(完整word版)拟牛顿法matlab

合集下载

matlab牛顿法求最小值

matlab牛顿法求最小值

matlab牛顿法求最小值牛顿法是一种常用的优化算法,用于求解函数的极值点。

它是通过迭代的方式,不断逼近函数的最小值点或最大值点的方法。

牛顿法的核心思想是使用函数的一阶导数和二阶导数信息来逼近极值点,从而得到更好的优化结果。

牛顿法的基本原理是基于泰勒级数展开,通过线性逼近的方式来求解函数的极值点。

具体来说,牛顿法首先需要选择一个初始点作为迭代的起点,然后通过计算函数的一阶导数和二阶导数,得到一个线性逼近的方程。

通过求解这个方程,可以得到一个新的点,将其作为下一次迭代的起点。

不断重复这个过程,直到满足迭代终止条件为止。

牛顿法的迭代公式可以表示为:x_{n+1} = x_n - \frac{f'(x_n)}{f''(x_n)}其中,x_{n+1}表示第n+1次迭代的结果,x_n表示第n次迭代的结果,f'(x_n)表示函数f(x)在点x_n处的一阶导数,f''(x_n)表示函数f(x)在点x_n处的二阶导数。

牛顿法的收敛性与初始点的选择密切相关。

如果选择的初始点离最小值点较远,可能会出现迭代过程发散的情况。

因此,在使用牛顿法求解最小值时,需要根据函数的特性和初始点的位置合理选择迭代起点。

牛顿法在实际应用中具有广泛的用途。

例如,在机器学习中,牛顿法可以用于求解逻辑回归模型的最优参数。

在图像处理中,牛顿法可以用于图像的边缘检测和特征提取。

在金融领域,牛顿法可以用于求解期权定价模型和风险管理模型。

需要注意的是,牛顿法并不是万能的,它有一定的局限性。

首先,牛顿法只能求解可导的函数,对于不可导或者不连续的函数,牛顿法无法使用。

其次,牛顿法对初始点的选择比较敏感,在某些情况下可能会陷入局部最优解。

此外,牛顿法在计算二阶导数时可能会涉及到矩阵的求逆操作,计算量较大。

为了提高牛顿法的稳定性和收敛速度,人们提出了许多改进的方法。

例如,拟牛顿法通过近似计算二阶导数的逆矩阵,避免了直接求解矩阵求逆的计算量。

拟牛顿法算法步骤

拟牛顿法算法步骤

拟牛顿法算法步骤拟牛顿法(Quasi-Newton Method)是一种用于无约束优化问题的迭代算法。

它的主要思想是利用得到的函数值和梯度信息近似估计目标函数的Hessian矩阵,并利用这个估计值来进行迭代优化。

拟牛顿法的算法步骤如下:1.初始化参数:选择初始点$x_0$作为迭代起点,设定迭代停止准则和迭代次数上限。

2. 计算目标函数的梯度:计算当前点$x_k$处的梯度向量$g_k=\nabla f(x_k)$。

3. 计算方向:使用估计的Hessian矩阵$B_k$和负梯度$g_k$来计算方向$d_k=-B_k g_k$。

4. 一维:通过线方法(如Armijo准则、Wolfe准则等)选择一个合适的步长$\alpha_k$,使得函数在方向上有明显的下降。

5. 更新参数:根据步长$\alpha_k$更新参数$x_{k+1}=x_k+\alpha_k d_k$。

6. 计算目标函数的梯度差:计算新点$x_{k+1}$处的梯度向量$g_{k+1}=\nabla f(x_{k+1})$。

7. 更新Hessian矩阵估计:根据梯度差$g_{k+1}-g_k$和参数差$\Delta x_k=x_{k+1}-x_k$,利用拟牛顿公式来更新Hessian矩阵估计$B_{k+1}=B_k+\Delta B_k$。

8.更新迭代次数:将迭代次数$k$加一:$k=k+1$。

9.判断终止:如果满足终止准则(如梯度范数小于给定阈值、目标函数值的变化小于给定阈值等),则停止迭代;否则,返回步骤310.输出结果:输出找到的近似最优解$x^*$作为优化问题的解。

拟牛顿法有许多不同的变体,最经典和最常用的是DFP算法(Davidon-Fletcher-Powell Algorithm)和BFGS算法(Broyden-Fletcher-Goldfarb-Shanno Algorithm)。

这两种算法都是基于拟牛顿公式来更新Hessian矩阵估计的,但具体的公式和更新规则略有不同,因此会产生不同的数值性能。

MATLAB程序(牛顿法及线形方程组)

MATLAB程序(牛顿法及线形方程组)

MATLAB 程序1、图示牛顿迭代法(M 文件)文件名:newt_gfunction x = new_g(f_name,x0,xmin,xmax,n_points)clf,hold off% newton_method with graphic illustrationdel_x = 0.001;wid_x = xmax - xmin; dx = (xmax - xmin)/n_points;xp = xmin:dx:xmax; yp = feval(f_name,xp);plot(xp,yp);xlabel('x');ylabel('f(x)');title('newton iteration'),hold onymin = min(yp); ymax = max(yp); wid_y = ymax-ymin;yp = 0. * xp; plot(xp,yp)x = x0; xb = x+999; n=0;while abs(x-xb) > 0.000001if n > 300 break; endy=feval(f_name,x); plot([x,x],[y,0]);plot(x,0,'o')fprintf(' n = % 3.0f, x = % 12.5e, y = % 12.5e \ n', n, x, y);xsc = (x-xmin)/wid_x;if n < 4, text(x,wid_y/20,[num2str(n)]), endy_driv = (feval(f_name,x + del_x) - y)/del_x;xb = x;x = xb - y/y_driv; n = n+1;plot([xb,x],[y,0])endplot([x x],[0.05 * wid_y 0.2 * wid_y])text( x, 0.2 * wid_y, 'final solution')plot([ x ( x - wid_x * 0.004)], [0.01 * wid_y 0.09 * wid_y])plot([ x ( x + wid_x * 0.004)], [0.01 * wid_y 0.09 * wid_y])传热问题假设一个火炉是用厚度为0.05m 的砖单层砌成的。

matlab实现牛顿迭代法求解非线性方程组

matlab实现牛顿迭代法求解非线性方程组

matlab实现牛顿迭代法求解非线性方程组已知非线性方程组如下3*x1-cos(x2*x3)-1/2=0x1^2-81*(x2+0.1)^2+sin(x3)+1.06=0exp(-x1*x2)+20*x3+(10*pi-3)/3=0求解要求精度达到0.00001————————————————————————————————首先建立函数fun储存方程组编程如下将fun.m保存到工作路径中: function f=fun(x);%定义非线性方程组如下%变量x1 x2 x3%函数f1 f2 f3syms x1 x2 x3f1=3*x1-cos(x2*x3)-1/2;f2=x1^2-81*(x2+0.1)^2+sin(x3)+1.06;f3=exp(-x1*x2)+20*x3+(10*pi-3)/3;f=[f1 f2 f3]; ————————————————————————————————建立函数dfun用来求方程组的雅克比矩阵将dfun.m保存到工作路径中:function df=dfun(x);%用来求解方程组的雅克比矩阵储存在dfun中f=fun(x);df=[diff(f,'x1');diff(f,'x2');diff(f,'x3')];df=conj(df');————————————————————————————————编程牛顿法求解非线性方程组将newton.m保存到工作路径中:function x=newton(x0,eps,N);con=0;%其中x0为迭代初值eps为精度要求N为最大迭代步数con用来记录结果是否收敛for i=1:N;f=subs(fun(x0),{'x1' 'x2' 'x3'},{x0(1) x0(2 ) x0(3)});df=subs(dfun(x0),{'x1' 'x2' 'x3'},{x0(1) x0 (2) x0(3)});x=x0-f/df;for j=1: length(x0);il(i,j)=x(j);endif norm(x-x0)<epscon=1;break;endx0=x;end%以下是将迭代过程写入txt文档文件名为iteration.txtfid=fopen('iteration.txt','w');fprintf(fid,'iteration');for j=1:length(x0)fprintf(fid,' x%d',j);endfor j=1:ifprintf(fid,'\n%6d ',j);for k=1:length(x0)fprintf(fid,' %10.6f',il(j,k));endendif con==1fprintf(fid,'\n计算结果收敛!');endif con==0fprintf(fid,'\n迭代步数过多可能不收敛!'); endfclose(fid);————————————————————————————————运行程序在matlab中输入以下内容newton([0.1 0.1 -0.1],0.00001,20)————————————————————————————————输出结果——————————————————————————————————————————在iteration中查看迭代过程iteration x1 x2 x3.mulStablePoint用不动点迭代法求非线性方程组的一个根function [r,n]=mulStablePoint(F,x0,eps)%非线性方程组:f%初始解:a%解的精度:eps%求得的一组解:r%迭代步数:nif nargin==2eps=1.0e-6;endx0 = transpose(x0);n=1;tol=1;while tol>epsr= subs(F,findsym(F),x0);%迭代公式tol=norm(r-x0);%注意矩阵的误差求法,norm为矩阵的欧几里德范数n=n+1;x0=r;if(n>100000)%迭代步数控制disp('迭代步数太多,可能不收敛!');return;endendx0=[0 0 0];[r,n,data]=budong(x0);disp('不动点计算结果为')x1=[1 1 1];x2=[2 2 2];[x,n,data]=new_ton(x0);disp(’初始值为0,牛顿法计算结果为:’)[x,n,data]=new_ton(x1);disp('初始值为1,牛顿法计算结果为:')[x,n,data]=new_ton(x2);disp ('初始值为2,牛顿法计算结果为:')budong.mfunction[r,n,data]=budong(x0, tol)if nargin=-1tol=1e-3:x1=budong fun(x0);n=1;while(norm(x1-x0))tol)&(n500)x0=x1;x1=budong_fun(x0);n=n+1:data(:,n)=x1;endr=x1:new_ton.mfunction [x,n,data]=new_ton(x0, tol) if nargin=-1tol=1e-8;endx1=x0-budong_fun(x0)/df1(x0);n=1;while (norm(x1-x0))tol)x0=x1;x1=x0-budong_fun(x0)/df1(x0);n=n+1;data(:,n)=x1;x=x1;budong_fun.mfunction f=budong_fun(x)f(1)=3* x(1)-cos(x(2)*x(3))-1/2;f(2)=x(1)^2-81*(x(2)+0.1)^2+sin(x(3))+1.0 6;f(3)=exp(-x(1)*x(2))+20* x(3)+10* pi/3-1;f=[f(1)*f(2)*f(3)];df1.mfunction f=df1(x)f=[3sin(x(2)*x(3))*x(3) sin(x(2)*x(3))*x(2)2* x(1)-162*(x(2)+0.1)cos(x(3))exp(-x(1)*x(2))*(-x(2))exp(-x(1)*x(2))*(-x(1))20];结果:不动点计算结果为r=1.0e+012*NaN -Inf 5.6541初始值为0,牛顿法计算结果为:x=0.5000 -0.0000 -0.5236 初始值为1,牛顿法计算结果为:x=0.5000 0.0000 -0.5236 初始值为2,牛顿法计算结果为:x=0.5000 0.0000 -0.5236。

matlab牛顿迭代法求方程

matlab牛顿迭代法求方程

一、引言在数值计算中,求解非线性方程是一项常见的任务。

牛顿迭代法是一种常用且有效的方法,它通过不断逼近函数的零点来求解方程。

而在MATLAB中,我们可以利用其强大的数值计算功能来实现牛顿迭代法,快速求解各种非线性方程。

二、牛顿迭代法原理与公式推导1. 牛顿迭代法原理牛顿迭代法是一种利用函数的导数信息不断逼近零点的方法。

其核心思想是利用当前点的切线与x轴的交点来更新下一次迭代的值,直至逼近方程的根。

2. 公式推导与迭代过程假设要求解方程f(x)=0,在初始值x0附近进行迭代。

根据泰勒展开,对f(x)进行一阶泰勒展开可得:f(x) ≈ f(x0) + f'(x0)(x - x0)令f(x)≈0,则有:x = x0 - f(x0)/f'(x0)将x带入f(x)的表达式中,即得到下一次迭代的值x1:x1 = x0 - f(x0)/f'(x0)重复以上过程,直至达到精度要求或者迭代次数上限。

三、MATLAB中的牛顿迭代法实现1. 编写函数在MATLAB中,我们可以编写一个函数来实现牛顿迭代法。

需要定义原方程f(x)的表达式,然后计算其一阶导数f'(x)的表达式。

按照上述推导的迭代公式,编写循环语句进行迭代计算,直至满足精度要求或者达到最大迭代次数。

2. 调用函数求解方程在编写好牛顿迭代法的函数之后,可以通过在MATLAB命令窗口中调用该函数来求解具体的方程。

传入初始值、精度要求和最大迭代次数等参数,即可得到方程的近似根。

四、牛顿迭代法在工程实践中的应用1. 求解非线性方程在工程领域,很多问题都可以转化为非线性方程的求解问题,比如电路分析、控制系统设计等。

利用牛顿迭代法可以高效地求解这些复杂方程,为工程实践提供了重要的数值计算手段。

2. 优化问题的求解除了求解非线性方程外,牛顿迭代法还可以应用于优化问题的求解。

通过求解目标函数的导数等于0的方程,可以找到函数的极值点,从而解决各种优化问题。

非线性方程组求解的牛顿迭代法用MATLAB实现

非线性方程组求解的牛顿迭代法用MATLAB实现

非线性方程组求解的牛顿迭代法用MATLAB实现首先,我们需要定义非线性方程组。

假设我们要求解方程组:```f1(x1,x2)=0f2(x1,x2)=0```其中,`x1`和`x2`是未知数,`f1`和`f2`是非线性函数。

我们可以将这个方程组表示为向量的形式:```F(x)=[f1(x1,x2);f2(x1,x2)]=[0;0]```其中,`F(x)`是一个列向量。

为了实现牛顿迭代法,我们需要计算方程组的雅可比矩阵。

雅可比矩阵是由方程组的偏导数组成的矩阵。

对于方程组中的每个函数,我们可以计算其对每个变量的偏导数,然后将这些偏导数组成一个矩阵。

在MATLAB中,我们可以使用`jacobi`函数来计算雅可比矩阵。

以下是一个示例函数的定义:```matlabfunction J = jacobi(x)x1=x(1);x2=x(2);J = [df1_dx1, df1_dx2; df2_dx1, df2_dx2];end```其中,`x`是一个包含未知数的向量,`df1_dx1`和`df1_dx2`是`f1`对`x1`和`x2`的偏导数,`df2_dx1`和`df2_dx2`是`f2`对`x1`和`x2`的偏导数。

下一步是实现牛顿迭代法。

牛顿迭代法的迭代公式为:```x(k+1)=x(k)-J(x(k))\F(x(k))```其中,`x(k)`是第`k`次迭代的近似解,`\`表示矩阵的求逆操作。

在MATLAB中,我们可以使用如下代码来实现牛顿迭代法:```matlabfunction x = newton_method(x_initial)max_iter = 100; % 最大迭代次数tol = 1e-6; % 收敛阈值x = x_initial; % 初始解for k = 1:max_iterF=[f1(x(1),x(2));f2(x(1),x(2))];%计算F(x)J = jacobi(x); % 计算雅可比矩阵 J(x)delta_x = J \ -F; % 计算增量 delta_xx = x + delta_x; % 更新 xif norm(delta_x) < tolbreak; % 达到收敛条件,停止迭代endendend```其中,`x_initial`是初始解的向量,`max_iter`是最大迭代次数,`tol`是收敛阈值。

牛顿插值法matlab

牛顿插值法matlab

牛顿插值法matlab
牛顿插值法是一种基于牛顿多项式的插值方法,它要求给定的插值点必须满足某种差分公式,且牛顿插值法的误差收敛速度非常快。

牛顿插值法的Matlab实现分为以下几步:
1.给定插值点和插值函数的值。

2.确定多项式的阶数n。

3.根据牛顿插值法,构造一个n×n矩阵A,其中Aij等于第i个点处对x的第j次导数。

4.构造一个n×1矩阵B,其中Bi等于第i个点处的函数值。

5.通过消元法求解矩阵方程组Ax=B,从而求出牛顿插值法的系数。

6.应用求出的系数,构造出牛顿插值多项式。

7.根据牛顿插值多项式进行插值计算。

牛顿法解非线性方程(MATLAB和C++)

牛顿法解非线性方程(MATLAB和C++)

41 end
42 time = toc;
43
44 fprintf('\nIterated times is %g.\n', times);
45 fprintf('Elapsed time is %g seconds.\n', time);
46
47 root = x_iter;
48
49 % subfunction
5
6 // 功能描述:求解非线性方程根,并输出最终解 7 // 迭代式:x(k+1) = x(k) - f(x(k))/df(x(k)). 8 // 使用:修改标出的“修改”部分即可自定义参数
9
10 // 输入:函数 fun,函数导数 dfun,初值 x0,
4
11 // 最大迭代次数 maxiter,停止精度 tol 12 // 输出:迭代数值解 x_iter2
2
Listing 1: MATLAB EXAMPLE 1 % 2013/11/20 15:14:38
2
3 f = @(x)x^2 − 2; 4 df = @(x)2*x; 5 x0 = 3; 6 root = newton(f, df, x0);
C++ 以 C++ 实现的方法并未编写成为一般可调用的方法,而作为一个独立的 文件(包含一个实例),修改部分即可求解对应的方程。具体参照 cpp 文件内 注释。
A 附录
A.1 MATLAB
Listing 2: MATLAB CODE 1 function root = newton(f, df, x0, maxiter, tol) 2 %NEWTON Newton's method for nonlinear equations. 3% 4 % NEWTON's method: x(k+1) = x(k) - f(x(k))/f'(x(k)). 5% 6 % Inputs 7 % f - nonlinear equation. 8 % df - derivative of f(x). 9 % x0 - initial value. 10 % maxiter - maximum iterated times. 11 % tol - precision. 12 % 13 % Outputs 14 % root - root of f(x) = 0.

matlab牛顿迭代 程序 -回复

matlab牛顿迭代 程序 -回复

matlab牛顿迭代程序-回复牛顿迭代方法是一种数值逼近的方法,用于求解非线性方程和优化问题。

它通过不断迭代逼近目标函数的根或极值点,以提高计算的准确性和效率。

首先,我们需要了解什么是非线性方程。

在数学中,非线性方程指的是形如f(x) = 0的方程,其中f(x)是一个非线性函数,x是未知数。

相对于线性方程,非线性方程的求解更加复杂,无法使用简单的代数方法求解。

而牛顿迭代方法可以用来解决非线性方程。

它基于以下思想:通过不断逼近目标函数的根,可以找到一个接近于真实解的近似解。

具体来说,牛顿迭代方法使用一阶泰勒展开式来逼近目标函数,然后用逼近的线性函数求解近似根,将这个近似根代入原函数中,再次计算线性函数,一直重复这个过程直到满足收敛条件。

下面我们来介绍一下牛顿迭代的基本原理和步骤。

假设要求解的非线性方程为f(x) = 0。

1. 选择初始点x0。

初始点的选择对于迭代的收敛性和速度非常重要。

2. 构造迭代公式。

牛顿迭代方法的迭代公式为:xn+1 = xn -f(xn)/f'(xn)。

其中,xn是第n次迭代得到的近似解,f'(xn)是f(x)的导数在点xn处的值。

3. 计算迭代。

根据迭代公式,将第n次迭代得到的近似解xn代入公式中,计算得到第n+1次迭代的近似解xn+1。

4. 判断收敛。

判断迭代是否达到了预设的精度要求。

可以选择一个相对误差或绝对误差作为判断标准,当近似解的变化小于一定阈值时,认为迭代收敛,即找到了近似解。

5. 如果迭代还未收敛,返回第3步,继续迭代计算。

需要注意的是,牛顿迭代可能会出现迭代发散的情况。

通常情况下,在正常迭代过程中,迭代会愈发接近最终的解。

然而,当目标函数的导数在某些点附近接近于零或者不连续时,迭代可能会发散。

这种情况下,我们需要选择一个更好的初始点或考虑其他数值逼近方法来解决。

牛顿迭代方法的优点是收敛速度快,但缺点是对初值敏感,并且需要计算目标函数的导数。

牛顿迭代法的MATLAB程序

牛顿迭代法的MATLAB程序

牛顿迭代算法matlab程序1.牛顿迭代法描述:牛顿法求实系数高次代数方程f(x)=a0x^n+a1x^(n-1)+…+an-1x+an=0 (an≠0 ) (1)的在初始值x0附近的一个根。

解非线性议程f(x)=0的牛顿法是把非线性方程线性化的一种近似方法。

把f(x)在x0点附近展开成泰勒级数f(x)=f(x0)+(x-x0)fˊ(x0)+(x-x0)2 +…取其线性部分,作为非线性方程f(x)=0的近似方程,则有f(x0)+fˊ(x0)(x-x0)=0设fˊ(x0)≠0则其解为x1=x0-f(x0)/fˊ(x0)再把f(x)在x1附近展开成泰勒级数,也取其线性部分作f(x)=0的近似方程。

若f(x1)≠0,则得x2=x1-f(x1)/fˊ(x1)这样,得到牛顿法的一个迭代序列xn+1=xn-f(xn)/fˊ(xn)2.MATLAB函数说明Y=NEWTON_1(A,N,X0,NN,EPS1)输入变量:A n+1元素的一维实数组,输入参数,按升幂存放方程系数。

N 整变量,输入参数,方程阶数。

X0 实变量,输入参数,初始迭代值。

NN 整变量,输入参数,允许的最大迭代次数。

EPS1 实变量,输入参数,控制根的精度。

3.程序代码:newton_1.mfunction y=newton_1(a,n,x0,nn,eps1)x(1)=x0;b=1;i=1;while(abs(b)>eps1*x(i))i=i+1;x(i)=x(i-1)-n_f(a,n,x(i-1))/n_df(a,n,x(i-1));b=x(i)-x(i-1);if(i>nn)error(ˊnn is fullˊ);return;endendy=x(i);i程序中调两个子函数n_f.m和n_df.m文件如下:n_f.m:function y=n_f(a,n,x)%待求根的实数代数方程的函数y=0.0;for i=1:(n+1)y=y+a(i)*x^(n+1-i);endn_df.m:function y=n_df(a,n,x)%方程一阶导数的函数y=0.0;for i=1:ny=y+a(i)*(n+1-i)*x^(n-i);end4.程序实现说明:(1)程序中调用n_f.m和n_df.m文件。

MATLAB实现最速下降法_和牛顿法和共轭梯度法

MATLAB实现最速下降法_和牛顿法和共轭梯度法

MATLAB实现最速下降法_和牛顿法和共轭梯度法最速下降法:题目:f=(x-2)^2+(y-4)^2M文件:function [R,n]=steel(x0,y0,eps) syms x;syms y;f=(x-2)^2+(y-4)^2;v=[x,y];j=jacobian(f,v);T=[subs(j(1),x,x0),subs(j(2),y,y0)]; temp=sqrt((T(1))^2+(T(2))^2); x1=x0;y1=y0;n=0;syms kk;while (temp>eps)d=-T;f1=x1+kk*d(1);f2=y1+kk*d(2);fT=[subs(j(1),x,f1),subs(j(2),y,f2)];fun=sqrt((fT(1))^2+(fT(2))^2);Mini=Gold(fun,0,1,0.00001);x0=x1+Mini*d(1);y0=y1+Mini*d(2);T=[subs(j(1),x,x0),subs(j(2),y,y0)];temp=sqrt((T(1))^2+(T(2))^2);x1=x0;y1=y0;n=n+1;endR=[x0,y0]调用黄金分割法:M文件:function Mini=Gold(f,a0,b0,eps) syms x;format long; syms kk;u=a0+0.382*(b0-a0);v=a0+0.618*(b0-a0);k=0;a=a0;b=b0;array(k+1,1)=a;array(k+1,2)=b; while((b-a)/(b0-a0)>=eps) Fu=subs(f,kk,u);Fv=subs(f,kk,v);if(Fu<=Fv)b=v;v=u;u=a+0.382*(b-a);k=k+1;elseif(Fu>Fv)a=u;u=v;v=a+0.618*(b-a);k=k+1;endarray(k+1,1)=a;array(k+1,2)=b; endMini=(a+b)/2;输入:[R,n]=steel(0,1,0.0001)R = 1.99999413667642 3.99999120501463 R = 1.999994136676423.99999120501463 n = 1牛顿法:题目:f=(x-2)^2+(y-4)^2M文件:syms x1 x2;f=(x1-2)^2+(x2-4)^2;v=[x1,x2];df=jacobian(f,v);df=df.';G=jacobian(df,v);epson=1e-12;x0=[0,0]';g1=subs(df,{x1,x2},{x0(1,1),x0(2,1)});G1=subs (G,{x1,x2},{x0(1,1),x0(2,1)});k=0;mul_count=0;sum_count=0;mul_count=mul_count+12;sum_count=sum_count+6; while(norm(g1)>epson) p=-G1\g1;x0=x0+p;g1=subs(df,{x1,x2},{x0(1,1),x0(2,1)});G1=subs(G,{x1,x2},{x0(1,1),x0(2,1)});k=k+1;mul_count=mul_count+16;sum_count=sum_count+11;end;kx0mul_countsum_count结果::k = 1x0 =24mul_count = 28sum_count = 17 共轭梯度法:题目:f=(x-2)^2+(y-4)^2M文件:function f=conjugate_grad_2d(x0,t)x=x0;syms xi yi af=(xi-2)^2+(yi-4)^2; fx=diff(f,xi);fy=diff(f,yi);fx=subs(fx,{xi,yi},x0); fy=subs(fy,{xi,yi},x0); fi=[fx,fy]; count=0;while double(sqrt(fx^2+fy^2))>ts=-fi;if count<=0s=-fi;elses=s1;endx=x+a*s;f=subs(f,{xi,yi},x);f1=diff(f);f1=solve(f1);if f1~=0ai=double(f1);elsebreakx,f=subs(f,{xi,yi},x),count endx=subs(x,a,ai);f=xi-xi^2+2*xi*yi+yi^2;fxi=diff(f,xi);fyi=diff(f,yi);fxi=subs(fxi,{xi,yi},x);fyi=subs(fyi,{xi,yi},x);fii=[fxi,fyi];d=(fxi^2+fyi^2)/(fx^2+fy^2); s1=-fii+d*s;count=count+1;fx=fxi;fy=fyi;endx,f=subs(f,{xi,yi},x),count 输入:conjugate_grad_2d([0,0],0.0001) 结果:x = 0.24998825499785 -0.24999998741273f = 0.12499999986176count = 10ans = 0.12499999986176。

matlab的bfgs拟牛顿法

matlab的bfgs拟牛顿法

在MATLAB中,BFGS(Broyden-Fletcher-Goldfarb-Shanno)算法是一种常用的拟牛顿法,用于解决无约束最优化问题。

它是基于牛顿法的一种改进方法,可以在不需要计算Hessian矩阵的情况下进行优化。

BFGS算法在理论和实际应用中都具有重要意义,对于复杂的优化问题具有较好的收敛性和有效性。

在BFGS算法中,通过不断迭代更新逆Hessian矩阵的估计来逼近Hessian矩阵的逆,从而实现对目标函数的优化。

该算法的核心思想是利用目标函数的梯度信息来不断调整逆Hessian矩阵的估计,以求得最优解。

与牛顿法相比,BFGS算法避免了计算和存储目标函数的Hessian矩阵,从而减少了计算的复杂度,提高了算法的效率。

针对BFGS算法的MATLAB实现,可以通过以下步骤进行展开:1. 导入目标函数和梯度计算:在MATLAB中,首先需要定义目标函数和梯度的计算方法。

这可以通过函数句柄或匿名函数的方式实现,以便在算法中进行调用。

2. 初始点设置与参数设定:根据优化问题的特点和要求,在MATLAB 中设置初始点和算法参数,如最大迭代次数、容许误差等。

3. BFGS算法实现:使用MATLAB内置的优化函数或自行编写BFGS 算法的迭代更新过程,在每次迭代中更新参数估计并计算新的搜索方向,直至满足停止条件为止。

4. 结果分析与可视化:分析优化结果,包括最优解、最优目标值以及迭代过程中的效果。

通过MATLAB的绘图功能,可视化优化过程,观察收敛性和效率。

在实际应用中,BFGS算法的MATLAB实现可以结合特定的优化问题进行定制和调整,以获得最佳的优化效果。

通过在MATLAB中灵活使用BFGS算法,可以解决各类复杂的优化问题,包括机器学习模型训练、参数估计、信号处理等领域的实际应用问题。

总结来说,BFGS算法在MATLAB中的应用是一项重要而又复杂的工作,需要对优化问题和算法本身有深入的理解和应用经验。

(完整word版)matlab函数大全(非常实用),推荐文档

(完整word版)matlab函数大全(非常实用),推荐文档

信源函数randerr 产生比特误差样本randint 产生均匀分布的随机整数矩阵randsrc 根据给定的数字表产生随机矩阵wgn 产生高斯白噪声信号分析函数biterr 计算比特误差数和比特误差率eyediagram 绘制眼图scatterplot 绘制分布图symerr 计算符号误差数和符号误差率信源编码compand mu律/A律压缩/扩张dpcmdeco DPCM(差分脉冲编码调制)解码dpcmenco DPCM编码dpcmopt 优化DPCM参数lloyds Lloyd法则优化量化器参数quantiz 给出量化后的级和输出值误差控制编码bchpoly 给出二进制BCH码的性能参数和产生多项式convenc 产生卷积码cyclgen 产生循环码的奇偶校验阵和生成矩阵cyclpoly 产生循环码的生成多项式decode 分组码解码器encode 分组码编码器gen2par 将奇偶校验阵和生成矩阵互相转换gfweight 计算线性分组码的最小距离hammgen 产生汉明码的奇偶校验阵和生成矩阵rsdecof 对Reed-Solomon编码的ASCII文件解码rsencof 用Reed-Solomon码对ASCII文件编码rspoly 给出Reed-Solomon码的生成多项式syndtable 产生伴随解码表vitdec 用Viterbi法则解卷积码(误差控制编码的低级函数)bchdeco BCH解码器bchenco BCH编码器rsdeco Reed-Solomon解码器rsdecode 用指数形式进行Reed-Solomon解码rsenco Reed-Solomon编码器rsencode 用指数形式进行Reed-Solomon编码调制与解调ademod 模拟通带解调器ademodce 模拟基带解调器amod 模拟通带调制器amodce 模拟基带调制器apkconst 绘制圆形的复合ASK-PSK星座图ddemod 数字通带解调器ddemodce 数字基带解调器demodmap 解调后的模拟信号星座图反映射到数字信号dmod 数字通带调制器dmodce 数字基带调制器modmap 把数字信号映射到模拟信号星座图(以供调制)qaskdeco 从方形的QASK星座图反映射到数字信号qaskenco 把数字信号映射到方形的QASK星座图专用滤波器hank2sys 把一个Hankel矩阵转换成一个线性系统模型hilbiir 设计一个希尔伯特变换IIR滤波器rcosflt 升余弦滤波器rcosine 设计一个升余弦滤波器(专用滤波器的低级函数)rcosfir 设计一个升余弦FIR滤波器rcosiir 设计一个升余弦IIR滤波器信道函数awgn 添加高斯白噪声伽罗域计算gfadd 伽罗域上的多项式加法gfconv 伽罗域上的多项式乘法gfcosets 生成伽罗域的分圆陪集gfdeconv 伽罗域上的多项式除法gfdiv 伽罗域上的元素除法gffilter 在质伽罗域上用多项式过滤数据gflineq 在至伽罗域上求Ax=b的一个特解gfminpol 求伽罗域上元素的最小多项式gfmul 伽罗域上的元素乘法gfplus GF(2^m)上的元素加法gfpretty 以通常方式显示多项式gfprimck 检测多项式是否是基本多项式gfprimdf 给出伽罗域的MATLAB默认的基本多项式gfprimfd 给出伽罗域的基本多项式gfrank 伽罗域上矩阵求秩gfrepcov GF(2)上多项式的表达方式转换gfroots 质伽罗域上的多项式求根gfsub 伽罗域上的多项式减法gftrunc 使多项式的表达最简化gftuple 简化或转换伽罗域上元素的形式工具函数bi2de 把二进制向量转换成十进制数de2bi 把十进制数转换成二进制向量erf 误差函数erfc 余误差函数istrellis 检测输入是否MA TLAB的trellis结构(structure)marcumq 通用Marcum Q 函数oct2dec 八进制数转十进制数poly2trellis 把卷积码多项式转换成MATLAB的trellis描述vec2mat 把向量转换成矩阵——————————————————————————————————————————————————A aabs 绝对值、模、字符的ASCII码值acos 反余弦acosh 反双曲余弦acot 反余切acoth 反双曲余切acsc 反余割acsch 反双曲余割align 启动图形对象几何位置排列工具all 所有元素非零为真angle 相角ans 表达式计算结果的缺省变量名any 所有元素非全零为真area 面域图argnames 函数M文件宗量名asec 反正割asech 反双曲正割asin 反正弦asinh 反双曲正弦assignin 向变量赋值atan 反正切atan2 四象限反正切atanh 反双曲正切autumn 红黄调秋色图阵axes 创建轴对象的低层指令axis 控制轴刻度和风格的高层指令B bbar 二维直方图bar3 三维直方图bar3h 三维水平直方图barh 二维水平直方图base2dec X进制转换为十进制bin2dec 二进制转换为十进制blanks 创建空格串bone 蓝色调黑白色图阵box 框状坐标轴break while 或for 环中断指令brighten 亮度控制C ccapture (3版以前)捕获当前图形cart2pol 直角坐标变为极或柱坐标cart2sph 直角坐标变为球坐标cat 串接成高维数组caxis 色标尺刻度cd 指定当前目录cdedit 启动用户菜单、控件回调函数设计工具cdf2rdf 复数特征值对角阵转为实数块对角阵ceil 向正无穷取整cell 创建元胞数组cell2struct 元胞数组转换为构架数组celldisp 显示元胞数组内容cellplot 元胞数组内部结构图示char 把数值、符号、内联类转换为字符对象chi2cdf 分布累计概率函数chi2inv 分布逆累计概率函数chi2pdf 分布概率密度函数chi2rnd 分布随机数发生器chol Cholesky分解clabel 等位线标识cla 清除当前轴class 获知对象类别或创建对象clc 清除指令窗clear 清除内存变量和函数clf 清除图对象clock 时钟colorcube 三浓淡多彩交叉色图矩阵colordef 设置色彩缺省值colormap 色图colspace 列空间的基close 关闭指定窗口colperm 列排序置换向量comet 彗星状轨迹图comet3 三维彗星轨迹图compass 射线图compose 求复合函数cond (逆)条件数condeig 计算特征值、特征向量同时给出条件数condest 范-1条件数估计conj 复数共轭contour 等位线contourf 填色等位线contour3 三维等位线contourslice 四维切片等位线图conv 多项式乘、卷积cool 青紫调冷色图copper 古铜调色图cos 余弦cosh 双曲余弦cot 余切coth 双曲余切cplxpair 复数共轭成对排列csc 余割csch 双曲余割cumsum 元素累计和cumtrapz 累计梯形积分cylinder 创建圆柱D ddblquad 二重数值积分deal 分配宗量deblank 删去串尾部的空格符dec2base 十进制转换为X进制dec2bin 十进制转换为二进制dec2hex 十进制转换为十六进制deconv 多项式除、解卷delaunay Delaunay 三角剖分del2 离散Laplacian差分demo Matlab演示det 行列式diag 矩阵对角元素提取、创建对角阵diary Matlab指令窗文本内容记录diff 数值差分、符号微分digits 符号计算中设置符号数值的精度dir 目录列表disp 显示数组display 显示对象内容的重载函数dlinmod 离散系统的线性化模型dmperm 矩阵Dulmage-Mendelsohn 分解dos 执行DOS 指令并返回结果double 把其他类型对象转换为双精度数值drawnow 更新事件队列强迫Matlab刷新屏幕dsolve 符号计算解微分方程E eecho M文件被执行指令的显示edit 启动M文件编辑器eig 求特征值和特征向量eigs 求指定的几个特征值end 控制流FOR等结构体的结尾元素下标eps 浮点相对精度error 显示出错信息并中断执行errortrap 错误发生后程序是否继续执行的控制erf 误差函数erfc 误差补函数erfcx 刻度误差补函数erfinv 逆误差函数errorbar 带误差限的曲线图etreeplot 画消去树eval 串演算指令evalin 跨空间串演算指令exist 检查变量或函数是否已定义exit 退出Matlab环境exp 指数函数expand 符号计算中的展开操作expint 指数积分函数expm 常用矩阵指数函数expm1 Pade法求矩阵指数expm2 Taylor法求矩阵指数expm3 特征值分解法求矩阵指数eye 单位阵ezcontour 画等位线的简捷指令ezcontourf 画填色等位线的简捷指令ezgraph3 画表面图的通用简捷指令ezmesh 画网线图的简捷指令ezmeshc 画带等位线的网线图的简捷指令ezplot 画二维曲线的简捷指令ezplot3 画三维曲线的简捷指令ezpolar 画极坐标图的简捷指令ezsurf 画表面图的简捷指令ezsurfc 画带等位线的表面图的简捷指令F ffactor 符号计算的因式分解feather 羽毛图feedback 反馈连接feval 执行由串指定的函数fft 离散Fourier变换fft2 二维离散Fourier变换fftn 高维离散Fourier变换fftshift 直流分量对中的谱fieldnames 构架域名figure 创建图形窗fill3 三维多边形填色图find 寻找非零元素下标findobj 寻找具有指定属性的对象图柄findstr 寻找短串的起始字符下标findsym 机器确定内存中的符号变量finverse 符号计算中求反函数fix 向零取整flag 红白蓝黑交错色图阵fliplr 矩阵的左右翻转flipud 矩阵的上下翻转flipdim 矩阵沿指定维翻转floor 向负无穷取整flops 浮点运算次数flow Matlab提供的演示数据fmin 求单变量非线性函数极小值点(旧版)fminbnd 求单变量非线性函数极小值点fmins 单纯形法求多变量函数极小值点(旧版)fminunc 拟牛顿法求多变量函数极小值点fminsearch 单纯形法求多变量函数极小值点fnder 对样条函数求导fnint 利用样条函数求积分fnval 计算样条函数区间内任意一点的值fnplt 绘制样条函数图形fopen 打开外部文件for 构成for环用format 设置输出格式fourier Fourier 变换fplot 返函绘图指令fprintf 设置显示格式fread 从文件读二进制数据fsolve 求多元函数的零点full 把稀疏矩阵转换为非稀疏阵funm 计算一般矩阵函数funtool 函数计算器图形用户界面fzero 求单变量非线性函数的零点G ggamma 函数gammainc 不完全函数gammaln 函数的对数gca 获得当前轴句柄gcbo 获得正执行"回调"的对象句柄gcf 获得当前图对象句柄gco 获得当前对象句柄geomean 几何平均值get 获知对象属性getfield 获知构架数组的域getframe 获取影片的帧画面ginput 从图形窗获取数据global 定义全局变量gplot 依图论法则画图gradient 近似梯度gray 黑白灰度grid 画分格线griddata 规则化数据和曲面拟合gtext 由鼠标放置注释文字guide 启动图形用户界面交互设计工具H hharmmean 调和平均值help 在线帮助helpwin 交互式在线帮助helpdesk 打开超文本形式用户指南hex2dec 十六进制转换为十进制hex2num 十六进制转换为浮点数hidden 透视和消隐开关hilb Hilbert矩阵hist 频数计算或频数直方图histc 端点定位频数直方图histfit 带正态拟合的频数直方图hold 当前图上重画的切换开关horner 分解成嵌套形式hot 黑红黄白色图hsv 饱和色图I iif-else-elseif 条件分支结构ifft 离散Fourier反变换ifft2 二维离散Fourier反变换ifftn 高维离散Fourier反变换ifftshift 直流分量对中的谱的反操作ifourier Fourier反变换i, j 缺省的"虚单元"变量ilaplace Laplace反变换imag 复数虚部image 显示图象imagesc 显示亮度图象imfinfo 获取图形文件信息imread 从文件读取图象imwrite 把imwrite 把图象写成文件ind2sub 单下标转变为多下标inf 无穷大info MathWorks公司网点地址inline 构造内联函数对象inmem 列出内存中的函数名input 提示用户输入inputname 输入宗量名int 符号积分int2str 把整数数组转换为串数组interp1 一维插值interp2 二维插值interp3 三维插值interpn N维插值interpft 利用FFT插值intro Matlab自带的入门引导inv 求矩阵逆invhilb Hilbert矩阵的准确逆ipermute 广义反转置isa 检测是否给定类的对象ischar 若是字符串则为真isequal 若两数组相同则为真isempty 若是空阵则为真isfinite 若全部元素都有限则为真isfield 若是构架域则为真isglobal 若是全局变量则为真ishandle 若是图形句柄则为真ishold 若当前图形处于保留状态则为真isieee 若计算机执行IEEE规则则为真isinf 若是无穷数据则为真isletter 若是英文字母则为真islogical 若是逻辑数组则为真ismember 检查是否属于指定集isnan 若是非数则为真isnumeric 若是数值数组则为真isobject 若是对象则为真isprime 若是质数则为真isreal 若是实数则为真isspace 若是空格则为真issparse 若是稀疏矩阵则为真isstruct 若是构架则为真isstudent 若是Matlab学生版则为真iztrans 符号计算Z反变换J j , K kjacobian 符号计算中求Jacobian 矩阵jet 蓝头红尾饱和色jordan 符号计算中获得Jordan标准型keyboard 键盘获得控制权kron Kronecker乘法规则产生的数组L llaplace Laplace变换lasterr 显示最新出错信息lastwarn 显示最新警告信息leastsq 解非线性最小二乘问题(旧版)legend 图形图例lighting 照明模式line 创建线对象lines 采用plot 画线色linmod 获连续系统的线性化模型linmod2 获连续系统的线性化精良模型linspace 线性等分向量ln 矩阵自然对数load 从MAT文件读取变量log 自然对数log10 常用对数log2 底为2的对数loglog 双对数刻度图形logm 矩阵对数logspace 对数分度向量lookfor 按关键字搜索M文件lower 转换为小写字母lsqnonlin 解非线性最小二乘问题lu LU分解M mmad 平均绝对值偏差magic 魔方阵maple &nb, sp; 运作Maple格式指令mat2str 把数值数组转换成输入形态串数组material 材料反射模式max 找向量中最大元素mbuild 产生EXE文件编译环境的预设置指令mcc 创建MEX或EXE文件的编译指令mean 求向量元素的平均值median 求中位数menuedit 启动设计用户菜单的交互式编辑工具mesh 网线图meshz 垂帘网线图meshgrid 产生"格点"矩阵methods 获知对指定类定义的所有方法函数mex 产生MEX文件编译环境的预设置指令mfunlis 能被mfun计算的MAPLE经典函数列表mhelp 引出Maple的在线帮助min 找向量中最小元素mkdir 创建目录mkpp 逐段多项式数据的明晰化mod 模运算more 指令窗中内容的分页显示movie 放映影片动画moviein 影片帧画面的内存预置mtaylor 符号计算多变量Taylor级数展开N nndims 求数组维数NaN 非数(预定义)变量nargchk 输入宗量数验证nargin 函数输入宗量数nargout 函数输出宗量数ndgrid 产生高维格点矩阵newplot 准备新的缺省图、轴nextpow2 取最接近的较大2次幂nnz 矩阵的非零元素总数nonzeros 矩阵的非零元素norm 矩阵或向量范数normcdf 正态分布累计概率密度函数normest 估计矩阵2范数norminv 正态分布逆累计概率密度函数normpdf 正态分布概率密度函数normrnd 正态随机数发生器notebook 启动Matlab和Word的集成环境null 零空间num2str 把非整数数组转换为串numden 获取最小公分母和相应的分子表达式nzmax 指定存放非零元素所需内存O oode1 非Stiff 微分方程变步长解算器ode15s Stiff 微分方程变步长解算器ode23t 适度Stiff 微分方程解算器ode23tb Stiff 微分方程解算器ode45 非Stiff 微分方程变步长解算器odefile ODE 文件模板odeget 获知ODE 选项设置参数odephas2 ODE 输出函数的二维相平面图odephas3 ODE 输出函数的三维相空间图odeplot ODE 输出函数的时间轨迹图odeprint 在Matlab指令窗显示结果odeset 创建或改写ODE选项构架参数值ones 全1数组optimset 创建或改写优化泛函指令的选项参数值orient 设定图形的排放方式orth 值空间正交化P ppack 收集Matlab内存碎块扩大内存pagedlg 调出图形排版对话框patch 创建块对象path 设置Matlab搜索路径的指令pathtool 搜索路径管理器pause 暂停pcode 创建预解译P码文件pcolor 伪彩图peaks Matlab提供的典型三维曲面permute 广义转置pi (预定义变量)圆周率pie 二维饼图pie3 三维饼图pink 粉红色图矩阵pinv 伪逆plot 平面线图plot3 三维线图plotmatrix 矩阵的散点图plotyy 双纵坐标图poissinv 泊松分布逆累计概率分布函数poissrnd 泊松分布随机数发生器pol2cart 极或柱坐标变为直角坐标polar 极坐标图poly 矩阵的特征多项式、根集对应的多项式poly2str 以习惯方式显示多项式poly2sym 双精度多项式系数转变为向量符号多项式polyder 多项式导数polyfit 数据的多项式拟合polyval 计算多项式的值polyvalm 计算矩阵多项式pow2 2的幂ppval 计算分段多项式pretty 以习惯方式显示符号表达式print 打印图形或SIMULINK模型printsys 以习惯方式显示有理分式prism 光谱色图矩阵procread 向MAPLE输送计算程序profile 函数文件性能评估器propedit 图形对象属性编辑器pwd 显示当前工作目录Q qquad 低阶法计算数值积分quad8 高阶法计算数值积分(QUADL) quit 推出Matlab 环境quiver 二维方向箭头图quiver3 三维方向箭头图R rrand 产生均匀分布随机数randn 产生正态分布随机数randperm 随机置换向量range 样本极差rank 矩阵的秩rats 有理输出rcond 矩阵倒条件数估计real 复数的实部reallog 在实数域内计算自然对数realpow 在实数域内计算乘方realsqrt 在实数域内计算平方根realmax 最大正浮点数realmin 最小正浮点数rectangle 画"长方框"rem 求余数repmat 铺放模块数组reshape 改变数组维数、大小residue 部分分式展开return 返回ribbon 把二维曲线画成三维彩带图rmfield 删去构架的域roots 求多项式的根rose 数扇形图rot90 矩阵旋转90度rotate 指定的原点和方向旋转rotate3d 启动三维图形视角的交互设置功能round 向最近整数圆整rref 简化矩阵为梯形形式rsf2csf 实数块对角阵转为复数特征值对角阵rsums Riemann和S ssave 把内存变量保存为文件scatter 散点图scatter3 三维散点图sec 正割sech 双曲正割semilogx X轴对数刻度坐标图semilogy Y轴对数刻度坐标图series 串联连接set 设置图形对象属性setfield 设置构架数组的域setstr 将ASCII码转换为字符的旧版指令sign 根据符号取值函数signum 符号计算中的符号取值函数sim 运行SIMULINK模型simget 获取SIMULINK模型设置的仿真参数simple 寻找最短形式的符号解simplify 符号计算中进行简化操作simset 对SIMULINK模型的仿真参数进行设置simulink 启动SIMULINK模块库浏览器sin 正弦sinh 双曲正弦size 矩阵的大小slice 立体切片图solve 求代数方程的符号解spalloc 为非零元素配置内存sparse 创建稀疏矩阵spconvert 把外部数据转换为稀疏矩阵spdiags 稀疏对角阵spfun 求非零元素的函数值sph2cart 球坐标变为直角坐标sphere 产生球面spinmap 色图彩色的周期变化spline 样条插值spones 用1置换非零元素sprandsym 稀疏随机对称阵sprank 结构秩spring 紫黄调春色图sprintf 把格式数据写成串spy 画稀疏结构图sqrt 平方根sqrtm 方根矩阵squeeze 删去大小为1的"孤维" sscanf 按指定格式读串stairs 阶梯图std 标准差stem 二维杆图step 阶跃响应指令str2double 串转换为双精度值str2mat 创建多行串数组str2num 串转换为数strcat 接成长串strcmp 串比较strjust 串对齐strmatch 搜索指定串strncmp 串中前若干字符比较strrep 串替换strtok 寻找第一间隔符前的内容struct 创建构架数组struct2cell 把构架转换为元胞数组strvcat 创建多行串数组sub2ind 多下标转换为单下标subexpr 通过子表达式重写符号对象subplot 创建子图subs 符号计算中的符号变量置换subspace 两子空间夹角sum 元素和summer 绿黄调夏色图superiorto 设定优先级surf 三维着色表面图surface 创建面对象surfc 带等位线的表面图surfl 带光照的三维表面图surfnorm 空间表面的法线svd 奇异值分解svds 求指定的若干奇异值switch-case-otherwise 多分支结构sym2poly 符号多项式转变为双精度多项式系数向量symmmd 对称最小度排序symrcm 反向Cuthill-McKee排序syms 创建多个符号对象T ttan 正切tanh 双曲正切taylortool 进行Taylor逼近分析的交互界面text 文字注释tf 创建传递函数对象tic 启动计时器title 图名toc 关闭计时器trapz 梯形法数值积分treelayout 展开树、林treeplot 画树图tril 下三角阵trim 求系统平衡点trimesh 不规则格点网线图trisurf 不规则格点表面图triu 上三角阵try-catch 控制流中的Try-catch结构type 显示M 文件U uuicontextmenu 创建现场菜单uicontrol 创建用户控件uimenu 创建用户菜单unmkpp 逐段多项式数据的反明晰化unwrap 自然态相角upper 转换为大写字母V vvar 方差varargin 变长度输入宗量varargout 变长度输出宗量vectorize 使串表达式或内联函数适于数组运算ver 版本信息的获取view 三维图形的视角控制voronoi Voronoi多边形vpa 任意精度(符号类)数值W wwarning 显示警告信息what 列出当前目录上的文件whatsnew 显示Matlab中Readme文件的内容which 确定函数、文件的位置while 控制流中的While环结构white 全白色图矩阵whitebg 指定轴的背景色who 列出内存中的变量名whos 列出内存中变量的详细信息winter 蓝绿调冬色图workspace 启动内存浏览器X x , Y y , Z zxlabel X轴名xor 或非逻辑yesinput 智能输入指令ylabel Y轴名zeros 全零数组zlabel Z轴名zoom 图形的变焦放大和缩小ztrans 符号计算Z变换v。

牛顿插值法的MATLAB综合程序

牛顿插值法的MATLAB综合程序

6.3.5 牛顿插值法的MATLAB 综合程序求牛顿插值多项式、差商、插值及其误差估计的MATLAB 主程序function [y,R,A,C,L]=newdscg(X,Y,x,M)n=length(X); m=length(x);for t=1:mz=x(t); A=zeros(n,n);A(:,1)=Y';s=0.0; p=1.0; q1=1.0; c1=1.0;for j=2:nfor i=j:nA(i,j)=(A(i,j-1)- A(i-1,j-1))/(X(i)-X(i-j+1));endq1=abs(q1*(z-X(j-1)));c1=c1*j;endC=A(n,n);q1=abs(q1*(z-X(n)));for k=(n-1):-1:1C=conv(C,poly(X(k)));d=length(C);C(d)=C(d)+A(k,k);endy(k)= polyval(C, z);endR=M*q1/c1;L(k,:)=poly2sym(C);例6.3.6 给出节点数据00.27)00.4(=-f ,00.1)00.0(=f ,00.2)00.1(=f ,00.17)00.2(=f ,作三阶牛顿插值多项式,计算)345.2(-f ,并估计其误差.解 首先将名为newdscg.m 的程序保存为M 文件,然后在MATLAB 工作窗口输入程序>> syms M,X=[-4,0,1,2]; Y =[27,1,2,17]; x=-2.345;[y,R,A,C,P]=newdscg(X,Y,x,M)运行后输出插值y )345.2(-≈f 及其误差限公式R ,三阶牛顿插值多项式P 及其系数向量C ,差商的矩阵A 如下y =22.3211R =1323077530165133/562949953421312*M (即R =2.3503*M )A=27.0000 0 0 01.0000 -6.5000 0 02.0000 1.0000 1.5000 017.0000 15.0000 7.0000 0.9167C =0.9167 4.2500 -4.1667 1.0000P =11/12*x^3+17/4*x^2-25/6*x+1欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。

matlab编程实现二分法,牛顿法,黄金分割法,最速下降matlab程序代码

matlab编程实现二分法,牛顿法,黄金分割法,最速下降matlab程序代码

matlab编程实现二分法,牛顿法,黄金分割法,最速下降matlab程序代码用二4224min ()f t t t t =--[,.]t ∈内的极小值点,要求准1.function [t d]=erfenfa(a,b)k=1; %记录循环次数 while abs(a-b)>0.0005c=(a+b)/2;C(k)=c; %存储每次循环中点c 的值if ff(c)<0a=c;endif ff(c)==0t1=c;break ;endif ff(c)>0b=c;endk=k+1;endt=(a+b)/2; %最终符合要求的值d=f(t); %最优解Ckfunction y=f(t)y=t^4-2*t^2-4*t;function y=ff(t)y=4*t^3-4*t-4;运行结果>> [t d]=erfenfa(1,1.5)C =Columns 1 through 91.2500 1.3750 1.3125 1.3438 1.3281 1.3203 1.3242 1.3262 1.3252Column 101.3247k =11t =1.3250d =-5.72902.黄金分割法 f (x)=x3-2x+1 初始区间[0, 3],收敛精度0.5 function [t,f]=huangjinfenge(a,b)m=1-(sqrt(5)-1)/2;t2=a+m*(b-a)f2=g(t2);t1=a+b-t2f1=g(t1);while abs(t1-t2)>0.5if f1<f2< bdsfid="121" p=""></f2<>a=t2;t2=t1f2=f1;t1=a+b-t2f1=g(t1);elseb=t1;t1=t2f1=f2;t2=a+m*(b-a)f2=g(t2);endendt=(t1+t2)/2;f=g(t);function y=g(t)y=t^3-2*t+1;运行结果> [t,f]=huangjinfenge(0,3)t2 =1.1459t1 =1.8541t1 =1.1459t2 =0.7082t =0.9271f =-0.0574>>3. 用牛顿法求解291min ()sin f x x x =--初始迭代点为x 0=0.4, 要求准确到小数点后第5位小数function [t1,d]=Newton(t0)t=t0-ff(t0)/fff(t0);k=1;%记录迭代次数T(1)=t;%存储迭代点while abs(t-t0)>0.000005t0=t;t=t0-ff(t)/fff(t);k=k+1;T(k)=t;endt1=t0;d=f(t1);kTfunction y=f(x)y=9*x^2-sin(x)-1;function y=ff(x)y=18*x-cos(x);function y=fff(x)y=18+sin(x);运行结果>> [t1,d]=Newton(0.4)k =3T =0.0586 0.0555 0.0555t1 =0.0555d =-1.0277>>4. 最速下降法验证课本上的例题求解291min ()sin f x x x =--初始迭代点为x 0=0.4, 要求准确到小数点后第5位小数function [G,g,X,F]=zuisu(X0)F(1)=f(X0);%存储x 点处的值G(:,1)=h(X0); %存储梯度向量g(1)=norm(G(:,1));%存储梯度模长X(:,1)=X0; %存储x 值A=[2,0;0,8];for j=1:2X(:,j+1)=X(:,j)-(G(:,j)'*G(:,j))/(G(:,j)'*A*G(:,j))*G(:,j);F(j+1)=f(X(:,j+1));G(:,j+1)=h(X(:,j+1));g(j+1)=norm(G(:,j+1));endif (G(:,2)'*G(:,1)<1E-10& G(:,3)'*G(:,2)<1E-10)disp(['相邻两搜索方向是正交的'])endfunction y=f(X)y=X(1)^2+4*X(2)^2;function n=h(X)n=[2*X(1),8*X(2)]';运行结果>> [G,g,X,F]=zuisu(X0)相邻两搜索方向是正交的G =2.0000 1.4769 0.2215 8.0000 -0.3692 0.8862g =8.2462 1.5224 0.9134X =1.0000 0.7385 0.1108 1.0000 -0.0462 0.1108F =5.0000 0.5538 0.0613 >>。

matlab牛顿插值法函数

matlab牛顿插值法函数

matlab牛顿插值法函数
牛顿插值法是一种常用的数值计算方法,可以通过已知的离散数据点来估计未知的函数值。

该方法基于插值多项式的思想,利用已知数据点的信息来构建一个多项式,然后利用该多项式来估计其他点的函数值。

牛顿插值法的基本思想是利用差商的概念,通过递推的方式来计算插值多项式的系数。

具体来说,给定n个数据点(x0, y0), (x1, y1), ..., (xn, yn),我们可以得到一个n次插值多项式。

该多项式的形式为:
P(x) = f[x0] + (x - x0)f[x0, x1] + (x - x0)(x - x1)f[x0, x1, x2] + ... + (x - x0)(x - x1)...(x - xn-1)f[x0, x1, ..., xn]
其中,f[xi]表示差商,f[x0, x1]表示二阶差商,以此类推。

牛顿插值法的优点是计算简单,且对于多项式插值问题具有很高的精度。

然而,该方法也有一些局限性。

首先,插值多项式的次数随着数据点的增加而增加,可能导致多项式振荡或者过拟合。

此外,当数据点不均匀分布时,插值多项式的精度可能会受到影响。

为了解决这些问题,可以使用其他插值方法,如拉格朗日插值法或样条插值法。

这些方法在一定程度上克服了牛顿插值法的局限性,但也引入了一些新的问题。

因此,在实际应用中,需要根据具体问题的特点选择合适的插值方法。

牛顿插值法是一种常用的数值计算方法,可以用于估计未知函数值。

虽然该方法有一些局限性,但在适当的条件下,仍然可以获得较高的插值精度。

在实际应用中,需要综合考虑问题的特点和需求,选择合适的插值方法。

牛顿迭代法matlab程序例题

牛顿迭代法matlab程序例题

牛顿迭代法是一种用来求解方程的数值方法,它可以用来寻找函数的根。

下面是一个用 MATLAB 编写的牛顿迭代法的程序示例:
在这个示例中,我们首先定义了要求解根的函数f和它的导数df。

然后设置迭代的初始值x0和误差容限epsilon。

接下来是一个迭代过程,通过不断更新x0的值直到满足指定的误差容限要求。

最后输出计算得到的方程根。

你可以根据实际需要修改函数f、df、初始值x0和误差容限epsilon来适应不同的方程求解。

此示例仅供参考,实际应用中需要根据具体问题进行适当的修改和调整。

牛顿—拉夫逊法潮流计算MATLAB程序

牛顿—拉夫逊法潮流计算MATLAB程序

牛顿—拉夫逊法潮流计算程序By Yuluo%牛顿--拉夫逊法进行潮流计算n=input('请输入节点数:n=');n1=input('请输入支路数:n1=');isb=input('请输入平衡母线节点号:isb=');pr=input('请输入误差精度:pr=');B1=input('请输入由支路参数形成的矩阵:B1=');B2=input('请输入各节点参数形成的矩阵:B2=');X=input('请输入由节点参数形成的矩阵:X=');Y=zeros(n);e=zeros(1,n);f=zeros(1,n);V=seros(1,n);O=zeros(1,n);S1=zeros(n1);for i=1:nif X(i,2)~=0;p=X(i,1);Y(p,p)=1./X(i,2);endendfor i=1:n1if B1(i,6)==0p=B1(i,1);q=B1(i,2);else p=B1(i,2);q=B1(i,1);endY(p,q)=Y(p,q)-1./(B1(i,3)*B1(i,5);Y(p,q)=Y(p,q);Y(p,q)=Y(q,q)+1./(B1(i,3)*B1(i,5)^2)+B1(i,4)./2;Y(p,p)=Y(p,p)+1./B1(i,3)+B1(i,4)./2;end %求导纳矩阵G=real(Y);B=imag(Y);for i=1:ne(i)=real(B2(i,3));f(i)=imag(B2(i,3));V(i)=B2(i,4);endfor i=1:nS(i)=B2(i,1)-B2(i,2);B(i,i)=B(i,i)+B2(i,5);endP=rea(S);Q=imag(S);ICT1=0;IT2=1;NO=2*n;N=NO+1;a=0;while IT2~=0IT2=0;a=a+1;for i=1:n;if i~=isbC(i)=0;D(i)=0;for j1=1:nC(i)=C(i)+G(i,j1)*e(j1)-B(i,j1)*f(j1);D(i)=D(i)+G(i,j1)*f(j1)+B(i,j1)*e(j1);endP1=C(i)*e(i)+f(i)*D(i);Q1=f(i)*C(i)-D(i)*e(i); %求'P,Q'V2=e(i)^2+f(i)^2;if B2(i,6)~=3DP=P(i)-P1;DQ=Q(i)-Q1;for j1=1:nif j1~=isb&j1~=iX1=-G(i,j1)*e(i)-B(i,j1)*f(i);X2=B(i,j1)*e(i)-G(i,j1)*f(i);X3=X2;X4=-X1;p=2*i-1;q=2*j1-1;J(p,q)=X3;J(p,N)=DQ;m=p+1;J(m,q)=X1;J(m,N)=DP;q=q+1;J(p,q)=X4;J(m,q)=X2; endendelseDP=P(i)-P1;DV=V(i)~2-V2;for j1=1:nif j1~=isb&j1~=iX1=-G(i,j1)*e(i)-B(i,j1)*f(i);X2=B(i,j1)*e(i)-G(i,j1)*f(i);X5=0;X6=0;p=2*i-1;q=2*j1-1;J(p,q)=X5;J(p,N)=DV;m=p+1;J(m,q)=X1;J(m,N)=DP;q=q+1;J(p,q)=X6;J(m,q)=X2; elseif j1==i&j1~=isbX1=-C(i)-G(i,i)*e(i)-B(i,i)*f(i);X2=-D(i)+B(i,i)*e(i)-G(i,i)*f(i);X5=-2*e(i);X6=-2*f(i);p=2*i-1;q=2*j1-1;J(p,q)=X5;J(p,N)=DV;m=p+1;J(m,q)=X1;J(m,N)=DP;q=q+1;J(p,q)=X6;J(m,q)=X2;endendendendend %求雅可比矩阵for k=3:N0k1=k+1;N1=N;for k2=k1:N1J(k,k2)=J(k,k2)./J(k,k);endJ(k,k)=1;if k~=3k4=k-1;for k3=3:k4for k2=k1:N1J(k3,k2)=J(k3,k2)-J(k3,k)*J(k,k2); endJ(k3,k)=0;endendfor k3=k1:N0for k2=k1:N1J(k3,k2)=J(k3,k2)-J(k3,k)*J(k,k2); endJ(k3,k)=0;endendendfor k=3:2:N0-1L=(k+1)./2;e(L)=e(L)-J(k,N);k1=k+1;f(L)=f(L)-J(k1,N);endfor k=3:N0DET=abs(J(k,N));if DET>=prIT2=IT2+1endendICT2(a)=IT2ICT1=ICT1+1;for k=1:ndy(k)=sqrt(e(k)^2+f(k)^2);endfor i=1:nDy(k)=sqrt(e(k)^2+f(k)^2);endfor i=1:nDy(ICT1,i)=dy(i);endend %用高斯消去法解“w=-J*V”disp('迭代次数');disp(ICT1);disp('没有达到精度要求的个数');disp(ICT2);for k=1:nV(k)=sqrt(e(k)^2+f(k)^2);O(k)=atan(f(k)./e(k))*180./pi;endE=e+f*j;disp('各节点的实际电压标么值E为(节点号从小到大的排列):');disp(E);disp('各节点的电压大小V为(节点号从小到大的排列):');disp(V);disp('各节点的电压相角O为(节点号从小到大的排列):');disp(O);for p=1:nC(p)=0;for q=1:nC(p)=C(p)+conj(Y(p,q))*conj(E(q));endS(p)=E(p)*C(p);enddisp('各节点的功率S为(节点号从小到大排列):‘);disp(S);disp('各条支路的首端功率Si为(顺序同您输入B1时一样):‘);for i=1:n1if B1(i,6)==0p=B1(i,1);q=B1(i,2);else p=B1(i,2);q=B1(i,1);endSi(p,q)=E(p)*(conj(E(p))*conj(B1(i,4)./2)+(conj(E(p)*B1(i,5))-conj(E(q)))*con j(1./(B1(i,3)*B1(i,5))));disp(Si(p.q));enddisp('各条支路的末端功率Sj为(顺序同您的输入B1时一样):‘);for i=1:n1if B1(i,6)==0p=B1(i,1);q=B1(i,2);else p=B1(i,2);q=B1(i,1);endSj(q,p)=E(q)*(conj(E(q))*conj(B1(i,4)./2)+(xonj(E(q)./B1(i,5))-conj(E(p)))*xo nj(1./(B1(i,3)*B1(i,5))));disp(Sj(q,p));enddisp('各条支路的功率损耗DS为(顺序同您输入B1时一样):’);for i=1:n1if B1(i,6)==0p=B1(i,1);q=B1(i,2);else p=B1(i,2);q=B1(i,1);endDS(i)=Si(p,q)+Sj(q,p);disp(DS(i));endfor i=1:ICT1Cs(i)=i;enddisp('以下是每次迭代后各节点的电压值(如图所示)‘);plot(Cs,Dy),xlabel('迭代次数’),ylabel('电压'),title('电压迭代次数曲线');。

matlab非线性方程的解法(含牛拉解法)

matlab非线性方程的解法(含牛拉解法)

非线性方程的解法(含牛拉解法)1引 言数学物理中的许多问题归结为解函数方程的问题,即,0)(=x f (1.1) 这里,)(x f 可以是代数多项式,也可以是超越函数。

若有数*x 为方程0)(=x f 的根,或称函数)(x f 的零点。

设函数)(x f 在],[b a 内连续,且0)()(<b f a f .根据连续函数的性质知道,方程0)(=x f 在区间],[b a 内至少有一个实根;我们又知道,方程0)(=x f 的根,除了极少简单方程的根可以用解析式表达外,一般方程的根很难用一个式子表达。

即使能表示成解析式的,往往也很复杂,不便计算。

所以,具体求根时,一般先寻求根的某一个初始近似值,然后再将初始近似值逐步加工成满足精度要求为止.如何寻求根的初始值呢?简单述之,为了明确起见,不妨设)(x f 在区间],[b a 内有一个实的单根,且0)(,0)(><b f a f .我们从左端出点a x =0出发,按某一预定的步长h 一步一步地向右跨,每跨一步进行一次根的“搜索”,即检查每一步的起点k x 和1+k x (即,h x k +)的函数值是否同号。

若有:0)(*)(≤+h x f x f k k (1.2) 那么所求的根必在),(h x x k k +内,这时可取k x 或h x k +作为根的初始近似值。

这种方法通常称为“定步长搜索法"。

另外,还是图解法、近似方程法和解析法。

2 迭代法2。

1 迭代法的一般概念迭代法是数值计算中一类典型方法,不仅用于方程求根,而且用于方程组求解,矩阵求特征值等方面。

迭代法的基本思想是一种逐次逼近的方法。

首先取一个精糙的近似值,然后用同一个递推公式,反复校正这个初值,直到满足预先给定的精度要求为止。

对于迭代法,一般需要讨论的基本问题是:迭代法的构造、迭代序列的收敛性天收敛速度以及误差估计。

这里,主要看看解方程迭代式的构造。

对方程(1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

拟牛顿法的matlab实现(转)
2011-03-16 15:07:04| 分类:matlab | 标签:|字号大中小订阅
牛顿法成功的关键是利用了Hesse矩阵提供的曲率信息,但计算Hesse矩阵工作量大,并且有的目标函数的Hesse矩阵很难计算,甚至不好求出。

针对这一问题,拟牛顿法比牛顿法更为有效。

这类算法仅利用目标函数值和一阶导数的信息,构造出目标函数的曲率近似,使方法具有类似牛顿法的收敛速度快的优点。

函数名:quasi_Newton(f,x0,error),
参数:f:待求梯度函数x0:初始点error:允许误差
主程序:
function A=quasi_Newton(f,x0,error)
[a,b]=size(x0);
G0=eye(b);
initial_gradient=gradient_my(f,x0,b);
norm0=0;
norm0=initial_gradient*initial_gradient';
syms step_zzh;
A=[x0];
search_direction=-initial_gradient;
x=x0+step_zzh*search_direction;
f_step=subs(f,findsym(f),x);
best_step=golden_search(f_step,-15,15);
x_1=x0+best_step*search_direction;
A=[A;x_1];
k=1;
while norm0>error
ox=x_1-x0;
og=gradient_my(f,x_1,b)-initial_gradient;
G1=G0+(ox'*ox)/(ox*og')-(G0*og'*og*G0)/(og*G0*og');
if k+1==b
new_direction=-gradient_my(f,x_1,b);
else
new_direction=-(G1*(gradient_my(f,x_1,b))')';
end
x=x_1+step_zzh*new_direction;
f_step=subs(f,findsym(f),x);
best_step=golden_search(f_step,-15,15)
x_2=x_1+best_step*new_direction
A=[A;x_2];
initial_gradient=gradient_my(f,x_1,b);
norm0=initial_gradient*initial_gradient';
x0=x_1;x_1=x_2;
G0=G1;
k=k+1; end。

相关文档
最新文档