成都树德中学数学几何图形初步单元测试卷附答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学几何模型部分解答题压轴题精选(难)

1.已知如图,∠COD=90°,直线AB与OC交于点B,与OD交于点A,射线OE与射线AF交于点G.

(1)若OE平分∠BOA,AF平分∠BAD,∠OBA=42°,则∠OGA=________;

(2)若∠GOA= ∠BOA,∠GAD= ∠BAD,∠OBA=42°,则∠OGA=________;

(3)将(2)中的“∠OBA=42°”改为“∠OBA= ”,其它条件不变,求∠OGA的度数.(用含的代数式表示)

(4)若OE将∠BOA分成1︰2两部分,AF平分∠BAD,∠ABO= (30°< α <90°),求∠OGA的度数.(用含的代数式表示)

【答案】(1)21°

(2)14°

(3)解:∵∠BOA=90°,∠OBA=α,

∴∠BAD=∠BOA+∠ABO=90°+α,

∵∠BOA=90°,∠GOA= ∠BOA,∠GAD= ∠BAD

∴∠GAD=30°+ α,∠EOA=30°,

∴∠OGA=∠GAD−∠EOA= α.

(4)解:当∠EOD:∠COE=1:2时,

∴∠EOD=30°,

∵∠BAD=∠ABO+∠BOA=α+90°,

∵AF平分∠BAD,

∴∠FAD= ∠BAD,

∵∠FAD=∠EOD+∠OGA,

∴2×30°+2∠OGA=α+90°,

∴∠OGA= α+15°;

当∠EOD:∠COE=2:1时,则∠EOD=60°,

同理得到∠OGA= α−15°,

即∠OGA的度数为α+15°或α−15°.

【解析】解:(1)∵∠BOA=90°,∠OBA=42°,

∴∠BAD=∠BOA+∠ABO=132°,

∵AF平分∠BAD,OE平分∠BOA,∠BOA=90°,

∴∠GAD= ∠BAD=66°,∠EOA= ∠BOA=45°,

∴∠OGA=∠GAD−∠EOA=66°−45°=21°;

故答案为21°;

⑵∵∠BOA=90°,∠OBA=42°,

∴∠BAD=∠BOA+∠ABO=132°,

∵∠BOA=90°,∠GOA= ∠BOA,∠GAD= ∠BAD,

∴∠GAD=44°,∠EOA=30°,

∴∠OGA=∠GAD−∠EOA=44°−30°=14°;

故答案为14°;

【分析】(1)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出即可;

(2)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出即可;

(3)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出

即可;

(4)讨论:当∠EOD:∠COE=1:2时,利用∠BAD=∠ABO+∠BOA=α+90°,∠FAD=∠EOD+∠OGA得到2×30°+2∠OGA=α+90°,

则∠OGA= α+15°;当∠EOD:∠COE=2:1时,则∠EOD=60°,同理得∠OGA= α-15°. 2.如图(1),将两块直角三角尺的直角顶点C叠放在一起,

(1)若∠DCE=25°,∠ACB=?;若∠ACB=150°,则∠DCE=?;

(2)猜想∠ACB与∠DCE的大小有何特殊关系,并说明理由;

(3)如图(2),若是两个同样的直角三角尺60°锐角的顶点A重合在一起,则∠DAB与∠CAE的大小又有何关系,请说明理由.

【答案】(1)【解答】∵∠ECB=90°,∠DCE=25°

∴∠DCB=90°﹣25°=65°

∵∠ACD=90°

∴∠ACB=∠ACD+∠DCB=155°.

∵∠ACB=150°,∠ACD=90°

∴∠DCB=150°﹣90°=60°

∵∠ECB=90°

∴∠DCE=90°﹣60°=30°.

故答案为:155°,30°

(2)【解答】猜想得:∠ACB+∠DCE=180°(或∠ACB与∠DCE互补)

理由:∵∠ECB=90°,∠ACD=90°

∴∠ACB=∠ACD+∠DCB=90°+∠DCB

∠DCE=∠ECB﹣∠DCB=90°﹣∠DCB

∴∠ACB+∠DCE=180°

(3)【解答】∠DAB+∠CAE=120°

理由如下:

∵∠DAB=∠DAE+∠CAE+∠CAB

故∠DAB+∠CAE=∠DAE+∠CAE+∠CAB+∠CAE=∠DAC+∠BAE=120°.

【解析】【分析】(1)本题已知两块直角三角尺实际就是已知三角板的各个角的度数,根据角的和差就可以求出∠ACB,∠DCE的度数;(2)根据前个小问题的结论猜想∠ACB与∠DCE的大小关系,结合前问的解决思路得出证明.(3)根据(1)(2)解决思路确定∠DAB与∠CAE的大小并证明.

3.如图1,△ABC中,∠ABC=∠BAC,D是BC延长线上一动点,连接AD,AE平分∠CAD 交CD于点E,过点E作EH⊥AB,垂足为点H.直线EH与直线AC相交于点F.设∠AEH=,∠ADC= .

(1)求证:∠EFC=∠FEC;

(2)①若∠B=30°,∠CAD=50°,则=________,=________;

②试探究与的关系,并说明理由;

(3)若将“D是BC延长线上一动点”改为“D是CB延长线上一动点”,其它条件不变,请在图2中补全图形,并直接写出与的关系.

【答案】(1)证明:∵∠ABC=∠BAC,EH⊥AB.

∴∠EFC=∠AFH=90°-∠BAC,∠FEC=90°-∠ABC,

∴∠EFC=∠FEC.

(2)35°;70°;解:② , 理由如下: 由(1)可知:

, 又∵ , ∴ . ∴ .

(3)解:图形如下:

相关文档
最新文档