多元统计分析学习心得
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
竭诚为您提供优质文档/双击可除多元统计分析学习心得
篇一:多元统计分析学习心得总结
多元统计分析学习总结
多元统计分析方法现在已经广泛的应用社会科学和自然科学的许多领域中。
通过对多元统计一个学期的学习,基本掌握了一些可以运用在学习、生活跟实践中的方法比如多元统计分析中最常见的九种方法:回归分析、时间序列分析、方差分析、判别分析、逻辑回归、联列表与相合性分析、因子分析、聚类分析和联合分析,基本掌握了运用spss软件来分析数据从而找到分析问题中存在的疑问。
当然了通过短短的一个学期的学习学习很多的方法并且把所有的方法尽然掌握不切实际,但是在生活中运用最多的基本上掌握的很熟练,而且在上机操作的过程中有老师的指点迷津也让自己很快的能够把握问题的实质,如何分析所
得到的实验结果,如何与实际生活中所遇到的问题进行比对,然后得到的结果是不是跟实际有很大的出入等。
每次的上机操作的都会有一份相应的报告要提交,大多数情况下都是在老师帮助与指导下完成,自己独立完成的部分相对较少,虽然如此但是收获还是很多,在老师指导下完成一边,自己然后再把整个过程再重复一遍这样就能把所学的温习一遍,不至于跟老师走一遍就完事儿,最后什么都没有掌握,遇到问题也不会分析的局面,所以通过自己的不断练习与操作能够不断熟悉掌握多元统计的方法。
篇二:多元统计分析心得
多元统计分析读书心得
聚类分析聚类与分类的不同在于,聚类所要求划分的类是未知的。聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。聚类分析(clusteranalysis)是一
组将研究对象分为相对同质的群组(clusters)的统计分析
技术。聚类分析也叫分类分析
(classificationanalysis)或数值分类(numericaltaxonomy)。聚类分析方法认为,在所研究的统
计总体中,各样品或指标(变量)之间存在着程度不同的相似性(亲琉关系),因此可以根据一批样品的多个观测指标,具休找到一些能够度量其相似程度的统计量,并依据这些统计
量完成事物的分类。具体的方法,是按样品或指标的相似性或亲疏关系,逐级地归并即聚类,每次的归并聚成一个新的类.直到把全部的样品或指标聚成一类,形成一个由小类逐
步到大类的分类系统为止二若将聚类过程的结果绘成一张
分类图谱并进行分析、则就可以完成整个聚类分析过程。
它的主要应用有:聚类分析在商业上被用来发现不同的客户群,并且通过购买模式刻画不同的客户群的特征。在生物上聚类分析被用来动植物分类和对基因进行分类,获取对种群固有结构的认识。在地理上,聚类能够帮助在地球中被观察的数据库商趋于的相似性。聚类分析在因特网上被用来在网上进行文档归类来修复信息等等。
下面来简要介绍一下曲国庆和姜玉春写的聚类分析及
其在土地利用分类上的应用,它利用系统聚类分析的基本原理,并根据实际的土地申报登记和土地利用的调查资料,选择反映住宅建设和占地情况的人均占地面积、平均年建房率、建设用地利用率、反映耕地分布和占有情况的人均耕地面积、当地经济状况等为聚类指标,探讨聚类分析的模式相似性测度,计算方法和步骤。这其中涉及了很多问题,如样本数据的采集、统计、标准化和样本相似度测度的选择及确定,文章最后给出了土地利用聚类分析的计算方法和步骤。
读何晓群编著的多元统计分析和张文璋编著的实用统
计分析方法与spss应用得出的一些体会如下:在聚类分析
这一章,张文璋编的多元更具有系统性和层次性,比如他将聚类分析方法用一个表格的形式表现出来,让不同方法之间的区别与联系一目了然,同时,他将理论分析和spss软件
操作结合在一起,都进行了仔细的讲述。
回归分析
在数量分析中,我们经常会看到变量与变量之间存在着一定的联系,而不只是前面所讨论的单个变量的某些孤立的特性,如均值、方差的特性等。我们要了解的是变量之间是如何发生相互影响的,这就是所谓的相关分析和回归分析。回归分析(regressionanalysis)是确定两种或两种以上变
数间相互依赖的定量关系的一种统计分析方法,运用十分广泛,回归分析按照涉及的自变量的多少,可
分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。
下面来介绍一下回归分析的步骤:
1根据预测目标,确定自变量和因变量
2建立回归预测模型
3进行相关分析
4检验回归预测模型,计算预测误差
5计算并确定预测值
以吴良欢和方勇等写的长期施用化肥与有机肥对土壤
肥力影响的回归分析为例,该文章对1985~1994年持续27
季稻-稻-麦轮作制下不同氮、磷、钾化肥和有机肥用量定位试验中20个不同施肥处理土壤作了肥力测定,采用回归分析法研究了长期施用化肥及有机肥对土壤肥力的影响,它结合不同施肥处理土壤养分肥力性状的编码值数据,不同施肥处理土壤经27季作物种植后,其有机质含量,氮、磷、钾全
量与速效养分含量差异明显,这有利于进行施肥量与土壤养分肥力间的回归分析,用计算机建立土壤养分肥力与氮、磷、钾、有机肥用量(以编码值表示)的线性回归方程,并作回归
系数的显著性检验,以探明长期施用氮、磷、钾化肥及有机肥对土壤养分肥力因子变化的定量关系。
判别分析和Logistic回归
判别分析是在分类确定的条件下,根据某一研究对象的各种特征值判别其类型归属问题的一种多变量统计分析方法。其基本原理是按照一定的判别准则,建立一个或多个判别函数,用研究对象的大量资料确定判别函数中的待定系数,并计算判别指标。据此即可确定某一样本属于何类。
在陈舜华写的逐步Logistic判别分析中,他介绍用极
大似然估计对
Logistic判别分析中的变量进行逐步筛选的方法,筛选过程是在对判别系数作似然比检验的基础上进行的,在变量向前选入与向后剔除的每一步中都用到这种检验,他先介绍了Logistic判别的矩阵模型,又介绍了逐步Logistic判别