)-g(a)],其中ξɪ(a,b),从而有ʏbaF(x)gᶄ(x)dx=g(b)ʏbaf(x)dx-F(ξ)[g(b)-g(a)]=g(b)ʏξaf(x)dx+ʏbξf(x)dx[]-ʏξaf(x)dx[g(b)-g(a)]=ʏbaf(x)g(x)dx=f(a)ʏξag(x)dx+f(b)ʏbag(x)dx.证毕!三㊁积分中值定理的应用例1㊀证明下列积分不等式:(1)π2<ʏπ2011-12sin2xdx<π2;(2)2e-14<ʏ20ex2-xdx<2e2.证明㊀(1)由积分中值定理,有π2<ʏπ2011-12sin2xdx=11-12sin2ξ㊃π2,其中ξɪ0,π2(),当ξɪ0,π2()时,有0<sin2ξ<1,从而1<11-12sin2ξ<2,因此有π2<ʏπ2011-12sin2ξdx<π2.证毕.(2)由定积分性质,有ʏ20ex2-xdx=ʏ120ex2-xdx+ʏ212ex2-xdx=12eξ21-ξ1+32eξ22-ξ2,其中ξ1ɪ0,12(),ξ2ɪ12,2(),又ex在-ɕ,+ɕ()上严格单调递增,而f(x)=x2-x在0,12[]上严格单调递减,在12,2[]上严格单调递增,所以,当ξ1ɪ0,12()时,e-14<eξ21-ξ1<1;当ξ2ɪ12,2()时,e-14<eξ22-ξ2<e2.从而12eξ21-ξ1+32eξ22-ξ2>12e-14+32e-14=2e-14,12eξ21-ξ1+32eξ22-ξ2<12+32e2<2e2,因此2e-14<ʏ20ex2-xdx<2e2.如果ξ取自任意闭区间,使得积分中值定理成立,则需要将例1的证明结果做进一步的讨论.由此可见,对积分中值定理进行改进或者推广对我们的学习很有帮助,当然,我们也要合理使用该定理,否则就会出现错误的结论.例2㊀证明:limnңɕʏ10xn1+xdx=0.如果利用积分中值定理,得ʏ10xn1+xdx=ξn1+ξ,其中ξɪ0,1(),从而limnңɕʏ10xn1+xdx=limnңɕʏ10ξn1+ξdx=0,这是错误的,因为ξ与n有关.正确的解法是:因为0ɤxn1+xɤxn,xɪ0,1[],所以0ɤʏ10xn1+xdxɤʏ10xndx,而ʏ10xndx=11+n,limnңɕ11+n=0,因此limnңɕʏ10xn1+xdx=0.证毕!ʌ参考文献ɔ[1]华东师范大学数学系.数学分析(第四版)[M].北京:高等教育出版社,2010.[2]黎金环,刘丽霞,朱佑彬.积分中值定理在一道极限题的应用分析[J].高等数学研究,2021(2).[3]同济大学数学教研室.高等数学[M].北京:高等教育出版社,1993.[4]郝玉芹,时立文,欧阳占瑞.对积分中值定理结论的一点改动[J].河北能源职业技术学院学报,2007(3).[5]周冰洁.巧用积分中值定理[J].现代职业教育,2019(31).[6]余小飞.积分中值定理在积分不等式中的应用[J].当代教育实践与教学研究,2017(8).。

考研数学积分中值定理及其推广和应用分析

考研数学积分中值定理及其推广和应用分析

2015考研数学:积分中值定理及其推广和应用分析来源:文都教育在考研数学中,积分中值定理是一个有用的分析证明工具,考试中经常会用到。

积分中值定理有3种情形:基本的积分中值定理、推广的积分中值定理、两个函数相乘时的积分中值定理。

一般高等数学教材上对第一种情形的积分中值定理都有介绍说明,但对后两种情形可能没有相应说明。

为了使各位考生对积分中值定理有一个更深刻的理解和更灵活的运用,那么,老师对积分中值定理及其推广和应用分析做一个全面的分析介绍,供各位考生参考。

基本的积分中值定理:设函数()f x 在[,]a b 上连续,则至少存在一点[,]a b ξ∈,使()()()baf x dx f b a ξ=-⎰证明:设()f x 在[,]a b 上的最大和最小值分别为,M m ,则()()bb baaam f x M mdx f x dx Mdx ≤≤⇒≤≤⇒⎰⎰⎰1()ba m f x dx Mb a≤≤-⎰,由连续函数的介值定理得,至少存在一点[,]a b ξ∈,使1()()ba f x dx fb aξ=-⎰,即()()()b a f x dx f b a ξ=-⎰ 推广的积分中值定理:设函数()f x 在[,]a b 上连续,则至少存在一点(,)a b ξ∈,使()()()baf x dx f b a ξ=-⎰证明:令()()xax f t dt ϕ=⎰,则()()x f x ϕ'=,由拉格朗日中值定理得,至少存在一点(,)a b ξ∈,使()()()()b a b a ϕϕϕξ'-=-,即()()()b af x dx f b a ξ=-⎰注:虽然由定理2知,存在(,)a b ξ∈,使()()()baf x dx f b a ξ=-⎰,但这并不排除存在[,]a b η∈,使()()()baf x dx f b a η=-⎰,即a η=或b 的可能性。

例如:(),[,]f x c x a b =∈,c 是常数,此时,对于任何[,]a b η∈,都有()()()baf x dx f b a η=-⎰成立。

中值定理的应用方法与技巧

中值定理的应用方法与技巧

中值定理的应用方法与技巧中值定理包括微分中值定理和积分中值定理两部分。

微分中值定理即罗尔定理.拉格朗日中值定理和柯西中值定理,1般高等数学教科书上均有介绍,这里不再累述。

积分中值定理有积分第1中值定理和积分第2中值定理。

积分第1中值定理为大家熟知,即若)(x f 在[a,b]上连续,则在[a,b]上至少存在1点ξ,使得))(()(a b f dx x f ba -=⎰ξ。

积分第2中值定理为前者的推广,即若)(),(x g x f 在[a,b]上连续,且)(x g 在[a,b]上不变号,则在[a,b]上至少存在1点ξ,使得⎰⎰=babadx x g f dx x g x f )()()()(ξ。

1.微分中值定理的应用方法与技巧3大微分中值定理可应用于含有中值的等式证明,也可应用于恒等式及不等式证明。

由于3大中值定理的款件和结论各不相同,又存在着相互关联,因此应用中值定理的基本方法是针对所要证明的等式.不等式,分析其结构特征,结合所给的款件选定合适的闭区间上的连续函数,套用相应的中值定理进行证明。

这1过程要求我们非常熟悉3大中值定理的款件和结论,并且掌握1定的函数构造技巧。

例1.设)(x ϕ在[0,1]上连续可导,且1)1(,0)0(==ϕϕ。

证明:任意给定正整数b a ,,必存在(0,1)内的两个数ηξ,,使得b a ba+='+')()(ηϕξϕ成立。

证法1:任意给定正整数a ,令)()(,)(21x x f ax x f ϕ==,则在[0,1]上对)(),(21x f x f 应用柯西中值定理得:存在)1,0(∈ξ,使得a a a =--=')0()1(0)(ϕϕξϕ。

任意给定正整数b ,再令)()(,)(21x x g bx x g ϕ==,则在[0,1]上对)(),(21x g x g 应用柯西中值定理得:存在)1,0(∈η,使得b b b =--=')0()1(0)(ϕϕηϕ。

积分中值定理的推广证明

积分中值定理的推广证明

积分中值定理的推广证明稿子一嗨呀,亲爱的小伙伴们!今天咱们来聊聊积分中值定理的推广证明。

积分中值定理大家都不陌生吧,可它的推广就更有意思啦!你想啊,原本简单的定理,一推广,那应用范围可就更广了。

咱们先来说说为什么要推广它。

其实就是为了能在更多复杂的情况下,也能找到那个神奇的“中值”。

就好像在一堆乱麻中,找到那根能解开谜题的关键线索。

证明这个推广可不容易呢!得一点点地分析,一点点地推导。

不过别担心,跟着思路走,也没那么可怕。

比如说,咱们得先弄清楚原定理的条件和结论,然后看看怎么把新的条件加进去,让定理变得更强大。

这过程就像是搭积木,一块一块地往上加,搭出一个漂亮的城堡。

有时候可能会遇到困难,感觉走不下去了,但别放弃呀!多想想,多试试,说不定灵感就来了。

等咱们真的把这个推广证明出来,那种成就感,简直爆棚!就像攻克了一座超级难爬的山峰,站在山顶,风光无限好。

怎么样,是不是有点小期待跟着我一起去探索这个神奇的证明之旅啦?稿子二嘿,朋友们!今天咱们来侃侃积分中值定理的推广证明。

积分中值定理,听起来就很厉害对不对?那它的推广就更牛啦!想象一下,原本的定理就像一个小工具,能解决一些问题。

但推广之后,它就变成了一个超级强大的武器,能应对更多更难的挑战。

咱们开始证明之前,得先在脑子里有个大概的框架。

就像盖房子,先有个设计图。

然后呢,一步一步来,每一步都要走得稳稳的。

可能会遇到一些弯弯曲曲的路,但是别怕,坚持走下去。

比如说,要用到一些巧妙的数学方法和技巧,这就像是打开宝藏的钥匙。

有时候,还得回头看看走过的路,检查一下有没有遗漏什么。

证明的过程中,可能会觉得有点头疼,但是别灰心。

因为一旦成功,那种喜悦是无法形容的。

就好像在黑暗中摸索了好久,突然看到了一丝光亮,然后顺着那光亮,找到了出口。

当我们真的完成了这个推广证明,就会发现数学的世界真是太奇妙啦!好啦,小伙伴们,准备好和我一起在这个数学的海洋里畅游了吗?。

对积分中值定理的一点思考

对积分中值定理的一点思考

对于积分中值定理的一点思考摘要积分中值定理是高等数学中重要的一部分,中值定理是人们认识高等数学世界、解决数学问题的重要武器,本文在数学分析教材中第一积分中值定理的条件下,证明了介值点ξ必可在开区间),(b a 内取得,并且给出几分中值定理及其推广的一些应用.关键词 积分中值定理 积分中值定理应用 积分中值定理的推广 第一积分中值定理 极限一 引言推广的积分第一中值定理:若函数f(x)与g(x)在闭区间[a, b]上连续,且g(x)在[a, b]上不变号,则在[a, b]上至少存在一点ξ使得⎰⎰=babax d x g f x d x g x f )()()()()()(ξ (1)推广的积分中值定理可改进如下:定理1:若函数f(x)与g(x)在闭区间[a, b]上连续,且g(x)在[a, b]上不变号,则在),(b a 上至少存在一点ξ使得⎰⎰=babax d x g f x d x g x f )()()()()()(ξ。

对其证明如下:因为)(x f 在],[b a 上连续,故)(x f 在],[b a 上存在最大值和最小值,不妨分别设为M 和m,即M x f m ≤≤)(,则必存在x x x x b a 2121],,[,<∈,使m f x =)(1,M f x =)(2,又因为)(x g 在],[b a 上不变号,不妨设0)(≥x g ,则⎰≥badx x g 0)(,且有)()()()(x Mg x g x f x mg ≤≤,又)(x f 和)(x g 都在],[b a 可积,则)()(x g x f 在],[b a 也可积,从而有 ⎰⎰⎰≤≤bababadx x g M dx x g x f dx x g m )()()()( (2)(1) 当⎰=b adx x g 0)(时,有⎰=b adx x g m 0)(以及⎰=badx x g M 0)(,由(2)得⎰=badx x g x f 0)()(,因此对),(b a ∈∀ξ,有dx x g f dx x g x f bab a ⎰⎰=)()()()(ξ 。

积分中值定理的推广及应用

积分中值定理的推广及应用

积分中值定理的推广及应用
贝叶斯积分中值定理(Bayesian Trapzoidal Midpoint Theorem)是20世纪
90年代出现的一种新型数学理论,其应用十分广泛,涵盖统计学、算法研究和信
号处理等多个领域。

这一定理的提出,使学者们在做数学研究和解决实际问题时,能够更好地利用贝叶斯积分这一优秀的数学工具,结果也引起了不少学者的关注。

贝叶斯积分中值定理指的是,在二维空间内,任意函数的贝叶斯积分,都可以
按照确定的比例(即中值)分解成若干份,每份代表一个状态。

这一定理有效地拓展了贝叶斯积分的应用范畴,使其能够成功扩张到一般非线性函数上,从而得以分析更多实际场景。

贝叶斯积分中值定理可以拓展到更高维度,并在实际应用中起到积极的作用。

例如,它可用于几何图形的识别与匹配、机器学习,以及定性评价。

此外,一些统计模型及动力学系统中,贝叶斯积分中值定理也展示出显著的优势,可以有效解决复杂优化寻优问题。

就生活娱乐方面来说,贝叶斯积分中值定理可以广泛应用于以人类峰值感受为
基础的娱乐设备中,例如虚拟现实技术、3D视觉等,不仅能够给用户带来视觉冲击,还能够帮助用户更快的感受到内容的魅力。

另外,它还可以应用于网络游戏与音乐节目的推荐系统,从而个性化的推荐让玩家或用户更佳的体验游戏和音乐节目。

总之,贝叶斯积分中值定理可以让众多领域发挥出更为精确的数学优势,它拓
展了贝叶斯积分这一行之有年工具,有助于更多实际场景的分析研究。

特别是在生活娱乐方面,由贝叶斯积分中值定理支撑的技术更能满足用户对娱乐方式以及游戏与音乐节目等内容的需求。

广义积分中值定理的推广与应用_李元玉

广义积分中值定理的推广与应用_李元玉

乙b
b]可 积 ,n ∈R 且 n ≥1,则 存 在 ξ ∈[a,b],使 f(x)g(x) a
乙ξ
dx=n(f b) g(x)dx a
3.3.3 在广义Riemann积分中的推广
定理6 (关于无限区间上广义函数的广义积分中值
定理)设(f x)在半直线[a,+∞]上有界连续,g(x)是[a,+∞]
乙+∞
存在ξ,η∈[a,b],使:
乙 乙 乙 b
ξ

(f x)dx=m (f x)dx+n (f x)dx (2.2.1)


ξ
乙 乙 乙 b
η

(f x)dx=n (f x)dx+m (f x)dx (2.2.2)


η
3 广义积分中值定理
3.1 广义积分中值定理
广义积分中值定理[3]:设(f x),g(x)在[a,b]上连续,且g
乙+∞
设函数(f x)在区间[a,b]上可积,则称 (f x)dx为第 a
收敛,反之称之为发散。
乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙 镇海区:镇海区形成以机械电子、轻工纺织、精细化学
等产业为主导的区域经济发展体系,高新技术产业快速发
展。由于涉外企业规模庞大,贸易往来频繁,七成涉外企业
何意义:若f在[a,b]上非负连续,则y=(f x)在[a,b]上的曲边
乙 梯形面积等于以(f ξ)为高,[a,b]为底的矩形面积。b1-a
b a
(f x)dx理解为(f x)在区间[a,b]上所有函数的平均值。
2.2 积分中值定理的推广
推广[2]函数(f x)在[a,b]可积,m,n∈R,且m≤1≤n,则

积分第一中值定理的推广研究

积分第一中值定理的推广研究

积分第一中值定理的推广研究积分第一中值定理是微积分中的重要定理之一,它在基本定理的基础上提供了更为广泛的应用场景。

本文将对积分第一中值定理进行推广研究,拓展其应用范围和深化理解。

积分第一中值定理最初的形式可以表述为:若函数f(x)在闭区间[a,b]上连续,在(a,b)上可导,那么存在一个点c∈(a,b),使得∫[a,b]f(x)dx = f(c)(b-a)这个定理的物理直观解释是,积分值等于函数在[a,b]上的平均值乘以区间的长度。

其中c称为中值点,表示在[a,b]上有一个点使得函数的瞬时增长率等于其在整个区间上的平均增长率。

在推广研究中,我们可以考虑将积分第一中值定理应用于更为复杂的场景。

当函数f(x)在[a,b]上不连续但可积时,是否存在类似的定理?答案是存在的,我们可以将[a,b]划分为多个小区间,并在每个小区间上应用积分第一中值定理。

然后将这些子区间的积分值进行累加,即可得到整个区间[a,b]上的积分值。

这个推广后的定理在实际问题中非常有用,能够适用于更多的函数情况。

另一个推广研究方向是将积分第一中值定理应用于多元函数。

在一元函数情况下,积分第一中值定理通过在(a,b)上应用微分中值定理得到。

同样地,在多元函数情况下,可以通过应用多元微分中值定理来推导积分第一中值定理的推广形式。

这个推广后的定理在研究多变量函数的平均值和积分值之间的关系时非常有意义。

还可以进一步探究积分第一中值定理的推广形式对不连续或不可导函数的应用。

在实际问题中,我们经常遇到不连续或不可导的函数,而这些函数的积分值又具有实际意义。

研究如何更准确地描述这些函数的积分值是一个重要的方向。

积分中值定理与推广积分中值定理区间问题

积分中值定理与推广积分中值定理区间问题

积分中值定理与推广积分中值定理区间问题积分中值定理与推广积分中值定理区间问题在微积分中,积分中值定理是一个重要的定理,它是连续函数与积分之间的有力联系。

这个定理不仅帮助我们理解积分的几何意义,而且可以应用到各种实际问题中,给出准确的结果。

本文将介绍积分中值定理,并针对其进行推广,特别是在区间问题上的应用。

我们来回顾一下积分中值定理的基本形式。

设函数f(x)在闭区间[a, b]上连续,且在开区间(a, b)可导。

则存在一个点c,使得∫[a, b]f(x)dx = f(c) * (b - a)在这里,f(c)表示函数f(x)在区间[a, b]上的中值。

这个定理告诉我们,对于连续函数,在一个闭区间上的积分等于该区间上函数值的平均值乘以区间的长度。

接下来,我们来考虑推广积分中值定理的区间问题。

对于一个闭区间[a, b]上的函数f(x),我们并不知道在哪个点c上取得了积分中值。

我们希望找到一个区间[a, b'],其中包含了所有可能的中值点。

为了解决这个问题,我们引入推广积分中值定理。

设函数f(x)在闭区间[a, b]上连续,且在开区间(a, b)可导。

我们定义函数g(x) = ∫[a, x]f(t)dt - f(a) * (x - a),这里x∈[a, b]。

显然,函数g(x)也是连续的,并且在开区间(a, b)可导。

根据积分中值定理,存在一个点c,使得g'(c) = 0。

这意味着在闭区间[a, b]上,函数f(x)的中值就是c。

我们可以通过求函数g(x)的导数来找到函数f(x)的中值所在的区间。

具体来说,我们计算g'(x) = f(x) - f(a),根据这个表达式,我们可以找到所有满足g'(x) = 0的点x,它们构成了可能的中值所在的区间。

现在,让我们来看一个具体的例子来理解推广积分中值定理在区间问题中的应用。

考虑函数f(x) = x^2 - 2x + 1在闭区间[0, 2]上的情况。

积分中值定理的原理和应用

积分中值定理的原理和应用

积分中值定理的原理和应用1. 积分中值定理的原理积分中值定理是微积分中的重要定理之一,它描述了函数在某个区间上的平均值与该函数在同一区间上的某个点的函数值之间的关系。

具体而言,积分中值定理表述如下:定理 1(积分中值定理):若f(x)是闭区间[a,b]上的连续函数,并且F(x)是f(x)的一个原函数,则存在 $c \\in (a,b)$,使得:$$\\int_a^b f(x)dx = (b-a)F(c)$$其中,$\\int_a^b f(x)dx$ 表示函数f(x)在闭区间[a,b]上的积分,(b−a)表示区间[a,b]的长度。

从定理 1 可以看出,对于具有原函数的连续函数来说,其在某个区间上的积分值与此函数在该区间上的某个点函数值成正比。

2. 积分中值定理的应用积分中值定理是微积分中很常用的工具之一,它在数学和科学的各个领域都有重要的应用。

下面将介绍一些常见的应用场景。

2.1 函数平均值的计算根据积分中值定理,我们可以计算函数f(x)在区间[a,b]上的平均值。

根据定理 1,可以得到:$$\\frac{1}{b-a}\\int_a^b f(x)dx = F(c)$$其中F(c)为函数f(x)在区间[a,b]上某个点的函数值。

因此,可以通过求函数f(x)在区间[a,b]上的积分来计算函数的平均值。

2.2 曲线长度的计算另一个应用积分中值定理的例子是计算曲线的长度。

设有一条曲线C,其方程为y=f(x),其中f(x)在闭区间[a,b]上连续并具有连续的导数。

我们可以将曲线划分成若干小段,然后计算每个小段的长度,再将所有小段长度相加即可得到整条曲线的长度。

如果我们设 $\\Delta x$ 为小段的长度,根据微积分的概念,可以得到:$$\\Delta L = \\sqrt{1 + [f'(x)]^2} \\Delta x$$其中f′(x)表示f(x)的导数。

由积分中值定理可知,存在 $c \\in (a,b)$,使得:$$\\int_a^b \\sqrt{1 + [f'(x)]^2} dx = (b-a)\\sqrt{1 + [f'(c)]^2}$$这样,我们就可以通过计算积分来求得整条曲线的长度。

)积分中值定理的推广和应用情形

)积分中值定理的推广和应用情形

积分中值定理的推广和应用———积分中值定理的推广定理和应用情形The Integral Mean Value Theorem for Its Spreading andApplication——Extension theorem of integral mean value theorem and itsapplication论文作者:专业:指导老师:完成时间:摘要积分中值定理和微分中值定理在微积分学中有着重要的地位,微分中值定理是研究函数的有力工具,反映了导数的局部性和与函数的整体性之间的关系,而积分中值定理在证明有关中值问题时具有极其重要的作用。

它是数学分析课程中定积分部分的一个基本定理之一。

积分中值定理包括积分第一中值定理和积分第二中值定理,在之前的数学分析课程中我们已经学习了这两个定理的证明,但这两个定理的推广与应用尚未提及。

在这里,我讨论了积分第一中值定理和积分第二中值定并给出了这些定理的详细证明过程,并且给出了集中推广形式。

在积分中值定理的应用方面,我给出了一些较简单的情形如估计积分值,求含有定积分的极限,确定积分号等,并且通过列举例题,加以归纳总结,并且充分体现积分中值定理在学习解题练习中的应用。

The integral mean value theorem and the differential mean value theorem play an important role in the calculus.Differential mean value theorem is a powerful tool to study the function.It reflects the relation between the local property of the derivative and the integral of the function. And the integral mean value theorem plays a very important role in the proof of the mean value problem.It is one of the basic theorems of the definite integral part in the course of mathematical analysis.The integral mean value theorem includes the first mean value theorem of integrals and the second mean value theorem of integrals,we have learned the proof of the two theorems In the course of mathematical analysis.But the extension and application of these two theorems have not been mentioned yet.Here, I discuss the first mean value theorem of integrals and the second mean value of the integrals and give a detailed proof of these theorems and I give the form of centralized generalizations here.In the application of the integral mean value theorem, I give some simple situations such as the estimation of the integral value, and the limit of the definite integral, the integral number and so on.And by citing examples,I summarized and fully reflect the integral mean value theorem in the application of learning problem solving exercises.关键词:积分中值定理;推广;应用Keyword:mean value theorem of integrals; extension; Application1 引言中值定理在数学分析中占有非常重要的地位,学好积分中值定理和微分中值定理能为进一步学好微积分理论打下坚实的基础。

广义积分中值定理的推广与应用

广义积分中值定理的推广与应用

广义积分中值定理的推广与应用作者:李元玉来源:《教育教学论坛》2012年第45期摘要:广义积分中值定理是数学分析中的一个重要定理,对微分中值定理、曲线和曲面积分中值定理等的认识有很大帮助.本文根据广义积分中的广义积分和积分中值定理的定义和相关性质,扩展到广义积分中值定理中,重点在单调区间上的广义积分中值定理、带有参数的广义积分中值定理、广义Riemann积分中的推广这三方面进行探讨.关键词:广义积分;积分中值定理;广义积分中值定理中图分类号:G712 文献标志码:A 文章编号:1674-9324(2012)12-0164-031 广义积分1.1 第一类广义积分设函数f(x)在区间[a,b]上可积,则称■f(x)dx为第一类广义积分[1],且当■■f(x)dx存在时,称该广义积分收敛,反之称之为发散。

同理,有■f(x)dx属于第一类广义积分形式,而■f(x)dx由双向极限(a→-∞,且b→+∞)确定其收敛性,属第一类双边广义积分。

1.2 第二类广义积分设f(x)在x=a右侧领域内无界(x=a称为f(x)的一个奇点),?坌X∈(a,b],f (x)在[X,b]上可积,则称■f(x)dx为第二类广义积分[1],且当■■f(x)dx存在时称■f (x)dx收敛,反之极限不存在时,称广义积分■f(x)dx发散。

被积函数f在点a近旁是无界的,这时点a称为f的瑕点,而无界函数反常积分■f(x)dx 又称为瑕积分。

类似上述描述可有积分上限为奇点的第二类广义积分,甚至可有[a,b]内有奇点x=c的广义积分■f(x)dx称为第二类广义积分。

2 积分中值定理2.1 积分中值定理及其几何意义积分中值定理[1]:若f在[a,b]上连续,则至少存在一点ζ∈[a,b],使得■f(x)dx=f (ξ)(b-a).积分中值定理的几何意义:若f在[a,b]上非负连续,则y=f(x)在[a,b]上的曲边梯形面积等于以f(ξ)为高,[a,b]为底的矩形面积。

推广的积分中值定理及其应用

推广的积分中值定理及其应用

推广的积分中值定理及其应用摘要:定积分是微积分的重要组成部分,而积分中值定理是定积分的重要性质之一,所以积分中值定理在微积分中占了很重要的地位,本文系统的叙述了推广的积分中值定理包括:ξ必可以在开区间中取得,导函数的积分中值定理等多个方面,我们所学知识中积分中值定理与微分中值定理的中间点的存在区间是不统一的,但推广后的积分中值定理能够与微分中值定理的存在区间从形式上统一起来,使与其相关的理论得以联系和应用.同时,在本篇论文中以实例的形式列举了推广的积分中值定理在确定零点分布、证明积分不等式、求极限等方面的应用,显然,推广的积分中值定理的优点就在于此,它可以解决原积分中值定理无法解决的问题,这表明了积分中值定理在推广后更具有应用性.关键词:积分中值定理;导函数;微分中值定理Promotion of Integral Mean ValueTheorem and Its ApplicationAbstract:Definite integral is an important component of calculus, the mean value theorem is one of the important properties of the definite integral, so integral mean value theorem in calculus plays a very important position .This paper describes the system topromote the integral mean value theorem, including: ξwill be achieved in the open interval ,of the derivatives and other integral mean value theorem, we have the knowledge of the differential mean value theorem and the Intermediate Value Theorem Existence interval is not uniform, but after the promotion of integral mean value theorem and the Mean Value Theorem to the presence of range from the formal unity, so that contact can be associated with the theory and application. Meanwhile, in this paper an example to cite a form of integral mean value theorem in determining the zeros to prove inequality, such as the application of limit, obviously, to promote the advantages of integral mean value theorem in this, it Can solve the original integral mean value theorem can not solve the problem, suggesting that the integral mean value theorem in the promotion of a more applied after.Keywords: Integral mean value theorem, derivative, mean value theorem1预备知识在本部分中具体叙述了这篇论文中所需要的相关知识,包括导函数介值性定理、拉格朗日中值定理以及变上限积分函数的定义和性质等,这些理论知识为第二部分的定理推导以及证明做了铺垫,所以起了重要的作用.1.1设()g x 在[,]a b 上非负可积,且()0abg x dx >⎰则存在[,](,)c d a b ⊂使得()0dcg x d x >⎰1.2 设()f x 在[,]a b 上连续,0x ,1x ,2x [,]a b ∈若10()()f x f x >,20()()f x f x <,则存在(,)a b ξ∈,使得0()()f f x ξ=1.3若函数()f x 在[,]a b 上可导,且''()()f a f b +-≠,k 为介于'()f a +,'()f b -之间的任意数,则在(,)a b 内至少存在一点ξ,使得'()f k ξ=1.4若'()f x 为[,]a b 上的非负导函数,且存在0[,]x a b ∈,使'0()0f x >,则必有'()0baf x dx >⎰1.5(拉格朗日中值定理)若函数()f x 满足如下条件: (1)()f x 在闭区间[,]a b 上连续; (2)()f x 在开区间(,)a b 内可导;则在(,)a b 内至少存在一点ξ使得'()()()f b f a f b aξ-=-1.6变上限积分函数:设()f x 在[,]a b 上可积,x 为[,]a b 内任意一点,则称函数()()xax f t dt φ=⎰为变上限积分函数1.7变上限积分函数有以下若干性质 (1)有界性命题1 设函数()f x 在[,]a b 上可积,则()x φ在[,]a b 上有界(2)连续性命题2 设函数()f x 在[,]a b 上可积,则()x φ在[,]a b 上连续 (3)可积性命题3 设函数()f x 在[,]a b 上可积,则()x φ在[,]a b 上可积 (4)可微性(原函数存在定理)()f x 在[,]a b 上连续,则()x φ在[,]a b 上处处可导.且'()()()xad x f t dt f x dx φ==⎰ [,]x a b ∈2 推广的积分中值定理积分第一中值定理在数学分析教材中为:若()f x 在[,]a b 上连续,则至少存在一点[,]a b ξ∈,使得()()()baf x dx f b a ξ=-⎰推广的积分第一中值定理在数学分析教材中为:()f x ,()g x 都在[,]a b 上连续,且()g x 在[,]a b 上不变号,则至少存在一点[,]a b ξ∈,使得()()()()bbaaf xg x dx f g x dx ξ=⎰⎰我们知道积分中值定理可用于确定数列及函数列的极限,确定零点分布,判别函数的敛散性,证明积分不等式等.但观察上述式子我们发现ξ的取值有时会在两个端点处取得,有的习题用原有的积分中值定理不能够解答出来.例如在证明积分不等式时,运用原有的积分中值定理我们只可以证明≤或≥的情况,所以带有一定的局限性.下面我们对原有的积分中值定理做一下加强,使“ξ”的范围由闭区间缩小到开区间,即得到了下面所叙述的推广的积分中值定理.2.1积分第一中值定理的推广定理 2.1(1)若()f x 在闭区间[,]a b 上连续,则在开区间(,)a b 内至少存在一点ξ使得:()()()baf x dx f b a ξ=-⎰成立证明: 作辅助函数()()x aF x f t dt =⎰ [,]x a b ∈则()F x 是[,]a b 的可微函数,且'()()F x f x =.由微积分学中值定理,至少存在一点(,)a b ξ∈,使得:'()()()()F b F a F b a ξ-=-注意到()()ba Fb f x dx =⎰,()0F a =,即有()()()baf x dx f b a ξ=-⎰(,)a b ξ∈2.2推广的第一积分中值定理的加强引理1 设()g x 在[,]a b 上非负可积,且()0ba g x dx >⎰,则存在[,](,)c d ab ⊂使得()0dcg x dx >⎰证明:用反证法作辅助函数()()b x a xG x g t dt -+=⎰[0,]2b a x -∈,则()G x 是[0,]2b a-上的非负连续函数.若命题不成立,则对任意的(0,)2b ax -∈有()G x ≡0,令x o →+,得(0)()0b a G g t dt ==⎰,产生矛盾.引理2 ()f x 在[,]a b 上连续,0x ,1x ,2x [,]a b ∈,若10()()f x f x >,20()()f x f x <,则存在(,)a b ξ∈,使得0()()f f x ξ=证明:作辅助函数0()()()H x f x f x =-,我们不妨设12x x <,因为()f x 在[,]a b 上连续,故()H x 也连续,从而在12[,]x x 上连续.1()0H x >,2()0H x <由连续函数的零点定理知存在12(,)x x ξ∈使得()0H ξ=即当然0()()f f x ξ=其中(,)a b ξ∈.引理3 若()g x 在[,]a b 上连续且不恒为零,则积分()0ba g x dx >⎰证明:倘若有某0[,]x a b ∈,使0()0g x >,由连续函数的局部保号性知存在0x 的某邻域00(,)x x δδ-+,使在其中0()()02g x g x ≥>,则 00000000()()()()()00()02bx x b x aax x x g x g x dx g x dx g x dx g x dx dx g x δδδδδδδ-++-+-=++≥++=>⎰⎰⎰⎰⎰证毕.定理 2.2 设()f x 在[,]a b 上连续,()g x 在[,]a b 上可积不变号,则至少存在一点(,)a b ξ∈使得()()()()bbaaf xg x dx f g x dx ξ=⎰⎰证法1(2)证明:1︒()0bag x dx =⎰时,此时,由推广的积分中值定理知,存在[,]a b ξ∈使得()()()()bbaaf xg x dx f g x dx ξ=⎰⎰=0于是对任意的0(,)x a b ∈有0()()()()bbaaf xg x dx f x g x dx =⎰⎰命题成立2︒当()0g x ≥,且()0bag x dx >⎰时,若命题不成立,即不存在(,)a b ξ∈,使得()()()()bbaaf xg x dx f g x dx ξ=⎰⎰则由推广的积分中值定理知,只能有()()()()b baaf xg x dx f a g x dx =⎰⎰ (1)或者 ()()()()b baaf xg x dx f b g x dx =⎰⎰ 成立 (2)若是命题不成立而(1)成立,则在(,)a b 内()()f x f a ≠ 由引理2在(,)a b 内恒有()()f x f a >或者()()f x f a <,不妨设()()f x f a >,而对()g x 运用引理2存在[,](,)c d a b ⊂,使得()0dc g x dx >⎰于是()()()()()()()()()()bbcdbaaacdf ag x dx f x g x dx f x g x dx f x g x dx f x g x dx ==++⎰⎰⎰⎰⎰=123()()()()()()c d bacdf g x dx f g x dx f g x dx ξξξ++⎰⎰⎰其中1[,]a c ξ∈,2[,]c d ξ∈,3[,]d b ξ∈,这是根据推广的积分中值定理得出的,由于1()()f f a ξ≥,()0cag x dx ≥⎰,2()()f f a ξ>,()0dcg x dx >⎰,3()f ξ中的3b ξ≠时3()()f f a ξ>.当3b ξ=时,对()()f x f a >,0x b →-,由()f x 在[,]a b 上的连续性可知,()()f b f a ≥而()0dd g x dx ≥⎰,综上可得到()()()()()()()()()()b c d b baacdaf ag x dx f a g x dx f a g x dx f a g x dx f a g x dx >++>⎰⎰⎰⎰⎰这是一个矛盾,因此命题成立.若是命题不成立而(2)成立,同样可得出矛盾,因此定理得以证明3︒ 当()0g x ≤,且()0ba g x dx <⎰时此时()0g x -≥,且[()]0bag x dx ->⎰,由情形2的讨论知,存在(,)a b ξ∈,使得()[()]()[()]bb aaf xg x dx f g x dxξ-=-⎰⎰ 即有()()()()bbaaf xg x dx f g x dx ξ=⎰⎰ (,)a b ξ∈总之,定理2.2完全得以证明证法2(3)证明:令()()xaF x f t dt =⎰,由拉格朗日中值定理知,(,)a b ξ∃∈,使得'()()()F b F a F b aξ-=-,即()()()baf x dx f b a ξ=-⎰不妨设()0g x ≥,[,]x a b ∈,若()g x 在[,]a b 上恒为零,则结论显然成立.若()g x 在[,]a b 上连续且不恒为零,则积分()0ba g x dx >⎰令()()()x aF x f t g t dt =⎰,()()xaG x g t dt =⎰,在[,]a b 上应用柯西中值定理,(,)a b ξ∃∈,使''()()()()()()()()()()()()()babaf tg t dtF b F a F f g fG b G a G g g t dtξξξξξξ-=⇒==-⎰⎰即()()()()bbaaf xg x dx f g x dx ξ=⎰⎰2.3积分第二中值定理的推广在数学分析教材中积分第二中值定理是这样叙述的,设函数()f x 在[,]a b 上可积 (1)若函数()g x 在[,]a b 上减,且()0g x ≥,则存在[,]a b ξ∈,使得()()()()baaf xg x dx g a f x dx ξ=⎰⎰(2)若函数()g x 在[,]a b 上增,且()0g x ≥,则存在[,]a b η∈,使得()()()()bbaf xg x dx g b f x dx η=⎰⎰其推论为:设函数()f x 在[,]a b 上可积,若()g x 为单调函数,则存在[,]a b ξ∈,使得()()()()()()bbaaf xg x dx g a f x dx g b f x dx ξξ=+⎰⎰⎰现在研究一下推论的情形:在第一积分中值定理中,我们把ξ的取值区间由闭区间缩小到开区间,但对于积分第二中值定理是否可以做这样的加强呢,看一下下面的例子:在闭区间[,]a b 上()1f x =,1[,)()2x a b g x x b ∈⎧=⎨=⎩若在(,)a b 上存在ξ使得()()()()()()bbaaf xg x dx g a f x dx g b f x dx ξξ=+⎰⎰⎰即 ()()()()2()2b a g a a g b b a b b a ξξξξξ-=-+-=-+-=--所以b ξ=,即ξ在[,]a b 的端点.这个例子告诉我们积分第一中值定理的加强结果对于积分第二中值定理不一定成立,但是这里的有限区间[,]a b 却可以换成[,)a +∞或(,]b -∞或(,)-∞+∞.此处只讨论第一种情况定理 2.3(4)设()g x 在[,)a +∞上单调有界,()f x 在[,)a +∞上可积,且()f x 没有+∞以外的瑕点,则存在[,)a ξ∈+∞使得()()()()()()aaf xg x dx g a f x dx g f x dx ξξ+∞+∞=++∞⎰⎰⎰这里()lim ()x g g x →+∞+∞=证明:不妨设()g x 在[,)a +∞上单调下降,由于()g x 有界,所以()g x 在+∞处有有限的极限,记为()g +∞,于是可记()()()G x g x g =-+∞,则()0G x ≥,而对于任意的有穷区间[,]a A ,由第二积分中值定理可知,总有[,]a A η∈使得:()()()()Aaaf x G x dx G a f x dx η=⎰⎰而()()A aF A f x dx =⎰是[,)a +∞上的关于A 的连续函数,又()f x 在[,)a +∞上可积,则()F A 在[,)a +∞上有有穷的下确界和上确界,不妨记[,)inf ()A a m F A ∈+∞=,[,)sup ()A a M F A ∈+∞=,则有()m F A M ≤≤又因为()()()()Aaaf x G x dx G a f x dx η=⎰⎰所以有()()()()AamG a G x f x dx MG a ≤≤⎰再令A →+∞,则有()()()()amG a G x f x dx MG a +∞≤≤⎰令 ()()()aG a G x f x dx μ+∞=⎰, (3)则有()()()mG a G a MG a μ≤≤如果()0G a ≠则m M μ≤≤,因为()()AaF A f x dx =⎰是[,)a +∞上的关于A 的连续函数,所以()F A 可以达到其上确界M 和下确界m 及上确界和下确界之间的任意值,即存在[,)a ξ∈+∞使得()af x dx ξμ=⎰将其带入(3)式就有()()()()aaG a f x dx G x f x dx ξ+∞=⎰⎰即(()())()(()())()aag a g f x dx g x g f x dx ξ+∞-+∞=-+∞⎰⎰所以()()()()()()aaf xg x dx g a f x dx g f x dx ξξ+∞+∞=++∞⎰⎰⎰如果()0G a =,因为()g x 在[,)a +∞上单调下降,所以()G x 在[,)a +∞上单调下降,又因为()0G x ≥即()0G x =所以()()g x g =+∞,即()g x =常数,那么对任意的[,)a ξ∈+∞,都有()()()()()()aaf xg x dx g a f x dx g f x dx ξξ+∞+∞=++∞⎰⎰⎰证毕.这个定理告诉我们:第二积分中值定理虽然在有限开区间上不一定成立,但在无穷区间上却是成立的.通过以上的推导过程我们会发现在积分中值定理的前提下,ξ必可以在开区间中取得.在微积分学中积分中值定理和微分中值定理两者在一定意义上是互逆的、对立的,这种辩证的对立统一使微积分的内容更加丰富多彩,但两者中间点ξ的存在区间是不统一的,给其相关理论和应用带来了不便,但改动之后,推广的积分中值定理与微分中值定理的取值区间得以统一,从而更能体现积分中值定理的中值性,以及两个定理之间的联系.一方面可由微分中值定理推出积分中值定理根据牛顿—莱布尼茨公式:()()()ba f x dx Fb F a =-⎰其中()F x 是()f x 在[,]a b 上的原函数即'()()F x f x =,[,]x a b ∈,显然()F x 在[,]a b 上满足拉格朗日中值定理的条件,于是至少存在一点(,)a b ξ∈使得'()()()()F b F a F b a ξ-=-()()f b a ξ=- (,)a b ξ∈即()()()baf x dx f b a ξ=-⎰(,)a b ξ∈另一方面,推广的积分中值定理推出微分中值定理:若()f x 在[,]a b 上有连续的导函数,直接计算得:'()()()baf x dx f b f a =-⎰ (4)而由推广的积分中值定理至少存在一点(,)a b ξ∈,使得''()()()baf x dx f b a ξ=-⎰(5)由(4)和(5)有'()()()()f b f a f b a ξ-=-,这正是微分中值定理.2.4 导函数的积分中值定理及其应用在微积分学中,积分中值定理与微分中值定理都有着很重要的地位,下面我们将积分中值定理条件下的连续函数推广到导函数,并用Darboux 定理给出了详尽的证明,由此我们得出了导函数积分中值定理.引理1(5)(Darboux ) 若函数()f x 在[,]a b 上可导,且''()()f a f b +-≠,k 为介于'()f a +,'()f b -之间的任意数,则在(,)a b 内至少存在一点ξ,使得'()f k ξ=引理2 若'()f x 为[,]a b 上的非负导函数,且存在0[,]x a b ∈,使'0()0f x >,则必有'()0baf x dx >⎰定理 2.4(6)若'()f x 为[,]a b 上的导函数,()g x 为[,]a b 上的连续函数,且()g x 在[,]a b 上不变号,则至少存在一点ξ[,]a b ∈,使得''()()()()bbaaf xg x dx f g x dx ξ=⎰⎰证明:不妨设()0g x ≥,'()f x 在[,]a b 上的最大值和最小值为别为M 与m ,其中M 可以取+∞,m 可以取-∞,在a 点取'()f a +,在b 点取'()f b -,令()0ba I g x dx =≥⎰,又'()()()()mg x f x g x Mg x ≤≤,([,])x a b ∈,则有'()()()()bbbaaam g x dx f x g x dx M g x dx ≤≤⎰⎰⎰当0I =或m M =时,任意取(,)a b ξ∈均可当0I >或m M <时,令'1()()b a u f x g x dx I=⎰ ()m u M ≤≤ 当m u M ≤≤时,由Darboux 定理知,至少存在一点(,)a b ξ∈,使得'()f u ξ= 当m u M =<时,利用反证法证明存在(,)a b ξ∈,使得'()f u ξ=若对一切的(,)x a b ∈,有'()0f x u ->且()0baI g x dx =>⎰,则()g x 在[,]a b 上不恒为零,即存在0[,]x a b ∈,使得0()0g x >,由连续函数的保号性知存在0x 的邻域00(,)x x σσ-+(当0x a =或0x b =时,则为右邻域或左邻域)使得对于任意的00(,)x x x σσ∈-+,有0()()02g x g x ≥>,则 0000'''0()(())()(())()(())2bx x ax x g x f x u g x dx f x u g x dx f x u dx σσσσ++--->-≥-⎰⎰⎰ 由引理2可得00'(())0x x f x u dx σσ+-->⎰,从而有'(())()0b af x ug x dx ->⎰另一方面:''0(())()()()()0bbbaaaf x ug x dx f x g x dx u g x dx uI uI <-=-=-=⎰⎰⎰出现矛盾,故原命题成立,即当m u M =<时,存在(,)a b ξ∈,使得'()f u ξ=当m u M <=时,同理可证必存在(,)a b ξ∈,使得'()f u ξ=成立同理可证二阶导函数,n 阶导函数对上述的导函数的积分中值定理成立,只要我们把它们看成一阶连续导函数和n-1阶连续导函数的导函数,便可用同样的方法得证.定理2.4的应用说明例1 设函数()f x 在[,]a b 上二次可微,证明存在一点(,)a b ξ∈,使得''324().[()()]()2b aa bf f x f dx b a ξ+=--⎰ 证明:记02a bx +=,将被积函数在0x x =处按泰勒公式展开,得 2'''0000()()()()()()2x x f x f x x x f x f η--=-+其中η在x 与0x 之间,因为'00()()0bax x f x dx -=⎰,即2''00()(()())()2bbaax x f x f x dx f dx η--=⎰⎰由定理知存在(,)a b ξ∈使32''''2''00()()()()()()12bba ab a x x f dx f x x dx f ηξξ--=-=⎰⎰从而''324().[()()]()2b a a bf f x f dx b a ξ+=--⎰例2 已知导函数'()f x 在[1,2]上有界,求证2'1lim ()0nx n f x e dx -→∞=⎰证明:导函数'()f x 在[1,2]上有界,所以存在正数M ,对[1,2]ξ∈,有'()f M ξ<,由定理1知,存在1(1,2)ξ∈,2(1,2)ξ∈, 使得222'''1111()()()n nnx x f x edx f edx f eξξξ---==⎰⎰从而有2'1lim ()0nx n f x e dx -→∞=⎰3 推广的积分中值定理的应用3.1用于确定零点分布例3 (7)证明:若()f x 在[,]a b 上连续,且()()0b ba af x dx xf x dx ==⎰⎰,则在(,)a b 内至少存在两点1x ,2x 使得12()()f x f x =证明:设()()xa F x f t dt =⎰那么我们有()()()0baf x dx F b F a =-=⎰,所以()()F b F a ==0又因为()()()()bbbba aaaxf x dx xdF x xF x F x dx ==-=⎰⎰⎰ ()()()()bF b aF a F b a ξ---所以可得; ()()()()b a F b F b a ξ-=-,所以()()()F b F F a ξ===0 证毕例4(8) 证明:若()f x 在[0,]π上连续,且0()()cos 0f x dx f x xdx ππ==⎰⎰,证明:存在两点1ξ,2ξ (0,)π∈,使得 12()()0f f ξξ==证明:令0()()xF x f t dt =⎰ 即'()()F x f x =,()(0)0F F π==00()cos cos ()cos ()()cos f x xdx xdF x xF x F x d xππππ==-⎰⎰⎰()sin ()sin .0F x xdx F πξξπ===⎰所以()0F ξ= (0,)ξπ∈,对()F x 在(0,)ξ,(,)ξπ上使用罗尔定理,即存在1(0,)x ξ∈,2(,)x ξπ∈满足'1()0F x =,'2()0F x =,即12()()0f x f x ==证毕 例5(3)假如()f x 在[0,]π上连续,且0()sin ()cos 0f x xdx f x xdx ππ==⎰⎰,则()f x 在(0,)π内至少有两个零点.证明:由已知条件,并运用推广的积分中值定理得0()sin ()sin 2()()0f x xdx f xdx f f ππξξξ===⇒=⎰⎰,(0,)ξπ∈即()f x 在(0,)π有一个零点,假如仅有一个零点x ξ=,则()f x 在[,]a ξ与[,]b ξ上均不变号,且异号,那么()sin()f x x dx ξ-在[0,]π上保持同号,连续且不恒为零,必有()sin()0f x x dx πξ->⎰(或0<)与已知0()sin()cos ()sin sin ()cos 0f x x dx f x xdx f x xdx πππξξξ-=-=⎰⎰⎰矛盾.3.2 证明积分不等式在证明积分不等式时,常常考虑积分中值定理以便去掉积分符号,如果被积函数是两个函数之积时,可考虑用积分第一或第二中值定理,对于某些不等式的证明运用原积分中值定理只能得到“≥”的结论,或者不等式根被就不能得以证明,而运用了推广的积分中值定理后,则可以得到“>”的结论,或者成功的解决.例6(9) 假设()f x 在[0,1]上连续并且单调递减,证明对任何的(0,1)a ∈有1()()af x dx a f x dx >⎰⎰证明:将要证的不等式移项11()()()()()aa a af x dx a f x dx f x dx a f x dx a f x dx -=--⎰⎰⎰⎰⎰1(1)()()aaa f x dx a f x dx =--⎰⎰因为()f x 单调递减,所以在区间[0,]a 上()()f x f a ≥,即0()()af x dx af a ≥⎰,再对上式右边第二项运用推广的积分中值定理,即存在ξ其中1a ξ<<,使上式变成1(1)()()(1)()()(1)(1)[()()]a aa f x dx a f x dx a af a af a a a f a f ξξ--≥---=--⎰⎰因为()f x 单调递减,且1a ξ<<,,所以(1)[()()]0a a f a f ξ-->,即得证.例7(9) 设()f x 在[,]a b 上连续且单调递增,证明()()2bbaaa b xf x dx f x dx +>⎰⎰证明:将要证的不等式移项,并分部积分得()()2bbaa ab xf x dx f x dx +-⎰⎰ 22()()()()()()222a bbb a b a a a b a b a bx f x dx x f x dx x f x dx +++++=-=-+-⎰⎰⎰ 令()()2a b g x x +=-,显然()f x ,()g x 在[,]2a b a +和[,]2a b b +上可积,且()g x 在[,]2a b a +和[,]2a b b +上不变号,由推广的积分中值定理知:即存在11()2a b a ξξ+<<,22()2a bb ξξ+<<,使得221222()()()()()()()()2222a ba bb b a b a b aa ab a b a b a b x f x dx x f x dx f x dx f x dxξξ++++++++-+-=-+-⎰⎰⎰⎰整理得221()[()()]8a b f f ξξ+-,因为()f x 是单调递增函数,122a b a b ξξ+<<<<,所以221()[()()]08a b f f ξξ+->,证毕. 在上述例子中我们可以看到有的题原积分中值定理不适用,而推广的积分中值定理可以将问题解决.在例6中如果运用原积分中值定理,由1a ξ≤≤只能得到“0≥”的结论;而在例7中也只能得到12()()f f ξξ≤的结论.3.3求极限例8(10)证明10lim 01nn x dx x→∞=+⎰ 证明:0ε∀>,如果取1[0,1]2ξε∈-,则有10lim 01nn dx ξξ→∞=+⎰,即N ∃,当n N >时,有12n ξεξ<+,又因为:11120012111n n n x x x dx dx dx x x x εε--=++++⎰⎰⎰对等式右边第一个积分运用中值定理,对第二个积分的被积函数用不等式011n x x <≤+,则有当n N >时有100[2]122n x dx x εε<<-+⎰,所以有10lim 01n n x dx x→∞=+⎰ 证毕.参考文献[1] 杨延龄,邹励农,章栋恩.高等数学微积分700例题[M].中国建材工业出版社.2004年10月.123页.[2] 陈卫星,马全中.关于积分中值定理及推广的积分中值定理的改进[J]. 中国煤碳经济学院学报,1994年,第1期.54,55页.[3] 郝涌,李学志,陶有德.数学分析选讲[M].国防工业出版社.2010年4月.83页,94页.[4] 朱碧,王磊.第二积分中值定理的一些推广及其应用[J]. 考试周刊, 2008年,第30期.49页.[5] 刘玉琏,傅沛仁.数学分析讲义[M].北京.高等教育出版社.2003年.[6] 谢焕田.积分中值定理的推广及其应用[J].高师理科学刊,2009年,第5期.8,9页[7] 华东师范大学数学系. 数学分析[M]. 高等教育出版社.1991年.[8] 许洪范.考研微积分500例[M]. 国防工业出版社.2009年3月.121页.[9] 李海军.积分中值定理的应用[J].赤峰学院学报.2010年,第6期,4页.[10]荆江雁.积分中值定理得推广[J].常州工学院学报.2007年,第1期 ,53页.致谢从选择论文题目到搜集材料再到一遍又一遍的修改仿佛经历了太长的时间,论文比我想象中要难写的多,我明白想写好一篇优秀的论文就必须付出百倍的努力,在论文即将交稿之时,心里多了一些轻松,同时多了一丝伤感.自己的大学生活随着论文的结束而画上了一个句号.回想自己写论文的全过程,自己最要感谢的是论文导师许宏文老师,她为人很随和,治学严谨,对待工作认真,对待学生负责,许老师给人一种很容易接近的感觉,忘不了第一次接许老师电话的情景:她耐心的给我指点着,细心的帮我分析写这篇论文的注意事项……之所以论文会顺利的完成许老师付出了太多,太多.一遍一遍的检查,一遍又一遍的帮我指出错误,在这里我想说声:许老师:您辛苦了!真的谢谢您!最后要感谢我的学校,感谢教予我知识的老师,感谢我四年的大学生活,在这四年里自己学到了很多,也成长了很多.谢谢!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学校代码
10812
分 类 号
O172.2
学 号
20090403107
积分中值定理的推广与应用
系 别
数学系
专 业
数学与应用数学
姓 名
韩凤
指导教师
张润玲
职 称
副教授
日 期
2011年6月
国内图书分类号:O172.2
吕梁学院本科毕业论文(设计)
积分中值定理的推广与应用
姓 名
韩凤
系 别
数学系
专 业
数学与应用数学
其中 , .由 式 式得
因为 为偶数,且对 ,有
.
故由 式得
.
依题设, 在 连续且
.
由连续函数的介值性,知存在一点 使 以此代入 ,即得证.
第二章
2.1证明方面的应用
2.1.1具有某些性质的点的存在问题
在积分学的学习过程中,有关定积分具有某种性质的点的存在性的论证是学生学习的一难点.一般,我们应仔细观察被积函数所具有的性质,注意利用微分中值定理,积分中值定理等途径,从而达到有关问题的证明.
.
例7设函数 连续,且 ,求极限. .
分析先作变量替换,然后用洛比达法则,因为不能判断 是否存在,所以不能再用洛比达法则,可用积分中值定理.
解令 ,则
.
因为所求函数极限为 型不定式,由洛比达法则及积分中值定理有
此处 介于 与 之间.由 连续有 .
2.2.2利用高阶导数计算定积分
前面对积分第一中值定理进行了各种推广,现在通过以下几个例子来揭示推广了的积分中值定理的应用.
申请学位
学士学位
指导教师
张润玲
职 称
副教授
日 期
2011年6月
摘 要
在微积分学中积分中值定理与微分中值定理一样有着重要的地位.微积分的许多问题和不等式的证明都以它为依据,积分中值定理在证明有关中值问题时具有极其重要的作用.它是《数学分析》、《高等数学》课程中定积分部分的基本定理之一.众所周知积分中值定理包括积分第一中值定理与积分第二中值定理,而在数学分析课本上已有过这两个定理的详细证明,但这两个定理的推广与应用尚未提及.因此,在教学过程中,学在运用这一知识点解决有关的数学问题比较困难,常常不知如何下手,本文主要讲述的是积分第一中值定理的各种形式的推广以及通过以下几方面的列举例题,加以归纳总结,并充分体现积分中值定理在学习解题练习中的应用.
, .
注意到 , 故在上式中令 ,得
.其中 .
上述定理只说明了函数 有 阶导数,若函数 有 (偶数)阶连续导数时情形呢?
定理1.6设函数 在闭区间 有 (偶数)阶连续导数,则至少存在一点 使
证明设 ,则 ,有
, , … .
设 ,则 在点 的 阶泰勒公式为
其中 .特别,在上式中分别令 和 ,则分别得

关键词:积分中值定理;推广;应用
ABSTRACT
The integral median value theorem and differential median value theorem has the same important position in the calculus.Many questions and the proof of the inequality are all based on the integral theorem,the integral median theorem has played an important role in solving the problems about median.It is one of the basic theorems in the definite integral part of“the mathematical analysis”and“the higher mathematics”.Well-known that the integral median theorem include the first median theorem for integrals and the second median theorem for integrals and the textbooks of the mathematical analysis have the detailed proof about the two theorems,but the popularization and application of the two theorems have not been addressed .Therefore,it is difficult when students use this knowledge to solve the related problems during the process of teaching.This article mainly introduce various popularization of the first median theorem for integrals and giving some example through the following aspects,and giving some summary,strive to reflect the application of integral median value theorem in studying the way which can slove the ploblems.
证明 收敛并求其值, .
证明因 , 收敛,所以 有
由积分中值定理,存在 介于 与 之间,使
.
又因 在 上连续,从而有
证明在 上 ,则结论显然成立.
假设 上 ,由积分第一中值定理知,在 上至少存在一点 (实际上在开区间 内一定存在这样的 )使得 ,所以
.
又因 在 , 上连续,在 , 内可导.由罗尔中值定理,存在 使 .
2.1.2用于证明积分不等式
积分不等式是指不等式中含有两个以上积分的不等式,当积分区间相同时,先合并统一积分区间上的不同积分,根据被积函数所满足的条件,灵活运用积分中值定理以达到证明不等式成立的目的.
定理1.1若函数 在闭区间 连续,则在开区间 内至少有一点 ,使得
.
证明设 ,由微积分基本定理知 在 上可微且 ,由拉格朗日微分中值定理可得,在 内存在一点 使
.
因为 , 以及 ,
所以
, .
定理1.2若函数 在开区间 上连续,而在 及 为第一类间断点,或只有一个第一类间断点而另一端点是连续点,则在 上至少有一点 ,使得
定理1.3若 在 上连续, 是连续点或第一类间断点, 为瑕点,且广义积分 收敛,则在 上仍有
.
证明由广义积分定义知
.
所以
,
由题意知:等式左边存在,所以等式右边也应存在.
记 , .所以有
, .
注上述定理的条件若设为 为无穷型间断点, 是连续点或第一类间断点,而其不变,则上述定理的结论仍成立.
在上一定理中只有一端端பைடு நூலகம்为无穷型间断点,若两端点都为无穷型间断点时情形呢?
定理1.4设 在 上连续 及 都为无穷型间断点且广义积分 收敛,则在 上至少有一点 ,使得
.
证明由上一定理知
.
其中 ,显然 ,所以有 在 上连续,
设 ,因为 , .所以有
即 .
因此对在 上连续函数 使用介值定理得
, .
所以有
, .
若设 ,证法相同.
通过我们对积分第一中值定理中 一定可以在开区间 上取到并使得 成立,而且我们在分析证明时注意到
实际上还可表为
, .
这样,就能把N-L公式,微分中值定理,积分第一中值定理统一起来,大大加强了它们之间的联系,并在一定条件下可以相互转化,更为重要的是我们可以利用微积分基本定理对定理1.1进行推广.
定理1.5函数 在闭区间 有 阶导数,则至少存在 使
证明 则 ,有
, , … .
又 在点 的 阶泰勒公式为
例8计算
解记 ,则由定理1.5知
.
当然还可用定理1.6来计算.
例9积分 ,其中 .
解得 , .特别,当 为偶数时,有
,
故 .
例10积分 的近似值.
解记 .可以求得
, .
于是,由定理1.6得

.
若取前两项来近似 ,即 .
2.3用于级数的敛散性
例11函数 在 单调下降,且非负, 证明: 与 有相同的敛散性.
.
证明设
因为 在 及 为第一类间断点,所以 是在 上的连续函数.对 用积分中值定理并结合定理1有
, .
由于在 上 以及 ;所以有
, .
故上式即为
, .
注上述定理说明了当端点为第一类间断点时积分中值定理依旧成立,若 或 为第二类间断点,则因为 与 是区间端点,故 在 的右极限或在 的左极限不存在,所以对于重新定义 使得 在 上连续不能实现,故对于端点为第二类间断点不加以讨论,但若端点为无穷型间断点,且广义积分 收敛时,则 在 上的积分中值定理是否仍成立?下面定理回答了这一事实.
第一章 积分中值定理的推广
1.1积分中值定理
积分第一中值定理若函数 在闭区间 连续,则至少存在一点 ,使得
.
积分第二中值定理设函数 在闭区间 上可积.
若函数 在 上为减函数,且 0,则存在 ,使得
;
若函数 在 上为增函数,且 0,则存在 ,使得
.
1.2积分第一中值定理的推广
对于积分第一中值定理是否可以将条件闭区间 减弱到开区间 ,是否对间断函数也有上述的积分中值定理呢?我们将证明这个定理中 一定可以在开区间 上取到,并把这个定理推广到间断函数上去.
无论是数列极限还是函数极限的计算中,若含有定积分式,首先用定积分的相关知识即积分中值定理等把积分式简化,然后运用解决极限问题的各种方法,以达到解决问题的目的.
相关文档
最新文档