X、Y性染色体上的基因遗传特点的数学分析

X、Y性染色体上的基因遗传特点的数学分析
X、Y性染色体上的基因遗传特点的数学分析

医学遗传学 染色体畸变与染色体病

Copyright ? 1995-2016 LIZC. All rights reserved 一、单选题 1、染色体非整倍性改变的机制可能是() A.染色体断裂及断裂之后的异常重排:结构畸变的机制,不选 B.染色体易位:结构畸变,不选 C.染色体倒位:结构畸变,不选 D.染色体不分离:正确,非整倍性改变的机制包括染色体不分离和染色体丢失E.染色体核内复制:整倍性改变的机制(四倍体),不选 考核点:非整倍性改变的机制 2、染色体不分离( ) A.只是指姐妹染色单体不分离 B. 只是指同源染色体不分离 C.只发生在有丝分裂过程中 D.只发生在减数分裂过程中 E.是指姐妹染色单体或同源染色体不分离

解析:染色体不分离是导致染色体非整倍性改变(尤其是三体和单体)的主要原因。不分离既可发生在减数分裂(包括第一、二次减数分裂),也可发生在有丝分裂(将导致嵌合体出现)。选项A的含义是:只是第二次减数分裂和有丝分裂中染色体不分离;选项B的含义是:只发生在第一次减数分裂;选项C、D肯定不正确;选项E的含义是:指姐妹染色单体不分离即有丝分裂和第二次减数分裂),同源染色体不分离即第一次减数分裂。 考核点:非整倍性改变的机制 3、人类精子发生的过程中,如果第一次减数分裂时发生了某号同源染色体的不分离现象,而第二次减数分裂正常进行,则其可形成( ) A.一个异常性细胞 B.两个异常性细胞 C.三个异常性细胞 D.四个异常性细胞 E.正常的性细胞 解析:如果第一次减数分裂时发生了某号同源染色体的不分离现象,而第二次减数分裂正常进行, 则其可形成4个异常配子(共2种),其中一种染色体数目为n+1,另一种为n-1,受精后要么是三体,要么是单体。若第一次减数分裂正常,第二次发生某号染色体不分离,则可形成4个可

基因多态性

基因多态性 多态性(polymorphism)是指在一个生物群体中,同时和经常存在两种或多种不连续的变异型或基因型(genotype)或等位基因(allele),亦称遗传多态性(genetic polymorphism)或基因多态性。从本质上来讲,多态性的产生在于基因水平上的变异,一般发生在基因序列中不编码蛋白的区域和没有重要调节功能的区域。对于一个体而言,基因多态性碱基顺序终生不变,并按孟德尔规律世代相传。 基因多态性分类生物群体基因多态性现象十分普遍,其中,人类基因的结构、表达和功能,研究比较深入。人类基因多态性既来源于基因组中重复序列拷贝数的不同,也来源于单拷贝序列的变异,以及双等位基因的转换或替换。按引起关注和研究的先后,通常分为3大类:DNA片段长度多态性、DNA重复序列多态性、单核苷酸多态性。 DNA片段长度多态性DNA片段长度多态性(FLP),即由于单个碱基的缺失、重复和插入所引起限制性内切酶位点的变化,而导致DNA片段长度的变化。又称限制性片段长度多态性,这是一类比较普遍的多态性。 DNA重复序列多态性DNA重复序列的多态性(RSP),特别是短串联重复序列,如小卫星DNA和微卫星DNA,主要表现于重复序列拷贝数的变异。小卫星(minisatellite)DNA由15~65bp的基本单位串联而成,总长通常不超过20kb,重复次数在人群中是高度变异的。这种可变数目串联重复序列(VNTR)决定了小卫星DNA长度的多态性。微卫星(microsatellite)DNA 的基本序列只有1~8bp,而且通常只重复10~60次。 单核苷酸多态性单核苷酸多态性(SNP),即散在的单个碱基的不同,包括单个碱基的缺失和插入,但更多的是单个碱基的置换,在CG序列上频繁出现。这是目前倍受关注的一类多态性。 SNP通常是一种双等位基因的(biallelic),或二态的变异。SNP大多数为转换,作为一种碱基的替换,在基因组中数量巨大,分布频密,而且其检测易于自动化和批量化,因而被认为是新一代的遗传标记。 遗传背景知识遗传和变异各种生物都能通过生殖产生子代,子代和亲代之间,不论在形态构造或生理功能的特点上都很相似,这种现象称为遗传(heredity)。但是,亲代和子代之间,子代的各个体之间不会完全相同,总会有所差异,这种现象叫变异(variation)。遗传和变异是生命的特征。遗传和变异的现象是多样而复杂的,正因为如此,才导致生物界的多种多样性。

微卫星不稳定性的生物学意义

?综 述? 微卫星不稳定性的生物学意义 及其应用前景3 丁 一 童坦君(北京医科大学生物化学与分子生物学系,北京100083) 摘要 微卫星为遍布于人类基因组中的简单重复序列。在人群中,它们呈现高度多 态性,并且稳定遗传。微卫星的高度多态性是微卫星不稳定性的表现,它与错配修复 基因的缺陷有关。微卫星不稳定性已广泛应用于肿瘤学的研究,并依此提出了肿瘤 发生的“增变基因”途径。在遗传学、老年病学及其它一些生命科学,微卫星不稳定性 同样具有广泛的应用前景。 关键词 微卫星不稳定性;错配修复基因;增变基因 Microsatellite Instability:A Potential Tool for the study of Life Sciences DIN G Y i, TON G Tan2J un(Depart ment of B iochemist ry and Molecular B iology,Beiji ng Medi2 cal U niversity,Beijing100083) Abstract Microsatellites are simply repeated nucleotide sequences scattered throughout the human genome.They are highly polymorphic among human population and inherit2 ed in a stable manner.The microsatellite instability(M I)is highly polymorphic,which is associated with the defects in DNA mismatch repair genes.M I has been widely used by scientists to study the tumorigenesis.On the basis of their findings,a“mutator that mutates the other mutator”model for tumorigenesis has been proposed.M I is also a po2 tential tool for the study of genetics,aging and other life sciences. K ey w ords Microsatellite instability;Mismatch repair gene;Mutator 微卫星(microsatellites)遍布于人类基因组中,在动物及部分微生物基因组中也有存在。它们是由同一脱氧寡核苷酸重复串联而成,重复顺序为1~6bp,重复次数不超过60次,片段长度通常小于350bp,在人群中表现出高度的个体特异性,并且稳定遗传。人类基因组中包含数万个微卫星位点,由于它们一般处于可积累中性突变的非编码DNA区域,在人群中呈现高度多态性。 微卫星多态性是微卫星不稳定性(microsatellite instability,M I)的表现。微卫星多态性表现于同一微卫星位点在不同个体之间以及同一个体的正常组织与某些异常组织之间,微卫星位点的重复单位的数目不同。微卫星多态性的检测采用PCR方法。选择位于微卫星序列两 3 国家自然科学基金资助课题(39670806)

遗传学名词解释

1 Chromosomal disorders:染色体结构和数目异常而导致的疾病。如Down’s综合征(+21),猫叫综合征(5p-)。 2 Single gene disorders: 由于控制某个性状的等位基因突变导致的疾病称之。 3 Polygenic disorders:一些常见病和多发病的发生由遗传因素和环境因素共同决定,遗传因素中不是一对等位基因,而是多对基因共同作用于同一个性状。 4 Mitochondrial disorders:是指线粒体DNA上的基因突变导致所编码线粒体蛋白质结构和数目异常,导致线粒体病。线粒体是位于细胞质中的细胞器,故随细胞质(母系)遗传。 4 Somatic cell disorders: 体细胞中遗传物质突变导致的疾病。 5 分离律 (Law of segregation)基因在体细胞内成对存在,在生殖细胞形成过程中,同源染色体分离,成对的基因彼此分离,分别进入不同的生殖细胞。细胞学基础:同源染色体的分离。 6 自由组合律(law of independent assortment)在生殖细胞形成过程中,不同的非等位基因,可以相互独立的分离,有均等的机会组合到—个生殖细胞的规律性活动。 7 连锁与互换定律-(law of linkage and crossing over)位于同一染色体上的两个基因,在生殖细胞形成时,如果它们相距越近,一起进入同一生殖细胞的可能性越大;如果相距较远,它们之间可以发生交换。 8 Gene mutation: DNA分子中的核苷核序列发生改变,导致遗传密码编码信息改变,造成基因表达产物蛋白质的氨基酸变化,从而引起表型的改变。 9 Point mutation:指单个碱基被另一个碱基替代。转换(transition):嘧啶之间或嘌呤之间的替代。颠换(transversion):嘧啶和嘌呤之间的替代。 10 Same sense mutation:碱基替换后,所编码的氨基酸没有改变。多发生于密码子的第三个碱基。 11 Missense mutation:碱基替换后,改变了氨基酸序列。错义突变多发生于密码子的第一、二个碱基 12 Nonsense mutation:碱基替换后,编码氨基酸的密码子变为终止密码子(UAA、UGA、UAG),多肽链合成提前终止。 13 Frame shift mutation:在DNA编码序列中插入或丢失一个或几个碱基,造成插入或缺失点下游的DNA编码框架全部改变,其结果是突变点以后的氨基酸序列发生改变 14 dynamic mutation :人类基因组中的一些重复序列在传递过程中重复次数发生改变导致遗传病的发生,称动态突变。

叶酸代谢与基因组稳定性

叶酸代谢与基因组稳定性 王晓会124120035 12生A 摘要:叶酸是人体DNA合成、氨基酸之间相互转化、血红白肾上腺索、胆碱、肌酸合成所必需的物质。叶酸为体内DNA合成、修复及甲基化所必需的微营养素,其缺乏可诱发DNA其代谢涉及DNA 合成及甲基化等重要生化过程,对维持人类遗传稳定性意义重大。 关键词:叶酸;人类基因组;稳定性 许多国内外实验室营养基因组学的研究发现,若干微量营养素能影响人类基因组的稳定性,这些微量营养素表现了对基因组的保护或损伤作用对基因组的健康有维护效应。 叶酸简介:叶酸(folic acid,FA)又称蝶酰谷氨酸,由喋啶核、对氨苯甲酸及谷氨酸三部分组成,是一种水溶性B族维生素。FA作为一类重要的微营养物质,对保持染色体正常染色体构像和DNA正常甲基化起到重要作用。FA具有众多的衍生化合物,包括蝶酰单谷氨酸、蝶酰多聚谷氨酸以及携带或不携带甲基的各种形式,所有这些FA的衍生分子统称folate(FL)植物或食品中的FL都以多聚蝶酰谷氨酸形式存在,被摄人体内后,大部分被还原为5.甲基四氢叶酸(5-methyltetrahydrofolate,5-methylTHF),5-methylTHF是进入血液的主要FL。5-methylTHF进入细胞后通过一碳单位的若干传递过程,最后转变为四氢叶酸(tetrahydrofolate,,IHF)。 叶酸的代谢过程:叶酸主要涉及DNA合成和DNA甲基化两个重要的生物化学过程,一方面涉及尿嘧啶脱氧核苷酸(dUTP)到胸腺嘧啶脱氧核苷酸(dTTP)的合成。另一方面,通过同型半胱氨酸(HC)

合成甲硫氨酸(Met)、S-腺苷甲硫氨酸(SMA)的生化过程进而影响DNA甲基化。当叶酸缺乏时会导致dTTP合成受阻,dUTP积累并掺入DNA,可在继后的DNA修复和修复过程中诱发基因突变、DNA单双链断裂、染色体的断裂及等位基因稳定性下降事件;叶酸缺乏也可导致SAM合成受阻,降低整体DNA甲基化程度,甚至改变细胞中的特异性甲基化模式,从而改变基因表达方式,DNA甲基化水平的降低还可能导致着丝粒异染色质凝聚水平下降,从而在有丝分裂过程中引起某些染色体分离异常,形成非整倍体[1]。 FL进入叶酸循环后,所参与的一碳单位传递转移包括几个关键步骤:首先,一碳单位在2种不同氧化态(甲酸氧化态和甲醛氧化态)的4个位点进入叶酸循环(见图1):携带甲酸氧化态一碳单位的FL通过5.formylTHF(5.甲酰四氢叶酸)、10.formyl,IHF(10一甲酰四氢叶酸)、5-formiminoTHF(5.亚胺甲基四氢叶酸)3个部位进入叶酸循环;携带甲醛氧化态一碳单位的FL通过5,10.methylene,IHF(亚甲基四氢叶酸,5,10一MnTHF)进入叶酸循环。携带一碳单位的FL进入叶酸循环以后,随即参与分子内一碳单位的传递与转换。5-formylTHF 及10一fomylTHF被转化为5,10.methenyl THF,后者随即被还原为5,10.MnTHF。亚甲基四氢叶酸还原酶将5,10。MnTHF还原为5一methylTHF,后者经甲硫氨酸合成酶催化转变为THF,以接受下一个碳单位[2]。

遗传学复习题

一.解释下列名词 1.单位性状与相对性状 2.积加作用与抑制作用 3.上位作用与下位作用 4.不完全连锁与符合系数 5. 臂内倒位与臂间倒位 6. 三体与双三体 7. 细胞质遗传与母性影响 8.植物的核不育型与核质不育型 9.广义遗传力与狭义遗传力 10.减数分裂。 11.测交 12.完全连锁 13.共显性 14.广义遗传力 15.隐性上位作用

16.单体 17.并发系数 18.母性遗传 20.染色体组 21.基因的加性效应 22.臂间倒位染色体 23.相斥组与相引组 24.染色体 25.染色单体 26.着丝点 27.细胞周期 28.同源染色体 29.异源染色体 30.无丝分裂 31.有丝分裂

32.单倍体 33.联会 34.联会复合体 35.显性性状与隐性性状 36.基因与等位基因 37.表现型与基因型 38.互补作用 39.积加作用 40.显性上位作用 41.隐性上位作用 42.重叠作用 43.抑制作用 44.多因一效 45.一因多效 46.完全连锁与不完全连锁

47.交换值 48.基因定位 49.连锁遗传图 50.伴性遗传 51.限性遗传 52.从性遗传 53.超亲遗传 54.加性效应 55.显性效应 56.上位性效应 57.遗传率 58.加性方差 59.显性方差 60.上位性方差 61.QTL作图

62.近交衰退 62.杂种优势 63.杂种劣势 64.基因突变 65.突变率 66. 复等位基因 67.母性影响 68.伴性遗传 69.杂种优势 二、简答题 1.显性现象的表现有那几种形式?显性现象的实质是什么? 2.纯系学说的内容是什么?有何重要的理论意义? 3.什么是微效基因、微效多基因和主效基因?它们的作用有何区别?

专题34 高考复习 从性遗传、复等位基因及血型问题

专题34 2019年下半年高考专题复习从性遗传及血型问题 1.在某种牛中,在基因型为AA的个体的体色是红褐色,aa是红色,基因型为Aa的个体中雄牛是红褐色,而雌牛则为红色。一头红褐色的母牛生了一头红色的小牛,这头小牛的性别及基因型是[ ] A.雄性或雌性,aa B.雄性,Aa C.雌性,Aa D.雌性,aa或Aa 2.从性遗传是指由常染色体上基因控制的性状,在表现型上受个体性别影响的现象。如绵羊的有角和无角受常染色体上一对等位基因控制,有角基因H对无角基因h为显性。在公羊中,基因型为HH、Hh均表现为有角;而在母羊中基因型为HH表现为有角,基因型为Hh表现为无角。如果基因型为Hh的雌雄个体交配,则子代中出现无角母羊的概率为 A.1/8 B.1/4 C.3/8 D.3/4 3.已知绵羊角的性状遗传遵循基因分离定律,其表现型与基因型的关系如下,据表正确的判断是:A.若双亲无角,则子代全部无角 B.若双亲有角,则子代全部有角 C.若双亲基因型为Hh,则子代有角与无角的数量比为1:1 D.绵羊角的性状遗传一定是伴性遗传 4.【加试题】在雌果蝇中,胚胎发育所需要的部分养分、蛋白质和mRNA由卵母细胞旁边的营养细胞和滤泡 细胞提供。有一个位于常染色体上的基因所产生的mRNA被运送到卵母细胞,从而保证受精后形成的胚胎正常发育,如果此基因发生突变将会导致胚胎畸形而且无法存活。以下叙述正确的是 A.如果此突变是显性的,则突变杂合子雄果蝇和正常雌果蝇交配所生的雌性子代不可以存活 B.如果此突变是显性的,则可观察到存活的突变纯合子个体 C.如果此突变是隐性的,则对于突变杂合子母体所生的雌、雄性胚胎都有一半可正常发育 D.如果此突变是隐性的,两个突变杂合子的个体杂交,子二代中有1/6是突变纯合子 5. 从性遗传是指由常染色体上基因控制的性状在表现型上受个体性别影响的现象。试分析下列从性遗传 现象:Ⅰ.果蝇中一常染色体的隐性基因(a)纯合时,雌果蝇(XX)转化为不育的雄蝇;基因(a)在雄性(XY)中没有这种效应。另外,决定果蝇眼色的基因位于X染色体上,白眼(b)为隐性性状。 请回答下列问题: (1)白眼雌蝇的基因型为:;白眼雄蝇的基因型为:。 (2)一对白眼的雌蝇与雄蝇杂交,后代雌雄比为1∶3,则双亲基因型为:。 写出该杂交的遗传图解。(3分) (3)让(2)题中的子代自由交配,其后代的雌雄比为:。 6.雄性蝴蝶有黄色(Y)和白色(y),雌性只有白色。触角棒形(A)和正常形(a)正交和反交的结果都一样。 (4)在下列各组合中,不能从其子代表现型判断出性别的是。①yyaa♀×♂YYAA ②YyAA♀×♂yyaa ③YYAa♀×♂Yyaa ④YYAa♀×♂yyAa ⑤YyAA♀×♂Yyaa ⑥yyAa♀×♂yyaa (5)一对表现型为黄色棒形和白色棒形的亲本杂交,F1代表现型为雄性3/8黄色棒形、1/8黄色正常、3/8白色棒形、1/8白色正常;雌性3/4白色棒形、1/4白色正常。则两个亲本的基因型组合为、(标明亲本的雌雄)。②⑤⑥YyAa yyAa 7.(14分)右图为哺乳动物的性染色体简图。X和Y染色体有一部分是同源的(图中Ⅰ片段), 该部分基因互为等位:另一部分是非同源的(图中的Ⅱ,Ⅲ片段),该部分基因不互为等位。 从性遗传又称性控遗传。从性遗传是指常染色体上基因控制的性状,在表现上受个体性 别的影响的现象。在杂合体中雄性表现为有角,雌性表现为无角。 绵羊有角和无角受一对等位基因(A,a)控制,雌雄都有有角个体出现。现有一只有角 公羊与一只无角母羊交配所生的多胎小羊中,性成熟以后,凡公羊都表现为有角,凡母羊都 表现为无角。试根据以上事实回答:(注:若性染色体上有角A基因为显性) (1)绵羊的有角基因A是否位于Ⅱ片段?_____________。理由是:_____________。 (2)根据以上事实。推测绵羊的有角性状的遗传有两种可能:一种是位于性染色体上的遗传,另一种从性遗传,则无角母羊的基因型是:_____________。 (3)为进一步验证绵羊的有角性状的遗传方式的方案,请补充完善。 步骤:选择_____________公羊与多只无角母羊交配,观察子代性成熟后表现出来的性状。

染色体异常的减数分裂遗传题归类分析

个性化作业①2015年10月10日编辑 【染色体异常的减数分裂、遗传题归类分析】 【例析】(2011·四川卷·31·II)小麦的染色体数为42条。下图表示小麦的三个纯种品系的部分染色体及基因组成:I、II表示染色体,A为矮杆基因,B为抗矮黄病基因,E为抗条斑病基因,均为显性。乙品系和丙品系由普通小麦与近缘种偃麦草杂交后,经多代选育而来(图中黑色部分是来自偃麦草的染色体片段)。 (1)乙、丙系在培育过程中发生了染色体的变异。该现象如在自然条件下发生,可为提供原材料。 (2)甲和乙杂交所得到的F1自交,所有染色体正常联会,则基因A与a可随的分开面分离。F1自交所得F2中有种基因型,其中仅表现抗矮黄病的基因型有种。(3)甲与丙杂交所得到的F1自交,减数分裂中I甲与I丙因差异较大不能正常配对,而其它染色体正常配对,可观察到个四分体;该减数分裂正常完成,可产生种基因型的配子,配子中最多含有条染色体。 (4)让(2)中F1与(3)中F1杂交,若各种配子的形成机会和可育性相等,产生的种子均发育正常,则后代植株同时表现三种性状的几率为。 【解析】这道题综合考查了遗传的基本规律、染色体变异、减数分裂以及进化等相关知识,考查了学生的理解能力、获取信息能力和综合运用能力。 乙细胞中,普通小麦的Ⅱ号染色体上,B基因所在的打阴影部分的染色体片段来自于偃麦草,偃麦草与普通小麦属于两个不同的物种,没有同源染色体,所以乙在培育的过程中发生了染色体片段由偃麦草的染色体转移到了它的非同源染色体即普通小麦的Ⅱ号染色体上,这属于染色体结构变异,同理,丙系在培育的过程中也发生了染色体结构变异。依据现代生物进化理论,染色体变异能为生物进化提供原材料。 甲和乙杂交所得到的F1,其细胞内染色体组成如右图,F1的基因型为ⅠAⅠaⅡBⅡO,A 与a是位于一对同源染色体上的等位基因,在减数第一次分裂的后期,会随着同源染色体 的分离而分离。F1所有染色体正常联会,且A、B两基因独立遗传,所以F1自交所得F2有9 种基因型,即ⅠAⅠAⅡBⅡB、ⅠAⅠAⅡBⅡO、ⅠAⅠaⅡBⅡB、ⅠAⅠaⅡBⅡO、ⅠaⅠaⅡBⅡB、ⅠaⅠa ⅡBⅡO、ⅠAⅠAⅡOⅡO、ⅠAⅠaⅡOⅡO和ⅠaⅠaⅡOⅡO。其中仅表现抗矮黄病的只有ⅠaⅠaⅡBⅡB和ⅠaⅠaⅡB ⅡO两种基因型。 甲和丙杂交所得到的F1,其细胞内染色体组成如右图,F1的基因型为ⅠAOⅠaEⅡ0ⅡO,除了I甲与I 丙因差异较大不能正常配对形成四分体外,其余20对同源染色体的正常配对,各形成1个四分体,所以可观察到20个四分体。在减数分裂形成配子的过程中,有可能I甲与I丙没有平均分配到两 个次级性母细胞中,而是进入到了同一个次级性母细胞中,这样就会形成ⅠAOⅠaEⅡ0与Ⅱ0 两种基因型的配子;也有可能I甲与I丙平均分配到两个次级性母细胞中,这样就会形成ⅠAO Ⅱ0与ⅠaEⅡ0两种基因型的配子。因此,最终可以形成4种基因型的配子。其中,基因型为 ⅠAOⅠaEⅡ0的配子中既含有I甲又含有I丙,染色体数目最多,为22条。

6-基因组不稳定性

分子机制研究套路(六) 基因组不稳定性 课题:A肿瘤的微卫星不稳定与染色体不稳定研究 1.概念介绍: 微卫星(microsatellite,MS)是由1-6个核普酸组成,具有高度多态性的简单串联重复序列,广泛分布于整个基因组DNA序列中,复制过程中易于发生改变,人类基因组中最常见的微卫星序列是胞嘧啶和腺嘌呤的二聚体(CA),尽管微卫星序列在个体之间存在广泛的多态性,但在个体内部保持一定的稳定性,而且能在后代中保持遗传的稳定,因此微卫星序列是重要的遗传标志,可以作为遗传学研究的标志。微卫星不稳定性(MSI)是这些简单重复序列的改变,MSI只有在许多细胞都发生同样的改变才能被检测出,是肿瘤细胞克隆性增殖的一个指标。错配修复功能下降会引起DNA复制错误增加,导致MSI,目前研究表明MSI是错配修复基因失活的一个重要表型。MSI检测的方法较多,常用的检测方法有变性凝胶电泳、基因扫描、变性高效液相色谱分析等方法。基因扫描法将微卫星位点的PCR引物在一端进行荧光标记,然后扩增该微卫星位点,将PCR扩增产物在荧光毛细管中进行电泳,以基因扫描进行分析得出不同条带的碱基数,从而确定其大小,该方法的敏感性较高,可以高通量检测微卫星位点。 染色体是细胞遗传的物质基础,分子细胞遗传学研究表明大多数肿瘤细胞特别是实体瘤细胞在发生发展的过程中都存在染色体片段的非随机异常,表现为染色体数目或结构的改变,这些改变与原癌基因的扩增和抑癌基因的缺失密切相关。染色体不稳定(CIN)包括整条染色体的获得或缺失(非整倍体)、杂合性缺失、染色体易位、重排、基因扩增导致的染色体均染区、双微体等。 细胞核中DNA含量直接反映细胞核酸代谢水平和生长增殖活性,正常细胞核DNA的含量

遗传学名词解释

名词解释: 1、遗传与变异:生物通过繁殖的方式来繁衍种族,保持生命在世代间的连续,保持子代与亲代的相似与类同,这种现象叫遗传,遗传的本质就是遗传物质通过不断地复制和传递,保持亲代与子代间的相似与类同,与此同时,亲代与子代之间,子代个体之间总存在着不同程度的差异,包括环境差异与遗传物质差异,这种差异就是变异。 2、遗传变异:变异不一定都能遗传,只有由遗传物质改变导致的变异可以传递给后代,这种变异叫遗传变异。 3、遗传学: 经典定义:研究生物的遗传和变异现象及其规律的一门学科。 现代定义: (1)在生物的群体、个体、细胞和基因等层次上研究生命信息(基因)的结构、组成、功能、变异、传递(复制)和表达规律与调控机制的一门科学--基因学。 (2)研究基因和基因组的结构与功能的学科。 名词解释: 1、性状:在遗传学上,把生物表现出来的形态特征和生理特征统称为性状。 2、相对性状:同一性状的两种不同表现形式叫相对性状。 3、显性性状:孟德尔把F1表现出来的性状叫显性性状,F1不表现出来的性状叫隐性性状。 4、性状分离现象:孟德尔把F2中显现性状与隐性性状同时表现出来的现象叫做性状分离现象。 5、等位基因与非等位基因:等位基因是指位于同源染色体上,占有同一位点,但以不同的方式影响同一性状发育的两个基因。非等位基因指位于不同位点上,控制非相对性状的基因。 6、自交:F1代个体之间的相互交配叫自交。 7、回交:F1代与亲本之一的交配叫回交。 8、侧交:F1代与双隐性个体之间的交配叫侧交。 9、基因型和表型 基因型是生物体的遗传组成,是性状得以表现的内在物质基础,是肉眼看不到的,要通过杂交试验才能检定。如cc,CC,Cc。 表型是生物体所表现出来的性状,是基因型和内外环境相互作用的结果,是肉眼可以看到的。如花的颜色性状。 10、纯合体、杂合体 由两个同是显性或同是隐性的基因结合的个体,叫纯合体,如CC,cc。由一个显性基因与一个隐性基因结合而成的个体,叫杂合体,如Cc。 11、真实遗传 指纯合体的物种所产生的子代表型与亲本表型相同的现象。纯合体所产生的后代性状不发生分离,能真实遗传,杂合体自交产生的后代性状要发生分离,它不能真实遗传。 名词解释: 1、染色体与染色质:是指核内易于被碱性染料着色的无定形物质,是由DNA、组蛋白、非组蛋白及少量RNA组成的复合体,以纤丝状存在于核膜内面。当细胞分裂时,核内的染色质便螺旋化形成一定数目和形状的染色体。两者是同一物质在细胞分裂过程中表现的不同形态。核内遗传物质就集中在这染色体上。 2、常染色质与异染色质:着色较浅,呈松散状,分布在靠近核的中心部分,是遗传的活性部位。着色较深,呈致密状,分布在靠近核内膜处,是遗传的惰性部位。又分结构异染色质或组成型异染色质和兼性异染色质。前者存在于染色体的着丝点区及核仁组织区,后者在间期时仍处于浓缩状态, 3、核小体:是染色质的基本结构单位,直径10nm,其核心是由四种组蛋白(H2A、H2B、H3、H4各2分子共8分子)构成的扁球体。 4、同源染色体:指形态、结构和功能相似的一对染色体,他们一条来自父本,一条来自母本。 5、联会:分别来自父母本的同源染色体逐渐成对靠拢配对,这种同源染色体的配对称为联会。

复等位基因遗传试题及分析教学文案

复等位基因遗传试题 及分析

复等位基因遗传试题及分析 华兴高中:刘春荣 1、喷瓜有雄株、雌株和两性植株。G基因决定雄株,g基因决定两性植株,基因决定雌株。G对g、显性,g对是显性。如:Gg是雄株,g 是两性植株, 是雌株。下列分析正确的是 ( ) A.Gg和G 能杂交并产生雄株 B.一株两性植株的喷瓜最多可产生三种配子 C.两性植株自交不可能产生雌株 D.两性植株群体内随机传粉,产生的后代中,纯合子比例高于杂合子 解析本题涉及复等位基因及基因的显性等级的问题,考查了基因的分离定律及考生对问题的分析能力。从题意可知,Gg、G均为雄性,不能杂交,A项错误;两性植株为gg或g,最多可产生两种配子,B项错误;两性植株gg-可自交可产生雌株,C项错误;在D选项中,两性植株群体(有gg和g两种基因型)内随机传粉,群体中的交配类型有:gg×gg、gg×g、g×g,gg个体自交后代全部为纯合子,gg和g杂交的后代也有1/2的为纯合子,g个体自交后代有1/2的为纯合子,则两性植株群体内随机传粉后产生的子代中纯合子比例肯定会比杂合子高,所以D选项正确。 2 、某种植物的花色受一组复等位基因控制,纯合子和杂合子的表现型如表。若W P W S与W S w杂交,子代表现型的种类及比例分别是( ) A. 3种,2∶1∶1 B. 4种,1∶1∶1∶1 C. 2种,1∶1 D. 2种,3∶1 解析分析表格可知,这一组复等位基因的显隐性关系表现为W>W P>W S>w,则W P W S与W S w杂交,其子代的基因型及表现型分别为:W P W S(红斑白

花),W P w(红斑白花),WSWS(红条白花),W S w(红条白花),所以其子代表现型的种类及比例应为:2种1∶1。 3 、紫色企鹅的羽毛颜色是由复等位基因决定的:Pd深紫色、Pm中紫色、Pl 浅紫色、Pvl很浅紫色(近于白色)。其显隐性关系是:Pd>Pm>Pl>Pvl(前者对后者为完全显性)。若有浅紫色企鹅(PlPvl)与深紫色企鹅交配,则后代小企鹅的羽毛颜色和比例可能是( ) A.1中紫色∶1浅紫色 B.2深紫色∶1中紫色∶1浅紫色 C.1深紫色∶1中紫色 D.1深紫色∶1中紫色∶1浅紫色∶1很浅紫色 解析本题涉及有关复等位基因的相关问题。深紫色个体的基因型为PdPd 时,子代全为深紫色;深紫色个体的基因型为PdPm时,子代的性状分离比为1深紫色∶1中紫色;深紫色个体的基因型为PdPl时,子代的性状分离比为1深紫色∶1浅紫色;深紫色个体的基因型为PdPvl时,子代的性状分离比为2深紫色∶1浅紫色∶1很浅紫色。综上分析,选项A、B、D均不可能出现,只有选项C有可能。 4 、人类的ABO血型系统由3三个等位基因I A、I B、i决定,通过调查一个由400个个体组成的样本,发现180人是A型血,144人是O型血,从理论上推测,该人群中血型为B的人应该有( ) A.24人 B.36人 C.52人 D.76人 解析在本题中,A型血的人(基因型为I A I A或I A i)占的比例为 180÷400=0.45,O型血的人(基因型为ii)占的比例为144÷400=0.36,假设i的基

比较基因组学揭示哺乳动物基因组脆性区域产生与消亡的过程

生物医学工程与临床2011年1月第15卷第1期BME &Clin Med,January 2011,Vol.15,No.1 舒张功能的临床意义[J].中国超声医学杂志,2009,25(9):877-880.] [6]Silverberg DS,Oksenberg A.Are sleep-related breathing disor -ders important contributing factors to the production of essential hypertension[J]?Curr Hypertens Rep,2001,3(3):209-215.[7]London GM,Guerin AP.Influence of arterial pulse and reflected waves on blood pressure and cardiac function[J].Am Heart J,1999,138(3Pt 2):220-224. [8]WANG Shu-bin,LI Chun-lei,DENG You-bin,et al .Study on c -arotid intima-media thickness,stiffness and their correlations in diabetic patients[J].Chinese Journal of Ultrasound in Medicine,2005,21(2):123-125.[王淑彬,黎春雷,邓又斌,等.糖尿病患 者颈动脉内中膜复合体厚度僵硬度的变化及其相关性的研究[J].中国超声医学杂志,2005,21(2):123-125.] [9]Furumoto T,Fujii S,Saito N,et al .Relationships between brac -hial artery flow mediated dilation and carotid artery intimam - edia thickness in patients with suspected coronary artery disease[J].Jpn Heart J,2002,43(2):117-125. [10]Bots MI,Hose AW,Koudstaal PJ,et al .Common carotid intima-media thickness and risk of stroke and myocardial infarction:the Rotterdam Study[J].Stroke,1997,28(12):2442-2447.[11]LIU Yong-yi,SHEN Xiang,XU Ye,et al .Studies on ultrason -ography and Doppler velocity tracing of common carotid artery in obstructive sleep apnea hypopnea syndrome in a porcine mo -del [J].Medical Journal of Chinese People ’s Liberation Army,2007,32(6):578-580.[刘永义,沈翔,徐晔,等.阻塞性睡眠呼 吸暂停低通气综合征模型猪颈总动脉超声和多普勒流速曲线实验研究[J].解放军医学杂志,2007,32(6):578-580.] [12]Almendros I,Montserrat JM,Torres M,et al .Changes in oxygen partial pressure of brain tissue in an animal model of obstructive apnea[J].Respir Res,2010,11(3):1-6. 比较基因组学揭示哺乳动物基因组脆性区域产生与消亡的过程 据Alekseyev MA 2010年11月30日[Genome Biol ,2010,11(11):R117]报道,加州大学圣地亚哥分校的一项新生物信息学研究发现哺乳动物基因组的脆性区域经历了一个产生与消亡的过程。一直以来基因组脆性区域被认为在进化过程中发挥关键性的作用。新研究发现有助于研究人员在人类基因组中鉴别脆性区域,并可通过这一信息预测未来人类基因组的进化。 地球上每个物种的基因组结构都会随进化发生改变,人类也不例外。虽然还不知道人类基因组的下一个重大改变是什么,但研究人员采用的方法将有助于确定人类基因组可能发生变化的位点。 基因组脆性区域是基因组中的不稳定区域,脆性区域断裂可启动染色体重排、基因断裂、改变基因调控,在基因组进化和新物种的产生中发挥着关键性的作用。例如人类有23对染色体,而一些猿类却有24对染色体,这是因为猿类祖先在进化过程中基因组重排使得两条染色体发生融合而形成了人类的2号染色体。 逆转脆性断裂模型 2003年Pevzner 和加州大学圣地亚哥分校的数学系教授Tesler G 发现基因存在有一些“断裂区”,从而使其相对于基因组其他 区域更容易发生重排。他们的“脆性断裂模型”反驳了当时被广泛接受的“随机断裂模型”。尽管在过去的7年里,脆性断裂模型得到了许多研究的证实,然而研究人员仍无法获得人类基因组脆性区域的精确定位。 新研究发现为脆性断裂模型提供了最新的信息,研究人员将其命名为“逆转脆性断裂模型”。新研究结果证实在进化过程中脆性区域经历了一个产生和消亡的过程,并提供了一条确定人类基因组脆性区域定位的线索。 计算:找到脆性区域 在基因组中寻找脆性区域就好像要求你观察一副打乱的牌,然后尝试确定洗牌的次数。在观察基因组时,也许可以找到断裂点,然而要确定其是否是脆性区域,就必须确定在相同的基因组位置断裂次数超过了1次。研究人员通过分析现在存在的所有基因组来计算哪些区域发生了多次基因组震动。所谓重组的概念并不是仅适用于某一个时间点的某一个基因组,而是观察到多个基因组的相关性。在这次研究中研究人员采用了比较基因组学的方法。 值得注意的是虽然脆性区域有可能为各种不同的基因组共有,但大多数这样的共有脆性区域都存在于进化接近的基因组中。这表明任何特定基因组脆性区域有可能仅出现一段有限的时间。根据新提出的逆转脆性断裂模型学说,脆性区域都会经历一段产生和消亡的过程,因而有着有限的存在期。 逆转脆性断裂模型表明基因组重排更可能发生在近期发生过重排的位点,并且这些重排位点在千万年的时间里不断发生改变。因此研究人类的近亲———猩猩和其他灵长类动物的基因组重排将为寻找人类基因组脆性区域的当前位置提供最好的线索。 现在正热切等待获得来自基因组10k 计划灵长类基因组测序结果。在未来人类基因组重排最有可能发生在最近灵长类动物中发生断裂的位点。新的逆转脆性断裂模型将不仅有助于研究人员研究所有物种,并且可在个体水平上了解基因组重排。在未来,计算机科学家们希望利用相似的工具观察反复发生在个别癌症患者细胞内的染色体重排,并以此开发出新的癌症诊断技术和治疗药物。 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ·信息动态· 27--

遗传名词解释

第一章 遗传与变异: 遗传是指经由基因的传递,使后代获得亲代的特征。变异是指同种生物世代之间或同代生物不同个体之间在形态特征、生理特征等方面所表现的差异。变异分两大类,即可遗传变异与不可遗传变异。 第四章 真实遗传:指子代性状永远与亲代性状相同的遗传方式,或生物性状能够代代相传、稳定遗传。 表型模拟:环境改变所引起的表型改变,有时与由某基因突变引起的表型变化类似的现象。但这种表型性状不能遗传。 外显率::一定基因型的个体在特定的环境中形成预期表型的比例,一般用百分率表示。 并显或共显:一对等位基因的两个成员在杂合体中都表达。 复等位基因:指在群体中,占据同源染色体相同基因座位的两个以上的等位基因。 第五章 伴性遗传(性连锁):是指性染色体上的基因所控制的某些性状总是伴随性别而遗传的 现象。 剂量补偿效应:指在XY性别决定的生物中,使性连锁基因在两种性别中有相等或近乎相等的有效剂量的遗传效应。 染色体作图:又称基因连锁图(linkage map)或遗传图(genetic map)。依据基因之间的交换值(或重组值)确定连锁基因在染色体上的相对位置而绘制的一种简单线性示意图。 遗传干涉与并发系数:每发生一次单交换都会影响它邻近发生另一次单交换的现象称为干涉或染色体干涉(chromosome interference)。为了度量两次交换间相互影响的程度,提出了 并发系数(coefficient of coincidence,C)的概念。且C=观察到的双交换率 两个单交换率的乘积 第六章 C值悖理:从总体上说,生物基因组的大小同生物在进化上所处地位的高低没有严格的对应关系。这种现象称为C值悖理或C值佯谬。 假基因:在多基因家族中,某些成员并不产生有功能的基因产物,但在结构和DNA序列上与有功能的基因具有相似性,这种成员称为假基因。 基因转变:减数分裂过程中同源染色体联会时一个基因使相对位置上的基因发生相应的变化得现象称为基因转变(gene conversion)。 共转变:一对含有两位点差异的突变型杂交时,在某些子囊中可发生几个位点同时发生转变的现象。 同线分析:连锁分析原理用于体细胞杂种染色体分析的方法。原理:如果两个基因在一条染色体上, 它们总是共同分离的;如果两个基因位于不同的染色体上,它们之间或多或少会发生自由组合。 基因家族:在真核细胞中许多相关的基因常按功能成套组合,被称为基因家族(gene family)。同一家族中的成员有时紧密的排列在一起,成为一个基因簇。 第七章: 接合:原核生物的遗传物质从供体(donor)转移到受体(receptor)内的过程。 中断杂交实验(interrupted mating experiment):一种用来研究细菌接合过程中基因转移方式的实验方法。基本步骤为把接合中的细菌在不同时间取样,并把样品猛烈搅拌以中断接合中的细菌,然后分析受体细菌的基因型。 普遍性转导:噬菌体携带供体的染色体片段完全是随机的。 共转导(cotransduction) 或并发转导:两个基因同时转导的现象。两个基因共转导频率愈高,表明两个基因连锁愈紧密,相反,共转导频率愈低,则表明这两个基因距离愈远。 性导:(sexduction or F?-duction):带有F?因子的细菌在接合时,由F?因子所携带供体的外

普通遗传学期末考试复习题及参考答案-专升本

《普通遗传学》复习题 一、名词解释 1. 同源染色体 2. 不完全显性 3. 干扰(干涉) 4. 伴性遗传 5. 狭义遗传率 6. 复等位基因 7. 转座因子 8. 部分二倍体 9. 母性影响 10. 隔裂基因 11. 联会 12.等位基因 13.位置效应 14.数量性状15.回交 16.同源染色体 17.转化 18.雄性不育 19.基因频率 20. 双三体 二、填空题 1. 以豌豆为材料进而提出分离与组合定律的是,利用果蝇研究提出提 出基因论是,比德尔利用为研究对象提出一个基因一个酶的假说。 2.基因型AABbDdEeFfGG的个体可产生种配子,自交可产生种基因 型类型,其中纯合基因类型种。 3. 人白化症由常染色体隐性单基因(a)控制遗传,某白化症患者的正常双亲 基因型为和。 4. 家蚕和蝗虫的性染色体组成分别为型和型,而蝴蝶的性染 色体为型。 5.遗传学中重组率也称为__ _。两对基因独立遗传时,重组率为___ _, 当两对基因为完全连锁时,重组率为__ __。 6. A与B连锁,则AABB和aabb杂交称为,aaBB和AAbb杂交称 为。 7. 在染色体结构变异中,、和杂合体性母细胞在减 数分裂的前期I都可以形成凸隆起来的瘤状物或环状形象。 8. 马铃薯单倍体减数分裂时可形成12个二价体,因此马铃薯属于倍 体。 9. PCR反应的基本步骤是、、。 10.死细菌与活细菌混合在一起后基因实现了重组,这叫。两种细菌以 噬菌体为媒介实现了基因重组是。 11.减数分裂过程中,同源染色体在__ __期配对,在___ ___期分开,染色单体在___ ___期分离。 12.大麦现有纯合密穗染病(AAbb)材料和稀穗抗病(aaBB)材料,两基因自由组合。想用这两个材料杂交以选育稳定的密穗抗病品种,所需类型第___ 代就会出

相关文档
最新文档