九年级概率教学设计
人教版数学九年级上册25.2.2《用列举法求概率》教学设计
人教版数学九年级上册25.2.2《用列举法求概率》教学设计一. 教材分析人教版数学九年级上册25.2.2《用列举法求概率》是概率论的一个基本内容,主要让学生了解列举法求概率的基本步骤和应用。
通过本节课的学习,学生能够理解列举法求概率的原理,掌握列举法求概率的基本方法,并能够应用列举法解决一些简单的实际问题。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对概率论的基本概念有一定的了解。
但是,对于列举法求概率的具体操作步骤和方法,学生可能还不够熟悉。
因此,在教学过程中,需要引导学生逐步理解列举法求概率的原理,并通过大量的练习来巩固所学知识。
三. 教学目标1.知识与技能:让学生掌握列举法求概率的基本步骤和方法,能够应用列举法解决一些简单的实际问题。
2.过程与方法:通过学生的自主探究和合作交流,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学学习的兴趣,培养学生的团队合作意识和积极进取的精神。
四. 教学重难点1.重点:列举法求概率的基本步骤和方法。
2.难点:如何引导学生理解列举法求概率的原理,并能够灵活运用。
五. 教学方法1.引导法:通过教师的问题引导,让学生自主探究和发现列举法求概率的原理和方法。
2.互动法:教师与学生之间的提问和回答,学生与学生之间的讨论和交流,以提高学生的参与度和积极性。
3.练习法:通过大量的练习题,让学生巩固所学知识,并能够灵活运用。
六. 教学准备1.教学课件:制作精美的教学课件,以吸引学生的注意力,并帮助学生更好地理解和记忆。
2.练习题:准备一些有关列举法求概率的练习题,以便在课堂上进行巩固和拓展。
七. 教学过程1.导入(5分钟)通过一个简单的实例,让学生思考如何求解该事件的概率,从而引出列举法求概率的方法。
2.呈现(10分钟)教师通过课件呈现列举法求概率的原理和方法,并进行讲解和演示。
3.操练(10分钟)学生分组进行练习,每组选择一道题目,应用列举法求解概率,并互相交流解题过程和方法。
九年级数学上册(人教版)25.1.2概率教学设计
九年级的学生已经具备了一定的数学基础,掌握了基本的运算方法和逻辑思维能力。在此基础上,他们对概率的认识ห้องสมุดไป่ตู้要来源于日常生活经验,但尚未形成系统的概率知识体系。因此,在本章节的教学中,教师需要关注以下几个方面:
1.学生对随机事件的理解:学生在日常生活中已经接触过许多随机事件,但对其概念的理解可能不够深入。教师应引导学生从具体实例中抽象出随机事件的本质特征。
-纠正:针对学生的错误,教师及时进行纠正,帮助学生掌握正确的概率计算方法。
3.教师挑选部分优秀解答,进行展示和表扬,激发学生的学习积极性。
(五)总结归纳,500字
1.教师引导学生回顾本节课所学内容,总结概率的定义、表示方法和计算技巧。
-提醒:概率是描述随机事件发生可能性大小的量,计算概率时要认真分析事件的特点。
(2)某班级有30名学生,其中有18名女生,12名男生。如果随机选取一名学生参加比赛,求选到女生的概率。
3.实践活动
(1)组织一次小组活动,利用硬币、骰子等工具进行实验,记录实验结果,计算实际概率,并与理论概率进行比较。
(2)调查家人或朋友在一周内使用手机的时间分布情况,计算每个人每天使用手机的概率。
1.教师介绍概率的定义,解释概率是描述随机事件发生可能性大小的一种量。
-举例说明:抛硬币正面朝上的概率是0.5,表示正面朝上和反面朝上的可能性相等。
2.讲解概率的表示方法,如分数、小数和百分比,并进行具体演示。
-练习:让学生将一些具体事件的概率用不同形式表示出来,加深理解。
3.介绍概率的计算方法,通过实例引导学生学会计算简单事件的概率。
(二)过程与方法
在教学过程中,教师引导学生通过以下方法来掌握概率知识:
1.实践操作:通过实验和观察,让学生亲身体验随机事件,从而引出概率的概念。
初三概率优秀教学设计
初三概率优秀教学设计引言:概率是数学中的重要内容之一,也是应用最广泛的一门数学分支。
初中阶段是学生对概率最早接触和学习的时期,因此,教学设计对于初三概率知识的有效传授和学生的学习兴趣培养至关重要。
本文将针对初三概率教学设计,提供一种优秀的教学设计方案。
一、教学目标1. 了解概率的基本概念和特性;2. 掌握概率的计算方法;3. 能够分析和解决实际问题;4. 培养学生的逻辑思维能力和合作精神。
二、教学内容1. 概率的定义与初步认识;2. 事件和样本空间的概念;3. 概率的计算方法;4. 概率的应用。
三、教学活动设计1. 活动一:认识概率活动目标:通过游戏和实际案例,让学生初步认识概率的概念和特性。
活动步骤:- 小组分工合作,每个小组选择一个游戏,根据已知情况计算出胜率和失败率;- 分享游戏中的概率计算方法及其依据;- 通过实际案例讨论概率的特性,例如扔硬币、掷色子等。
2. 活动二:概率的计算方法活动目标:让学生掌握基本的概率计算方法,包括排列组合、频率和古典概率等。
活动步骤:- 教师通过示范演示,让学生掌握排列组合的方法;- 设计一些实际问题,并引导学生使用频率法和古典概率法计算;- 学生之间互相交流和分享解题思路。
3. 活动三:概率的应用活动目标:通过具体问题的应用,让学生理解概率在生活中的实际意义。
活动步骤:- 教师提供一些实际问题,如投资、购彩、选举等,引导学生运用概率知识进行分析和解决;- 学生进行小组或个人研究,以图表或报告的形式展示结果;- 学生之间进行互评和讨论,分享各自的解决方案。
四、教学评价方法1. 课堂表现评价:根据学生在课堂上的回答和参与情况进行评价;2. 作业评价:通过布置概率相关的练习题或问题,检查学生对概率知识的掌握程度;3. 项目评价:对学生在活动三中的展示和解决方案进行评价。
五、教学反思通过教学设计,学生在参与活动的过程中不仅能够了解和掌握概率的基本概念和计算方法,更能够将概率知识应用于实际问题中,并培养学生的逻辑思维能力和合作精神。
九年级数学上册《概率》教案、教学设计
1.教师布置具有代表性的练习题,涵盖概率的基本概念、计算方法等方面,让学生独立完成。
2.教师巡回指导,解答学生疑问,关注学生的解题过程,发现问题并及时纠正。
3.学生完成练习后,教师选取部分题目进行讲解,强调易错点和解题技巧。
4.鼓励学生互相讨论、交流解题心得,提高他们的合作能力和解决问题的能力。
3.将理论知识与实际生活中的问题相结合,进行合理的风险评估和决策。
教学设想:
1.创设情境,激发兴趣:通过现实生活中具有趣味性的随机事件,如彩票中奖、游戏概率等,引发学生对概率学习的兴趣,激发他们的学习热情。
2.分层次教学,循序渐进:针对学生的个体差异,设计不同难度的问题和练习,使学生在掌握基础知识的基础上,逐步提高解决问题的能力。
4.掌握利用概率知识进行决策和风险评估的基本方法,培养学生的数据分析能力。
(二)过程与方法
1.通过小组合作、讨论交流等形式,培养学生合作学习的能力,激发学生的学习兴趣。
2.引导学生运用观察、分析、归纳等方法,从实际问题中发现规律,培养学生的逻辑思维能力。
3.通过解决实际问题的过程,让学生体会数学建模的思想,提高学生解决实际问题的能力。
1.请学生完成课后练习题,包括基础题和拓展题,基础题主要针对概率的基本概念和计算方法进行巩固,拓展题则侧重于将概率知识应用于解决实际问题。
2.针对课堂中所学的概率性质和计算方法,请学生选取一个生活中的实例,运用所学知识进行分析,计算相关事件的概率,并撰写一篇简短的案例分析报告。
3.教师提供一些具有挑战性的问题,鼓励学生以小组合作的形式进行研究性学习,共同探讨解决方案。例如,探讨掷两个骰子时,两个骰子点数之和的概率分布情况。
a.课堂提问时,关注学生的思维过程,鼓励他们表达自己的观点。
人教版数学九年级上册25.1.2《概率》教学设计
人教版数学九年级上册25.1.2《概率》教学设计一. 教材分析人教版数学九年级上册第25.1.2节《概率》是学生在学习了统计学基础知识之后,进一步了解和掌握概率学的基本概念和简单计算方法。
本节内容主要包括概率的定义、条件概率以及独立事件的概率计算。
通过本节课的学习,学生能够理解概率的概念,掌握利用树状图和列表法求解概率的方法,为后续深入学习概率论打下基础。
二. 学情分析学生在学习本节内容之前,已经掌握了统计学的一些基本知识,如平均数、中位数、众数等。
在思维方式上,学生已经具备了一定的逻辑分析能力和抽象概括能力。
但概率概念较为抽象,学生理解起来可能存在一定的困难。
因此,在教学过程中,教师需要运用生动具体的实例,帮助学生直观地理解概率的概念,引导学生运用已有的知识解决新问题。
三. 教学目标1.知识与技能:使学生理解概率的概念,掌握利用树状图和列表法求解概率的方法。
2.过程与方法:通过实例分析,培养学生运用概率知识解决实际问题的能力。
3.情感态度与价值观:激发学生学习概率的兴趣,培养学生的合作交流意识。
四. 教学重难点1.重点:概率的定义,条件概率,独立事件的概率计算。
2.难点:概率公式的灵活运用,解决实际问题。
五. 教学方法1.情境教学法:通过生活实例,引导学生理解概率的概念。
2.合作学习法:分组讨论,培养学生团队合作精神。
3.问题驱动法:设置问题,激发学生思考,引导学生主动探究。
六. 教学准备1.教学素材:准备与概率相关的实例,如抽奖、投篮等。
2.教学工具:多媒体课件,黑板,粉笔。
3.学生活动:提前分组,准备进行合作学习。
七. 教学过程1.导入(5分钟)教师通过一个简单的抽奖实例,引导学生思考:如何计算抽中一等奖的概率?从而引出本节课的主题——概率。
2.呈现(10分钟)教师讲解概率的定义,通过PPT展示概率的符号表示方法,如P(A)、P(B)等。
同时,介绍条件概率和独立事件的概率计算方法,并用具体的例子进行说明。
初中数学初三数学上册《概率的简单应用》教案、教学设计
2.学生在解决问题时的思维方式:学生在解决概率问题时,可能更倾向于使用直观的思维方式,而不够注重逻辑推理和严谨证明。教师需要引导他们运用列表法、树状图等方法,培养他们的逻辑思维能力。
3.学生的实际应用能力:学生对概率在实际生活中的应用可能认识不足,教师应通过举例、实际操作等方式,提高他们运用概率知识解决实际问题的能力。
例题:某彩票游戏中,从1至35中随机抽取5个数字,中奖的条件是5个数字完全一致。求中奖的概率。
3.思考与讨论:提出一些富有挑战性的问题,鼓励学生思考、讨论,培养他们的逻辑思维和批判性思维。
例题:在一次足球比赛中,甲队胜、乙队胜和平局的概率分别是0.4、0.3和0.3。假设比赛结果是独立的,求以下问题的概率:
(1)甲队连续两场比赛都胜的概率是多少?
(2)甲队至少胜一场的概率是多少?
4.总结反思:要求学生撰写学习心得,总结自己在学习概率过程中的收获和困惑,以及对概率知识在实际生活中应用的认识。
作业布置要求:
1.作业难度适中,既要保证学生对基础知识的巩固,又要激发他们的思考。
2.鼓励学生在作业过程中相互讨论,培养合作精神,但要求每个学生独立完成作业。
(二)教学设想
1.教学方法:
-采用情境教学法,通过生活实例导入,激发学生兴趣,让学生感受概率在生活中的广泛应用。
-运用问题驱动法,引导学生主动探究,发现问题,解决问题。
-采用小组合作学习法,培养学生团队协作能力,提高课堂参与度。
2.教学过程:
-导入:以一个有趣的概率实验或实例引发学生思考,导入新课。
4.通过小组合作,培养学生的团队精神和集体荣誉感,使他们学会尊重他人,善于倾听。
2024年浙教版数学九年级上册2.2《简单事件的概率》教学设计
2024年浙教版数学九年级上册2.2《简单事件的概率》教学设计一. 教材分析《简单事件的概率》是浙教版数学九年级上册第二章第二节的内容。
本节内容是在学生已经学习了概率的定义和一些基本概念的基础上进行的。
通过本节内容的学习,学生能够理解并掌握简单事件的概率的计算方法,提高解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于概率的基本概念已经有了一定的了解。
但是,对于如何计算简单事件的概率,学生可能还存在着一定的困难。
因此,在教学过程中,教师需要通过具体的例子,引导学生理解和掌握计算方法。
三. 教学目标1.知识与技能:使学生理解并掌握简单事件的概率的计算方法。
2.过程与方法:通过具体的例子,引导学生运用概率的知识解决问题。
3.情感态度价值观:培养学生对数学的兴趣,提高学生解决问题的能力。
四. 教学重难点1.重点:简单事件的概率的计算方法。
2.难点:如何引导学生理解和掌握简单事件的概率的计算方法。
五. 教学方法采用问题驱动法,通过具体的例子,引导学生理解和掌握简单事件的概率的计算方法。
同时,运用小组合作学习法,让学生在合作中思考,在思考中学习。
六. 教学准备1.教师准备:准备好相关的例子,制作好课件。
2.学生准备:预习相关的内容,准备好笔记本。
七. 教学过程1.导入(5分钟)教师通过一个简单的问题引导学生进入本节内容的学习,例如:“抛一枚硬币,正面朝上的概率是多少?”2.呈现(15分钟)教师通过课件呈现本节的内容,引导学生理解和掌握简单事件的概率的计算方法。
3.操练(15分钟)教师给出具体的例子,让学生运用概率的知识解决问题,例如:“抛两枚硬币,两枚都是正面朝上的概率是多少?”4.巩固(10分钟)教师通过一些练习题,让学生巩固所学的内容,例如:“抛三枚硬币,至少有两枚正面朝上的概率是多少?”5.拓展(10分钟)教师引导学生思考一些拓展问题,例如:“在抛硬币的过程中,出现正面的概率是否会随着抛硬币的次数的增加而改变?”6.小结(5分钟)教师对本节的内容进行小结,帮助学生梳理思路。
九年级数学人教版上册25.2用列举法求概率第1课时用列表法求概率教学设计
2.在列出列表后,如何统计各种结果的数量,以及如何根据数量计算概率。
3.列表法适用于哪些类型的概率问题,以及在实际应用中需要注意的问题。
(三)学生小组讨论
在讲授新知之后,我会组织学生们进行小组讨论。我会给出几个不同难度的实际问题,让学生们分组讨论如何使用列表法求概率。在这个过程中,我会鼓励学生们积极发言,分享自己的观点和解决问题的方法。
8.教学反思:教师在本节课结束后,进行教学反思,不断提高教学水平。
-分析教学过程中的优点和不足,调整教学方法,以满足学生的学习需求。
四、教学内容与过程
(一)导入新课
在本节课开始时,我将通过一个生动的例子来导入新课。我会问学生们:“同学们,你们在生活中遇到过抽奖的活动吗?当你们参加这样的活动时,是否想过自己中奖的概率是多少?”通过这个问题,让学生们思考概率在生活中的应用。然后,我会拿出一个提前准备好的抽奖箱,里面装有一些彩球,每个球上写有不同的数字。
1.学生对列表法概念的理解:部分学生可能对列表法的概念理解不够深入,需要通过具体实例和讲解,帮助他们理解和掌握列表法的内涵。
2.学生在解决问题时的思维定势:学生在解决概率问题时,容易受到思维定势的影响,局限于某一种解法。教师应引导学生尝试不同的方法,培养其灵活运用列表法的能力。
3.学生的合作交流能力:在小组讨论中,部分学生可能表现出不积极参与、沟通不畅等问题。教师应关注学生的合作交流能力,引导他们积极参与讨论,提高团队协作能力。
(二)过程与方法
1.引导学生通过观察、分析、总结,发现列表法求概率的方法。
2.通过小组合作,培养学生的团队协作能力和沟通能力。
3.设计具有挑战性的问题,激发学生的探究欲望,培养其解决问题的能力。
人教版九年级数学上册25.1.2《概率》教学设计
人教版九年级数学上册25.1.2《概率》教学设计一. 教材分析人教版九年级数学上册25.1.2《概率》是概率统计部分的一个重要内容。
本节内容通过具体的实例,让学生理解概率的概念,掌握概率的计算方法,并能够运用概率解决实际问题。
教材中安排了丰富的例题和练习题,有助于学生巩固所学知识。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于一些基本的数学概念和运算方法有一定的了解。
但是,对于概率这一抽象的概念,学生可能存在一定的理解难度。
因此,在教学过程中,需要注重引导学生从具体实例中理解概率的概念,逐步过渡到概率的计算方法。
三. 教学目标1.理解概率的概念,掌握概率的计算方法。
2.能够运用概率解决实际问题。
3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.概率的概念和计算方法。
2.如何运用概率解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生从具体实例中理解概率的概念。
2.利用多媒体教学,通过动画和图片等形式,让学生更直观地理解概率的概念。
3.采用分组讨论和合作交流的方式,让学生在讨论中思考,在交流中学习。
4.注重练习,让学生在实践中掌握概率的计算方法。
六. 教学准备1.准备相关的教学课件和教学素材。
2.准备练习题和实际问题。
七. 教学过程1.导入(5分钟)通过一个简单的实例,如抛硬币实验,引导学生思考:抛硬币出现正面的概率是多少?让学生感受概率的存在,激发学生的学习兴趣。
2.呈现(10分钟)介绍概率的概念,讲解概率的计算方法。
以具体的例子为例,让学生理解概率的计算过程。
3.操练(10分钟)让学生分组讨论,每组选择一个实例,计算其概率。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生运用所学的概率计算方法,解决实际问题。
可以安排一些练习题,让学生独立完成,教师批改并给予反馈。
5.拓展(10分钟)引导学生思考:如何提高事件的概率?以抛硬币实验为例,让学生探讨如何使抛硬币出现正面的概率增大。
人教版九年级数学上册25.1.2《概率》教案
人教版九年级数学上册25.1.2《概率》教案一. 教材分析人教版九年级数学上册第25.1.2节《概率》是概率统计部分的重要内容。
本节主要介绍了概率的定义、计算方法以及如何运用概率解决实际问题。
通过本节的学习,学生能够理解概率的概念,掌握基本的概率计算方法,并能够运用概率知识解决生活中的问题。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于一些基本的数学概念和运算方法有一定的了解。
但是,对于概率这一抽象的概念,学生可能难以理解和接受。
因此,在教学过程中,需要注重引导学生从实际问题中理解概率的概念,并通过大量的实例让学生掌握概率的计算方法。
三. 教学目标1.知识与技能:让学生理解概率的概念,掌握基本的概率计算方法,能够运用概率知识解决实际问题。
2.过程与方法:通过实例分析,让学生体验概率的计算过程,培养学生的逻辑思维能力。
3.情感态度与价值观:让学生感受数学与生活的紧密联系,培养学生的数学应用意识。
四. 教学重难点1.重点:概率的定义,概率的计算方法。
2.难点:如何从实际问题中抽象出概率模型,运用概率解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入概率的概念,让学生感受数学与生活的联系。
2.启发式教学法:在教学过程中,引导学生主动思考,通过讨论、交流等方式,让学生理解概率的计算方法。
3.巩固练习法:通过大量的练习,让学生掌握概率的计算方法,并能够运用到实际问题中。
六. 教学准备1.教学课件:制作相关的教学课件,以便于直观地展示概率的计算过程。
2.练习题:准备一些与本节课内容相关的练习题,以便于学生在课堂上进行操练。
七. 教学过程1.导入(5分钟)通过一个简单的实例引入概率的概念,如抛硬币、抽签等,让学生思考:这些事件的结果是随机的,那么我们如何来描述这种随机性呢?2.呈现(10分钟)讲解概率的定义,让学生理解概率的意义。
如:抛一枚硬币,正面朝上的概率是1/2。
同时,介绍如何用数学符号表示概率,如P(A)、P(B)等。
九年级数学下册《概率》教案、教学设计
3.实际应用题:结合生活实际,设计1-2道与概率相关的实际应用题,要求学生运用所学知识解决问题。
-目的:培养学生学以致用的意识,激发学生的学习兴趣,提高学生的实际应用能力。
4.小组合作任务:以小组为单位,完成一份关于概率知识在实际生活中应用的小报告,字数不限。
3.培养学生运用概率知识进行问题分析和解决的能力,特别是在实际生活中的应用。
-重难点:将理论知识与实际情境相结合,进行问题分析和解决。
(二)教学设想
1.采用情境教学法,创设与学生生活密切相关的情境,让学生在情境中发现问题、解决问题。
-设想:通过设计彩票、游戏等实际情境,引导学生运用概率知识进行分析,提高学生的实际应用能力。
九年级数学下册《概率》教案、教学设计
一、教学目标
(一)知识与技能
1.理解概率的定义,掌握概率的计算方法,能够运用概率解决实际问题。
-通过实例引导学生理解概率的含义,如抛硬币、掷骰子等,使学生了解概率是描述事件发生可能性大小的一种数值。
-介绍概率的两种计算方法:理论概率和统计概率,并举例说明,让学生掌握如何运用这两种方法计算概率。
五、作业布置
为了巩固本节课所学的概率知识,培养学生的应用能力和创新意识,特布置以下作业:
1.基础练习题:完成课本第十章第1节后的练习题,包括填空题、选择题和解答题,共10题。
-目的:巩固概率的基本概念、性质和计算方法,提高学生的基本技能。
2.拓展提高题:选取2-3道具有挑战性的题目,要求学生在理解题意的基础上,运用概率知识进行解答。
4.利用信息技术辅助教学,提高教学效果。
-设想:运用多媒体、网络资源等手段,展示概率实验过程,让学生更直观地理解概率;利用在线平台进行课后辅导和交流,巩固所学知识。
初中数学概率问题教案
初中数学概率问题教案一、教学目标1. 知识与技能目标:学生能够理解随机事件的定义,掌握概率的基本计算方法,能够运用概率知识解决实际问题。
2. 过程与方法目标:通过观察、实验、分析等方法,培养学生对概率问题的探究能力,提高学生的逻辑思维能力。
3. 情感态度与价值观目标:培养学生对数学的兴趣,使学生感受到数学在生活中的应用,培养学生的合作意识。
二、教学重难点1. 重点:随机事件的定义,概率的基本计算方法。
2. 难点:如何运用概率知识解决实际问题。
三、教学过程1. 导入:教师通过抛硬币、掷骰子等实验,引导学生观察和思考随机事件的发生,从而引出概率的概念。
2. 新课导入:教师介绍随机事件的定义,并通过实例解释随机事件的概念。
同时,教师讲解概率的基本计算方法,如计算一个事件的概率、计算两个事件的联合概率等。
3. 案例分析:教师给出几个实际问题,如抛硬币实验中出现正面的概率、掷骰子实验中出现点的概率等,引导学生运用概率知识解决问题。
4. 课堂练习:教师布置几道有关概率的练习题,让学生独立完成,巩固所学知识。
5. 总结:教师引导学生总结本节课所学内容,巩固随机事件和概率的基本概念及计算方法。
6. 拓展延伸:教师给出一些有关概率的拓展问题,如如何计算多个事件的概率、如何求事件的补事件等,引导学生进行思考和探究。
四、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 练习完成情况:检查学生完成练习题的情况,评估学生对概率知识的掌握程度。
3. 拓展延伸:评估学生在拓展延伸环节的表现,了解学生的探究能力和逻辑思维能力。
五、教学反思教师在课后对自己的教学进行反思,分析教学过程中的优点和不足,针对不足之处进行改进,以提高教学效果。
六、教学资源1. 教学课件:教师制作课件,展示随机事件和概率的基本概念及计算方法。
2. 练习题:教师准备一些有关概率的练习题,帮助学生巩固所学知识。
3. 拓展问题:教师提供一些有关概率的拓展问题,激发学生的思考和探究。
人教版九年级上册25.2用列举法求概率(第1课时)教学设计
3.教师引导:根据学生的回答,引导学生认识到解决此类问题需要用到概率知识,进而引出本节课的主题——用列举法求概率。
(二)讲授新知
1.列举法概念:介绍列举法的定义,即通过列出所有可能的结果,计算每种结果出现的概率。
2.步骤与方法:讲解列举法求解概率问题的步骤:
2.培养勇于探索、积极思考的学习态度,提高解决问题的自信心;
3.学会与他人合作,尊重他人意见,培养良好的团队协作精神;
4.感受概率知识在实际生活中的应用,增强将所学知识应用于实际问题的意识。
本节课的教学设计以列举法求解概率问题为主线,结合生活实例,让学生在探索中学习,在学习中应用。通过小组合作、问题解决等教学活动,培养学生的数学素养、合作意识和解决问题的能力。同时,注重情感态度与价值观的培养,使学生在学习过程中感受到数学的魅力和价值。
(3)在一个装有10个白球、5个黑球的袋子中,先后两次随机抽取一个球,求第二次抽到黑球的概率。
3.拓展题:
(1)小华有3件上衣、2条裤子,他随机选择一件上衣和一条裤子穿上,求他穿上的衣服颜色搭配是“红配蓝”的概率;
(2)一个密码锁由4位数字组成,每位数字可以是0到9中的任意一个,求设置的密码是“回文数”(即1234、4321这类数字)的概率;
1.重点:掌握列举法求解概率问题的步骤和方法,并能应用于实际问题。
2.难点:
(1)理解并运用列举法求解复杂概率问题,如组合问题、排列问题等;
(2)将实际问题转化为数学模型,运用列举法求解;
(3)在合作学习中,提高沟通协作能力,充分发挥团队作用。
(二)教学设想
1.教学方法:
(1)采用情境导入法,以生活实例引入本节课的内容,激发学生兴趣;
九年级数学上册《用频率估计概率》教案、教学设计
1.教师介绍频率与概率的概念,强调频率是实验中观察到的结果,而概率是理论上计算出的结果。
2.讲解频率与概率的关系,通过实际例子让学生理解频率可以用来估计概率。
3.介绍频率分布表和频率分布直方图的制作方法,示范如何利用它们分析数据。
4.讲解如何运用概率知识解决实际问题,如根据频率分布表和频率分布直方图进行决策等。
4.培养学生正确的价值观,使学生明白概率知识在实际生活中的重要意义,激发学生为国家和民族的发展贡献自己的力量。
二、学情分析
九年级的学生已经具备了一定的数学基础,对概率的概念有了初步的了解。在此基础上,他们对本章节的学习将面临以下挑战:
1.对频率和概率的关系理解不够深入,需要通过具体实例和实验,引导学生深入理解两者之间的联系;
4.学生活动与练习:
a.学生分小组进行实验,收集数据,制作频率分布表和频率分布直方图;
b.各小组展示实验成果,进行交流讨论,提高数据处理和分析能力;
c.学生尝试运用概率知识解决实际问题,教师给予指导和反馈。
5.教学难点突破:
a.通过具体实例,让学生感受频率与概率的关系,提高理解程度;
b.对频率分布表和频率分布直方图的制作方法进行详细讲解,确保学生掌握;
c.针对不同学生的实际情况,给予个性化指导,帮助他们克服学习难点。
6.课堂小结:对本节课的知识点进行总结,强调频率与概率的关系,以及频率分布表和频率分布直方图在数据分析中的应用。
7.课后作业:布置与课堂内容相关的作业,巩固所学知识,提高学生的实际操作能力。
8.教学评价:采用过程性评价和终结性评价相结合的方式,关注学生在实验、讨论、解决问题等方面的表现,全面评估学生的学习效果。
4.学生在讨论中互相学习,共同提高。
人教版数学九年级上册《日常生活中的概率问题》教学设计1
人教版数学九年级上册《日常生活中的概率问题》教学设计1一. 教材分析《日常生活中的概率问题》是人教版数学九年级上册的一章内容,主要介绍了概率的基本概念和简单的概率计算方法。
这一章内容既是对前面学习的代数、几何等知识的巩固,也为高中阶段的概率论学习打下基础。
本章内容贴近生活,具有很强的实践性,能够激发学生的学习兴趣,培养学生的数学应用能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对代数、几何等知识有一定的了解。
但是,对于概率这一概念,很多学生可能还是比较陌生,需要通过实例来理解和掌握。
此外,学生的学习兴趣和动机也是影响教学效果的重要因素,因此,在教学过程中,需要注意激发学生的学习兴趣,提高学生的参与度。
三. 教学目标1.知识与技能:让学生理解概率的基本概念,学会使用概率计算方法解决实际问题。
2.过程与方法:通过实例分析,让学生掌握概率的计算方法,提高学生的数学应用能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作能力和创新精神。
四. 教学重难点1.重点:概率的基本概念,概率计算方法。
2.难点:如何将实际问题转化为概率问题,如何运用概率计算方法解决实际问题。
五. 教学方法1.实例教学法:通过生活中的实例,让学生理解和掌握概率的基本概念和计算方法。
2.小组合作学习法:引导学生进行小组讨论和合作,提高学生的团队协作能力。
3.问题驱动法:提出问题,引导学生思考和探索,激发学生的学习兴趣。
六. 教学准备1.教学PPT:制作相关的教学PPT,内容包括概率的基本概念、概率计算方法以及实例分析等。
2.实例材料:收集生活中的实例,用于教学过程中的分析和讨论。
3.学习任务单:制定学习任务单,引导学生进行自主学习和小组讨论。
七. 教学过程1.导入(5分钟)利用生活中的实例,如抛硬币、抽奖等,引出概率的概念,激发学生的学习兴趣。
2.呈现(15分钟)通过PPT呈现概率的基本概念和计算方法,让学生对概率有一个初步的了解。
人教版九年级数学上25.1.2《概率》名师教案
人教版九年级数学上25.1.2《概率》名师教案25.1.2 概率(彭小永)一、教学目标(一)学习目标1. 了解概率的意义,渗透随机观念2. 理解概率的一些性质3. 能计算一些简单事件的概率(二)学习重点计算一些简单实际问题的概率(三)学习难点概率的意义及判断试验条件的意识.二、教学设计(一)课前设计1.预习任务(1)一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件发生的概率,记为 P(A) .(2)一般地,如果一次试验有n个可能的结果,并且它们发生的可能性相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)= ( ) .(3)若用P(A)表示事件A发生的概率,则P(A)的范围是 .特别地,当A为必然事件时,P(A)= 1 .当A为不可能事件时,P(A)= 0 .(4)事件发生的概率越大,它的概率就越接近 1 ;反之,事件发生的概率越小,它的概率就越接近 0 .2.预习自测(1)抛掷一枚质地均匀的硬币,正确的说法是()A.正面一定朝上 B.正面朝上比反面朝上的概率大C.反面一定朝上 D.正面朝上与反面朝上的概率都是0.5【知识点】随机事件的概率【数学思想】分类讨论思想【解题过程】【答案】3 4(二)课堂设计1.知识回顾(1)必然事件、不可能事件和随机事件的定义是什么?(2)确定事件包含哪些?(3)你能分别举一个必然事件、不可能事件和随机事件的例子吗?请试一试.2.问题探究探究一概率的定义●活动①问题重现,温故知新问题1 五名同学参加演讲比赛,以抽签方式决定每个人的出场顺序,为了抽签,我们在盒中放5个看上去完全一样的纸团,每个纸团里面分别写着表示出场顺序的数字1、2、3、4、5.把纸团充分搅拌后,小军先抽,他任意(随机)从盒中抽取一个纸团.(1)抽到的数字是1;(2)抽到的数字小于6 ;(3)抽到的数字是0.师问:以上三个事件分别是什么事件?你能用具体数值来刻画其发生的可能性大小吗?分别是多少呢?小军抽到1到5中每一个数字的可能性是不是一样的?学生举手抢答.【设计意图】让学生回忆必然事件、不可能事件和随机事件的定义,感受其可能性,为“概率”这一定义的引出铺路.●活动②整合旧知,探究概率的定义问题2 小伟掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.师问:掷一次骰子,在骰子向上的一面上,可能出现哪些点数?骰子上每一个数字出现的可能性是不是同样多的?分别是多少?由学生举手抢答.归纳总结出概率的定义,如下:一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).【设计意图】在学生完成了问题1的基础上,利用问题2进一步让学生明白:每个数字出现的可能性大小相等,即每个数字出现的机会是等可能性的. 与分别是问题1和问题2中各个数字出现的可能性大小,从而得出概率的定义.探究二实例解析,理解概率的定义和性质●活动①运用定义,初试身手示例掷一枚质地均匀的骰子,观察向上一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2小于5.【知识点】随机事件的概率【数学思想】分类讨论思想【解题过程】解:(1)∵向上一面出现的点数共有六种情况,点数2只是其中的一种,∴出现点数2的概率:P(点数为2)=1 6(2)∵向上一面出现的点数共有六种情况,其中奇数有3个,∴点数为奇数的概率:P(点数为奇数)=36=12(3)∵向上一面出现的点数共有六种情况,大于2小于5的数字有2个,∴点数大于2小于5的概率:P(大于2小于5)=26=13【思路点拨】充分运用定义,求出相关事件的概率.【答案】(1)16(2)12(3)13【设计意图】用多个实例,总结出概率的一些性质●活动②归纳小结,得出概率性质师问:由问题1和问题2,以及示例,你能得到概率的哪些性质?由学生举手抢答. 归纳总结出概率的如下性质:概率的计算方法:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的 m种结果,那么事件A发生的概率为P(A).性质1:如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的 m种结果. 因为,所以,.性质2:事件发生的可能性越大,它的概率越接近1;事件发生的可能性越小,它的概率越接近0.性质3:P(必然事件)=1,P(不可能事件)=0.探究三利用概率的定义与性质,解决实际问题●活动①概率的基本运算师问:概率的公式是什么?它有哪些性质?例1 一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球,3个白球,从布袋中随机摸出一个球,摸出红球的概率是()A. B. C. D.【知识点】概率【数学思想】模型思想【解题过程】解:∵5 个球中,红色的有2个∴P(摸出红球)【思路点拨】红球个数占总球数的比例即为摸到红球的概率.【答案】C练习:某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为()A. B. C. D.【知识点】概率【数学思想】模型思想【解题过程】解:∵1 分钟共60秒,黄灯占5秒∴P(看到黄灯)【思路点拨】用黄灯的时间5秒,除以三种信号灯一轮变换的总时间60秒,即得抬头看到黄灯的概率.【答案】A【设计意图】进一步强化概率的计算方法.●活动②利用概率公式求概率与球的个数例2 在一个不透明的袋子中装有仅有颜色不同的10个球,其中红球4个,黑球6个. (1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出一个球,将“摸出黑球”记为事件A,请完成下列表格:事件A 必然事件随机事件m的值(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个球是黑球的概率为,求m的值.【知识点】概率公式的灵活运用【数学思想】分类讨论思想,方程思想【解题过程】解:(1)若第一次将4个红球取完,则第二次摸出黑球为必然事件;若第一次取2个或3个红球,则第二次取出的球不一定是黑球,即第二次取出黑球为随机事件. 所以第一个空填数字“4”,第二个空填“2或3”.(2)由题意知,袋子内球的总数仍为10个,黑球的数量为(m+6)个,由概率的定义可得:,解得m=2.【思路点拨】准确把握必然事件与随机事件的定义是解决第(1)问的关键;第(2)问运用概率公式逆向求m的值,只要合理运用概率公式便可迎刃而解.【答案】(1)第一个空填数字“4”,第二个空填“2或3”. (2)m=2.练习:甲乙两人进行射击训练,两人分别射击12次,如图分别统计了两人的射击成绩,已知2=,平均成绩=8.5环.甲射击成绩的方差S甲(1)根据图上信息,估计乙射击成绩不少于9环的概率是多少?(2)求乙射击的平均成绩及成绩的方差,并据此比较甲乙的射击“水平”.(方差的公式是:)【知识点】统计与概率【数学思想】数形结合思想【解题过程】解:(1)∵乙的射击总次数为12次,不少于9环的有7次,∴估计乙射击成绩不少于9环的概率为.(2)由题意得:(环),∴,∴甲的射击成绩更稳定.【思路点拨】读懂统计图中的数据,用好平均数、方差和概率的公式,便可顺利解决此题. 当平均成绩一样的时候,方差越小越稳定.【答案】(1)乙射击成绩不少于9环的概率红色为;(2)甲的射击成绩更稳定. 【设计意图】用综合性试题提高学生的解题能力. ●活动③ 与图形相关的概率计算例3 如图是一个可以自由转动的转盘,转盘分为7个大小相同的扇形,颜色分别为红、绿、黄三种颜色. 指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),求下列事件的概率: (1)指针指向红色; (2)指针指向红色或黄色; (3)指针不指向红色. 【知识点】概率【数学思想】数形结合思想 【解题过程】解:按颜色把7个扇形分别记为:红1、红2、红3、绿1、绿2、黄1、黄2,所有可能结果的总数为7,并且它们出现的可能性相等.(1)指针指向红色(记为事件A )的结果有3种,即红1、红2、红3, 因此,P (A )=(2)指针指向红色或黄色(记为事件B )的结果有5种,即红1、红2、红3、 黄1、黄2,所以, P (B )=(3)指针不指向红色(记为事件C )的结果有4种,即绿1、绿2、黄1、黄2,因此,P (C )=【思路点拨】由于指针停到每块扇形的机会相同,所以只需要数出符合条件的色块数量,用它除以总的色块数,即得相应事件的概率.【答案】(1)P (红色)=;(2)P (红色或黄色)=;(3)P (不是红色)=红红红绿绿黄黄练习:下图为计算机“扫雷”游戏的画面. 在一个99个方格的雷区中,随机埋藏着10颗地雷,每个方格内最多只能埋藏一颗地雷.小王在游戏开始时随机点击一个方格,点击后出现下图所示的情况.我们把与标号3的方格相邻的方格记为A区域(画线部分),A区域外的部分记为B区域. 数字3表示在A区域有3颗地雷.请问,下一步应该点击A区域还是B区域更安全?【知识点】概率【数学思想】数形结合思想【解题过程】解:∵A区域有8个方格,这八个方格中有3颗地雷B区域有72个方格,这72个方格中有7个地雷∴点击A区域遇到地雷的概率为,点击B区域遇到地雷的概率为,而,也就是说,点击B区域更安全.【思路点拨】分别计算两个事件的概率,再比较概率的大小即可.【答案】由于点击B区域遇到地雷的概率更小,所以选择点击B区域更好.【设计意图】进一步强化与图形相关的试题中求概率的方法.3. 课堂总结知识梳理(1)概率的定义:对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).(2)概率的计算方法:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的 m种结果,那么事件A发生的概率为P(A). (3)概率的性质:性质1:如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的 m种结果. 因为,所以,.性质2:事件发生的可能性越大,它的概率越接近1;事件发生的可能性越小,它的概率越接近0.性质3:P(必然事件)=1,P(不可能事件)=0.重难点归纳(1)概率的定义:对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).(2)概率的计算方法:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的 m种结果,那么事件A发生的概率为P(A).(3)P(必然事件)=1,P(不可能事件)=0.(三)课后作业基础型自主突破1.必然事件的概率是()A. B. C. D.【知识点】必然事件的概率【数学思想】模型思想【解题过程】必然事件指的是在一定条件下必然要发生的事件,所以它的概率为1.【思路点拨】正确理解必然事件的定义,牢记特殊事件的概率【答案】D2.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为0.5C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次【知识点】概率【数学思想】分类讨论思想【解题过程】解:A 不可能事件发生的概率为0,正确;B 随机事件发生的概率不一定为0.5,如掷骰子时,各个数字朝上的概率为C 概率很小的事件指的是发生的可能性很小,但不是不发生,如买彩票中特等奖就是一个小概率事件,但仍可能发生;D 由于实验的次数较少,实验得到的结果不一定刚好与理论概率吻合,所以不一定是50次. 【思路点拨】由于受各种条件的限制,实验得到的结果往往与理论值有一定的偏差,对于具体问题要具体分析.【答案】A3.四张质地、大小相同的卡片上分别画上如图所示的图形.在看不到图形的情况下,从中任意抽取一张,则抽取的卡片是轴对称图形的概率为()A. B. C. D.【知识点】概率,轴对称图形【数学思想】分类讨论,数形结合【解题过程】解:在这四个图形中,只有等腰梯形和圆是轴对称图形,所以抽到轴对称图形的概率为【思路点拨】认清轴对称图形,数出它的个数,此题便可迎刃而解.【答案】A4.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标为1、2、3、4、5,从中随机摸出一个小球,其标号大于2的概率为()A. B. C. D.【知识点】概率【解题过程】在这5个数中,大于2的数字有3、4、5共三个数字,所以它的概率为. 【思路点拨】找出符合条件的数,将它与总数相除即可.【答案】C5.将“定理”的英语单词“theorem”中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌上,任取一张,那么取到字母e的概率为 .【知识点】概率【解题过程】7个字母中有2个“e”,所以取到字母“e”的概率为【思路点拨】牢记概率的计算公式便可轻松得解.【答案】6. 桶里原有质地均匀,形状大小完全一样的6个红球和4个白球,小明不慎弄丢了其中的2个红球,现从桶里随机摸出一个球,摸到白球的概率是 .【知识点】概率【数学思想】模型思想【解题过程】由于桶里的球有4红4白,所以摸到白的概率为.【思路点拨】用概率的计算公式即可【答案】能力型师生共研7. 如图,已知点A、B、C、D、E、F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为()A .B .C .D .【知识点】概率【思想方法】数形结合C【解题过程】将六个点两两相连,可得15条线段,其中只有AC、BD、CE、DF、EA、FB这6条的长度为,所以概率为 .【思路点拨】找出符合条件的线段数量,并数出总的线段条数,再将前者与总条数相除即可. 【答案】B8. 在盒子中放有三张分别写有、、2的卡片,从中随机抽出两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是()A .B .C .D .【知识点】概率的计算,分式的定义【数学思想】分类讨论思想【解题过程】当或作分母时,四组数据都符合分式的定义;当分母为2时,这两组数据不符合分式的定义. 所以能组成分式的概率为.【思路点拨】分式指的是分母中含有未知数的式子. 找出所有组合中符合分式定义的式子个数,相除即可.【答案】B探究型多维突破9. 在一个不透明的围棋盒子中有颗黑棋和颗白棋,从盒子中随机取出一颗棋子,它是黑棋的概率为.(1)写出与之间的函数关系式;(2)现在往盒子中再放进10颗黑棋,这时随机取出黑色棋子的概率为,请求出和的值. 【知识点】概率【数学思想】方程思想【解题过程】解:(1)由题意得:,解得(2)由题意得:,将代入,解得,所以,.【思路点拨】用方程的思想解决问题是一种很常用的方法.【答案】(1);(2),.10.口袋中有5张完全相同的卡片,分别写有1 cm、2 cm、3 cm、4 cm、5cm,口袋外有2张卡片,分别写有 4 cm和5 cm.现随机从袋内取出一张卡片,与口袋外的两张卡片放在一起,以卡片上的数量分别作为三条线段的长度,回答下列问题:(1)求这三条线段能组成三角形的概率;(2)求这三条线段能组成直角三角形的概率;(3)求这三条线段能组成等腰三角形的概率.【知识点】概率,三角形三边的关系,直角三角形和等腰三角形的性质【数学思想】分类讨论思想【解题过程】解:(1)由于口袋外的两个长度分别为4 cm和5 cm,要组成三角形,则第三边的长度应满足,所以,当摸出的长度为2 cm、3 cm、4 cm、5cm时,都符合题意,其概率为;(2)由于口袋外的两个长度分别为4 cm和5 cm,袋内的5条线段中,只有3cm能与它们组成直角三角形,所以,组成直角三角形的概率为;(3)由于口袋外的两个长度分别为4 cm和5 cm,袋内的5条线段中,只有4cm与5cm能分别与它们组成等腰三角形,所以,组成等腰三角形的概率为;【思路点拨】三角形的两边之和大于第三边,两边之差小于第三边;直角三角形满足勾股定理;等腰三角形要注意验证两腰之和大于底边.【答案】(1);(2);(3) .自助餐1.掷一枚质地均匀的硬币10次,下列说法正确的是()A.可能有5次正面朝上 B.必有5次正面朝上C.掷2次必有1次正面朝上 D.不可能10次正面朝上【知识点】概率【解题过程】由于正、反两面出现的概率相同,所以答案A是正确的. 理论概率指的是一种可能性,它不一定刚好等于实验频率,其他几个答案的描述不对.【思路点拨】准确理解概率的含义,在实验中,理论概率不一定刚好等于实验频率.【答案】A2.从长度分别为3、5、7、9的四条线段中任取三条作边,能够组成三角形的概率为()A. B. C. D.【知识点】概率的计算,三角形三边的关系【数学思想】分类讨论思想【解题过程】从3、5、7、9中任取三条作边,共有4种情况,分别是①3、5、7;②3、5、9;③3、7、9;④5、7、9. 其中只有第二组不能构成三角形. 所以构成三角形的概率为. 【思路点拨】三角形的任意两边之和大于第三边,任意两边之差小于第三边.【答案】D3.在一个不透明的口袋中有颜色不同的红、白两种小球,其中红球3个,白球 n个,若从袋中任取一球,摸出白球的概率为,则n= .【知识点】概率【数学思想】方程思想【解题过程】解:由概率的计算公式知:,解得n=9.【思路点拨】用方程的思想列式求解;或者推算出摸到红球的概率为,逆向思考,算出球的总数,减去红球的个数即得白球的个数.【答案】n=9.4.从-3、-2、-1、0、1、2这六个数中,任意抽取一个数,作为正比例函数和二次函数中m的值,恰好使得正比例函数的图象经过第二、四象限,且二次函数的图象开口向上的概率为 .【知识点】概率,正比例函数和二次函数的性质【数学思想】分类讨论思想【解题过程】解:∵正比例函数∴,只有-3不合题意∵二次函数∴,解得,只有0、1、2符合题意综上所述,在已知的六个数中,只有 0、1、2这三个数符合题意,所以,概率为.【思路点拨】当k<0时,正比例函数的图象必过二、四象限. 当时,二次函数的图象开口向上.【答案】.5.袋中有红、绿、黄三种除颜色外其余都相同的球,其中有红球4个,绿球5个,从中摸出一球是绿球的概率是.(1)袋里黄球的个数;(2)任意摸出一球为红球的概率.【知识点】概率【数学思想】模型思想,方程思想【解题过程】解:(1)设有m个黄球,则,解得m=6,所以有6个黄球;(2)P(红球)【思路点拨】牢牢抓住概率的定义即可,.【答案】(1)有6个黄球;(2)P(红球)6.在一个不透明的围棋盒子中有颗白棋,颗黑棋,它们除颜色外都一致,从盒子中随机取出一颗棋子,它是黑棋的概率为.(1)写出与之间的函数关系式;(2)现在往盒子中再放进5颗白棋和1颗黑棋,这时随机取出白色棋子的概率为,请求出和的值.【知识点】概率【数学思想】方程思想【解题过程】解:(1)由题意得:,解得(2)由题意得:,解得,所以.【思路点拨】用方程的思想解决问题是一种很常用的方法.【答案】(1);(2),.。
九年级数学上册《用列举法求概率》教案、教学设计
b.针对学生的反馈,及时调整教学策略,提高教学效果。
7.关注学生心理健康,营造良好课堂氛围:
a.教师应以鼓励、表扬为主,关注学生的心理需求,增强他们的自信心。
b.营造轻松、愉快的课堂氛围,让学生在愉悦的情感中学习。
四、教学内容与过程
(一)导入新课,500字
一、导入新课
1.引导学生回顾已学的概率知识,为新课的学习做好铺垫。
2.提问:“我们之前学过如何求一个事件的概率吗?今天我们要学习一种新的求概率的方法,你们猜猜是什么?”
二、自主学习
1.让学生阅读教材,了解列举法求概率的基本概念和步骤。
2.学生尝试解决教材中的例题,体验列举法求概率的过程。
三、合作探究
b.选取典型例题进行讲解,引导学生运用所学知识解决问题。
c.设计课堂练习,让学生独立完成,巩固所学知识。
5.课堂总结与拓展:
a.让学生总结本节课所学的知识点,加深理解。
b.提问引导学生思考列举法在实际生活中的应用,激发他们的学习兴趣。
c.布置课后作业,巩固所学知识,培养学生的自主学习能力。
6.教学评价与反馈:
a.让学生自主阅读教材,了解列举法求概率的基本概念和步骤。
b.将学生分组,进行合作探究,讨论列举法在实际问题中的应用,培养学生的团队协作和沟通能力。
3.分层教学,因材施教:
针对不同学生的认知水平,设计不同难度的练习题,使每位学生都能在课堂上获得成就感。
4.精讲精练,强化巩固:
a.教师针对学生的讨论成果,详细讲解列举法求概率的步骤和方法。
2.难点:
a.学生在列举过程中可能出现遗漏或重复现象,需要引导他们细心、严谨地完成列举。
九年级数学《概率》教学设计
九年级数学《概率》(第1课时)教学设计教学目标1、知识与技能目标了解必然事件、不可能事件、随机事件的特点。
2、过程与方法目标经历体验、操作、观察、归纳、总结的过程,发展学生从纷繁复杂的表象中提炼出本质特征并加以抽象概括的能力,并会判断必然事件、不可能事件、随机事件。
3、情感与态度目标学生通过亲身体验,亲自演示,感受数学就在身边,促进学生乐于亲近数学,喜欢数学;教学重难点重点:随机事件的特点。
难点:判断现实生活中哪些事件是随机事件。
教法、学法和辅助手段教法分析情境引人,游戏探索,游戏体验,拓展新知。
学法分析参与活动,发现新知;探究合作,体验新知;抢答活动,巩固新知;听故事,拓展新知。
教学辅助手段红、白球若干,不透明盒子两个,骰子若干。
教学过程:一、创设情境,导入新课:师:同学们,你们买过彩票吗?中过奖吗?(学生有的说买过,绝大部分的同学说没有买过,没有中过奖)师:你们想买彩票吗?想中奖吗?生:想。
师:我们来模拟买彩票中大奖,请你们在纸上写出一个你认为幸运的三位数,老师立即开奖。
学生写好后,展示开奖结果。
师:有中奖的吗?请举手,我为中奖的同学准备了奖品。
(为个别中了奖的同学发奖品,安慰没有中奖的同学)师:买一注彩票一定能中奖还是可能中奖?生:可能中奖。
师:我们这个游戏中一定要中奖,你能算出至少要买多少注彩票吗?(少数同学在算,很多同学不知道怎样算)师:让我们一起走进九年级数学(上)《概率初步》的学习,《概率初步》会告诉我们怎样计算。
我们今天就学习第一节《随机事件》。
请打开教材。
(多媒体展示课题)二、探索新知1、(分组活动)问题1:5名同学参加讲演比赛,以抽签方式决定每个人的出场顺序,签筒中有5根形状、大小相同的笔签,上面分别标有出场的序号1、2、3、4、5。
小军首先抽签,他在看不到笔签上的数字的情况下从签筒中随机(任意)地取一根纸签,请考虑以下问题:(1)小军首先抽到的号共有几种可能?(2)抽到的序号小于6吗?(3)抽到的序号会是0吗?(4)抽到的序号会是1吗?学生回答书中的问题,并判断以下三事件是什么事件(师点评):(1)抽到的序号小于6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年概率的教学设计
教学目标
(一)教学知识点
通过实验.理解当实验次数较大时实验频率稳定于理论概率,并据此估计某一事件发生的概率.
(二)能力训练要求
经历实验、统计等活动过程,在活动中进一步发展学生合作交流的意识和能力.
(三)情感与价值观要求
1.积极参与数学活动.通过实验提高学生学习数学的兴趣.
2.发展学生的辩证思维能力.
教学重点1.通过实验.理解当实验次数较大时。
实验频率稳定于理论概率.并据此估计某一事件发生的概率.
教学难点
辩证地理解当实验次数较大时,实验频率稳定于理沦概率.
教学方法
实验——交流合作法.
教具准备
每组准备两组相同的牌,每组牌都有两张;
多媒体演示:
教学过程
Ⅰ.创设问题情境,引入新课
[师]我们在七年级时,曾用掷硬币的方法决定林极和永发谁借排球,任意掷一枚均匀的硬币.如果正面朝上,林极去;如果反面朝上,永发去.这样决定对双方公平吗?
[生]公平!因为我们做过这样的试验,历史上的数学家也做过掷硬币的实验,经过实验发现当次数很大时,任意掷一枚硬币.会出现两种可能的结果:正面朝上、反面朝上.
这两种结果出现的可能性相同.都是
[师]很好!我们再来看一个问题:任意掷一枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).“6”朝上的概率是多少?
[生]任意掷一枚均匀的小立方体,所有可能出现的结果有6种:“1”朝上,“2”朝上。
“3”朝上,“4”朝上,“5”朝上,“6”朝上,每种结果出现的概率都相等,其中“6”朝上的结果只有一种,因此P(“6”朝上)= .
[师]上面两个游戏涉及的是一步实验.如果是连续掷两次均匀的硬币。
会出现几种等可能的结果.出现“一正一反”的概率为多少呢?如果将上面均匀的小立方体也连续掷两次,会出现几种等可能的结果,两次总数都是偶数的概率为多少呢?从这一节开始我们将进一步学习概率的有关知识.
我们用实验的方法估计出了任意掷一枚硬币“正面朝上”和“反面朝上”的概率.同样
的我们也可以通过实验活动.估计较复杂事件的概率.
Ⅱ.分组实验,进一步理解当实验次数较大时,实验频率稳定于理论概率.
1.活动一:
活动课题
通过摸牌活动,探索出“实验次数很大时,实验的频率渐趋稳定”这一规律.
活动方式
分组实验,全班合作交流.
活动步骤
准备两组相同的牌,
每组两张。
两张牌的牌
面数字分别是1和2.
从每组牌中各摸出一张,
称为一次实验.
(1)估计一次实验中。
两张牌的牌面数字和可能有哪些值?
(2)以同桌为单位,每人做30次实验,根据实验结果填写下面的表格:
牌面数字和 2 3 4
频数
频率
(3)根据上表,制作相应的频数分布直方图.
(4)根据频数分布直方图.估计哪种情况的频率最大?
(5)计算两张牌的牌面数字和等于3的频率是多少?
(6)六个同学组成一组,分别汇总其中两人、三人、四人、五人、六人的实验数据,相应得到实验60次、90次、120次、150次、180次时两张牌的牌面数字之和等于3的频率,填
写下表.并绘制相应的折线统计图.
实验次数 60 90 120 150 180
两张牌面数字和等于3的频数
两张牌面数字和等于3的频率
(在具体实验活动的展开过程中.要力图体现各个步骤的渐次递进.(1)在一次实验中,两张牌的牌面数字和可能为2,3,4:(2)学生根据自己的实验结果如实填写实验数据;(3)制作相应的频数分布直方图,一方面为了复习巩固八年级下册有关频数、频率的知识,同时也便于学生更为直观地获得(4)的结论;(4)一般而言,学生通过实验以及上面(2)(3)的图表容易猜想两张牌的牌面数字和为3的频率最大.理论上.两张牌的牌面数字和为2,3,4的概率依次为,应该说,经过30次实验,学生基本能够猜想两张牌的牌面数字和为3的频率最大.当然,这里一定要保证实验的次数,如果实验次数太少,结论可能会有较大出入;(5)有了(4)中的结沦.自然过渡到研究其频率的大小.当然,两张牌的牌面数字和等于3的频率因各组实验结果而异.正是有了学生结论的差异性,才顺理成章地展开问题(6),汇总组内每人的实验数据;(6)目的在于通过逐步汇总学生的实验数据,得到实验60次、90次、120次、150次、180次时的频率.并绘制相应的折线统计图,从而动态地研究频率随着实验次数的变化而变化的情况)
2.议一议
[师]在上面的实验中,你发现了什么?如果继续增加实验次数呢?与其他小组交流所绘制的图表和发现的结论.
[生]在与各组交流图表的过程中,我发现:在各组的折线统计图中,随着实验次数的增加,频率的“波动”较小了.
[生]随着实验次数的增加,实验结果的差异较小。
实验的数据即两张牌的牌面数字和等于3的频率比较稳定.
[生]一个人的实验数据相差可能较大,而多人汇总后的实验数据即两张牌的牌面数字和等于3的频率相差较小.
[师]也就是说,同学们从实验中都能体会到实验次数较大时,实验频率比较稳定.请问同学们估计一下,当实验次数很大时,两张牌的牌面数字和等于3的频率大约是多少?
[生]大约是.
[师]很好!准能将实验次数更进一步增加呢?越大越好.
[生]可以把全班各组数据集中起来,这样实验次数就会大大增加.
[师]太棒了!“众人拾柴火焰高”,我们集小全班的实验数据,交流合作,可以使实验次数达到一千多次.下面我们汇总全班的实验次数及两张牌的牌面数字和为3的频数,求出两张牌的牌面数字和等于3的频率.
(可让各组一一汇报,然后清同学们自己算出)
[生]约为.
[师]与你们的估计相近吗? [生]相近.
3.做—做
[师]你能用我们学过的知识计算出两张牌的牌面数字和为3的概率吗?
[生]每组牌中,每张牌被摸到的可能性是相同的,因此.一次实验中.两张牌的牌面数字的和等可能的情况有:
1+1=2;1+2=3;
2+1=3;2+2=4.
共有四种情况.而和为3的情况有2种,因此,P(两张牌的牌面数字和等于3)= = . [生]也可以用树状图来表示,即
两张牌的牌面数字的和有四种等可能的情况,而两张牌的牌面数字和为3的情况有2次,因此.两张牌的牌面数字的和为3的概率为=.
4.想一想
[师]我们在前面估算出了当实验次数很大时,两张牌的牌面数字和等于3的频率约为.接着又用树状图计算出了两张牌的牌面数字和等于3的概率也为.比较两者之间的关系,你可以发现什么呢?同学们可相互交流意见.
[生]可以发现“实验频率稳定于理论概率”这一结论.
[生]也就是说,当实验次数很大时,两张牌的牌面数字和等于3的频率稳定在相应的概率附近.
[师]很好!由于实验次数很大时,两张牌的牌面数字和等于3的频率稳定在相应的概率附近,因此我们可以通过多次实验,用一个事件发生的频率来估计这一事件发生的概率.“当实验次数很大时,两张牌的牌面数字和等于3的频率稳定在相心的概率附近”是否意味着。
实验次数越大。
就越为靠近?应该说.作为一个整体趋势,上述结论是正确的,但也可能会出现这样的情形:增加了几次实验,实验数据与理论概率的差距反而扩大了.同学们可从绘制的折线统计图中发现.
Ⅲ.随堂练习
活动二:
活动课题
利用学生原有的实验数据统计两张牌的牌面数字和为2的频率,进—步体会当实验次数很大时,频率的稳定性及其与概率之间的关系.
活动方式
小组活动,全班讨论交流.
活动步骤
(1)六个同学组成一个小组,根据原来的实验分别汇总其中两人、二人、四人、五人、六人的数据,相应得到实验60次、90次、120次、150次、180次时两张牌的牌面数字和等于2的频率.
(2)根据上面的数据绘制相应的统计图
表,如折线统计图.
(3)根据统计图表估计两张牌的牌面数字和等于2的概率.
(活动完成后,讨论、总结)
[生]由我们组绘制的折线统计图可以发现随着实验次数的增加,实验的频率在处波动.而且波动越来越小.
[生]由此可估计两张牌的牌面数字和等于2的概率为.
[师]你能用树状图计算出它的理论概率吗?
[生]可以,如下图:
因此,P(两张牌的牌面数字和为2)= .
Ⅳ.课时小结
本节课通过实验、统计等活动,进一步理解“当实验次数很大时,实验频率稳定于理论概率”这一重要的概率思想.
Ⅴ.课后作业
习题6.1
Ⅵ.活动与探究下列说法正确的是……………() A. 某事件发生的概率为,这就是说:在两次重复实验中,必有一次发生
B.一个袋子里有100个球,小明摸了8次,每次都只摸到黑球,没摸到白球,结论:袋子里只有黑色的球
C.两枚一元的硬币同时抛下,可能出现的情形有:①两枚均为正;②两枚均为反;③一正一反,所以出现一正一反的概率是
D.全年级有400名同学,一定会有2人同一天过生日
[过程]“当实验次数很大时,实验频率稳定于理论概率”并不意味着,实验次数越大,就越为靠近,应该说,作为一个整体趋势,上述结论是正确的,更不能某某事件的概率为,在两次重复试验中.就一定有一次发生、因此A不正确,B也不正确
而对于C,两枚硬币同时抛下,等可能的情况由树状图可知有四种:
因此,出现一正一反的概率为即,对于D,根据抽屉原理可知是正确的.。