向量的坐标表示及其运算
8.1向量的坐标表示及其运算
a
位置向量.
j
O i1
1)平面内每一点都有对应的位置向量。
Ab
x
2)平面内任一向量都有唯一的与它相等的位置向量。
思考:与一个位置向量相等的向量有 ______ 个。
பைடு நூலகம்
-2
调用几何画板
4
怎样用i, j表示位置向量OP?
3
P(3,2)
N2
2j
1
j
Oi
2
M
4
3i
6
-1
OP OM ON 3i 2 j
例2:设ABC三个顶点坐标分别为A( x1, y1 ), B( x2 , y2 ), C( x3 , y3 ),G是ABC的重心,求G的坐标。
重心坐标公式
x
y
x1 y1
x2 3 y2 3
x3 y3
例3 : 线段AB的端点为A( x, 5), B(2, y), 直线AB上的点C(1,1),使 AC 2 BC , 求x, y的值.
存在唯一实数 ,使 b a ,则
(x2 , y2 ) (x1, y1) ( x1, y1)
因此 x1 y2 x2 y1 x1( y1) ( x1) y1 0
平面向量平行条件的坐标表示
定理:已知任意向量 a (x1, y1),b (x2, y2),
a//b 的充要条件是 x1 y2 x2 y1 0
②求点A关于点B的对称点H的坐标
③若点C分有向线段 AB 的比 =2,求点C的坐标 ④求点D(0.5,y)分有向线段 AB 的比 及y值。
⑤若 AE 5 AB ,求点E的坐标 22
3, 若P是分 P1 P2定比为2的分点, 则P是分P2P1定比为 ___的分点, 则P1是分PP2定比为 ___的分点, 则P2是分PP1定比为 ___的分点。
向量的线性运算与坐标表示
向量的线性运算与坐标表示向量是线性代数中一个基本的概念,它在各个学科领域都有广泛的应用。
本文将重点讨论向量的线性运算以及如何用坐标表示向量。
一、向量的定义与表示在二维和三维空间中,向量通常用箭头表示,箭头的起点表示向量的起点,箭头的方向和长度表示向量的方向和大小。
如图所示:[插入示意图:箭头向量的表示]向量有两种表示方法:行向量和列向量。
行向量按照元素排列在一行中,用方括号括起来;列向量按照元素排列在一列中,用方括号括起来。
例如,行向量[a, b, c]和列向量[a; b; c]表示同一个向量。
二、向量的线性运算向量的线性运算主要包括加法和数乘。
1. 向量的加法向量的加法遵循“平行四边形法则”,即将两个向量的起点放在一起,然后将它们的箭头连接起来,箭头的指向为新向量的方向,连接起点和终点,得到新向量的结果。
如图所示:[插入示意图:向量加法示意图]向量加法的坐标表示为,设向量a的坐标为[a1, a2, a3],向量b的坐标为[b1, b2, b3],则向量a和向量b的和的坐标为[a1+b1, a2+b2,a3+b3]。
2. 向量的数乘向量的数乘是将向量的每个元素与一个实数相乘,得到一个新的向量。
数乘后的向量与原向量的方向相同(当数乘的实数为正数时)或相反(当数乘的实数为负数时),而长度与原向量的长度之比为数乘的实数绝对值。
向量的数乘的坐标表示为,设向量a的坐标为[a1, a2, a3],实数k,则向量a的数乘结果的坐标为[k*a1, k*a2, k*a3]。
三、向量的坐标表示向量可以用坐标进行表示,坐标是指向量在坐标系中的位置。
在二维平面中,通常以x轴和y轴为基础建立直角坐标系;而在三维空间中,通常以x轴、y轴和z轴为基础建立直角坐标系。
在直角坐标系中,向量的坐标表示为(a1, a2, a3),其中a1、a2、a3分别表示向量在x轴、y轴和z轴上的投影长度。
例如,向量a在直角坐标系中的坐标表示为(a1, a2, a3)。
向量的坐标表示与运算公式
向量的坐标表示与运算公式向量的坐标表示:1. 在二维平面中,一个向量可以用有序实数对 (x, y) 表示,其中 x 和 y 分别表示向量的横坐标和纵坐标。
2. 在三维空间中,一个向量可以用有序实数三元组 (x, y, z) 表示,其中 x、y 和 z 分别表示向量的三个坐标分量。
向量的运算公式:1. 向量的加法:- 定义:如果向量 A = (x₁, y₁) 和向量 B = (x₂, y₂),则 A + B = (x₁ + x₂, y₁ + y₂)。
- 几何意义:向量加法就是把两个向量的起点放在一起,然后把两个向量终点连起来的向量。
2. 向量的数乘:- 定义:对于任意实数 k,如果向量 A = (x, y),则 kA = (kx, ky)。
- 几何意义:数乘就是把向量按比例放大或缩小。
3. 向量的减法:- 定义:如果向量 A = (x₁, y₁) 和向量 B = (x₂, y₂),则 A - B = (x₁ - x₂, y₁- y₂)。
- 几何意义:向量减法就是从第一个向量的终点指向第二个向量的终点的向量。
4. 向量的数量积(点乘):- 定义:如果向量 A = (x, y) 和向量 B = (x', y'),则A · B = xx' + yy'。
- 几何意义:数量积等于两向量的长度之积和它们夹角的余弦值的乘积。
5. 向量的向量积(叉乘):- 定义:如果向量 A = (x, y) 和向量 B = (x', y'),则A × B 是一个垂直于A 和B 的向量,其大小等于A × B × sin(θ),其中θ 是 A 和 B 之间的夹角,方向按照右手定则确定。
- 几何意义:向量积表示一个向量相对于另一个向量的旋转。
以上是向量的基本坐标表示和运算公式,是解析几何和线性代数中的基础概念。
向量坐标表示及运算
y
j
O
1 2
a
A(x, y)
a
(3)两个向量 a ( x1, y1 ), b ( x2 , y2 ) 相等的充要条件:a b x x
i
x
且y1 y2
(4)如图以原点O为起点作 OA a ,点A的位置 被 a 唯一确定. 此时点A的坐标即为 a 的坐标 (5)区别点的坐标和向量坐标 相等向量的坐标是相同的,但起点、终点的坐标可以不同
3.若 A(2,-1),B(4,2),C(1,5),则 AB +2 BC =________.
解析:∵A(2,-1),B(4,2),C(1,5), ∴ AB =(2,3), BC =(-3,3). ∴ AB +2 BC =(2,3)+2(-3,3)=(2,3)+(-6,6)=(-4,9).
答案:(-4,9)
(x2-x1,y2-y1)
例1:已知 a (2,1), b ( 3, 4), 求a b, a b, 3a 4b 的坐 .
解: a b (2,1) (3,4) (1,5)
a b (2,1) (3,4) (5, 3)
3 a 4 b 3(2,1) 4( 3, 4) (6, 3) ( 12,16) ( 6,19)
例2、 1已知A(2,3), B (3,5), 求BA的坐标.
解: BA
2已知AB (1, 2), A(2,1), 求B的坐标.
解:设B x,y ,
2,3 3,5 5, 2.
AB 1, 2 x, y 2,1 ,
j
-4 -3
-1 -2
i1
2
3
4
x
c 2i 3 j ( 2, 3)
平面向量的坐标表示与运算
平面向量的坐标表示与运算平面向量是数学中的重要概念,它在几何和物理学中都有广泛的应用。
在平面直角坐标系中,平面向量的坐标表示与运算是研究平面向量的基础。
一、平面向量的坐标表示在平面直角坐标系中,一个平面向量可以用两个有序实数表示,这两个实数分别表示向量在x轴和y轴上的投影。
设向量a的坐标为(a₁, a₂),则a可以表示为:a = a₁i + a₂j,其中i和j分别是x轴和y轴的单位向量。
二、平面向量的运算1. 向量的加法设向量a的坐标为(a₁, a₂),向量b的坐标为(b₁, b₂),则向量a加b的结果可以表示为:a +b = (a₁ + b₁)i + (a₂ + b₂)j。
2. 向量的减法设向量a的坐标为(a₁, a₂),向量b的坐标为(b₁, b₂),则向量a减b的结果可以表示为:a -b = (a₁ - b₁)i + (a₂ - b₂)j。
3. 向量的数量乘法设向量a的坐标为(a₁, a₂),实数k,则向量a乘以k的结果可以表示为:k*a = ka = (ka₁)i + (ka₂)j。
4. 向量的数量除法设向量a的坐标为(a₁, a₂),实数k(k ≠ 0),则向量a除以k的结果可以表示为:a/k = a*(1/k) = (a₁/k)i + (a₂/k)j。
5. 向量的数量积设向量a的坐标为(a₁, a₂),向量b的坐标为(b₁, b₂),则向量a与向量b的数量积结果可以表示为:a·b = a₁b₁ + a₂b₂。
6. 向量的模长设向量a的坐标为(a₁, a₂),则向量a的模长可以表示为:|a| = √(a₁² + a₂²)。
三、示例分析为了更好地理解平面向量的坐标表示与运算,下面以实际问题为例进行分析。
问题:有两个平面向量a(-3, 4)和b(2, -1),求这两个向量的和、差、数量积和模长。
解答:1. 向量的加法:a +b = (-3 + 2)i + (4 - 1)j = -i + 3j。
向量的坐标表示与运算
向量的坐标表示与运算向量是线性代数中的重要概念之一,广泛应用于物理学、工程学以及其他科学领域。
向量具有大小和方向两个属性,可以通过坐标表示和进行运算。
本文将介绍向量的坐标表示方法,并讨论常见的向量运算。
一、向量的坐标表示向量可以通过坐标表示为一个有序数对或者有序数组。
一般来说,我们采用n维空间中的坐标系表示向量,其中n表示向量的维度。
在二维空间中,向量可以表示为一个有序数对(x, y),在三维空间中,向量可以表示为一个有序数组(x, y, z)。
在n维空间中,向量可以表示为一个有序数组(x1, x2, ..., xn)。
向量的坐标表示可以简洁地表示向量的大小和方向。
二、向量的基本运算1. 向量的加法向量的加法是指将两个向量相应位置的分量相加得到一个新的向量。
假设有两个向量A和B,它们的坐标表示分别为(A1, A2, ..., An)和(B1,B2, ..., Bn),则它们的和向量C的坐标表示为(A1+B1, A2+B2, ...,An+Bn)。
2. 向量的减法向量的减法是指将两个向量相应位置的分量相减得到一个新的向量。
假设有两个向量A和B,它们的坐标表示分别为(A1, A2, ..., An)和(B1,B2, ..., Bn),则它们的差向量D的坐标表示为(A1-B1, A2-B2, ..., An-Bn)。
3. 向量的数乘向量的数乘是指将一个向量的每个分量乘以一个标量得到一个新的向量。
假设有一个向量A,它的坐标表示为(A1, A2, ..., An),如果乘以一个标量c,那么得到的数乘向量E的坐标表示为(cA1, cA2, ..., cAn)。
三、向量的运算性质1. 交换律向量的加法满足交换律,即A + B = B + A。
这意味着两个向量相加的结果与它们的顺序无关,只与各个向量的分量有关。
2. 结合律向量的加法满足结合律,即(A + B) + C = A + (B + C)。
这意味着多个向量相加的结果与它们的加法顺序无关,只与各个向量的分量有关。
平面向量的坐标表示及坐标运算
平面向量的坐标表示及坐标运算一个平面上的向量可以用坐标的形式表示出来。
一般而言,在平面上的向量都可以用一个坐标向量来表示,用一对数字表示向量的大小和方向,可以是极坐标,也可以是直角坐标。
极坐标是把向量投影到平面上,以圆心为原点,向量的起点到圆心的距离表示大小,圆心到向量的角度表示方向。
在不同情况下,极坐标可以取不同的圆心,比如笛卡尔坐标系的极坐标,其圆心就是笛卡尔坐标系的原点;也可以取向量的起点为圆心,这样的极坐标叫作空间极坐标。
直角坐标是指将一个向量从起点投射到X轴,再从X轴投射到Y 轴,X轴上的距离表示向量的X成分,Y轴上的距离表示向量的Y成分。
这样就把一个向量表示为两个正数(或零)的组合,例如(3,4),即表示一个向量,其X成分为3,Y成分为4。
二、坐标运算1.量加法:当两个向量的起点在同一个点时,他们的坐标向量可以相加,即:(a,b)+(c,d)=(a+c,b+d)。
2.量减法:同样地,当两个向量的起点在同一个点时,他们的坐标向量可以相减,即:(a,b)-(c,d)=(a-c,b-d)。
3.放向量:缩放向量意味着将向量的大小变更,而不改变向量的方向,可以用缩放系数来表示,令K为缩放系数,则:K*(a,b)=(Ka,Kb),即对向量的每个成分乘以一个系数,就可以完成缩放的运算。
4.量的模:向量的模也称为向量的长度,表示向量大小的一个数值,它可以用欧式距离来表示,欧式距离计算公式的定义为:||A||=√(a^2+b^2),其中a和b分别表示向量的X和Y成分。
5.量的夹角:向量的夹角指向量之间的夹角,可以用弧度表示,也可以用角度表示,计算向量的夹角可以用余弦定理来计算,其计算公式定义为:cosθ=AB/||A||*||B||。
6.量的点积:点积用来表示两个向量的关系,可以用X和Y在向量上的分量来表示,它的计算公式定义为:AB=a*b+c*d,其中a,b,c,d分别表示两个向量的X和Y成分。
三、总结以上,就是平面向量的坐标表示及坐标运算的相关内容,在了解了平面向量的坐标表示方式以及如何进行坐标运算后,我们可以更加熟练的处理向量的坐标运算,也可以更清楚的理解向量的含义。
8.1.2向量的坐标表示及其运算
二、定比分点的概念
于P 的任意一点, 则存在唯一的实数 ,使得 , P 1 2
设P 是直线 l 上的两点,点 P 是 l 上不同 1, P 2
PP 1 PP 2
其中 叫做点 P 分有向线段 PP 所成的比 1 2
P1
P P1 P
P2 P2 P2
P
l l l
0
例 6.已知 A3,2 , B8,3点 P 在直线 AB 上, 且满足 AP 2 PB ,求点 P 的坐标.
例 7.在 ABC 中, A x1 , y1 , B x2 , y2 , C x3 , y3 , 求 ABC 重心 G 的坐标.
A
G
.
E
B
D
C
x1 x2 x3 y1 y2 y3 G , 3 3
例 1.已知 a x 1,2, b 1, x (1)若 a // b ,求实数 x 的值; (2)若 a b //a b ,求实数 x 的值.
例 2.已知 a // b , a 2,3 ,且 b 2 13,求 b 的坐标.
方法一: 方法二:
例3. O 是坐标原点, OA (k ,12), OB (4,5),
A, B, C 三点共线? OC (10, k ) ,当 k 为何值时, 分析: A, B, C 三点共线的充要条件是 AB // BC
解: AB OB OA (4 k , 7)
BC OC OB (6, k 5) AB// BC (4 k ) (k 5) 6 (7) 0 2 化简得: k 2 或 11 k 9k 22 0 解得: A, B, C 三点共线. 因此 k 2 或 11时,
向量的坐标表示及向量线性运算的坐标表示
12345
2.已知
→ AB
=(-2,4),则下列说法正确的是
A.点A的坐标是(-2,4)
B.点B的坐标是(-2,4)
C.当点B是坐标原点时,点A的坐标是(-2,4)
√D.当点A是坐标原点时,点B的坐标是(-2,4)
解析 由任一向量的坐标的定义可知,当A是坐标原点时,点B的坐标 是(-2,4).
12345
反思 感悟
向量坐标运算的方法 (1)若已知向量的坐标,则直接应用两个向量和、差及向量数乘的 运算法则进行. (2)若已知有向线段两端点的坐标,则可先求出向量的坐标,然后 再进行向量的坐标运算. (3)向量的线性坐标运算可完全类比数的运算进行.
跟踪训练 2 已知点 A(0,1),B(3,2),向量A→C=(-4,-3),则向量B→C等于
的有效方法.
(2)通过定比分点坐标公式的推导与应用,培养逻辑推理和数学 运算素养.
3 随堂演练
PART THREE
1.已知 a=(1,1),b=(1,-1),则12a-32b 等于
√A.(-1,2) B.(1,-2)
C.(-1,-2)
D.(1,2)
解析 12a-32b=12(1,1)-32(1,-1)=12-32,12+32=(-1,2).
x=2, ∴y=72,
∴D2,72.
12345
4.若向量B→A=(2,3),C→A=(4,7),则B→C=__(_-__2_,__-__4_)__. 解析 B→C=B→A+A→C=B→A-C→A=(2,3)-(4,7)=(-2,-4).
12345
5.已知 A(2,4),B(-4,6),若A→C=32A→B,B→D=43B→A,则C→D的坐标为_1_1_,__-__1_31__. 解析 ∵A→B=(-6,2),A→C=32A→B=(-9,3), ∴C(-7,7),B→D=43(6,-2)=8,-83, ∴D4,130,∴C→D=11,-131.
1.3 空间向量的坐标表示及其运算(共47张PPT)
设向量a=(a1,a2,a3),b=(b1,b2,b3),λ∈R,那么
向量运算
加法
减法
数乘
数量积
向量表示
a+b
a-b
λa
a·b
坐标表示
(a1+b1,a2+b2,a3+b3)
(a1-b1,a2-b2,a3-b3)
(λa1,λa2,λa3)
a1b1+a2b2+a3b3
2.空间向量的坐标与其端点坐标的关系:
能运用公式解决问
题.(数学运算)
思维脉络
情境导学
我国著名数学家吴文俊先生在《数学教育现
代化问题》中指出:“数学研究数量关系与空间形
式,简单讲就是形与数,欧几里得几何体系的特点是
排除了数量关系,对于研究空间形式,你要真正的
‘腾飞’,不通过数量关系,我想不出有什么好的办
法…….”
吴文俊先生明确地指出中学几何的“腾飞”是
(1)求AB + CA, CB-2BA, AB ·AC;
(2)若点 M 满足AM =
1
3
AB + AC,求点
2
4
M 的坐标;
(3)若 p=,q=,求(p+q)·(p-q).
思路分析先由点的坐标求出各个向量的坐标,再按照空间向量运算的坐标运算法则进行计算求解.
解:(1)因为 A(1,-2,4),B(-2,3,0),C(2,-2,-5),
(2)a⊥b⇔
a·b=0
⇔
a1=λb1,a2=λb2,a3=λb3 (λ∈R);
a1b1+a2b2+a3b3=0
.
点睛:当b的坐标中b1,b2,b3都不等于0时,a与b平行的条件还可以表
6.3平面向量及运算的坐标表示课件(人教版)
(3)两向量差的坐标与两向量的顺序无关。( ) (4)向量(2,3)与向量(-4,-6)同向。( )
【提示】(1)×。对于同一个向量,无论位置在哪里, 坐标都一样。 (2)√。根据向量的坐标表示,当始点在原点时,终 点与始点坐标之差等于终点坐标。 (3)×。根据两向量差的运算,两向量差的坐标与两 向量的顺序有关。
2
线,则C的坐标可以是( )
A.(-9,1) B.(9,-1)
C.(9,1)
D.(-9,-1)
【思维·引】设出点C的坐标,因为A,B,C三点共线, 写出向量 AB,AC(或 BC),由向量共线的条件结合选项 求解。
【解析】选C。设点C的坐标是(x,y),
【内化·悟】 1.由共线的坐标条件求参数的解题步骤是怎样的? 提示:(1)分别写出共线的两个向量的坐标。 (2)通过共线条件列出方程(组)。 (3)解方程(组)求出参数。
2.如何判断共线的向量u与v是同向还是反向? 提示:写成u=λv的情势,若λ>0,同向,若λ<0,反向。
角度3 三点共线问题 【典例】已知A(1,-3),B (8,1 ),且A,B,C三点共
量 AB共线的单位向量是( )
A.(3, 4) C.(6,8)
B.( 3,4 ) 55
D.( 4, 3 ) 55
【思维·引】利用向量共线的坐标表示判断。 【解析】选B。因为AB =(7,-3)-(4,1)=(3,-4), 由向量共线的条件可知,A,B,C选项中的向量均与AB共 线,但A,C中向量不是单位向量。
因为A(0,1),AC=(-3,-3),
所以
x y
3, 1 3,
解得
x y
3, 2,
所以点C的坐标为(-3,-2)。又B(3,2),所以BC=(-
平面向量的坐标表示与运算
平面向量的坐标表示与运算在数学中,平面向量是一个有方向和大小的量。
它可以用坐标表示,并且可以进行一些基本的运算,比如加法和乘法。
本文将介绍平面向量的坐标表示与运算。
1. 平面向量的坐标表示平面向量可以用有序数对表示其坐标,通常用大写字母表示向量。
假设有一个向量AB,其起点是A,终点是B。
向量AB的坐标表示为(Ax, Ay),其中Ax表示向量在x轴上的分量,Ay表示向量在y轴上的分量。
2. 平面向量的加法平面向量的加法是指将两个向量相加得到一个新的向量。
设有向量AB和向量CD,它们的坐标分别为(Ax, Ay)和(Cx, Cy)。
那么两个向量的和向量EF的坐标可以通过分别将Ax与Cx相加得到新向量的x轴分量,将Ay与Cy相加得到新向量的y轴分量来表示。
EF的坐标表示为(EF_x, EF_y),其中EF_x = Ax + Cx,EF_y = Ay + Cy。
3. 平面向量的数乘平面向量的数乘是指将一个向量与一个实数相乘得到一个新的向量。
假设有向量AB,其坐标为(Ax, Ay),实数k表示数乘因子。
那么该向量的数乘结果向量AC的坐标可以通过将Ax与k相乘得到新向量的x轴分量,将Ay与k相乘得到新向量的y轴分量来表示。
AC的坐标表示为(AC_x, AC_y),其中AC_x = Ax * k,AC_y = Ay* k。
4. 平面向量的零向量零向量是指所有分量均为0的向量,通常用0表示。
对于任意向量AB,与其相加的零向量的坐标为(0, 0)。
即,任意向量与零向量相加,结果向量仍为原向量。
5. 平面向量的减法平面向量的减法是指将一个向量减去另一个向量得到一个新的向量。
设有向量AB和向量CD,它们的坐标分别为(Ax, Ay)和(Cx, Cy)。
那么两个向量的差向量GH的坐标可以通过分别将Ax与Cx相减得到新向量的x轴分量,将Ay与Cy相减得到新向量的y轴分量来表示。
GH的坐标表示为(GH_x, GH_y),其中GH_x = Ax - Cx,GH_y =Ay - Cy。
向量的坐标表示及运算
向量积的坐标计算公式
01
在三维空间中,对于两个向量a = (a1, a2, a3)和b = (b1, b2, b3),它们的向量积的坐标计算公式为
02
a×b = (a2b3 - a3b2, a3b1 - a1b3, a1b2 - a2b1)
03
这个公式可以用来计算两个向量的向量积的坐标。
05
向量的向量积与运算
向量积的定义及性质
定义
向量积是一种二元运算,其结果是一个向量而不是一个 标量。对于两个向量a和b,它们的向量积记作a×b。
性质
向量积满足以下性质
反交换律
a×b = -b×a
分配律
(a+b)×c = a×c + b×c
与零向量的运算
任何向量与零向量的向量积都是零向量。
与自己的运算
向量的方向角
向量的方向角是指向量与坐标轴正方向之间的夹角。在二维平面中,向量与x轴正方向的夹角记作$alpha$,取值 范围为$[0,pi]$;在三维空间中,向量与x轴、y轴、z轴正方向的夹角分别记作$alpha$、$beta$、$gamma$, 取值范围均为$[0,pi]$。
向量的线性运算性质
向量的加法
混合积在几何中的应用举例
01
x_2 & y_2 & z_2 & 1
02
x_3 & y_3 & z_3 & 1
x_4 & y_4 & z_4 & 1
03
混合积在几何中的应用举例
end{matrix} right|$
应用3:求解平面方程。设平面过点$P(x_0, y_0, z_0)$,且平面的法向量为$vec{n} = (A, B, C)$,则平 面的方程可表示为
向量的坐标表示及其运算教案
向量的坐标表示及其运算教案第一章:向量的概念及其坐标表示1.1 向量的定义引导学生回顾初中阶段所学到的向量概念,向量是有大小和方向的量。
解释向量在高中数学中的重要性,特别是在坐标系中的运用。
1.2 向量的表示方法介绍向量的表示方法,包括用箭头表示和用字母表示。
强调在坐标系中,向量可以用有序数对(a, b) 表示,其中a 表示向量在x 轴上的分量,b 表示向量在y 轴上的分量。
1.3 向量的模解释向量的模是指向量的大小,用||v|| 表示。
引导学生利用坐标系计算向量的模,即||v|| = √(a²+ b²)。
第二章:向量的加法和减法2.1 向量的加法解释向量的加法是指将两个向量首尾相接,形成一个新的向量。
引导学生利用坐标系进行向量的加法运算,即将对应分量相加。
2.2 向量的减法解释向量的减法是指从第一个向量中减去第二个向量,即加上第二个向量的相反向量。
引导学生利用坐标系进行向量的减法运算,即将对应分量相减。
第三章:向量的数乘3.1 向量的数乘概念解释向量的数乘是指将一个向量与一个实数相乘,得到一个新的向量。
强调数乘不改变向量的方向,只改变向量的大小。
3.2 向量的数乘运算引导学生利用坐标系进行向量的数乘运算,即将每个分量与实数相乘。
举例说明数乘运算的性质,如a(b·c) = (a·b)c 等。
第四章:向量的点积4.1 向量的点积概念解释向量的点积是指两个向量的对应分量相乘后相加的结果,用v·w 表示。
强调点积的计算结果是一个标量,而不是向量。
4.2 向量的点积运算引导学生利用坐标系进行向量的点积运算,即将对应分量相乘后相加。
举例说明点积的性质,如v·w = w·v、v·(w+z) = v·w + v·z 等。
第五章:向量的叉积5.1 向量的叉积概念解释向量的叉积是指两个非共线的向量形成的平行四边形的面积,用v×w 表示。
空间向量及其运算的坐标表示
平面向量
平面向量的坐标运算: a ( x1 , y1 ), b ( x2 , y2 ) a b ( x1 x2 , y1 y2 );
空间向量
空间向量的坐标运算: a ( x1 , y1 , z1 ), b ( x2 , y2 , z 2 ) a b ( x1 x2 , y1 y2 , z1 z 2 );
空间向量
空间向量的夹角: a ( x1 , y1 , z1 ), b ( x2 , y2 , z 2 ) ab cos a,b | a || b | x1 x2 y1 y2 z1 z 2 2 2 2 2 2 x1 y1 z12 x2 y2 z 2
垂直与平行: a ( x1 , y1 , z1 ), b ( x2 , y2 , z 2 ) x1 y1 z1 a // b (?) x2 y 2 z 2 a b x1 x2 y1 y2 z1 z 2 0
x1 x 2 y1 y 2 z1 z 2 (3)中点坐标公式: ( , , ) 2 2 2
2.两个向量夹角公式
a1b1 a2b2 a3b3 a b cos a, b ; 2 2 2 2 2 2 | a || b | a1 a2 a3 b1 b2 b3
垂直与平行: a ( x1 , y1 ), b ( x2 , y2 ) a // b x1 y2 x2 y1 0 a b x1 x2 y1 y2 0
对比表4
平面向量
平面向量基本定理: 如果e1 , e 2是同一平面内的两个不 共线 的向量,那么对于这个 平面内的任一 向量a,有且仅有一对实数 x, y,使a xe1 ye 2 .
向量坐标运算公式总结
向量坐标运算公式总结向量是线性代数中的重要概念,它在几何、物理、工程等领域都有着广泛的应用。
向量坐标运算是对向量进行加减乘除等运算的过程,掌握这些运算公式对于解决实际问题至关重要。
本文将对向量坐标运算公式进行总结,希望能够帮助读者更好地理解和运用向量。
1. 向量的表示。
在二维空间中,向量通常用坐标表示,如向量a可以表示为(a1, a2),其中a1和a2分别表示向量在x轴和y轴上的分量。
在三维空间中,向量可以表示为(a1, a2, a3),分别表示在x、y、z轴上的分量。
向量的表示形式可以根据具体问题进行调整,但基本思想是一致的。
2. 向量的加法。
向量的加法是指两个向量相加的运算。
设有向量a=(a1, a2),向量b=(b1, b2),则它们的和为a+b=(a1+b1, a2+b2)。
这个运算公式表明,向量的加法是将两个向量的对应分量分别相加得到新的向量。
3. 向量的减法。
向量的减法与加法类似,只是将对应分量相减得到新的向量。
设有向量a=(a1, a2),向量b=(b1, b2),则它们的差为a-b=(a1-b1, a2-b2)。
4. 向量的数乘。
向量的数乘是指一个向量与一个数相乘的运算。
设有向量a=(a1, a2),数k,则它们的数乘为ka=(ka1, ka2)。
这个运算公式表明,向量的数乘是将向量的每个分量分别与数相乘得到新的向量。
5. 向量的数量积。
向量的数量积又称为点积,是指两个向量相乘得到一个数的运算。
设有向量a=(a1, a2),向量b=(b1, b2),则它们的数量积为a·b=a1b1+a2b2。
这个运算公式表明,向量的数量积是将两个向量的对应分量分别相乘再相加得到一个数。
6. 向量的向量积。
向量的向量积又称为叉积,是指两个向量相乘得到一个新的向量的运算。
设有向量a=(a1, a2, a3),向量b=(b1, b2, b3),则它们的向量积为a×b=(a2b3-a3b2, a3b1-a1b3, a1b2-a2b1)。
向量坐标运算
向量坐标运算向量是带有方向和大小的物理量,通常用箭头表示,箭头方向表示向量方向,箭头长度表示向量大小。
向量坐标运算是指对向量进行加、减、数乘等运算,并以坐标的形式表示出来。
本文将从向量加法、向量减法、数量积、向量积四个方面来详细介绍向量坐标运算。
一、向量加法向量加法是指把两个向量的各个对应分量相加得到一个新的向量。
用公式表示为A+B=C,在二维空间中,向量A(a1,a2)和向量B(b1,b2)的向量加法如下:A +B = (a1 + b1, a2 + b2)在三维空间中,向量A(a1,a2,a3)和向量B(b1,b2,b3)的向量加法如下:A +B = (a1 + b1, a2 + b2, a3 + b3)向量加法的本质是平移或者说移位。
根据平行四边形法则,向量加法可以表示两个向量合力后的结果。
因为向量有方向,所以向量加法不满足交换律,即A + B ≠ B + A。
但是,满足结合律,即 A + (B + C) = (A + B) + C。
二、向量减法向量减法是指把两个向量的各个对应分量相减得到一个新的向量,用公式表示为A-B=C。
在二维空间中,向量A(a1,a2)和向量B(b1,b2)的向量减法如下:A -B = (a1 - b1, a2 - b2)在三维空间中,向量A(a1,a2,a3)和向量B(b1,b2,b3)的向量减法如下:A -B = (a1 - b1, a2 - b2, a3 - b3)同样,向量减法的本质也是平移或者移位。
运用这个方法,可以很方便地解决几何问题。
三、数量积数量积是指两个向量按一定规律相乘得到一个标量的运算。
用公式表示为A·B=|A||B|Cosθ,在二维坐标系中,向量A(a1,a2)和向量B(b1,b2)的数量积如下:∣A∣×∣B∣×Cosθ=a1b1+a2b2在三维坐标系中,向量A(a1,a2,a3)和向量B(b1,b2,b3)的数量积如下:∣A∣×∣B∣× Cosθ=a1b1+a2b2+a3b3其中,|A|、|B|分别为向量A、B的大小,θ为A、B之间的夹角。
向量的坐标表示及其运算
1向量的坐标表示及其运算一、知识点(一)向量及其表示:1.平面向量的有关概念:(1)向量的定义:既有大小又有方向的量叫做向量.(2)表示方法:用有向线段来表示向量.有向线段的长度表示向量的大小,用箭头所指的方向表示向量的方向.用字母a ,b ,…或用AB ,BC ,…表示.对于平面直角坐标系内的任意一个向量a ,我们都能将它正交分解为基本单位向量,i j 的线性组合吗?如下图左.显然,如上图右,我们一定能够以原点O 为起点作一位置向量OA ,使OA a =.于是,可知:在平面直角坐标系内,任意一个向量a 都存在一个与它相等的位置向量OA .由于这一点,我们研究向量的性质就可以通过研究其相应的位置向量来实现.由于任意一个位置向量都可以正交分解为基本单位向量,i j 的线性组合,所以平面内任意的一个向量a 都可以正交分解为基本单位向量,i j 的线性组合.即:a =OA =xi y j +上式中基本单位向量,i j 前面的系数x,y 是与向量a 相等的位置向量OA 的终点A 的坐标.由于基本单位向量,i j 是固定不可变的,为了简便,通常我们将系数x,y 抽取出来,得到有序实数对(x,y ).可知有序实数对(x,y )与向量a 的位置向量OA 是一一对应的.因而可用有序实数对(x,y )表示向量a ,并称(x,y )为向量a 的坐标,记作:a =(x,y )[说明](x,y )不仅是向量a 的坐标,而且也是与a 相等的位置向量OA 的终点A 的坐标!当将向量a 的起点置于坐标原点时,其终点A 的坐标是唯一的,所以向量a 的坐标也是唯一的.这样,我们就将点与向量、向量与坐标统一起来,使复杂问题简单化.显然,依上面的表示法,我们有:(1,0),(0,1),0(0,0)i j ===.(3)模:向量的长度叫向量的模,记作|a|或|AB|.(4)零向量:长度为零的向量叫做零向量,记作0;零向量的方向不确定.(5)单位向量:长度为1个长度单位的向量叫做单位向量.(6)共线向量:方向相同或相反的向量叫共线向量,规定零向量与任何向量共线.(7)相等的向量:长度相等且方向相同的向量叫相等的向量.2向量坐标的有关概念(1)基本单位向量(2)位置向量(3)向量的正交分解我们称在平面直角坐标系中,方向与x轴和y轴正方向分别相同的的两个单位向量叫做基本单位向量,分别记为,i j,如图,称以原点O为起点的向量为位置向量,如下图左,OA即为一个位置向量.如上图右,设如果点A的坐标为(),x y,它在小x轴,y轴上的投影分别为M,N,那么向量OA能用向量OM与ON来表示吗?(依向量加法的平行四边形法则可得OA OM ON=+),OM与ON 能用基本单位向量,i j来表示吗?(依向量与实数相乘的几何意义可得,OM xi ON y j==),于是可得:OA OM ON xi y j=+=+由上面这个式子,我们可以看到:平面直角坐标系内的任一位置向量OA都能表示成两个相互垂直的基本单位向量,i j的线性组合,这种向量的表示方法我们称为向量的正交分解.向量的坐标运算:设),(),(),(),,(1121212211yxayyxxbayxbyxaλλλλ=±±=±ℜ∈==,,3.向量的摸:22yxa+=(二)向量平行的充要条件:1向量共线定理:向量b与非零向量a共线的充要条件是有且仅有一个实数λ,使得b=λa,即b∥a⇔b=λa(a≠0).2设a=(x1,y1),b=(x2,y2)则b∥a⇔1221yxyx=练习2:1.已知向量(2,3)a =,(,6)b x =,且//a b ,则x 为_________;2.设a =(x 1,y 1),b =(x 2,y 2),则下列a 与b 共线的充要条件的有( ) ① 存在一个实数λ,使a =λb 或b =λa ; ②2121y yx x =;③(a +b )//(a -b ) A 、0个 B 、1个 C 、2个 D 、3个3.设0a 为单位向量,有以下三个命题:(1)若a 为平面内的某个向量,则0a a a =⋅;(2)若a 与0a 平行,则0a a a =⋅;(3)若a 与0a 平行且1a =,则0a a =.上述命题中,其中假命题的序号为 ;问题一:已知向量(,12),(4,5),(,10)OA k OB OC k ===-,且A 、B 、C 三点共线,则k=____ [说明] 三点共线的证明方法总结: 法一:利用向量的模的等量关系法二:若A 、B 、C 三点满足AB AC λ=,则A 、B 、C 三点共线.*法三:若A 、B 、C 三点满足OC mOA nOB =+,当1m n +=时,A 、B 、C 三点共线. 问题二:定比分点公式:设点P 1(),11y x ,),(222y x P ,点P 是直线 21P P 上任意一点,且满足 12PP PP λ=,求点P 的坐标.解:由12PP PP λ= ,可知{)()(2121x x x x y y y y -=--=-λλ,因为λ≠-1, 所以⎩⎨⎧++=++=λλλλ112121x x x y y y ,这就是点P 的坐标.[说明]由定比分点公式可知λ=1 时有⎪⎩⎪⎨⎧+=+=222121x x x y y y ,此公式叫做线段21P P 的中点公式.例、已知平面上A 、B 、C 三点的坐标分别为A (),11y x , ),(22y x B , ),(33y x C ,G 是△ABC 的重心,求点G 的坐标.解:由于点G 是△ABC 的重心,因此CG 与AB 的交点D 是AB 的中点,于是点D 的坐标是(2,22121y y x x ++). 设点G 的坐标为),(y x ,且2CG GD =则由定比分点公式得 ⎪⎩⎪⎨⎧+++=+++=21222122213213x x x x y y y y ,整理得 ⎪⎩⎪⎨⎧++=++=3332121x x x x y y y y 这就是△ABC 的重心G 的坐标.例、)15,12(),0,3(),5,2(21P P P - 且有12PP PP λ=求实数λ的值. 解1: 由已知可求 1(10,10)PP =,2(15,15)PP λλ=-- 故10=λ .(-15),所以定比λ=-32.解2: 因为12PP PP λ=,所以P 1,P ,2P 三点共线,由定比分点公式得12=λλ+-⨯+1)3(2解出实数λ=-32.解3:由图形可知点P 在线段21P P 外,故λ﹤0 ,又21PP P P= 32 ,所以λ=-32 .3.向量的坐标表示的运算我们学过向量的运算,知道向量有加法、减法、实数与向量的乘法等运算,那么,在学习了向量的坐标表示以后,我们怎么用向量的坐标形式来表示这些运算呢?设λ是一个实数,1122(,),(,).a x y b x y == 由于1111(,),a x y x i y j ==+ 2222(,)b x y x i y j ==+ 所以1122(,)(,)a b x y x y ±=±()()1122x i y j x i y j =+±+()()()()()121212121212,x i x i y j y j x x i y y j x x y y =±+±=±+±=±± ()()11111111(,),a x y x i y j x i y j x y λλλλλλλ==+=+=于是有:1122(,)(,)x y x y ±()1212,x x y y =±±()1111(,),x y x y λλλ=[说明]上面第一个式子用语言可表述为:两个向量的和(差)的横坐标等于它们对应的横坐标的和(差),两个向量的和(差)的纵坐标也等于它们对应的纵坐标的和(差),可笼统地简称为:两个向量和(差)的坐标等于对应坐标的和(差);同样,第二个式子用语言可表述为:数与向量的积的横坐标等于数与向量的横坐标的积,数与向量的积的纵坐标等于数与向量的纵坐标的积,也可笼统地简称为:数与向量积的坐标等于数与向量对应坐标的积. 例.如图,平面上A 、B 、C 三点的坐标分别为()2,1、()3,2-、()1,3-.(1)写出向量,AC BC 的坐标; (2)如果四边形ABCD 是平行四边形,求D 的坐标.解:(1)()()12,313,2AC =---=- ()()()13,322,1BC =----=(2)在上图中,因为四边形ABCD 是平行四边形,所以DC AB = 设点D 的坐标为(),D D x y ,于是有()1,3D D x y AB ---= 又 ()()32,215,1AB =---=- 故 ()()1,35,1D D x y ---=- 由此可得1531D D x y --=-⎧⎨-=⎩ 解得42D D x y =⎧⎨=⎩因此点D 的坐标为()4,2.1. 如图,写出向量,,a b c 的坐标.2.已知(1,2)a =-,若其终点坐标是(2,1),则其起点的坐标是 ;DC(-1,3)A(2,1)B(-3,2)yxO若其起点坐标是(2,1),则其终点的坐标是 . 3.已知向量()2,3a =-与()1,5b =-,求3a b -及3b a -的坐标.解:1.由题意:()()()()()()2,1,1,1,2,11,121,1(1)1,2a b c ==-=--=---=2.设起点的坐标是(x,y),则(2,1)-(x,y)=(-1,2),解得:(x,y)=(3,-1),即起点的坐标是(3,-1);设终点的坐标是(x,y),则(x,y)-(2,1) =(-1,2),解得:(x,y)=(1,3),即起点的坐标是(1,3).3. 3a b -=3()7,14---()()1,57,14-=- 3b a -=()1,5--3()2,3-()7,14=-[另法]:3b a -=()3a b --=()7,14--()7,14=-二、典型例题例1若向量b a ,. 满足.b a b a -=+,则b a 与所成角的大小为多少?例2 下列哪些是向量?哪些是标量?(1)浓度 (2)年龄 (3)风力 (4) 面积 (5)位移 (6)人造卫星速度 (7)向心力 (8)电量 (9)盈利 (10)动量 例3. ∆ABC 中,A (1,1),B (-3,5), C (8,-3),G 是ABC ∆重心,求GA 的坐标例4. 已知A ()()()()3,2,2,3,1,2,2,1--D C B ()反向的单位向量求与AB 1 ()()的坐标,求点,若E BE 522-= ()3若a BD AC a 求,-=()三点不共线,,求证:C B A 4 ()CD BD AD AC AB ++来表示,以5()()坐标三点共线,求点,,且若P P B A x P 3,6()如图7所示,若点M 分BA 的比λ为3:1,点N 在线段BC 上,且ABC AMNC S S ∆=32,求点N 点的坐标例5若ABCD 为正方形,E 是CD 的中点,且AB =a ,AD =b ,则BE 等于 A.b +21a B.b -21a C.a +21b D.a -21b 例6.e 1、e 2是不共线的向量,a =e 1+k e 2,b =k e 1+e 2,则a 与b 共线的充要条件是实数k 等于 A.0 B.-1 C.-2 D.±1例7.若a =“向东走8 km ”,b =“向北走8 km ”,则|a +b |=_______,a +b 的方向是_______.例8 已知向量a 、b 满足|a |=1,|b |=2,|a -b |=2,则|a +b |等于 A.1B.2C.5D.6. 例11若a 、b 是两个不共线的非零向量(t ∈R ).(1)若a 与b 起点相同,t 为何值时,a 、t b 、31(a +b )三向量的终点在一直线上?(2)若|a |=|b |且a 与b 夹角为60°,那么t 为何值时,|a -t b |的值最小?例12.若a 、b 为非零向量,且|a +b |=|a |+|b |,则有A.a ∥b 且a 、b 方向相同B.a =bC.a =-bD.以上都不对例13.设四边形ABCD 中,有DC =21AB 且|AD |=|BC |,则这个四边形是 A.平行四边形 B.矩形 C.等腰梯形 D.菱形例15.设两向量e 1、e 2满足|e 1|=2,|e 2|=1,e 1、e 2的夹角为60°,若向量2t e 1+7e 2与向量e 1+t e 2的夹角为钝角,求实数t 的取值范围..例16已知向量a =2e 1-3e 2,b =2e 1+3e 2,其中e 1、e 2不共线,向量c =2e 1-9e 2.问是否存在这样的实数λ、μ,使向量d =λa +μb 与c 共线?例17.如图所示,D 、E 是△ABC 中AB 、AC 边的中点,M 、N 分别是DE 、BC 的中点,已知BC =a ,BD =b ,试用a 、b 分别表示DE 、CE 和MN .AB CDMN E例18在△ABC 中,AM ∶AB =1∶3,AN ∶AC =1∶4,BN 与CM 交于点E ,AB =a ,AC =b ,用a 、b 表示AE .A BCMNE1.若平面向量b 与向量a =(1,-2)的夹角是180°,且|b |=35,则b 等于 A.(-3,6) B.(3,-6)C.(6,-3)D.(-6,3) 2.已知向量a =(3,4),b =(sin α,cos α),且a ∥b ,则tan α等于A.43 B.-43 C.34D.-343已知平面向量a =(3,1),b =(x ,-3)且a ⊥b ,则x 等于 A.3 B.1 C.-1 D.-31.如图,已知四边形ABCD 是梯形,AB ∥CD ,E 、F 、G 、H 分别是AD 、BC 、AB 与CD 的中点,则EF 等于( )A .BC AD +B .DC AB +C .DH AG +D .GH BG +2.下列说法正确的是 ( ) A .方向相同或相反的向量是平行向量 B .零向量的长度为0C .长度相等的向量叫相等向量D .共线向量是在同一条直线上的向量3.在△ABC 中,D 、E 、F 分别BC 、CA 、AB 的中点,点M 是△ABC 的重心,则 MC MB MA -+等于( )A .OB .MD 4C .MF 4D .ME 4 4.已知向量b a 与反向,下列等式中成立的是( )A .||||||b a b a -=-B .||||b a b a -=+C .||||||b a b a -=+D .||||||b a b a +=+5.在 ABCD 中,设d BD c AC b AD a AB ====,,,,则下列等式中不正确的是( ) A .c b a =+ B .d b a =-C .d a b =-D .b a c =- 6.下列各量中是向量的是( ) A .质量 B .距离C .速度D .电流强度7.在矩形ABCD 中,O 是对角线的交点,若OC e DC e BC 则213,5=== ( )A .)35(2121e e + B .)35(2121e e - C .)53(2112e e - D .)35(2112e e - 8.若),,(,,,R o b a b a ∈=+μλμλ不共线则( )A .o b o a ==,B .o o a ==μ,C .o b o ==,λD .o o ==μλ, 9.化简)]24()82(21[31b a b a --+的结果是( )A .b a -2B .a b -2C .a b -D .b a -10.下列三种说法:①一个平面内只有一对不共线向量可作为表示该平面所有向量的基底 ②一个平面内有无数对不共线向量可作为该平面的所有向量的基底 ③零向量不可作为基底中的向量.其中正确的是 ( )A .①②B .②③C .①③D .①②③ 11.若2121,,PP P P b OP a OP λ===,则OP 等于 ( )A .b a λ+B .b a +λC .b a )1(λλ-+D .b a λλλ+++111 12.对于菱形ABCD ,给出下列各式: ①BC AB =②||||BC AB =③||||BC AD CD AB +=-④||4||||22AB BD AC =+ 2其中正确的个数为( )A .1个B .2个C .3个D .4个二、填空题(每小题4分,共16分,答案填在横线上)13.21,e e 不共线,当k= 时,2121,e k e b e e k a +=+=共线. 14.非零向量||||||,b a b a b a +==满足,则b a ,的夹角为 . 15.在四边形ABCD 中,若||||,,b a b a b AD a AB -=+==且,则四边形ABCD 的形状是 .16.已知c b a ,,的模分别为1、2、3,则||c b a ++的最大值为 .三、解答题(本大题共74分,17—21题每题12分,22题14分)17.设21,e e 是两个不共线的向量,2121212,3,2e e CD e e CB e k e AB -=+=+=,若A 、 B 、D 三点共线,求k 的值.19.已知向量,,32,32212121e e e e b e e a 与其中+=-=不共线向量,9221e e c -=,问是否存在这样的实数,,μλ使向量c b a d 与μλ+=共线?20.如图,在△ABC 中,P 是BC 边上的任一点,求证:存在,1)1,0(,2121=+∈λλλλ且使AC AB AP 21λλ+=.1.已知(2,0),(1,3),a b ==-则a b +与a b -的坐标分别为( ) (A)(3,3),(3,-3) (B)(3,3),(1,-3) (C)(1,3),(3,3) (D)(1,3),(3,-3)2.若点A 坐标为(2,-1),AB 的坐标为(4,6),则B 点的坐标为( ) (A)(-2,-7) (B)(2,7) (C)(6,5) (D)(-2,5)3.已知(,4),(3,2).a x b y ==-若1,2a b =则x= ,y= . 4.已知AB (1)i x j +-=(2-x),且AB 的坐标所表示的点在第四象限,则x 的取值范围是.5.已知A(5,-2),B(2,-5),C(7,4),D(4,1),求证:AB=CD .6.已知(1,2),(3,1),(11,7),a b c =-=-=-并且.c xa yb =+求x,y 的值.7.已知22(,2),(5,)a m n b mn =+=,且.a b =求,.m n 的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
资源信息表
8.1(2)向量的坐标表示及其运算(2)
一、教学内容分析
向量是研究数学的工具,是学习数形结合思想方法的直观而又生动的内容.向量的坐标以及向量运算的坐标形式,则从“数、式”的角度对向量以及向量的运算作了精确的、定量的描述.本节课是8.1向量的坐标及其运算的第二课时,一方面把“形”与“数、式”结合起来思考,以“数”入微,借“形”思考,体会并感悟数形结合的思维方式;另一方面通过例5的演绎推理教学,体会代数证明的严谨性,也为定比分点(三点共线)的教学提供基础.
二、教学目标设计
1.理解并掌握两个非零向量平行的充要条件,巩固加深充要条件的证明方式;
2.会用平行的充要条件解决点共线问题;
3、定比分点坐标公式.
三、教学重点及难点
课本例5的演绎证明;
分类思想,数形结合思想在解决问题时的运用; 特殊——一般——特殊的探究问题意识.
五、教学过程设计 : 复习向量平行的概念:
提问:(1)升么是平行向量?方向相同或相反的向量叫做平行向量。
(2)实数与向量相乘有何几何意义?
(3)由此对任意两个向量,a b ,我们可以用怎样的数量关系来刻画平行?对任意两个向量,a b ,若存在一个常数λ,使得
a b λ=⋅成立,则两向量a 与向量b 平行
(4)思考:如果向量,a b 用坐标表示为)
,(),,(2211y x y x ==能否用向量的坐标来刻画这个数量关系?12
12
x x y y λλ=⎧⎨=⎩
思考:如果向量,a b 用坐标表示为),(),,(2211y x y x ==,则
2
121y y
x x =是b a //的( )条件. A 、充要 B 、必要不充分 C 、充分不必要 D 、既不充分也不必要 由此,通过改进引出
课本例5 若,a b 是两个非零向量,且1122(,),(,)a x y b x y ==,
则//a b 的充要条件是1221x y x y =.
分析:代数证明的方法与技巧,严密、严谨. 证明:分两步证明,
(Ⅰ)先证必要性://a b 1221x y x y ⇒=
非零向量//a b ⇔存在非零实数λ,使得a b λ=,即
1122(,)(,)x y x y λ=,化简整理可得:1212
x x y y λλ=⎧⎨
=⎩,消去λ即得1221x y x y = (Ⅱ)再证充分性:1221x y x y =//a b ⇒
(1)若12210x y x y =≠,则1x 、2x 、1y 、2y 全不为零,显然有
11
22
0x y x y λ==≠,即1122(,)(,)x y x y λ=a b λ⇒=//a b ⇒
(2)若12210x y x y ==,则1x 、2x 、1y 、2y 中至少有两个为零. ①如果10x =,则由a 是非零向量得出一定有10y ≠,⇒20x =, 又由b 是非零向量得出20y ≠,从而,此时存在1
2
0y y λ=
≠使12(0,)(0,)y y λ=,即a b λ=//a b ⇒
②如果10x ≠,则有20y =,同理可证//a b 综上,当1221x y x y =时,总有//a b 所以,命题得证.
[说明] 本题是一典型的代数证明,推理严密,层次清楚,要求较高,是培养数学思维能力的良好范例. 练习2:
1.已知向量(2,3)a =,(,6)b x =,且//a b ,则x 为_________; 2.设a =(x 1,y 1),b =(x 2,y 2),则下列a 与b 共线的充要条件的有( )
① 存在一个实数λ,使=λ或=λ
; ②
2
121y y
x x =;③(+)//(-)
A 、0个
B 、1个
C 、2个
D 、3个
3.设0a 为单位向量,有以下三个命题:(1)若a 为平面内的某个向量,则0a a a =⋅;(2)若a 与0a 平行,则0a a a =⋅;(3)若a 与
0a 平行且1a =,则0a a =.上述命题中,其中假命题的序号
为 ;
[说明] 安排此组练习快速巩固所学基础知识,当堂消化,及时反馈.
知识拓展应用
问题一:已知向量(,12),(4,5),(,10)OA k OB OC k ===-,且A 、B 、C 三点共线,则k=____ (学生讨论与分析)
[说明] 三点共线的证明方法总结: 法一:利用向量的模的等量关系
法二:若A 、B 、C 三点满足AB AC λ=,则A 、B 、C 三点共线. *法三:若A 、B 、C 三点满足OC mOA nOB =+,当1m n +=时,A 、B 、C 三点共线.
问题二:定比分点公式:
设点P 1(),11y x ,),(222y x P ,点P 是直线 21P P 上任意一点,且满足 12PP PP λ=,求点P 的坐标.
解:由12PP PP λ= ,可知
{
)
()(2121x x x x y y y y -=--=-λλ,因为λ≠-1, 所以⎩⎨⎧++
=++=λ
λλ
λ112
121x x x y y y ,这就是点P 的坐标.
[说明]此例题的结论可作为公式掌握,此公式叫线段21P P 的定
比分点公式. 2.小组交流
(1)定比分点公式中反映了那几个量之间的关系?当λ=1
时,点P 的坐标是什么? (2)满足式子12PP PP λ=的点P 称为向量 12PP 的分点.
思考:上式中正确反映 P 1,P ,2P 三点位置关系的是( )
A 、 始→分,分→终.
B 、始→分,终→分.
C 、终→分,分→
始
(3)关于定比λ和分点P 叙述正确的序号是 1)点P 在线段21P P 中点时,λ=1;2)点P 在线段21P P 上时,λ≥0 3)点P 在线段21P P 外时,λ﹤0; 4)定比λR ∈
[说明]由定比分点公式可知λ=1 时有⎪⎩⎪⎨⎧+=+=2
2
2
121x x x y y y ,此公式叫
做线段21P P 的中点公式. 此公式应用很广泛.
3.例题辨析
例1、已知平面上A 、B 、C 三点的坐标分别为A (),11y x , ),(22y x B , ),(33y x C ,G 是△ABC 的重心,求点G 的坐标. 解:由于点G 是△ABC 的重心,因此CG 与AB 的交点D 是AB
的中点,于是点D 的坐标是(
2
,22
121y y x x ++). 设点G 的坐标为),(y x ,且2CG GD =
则由定比分点公式得 ⎪⎩
⎪⎨⎧+++=+++=
212
221222
13213x x x x y y y y ,整理得
⎪⎩
⎪⎨⎧++=++=333
2121x x x x y y y y
这就是△ABC 的重心G 的坐标. [说明]本题难度不大,但综合性却比较强.不仅涉及到定比的概念,而且用到了中点公式、定比分点公式.(2)此结论可作为三角形重心的坐标公式.
例2、)15,12(),0,3(),5,2(21P P P - 且有12PP PP λ=求实数λ的值. 解1: 由已知可求 1(10,10)PP =,2(15,15)PP λλ=-- 故10=λ .(-15),
所以定比λ=-3
2
.
解2: 因为12PP PP λ=,所以P 1,P ,2P 三点共线,由定比分点公式
得12=
λλ+-⨯+1)3(2 解出实数λ=-3
2
.
解3:由图形可知点P 在线段21P P 外,故λ﹤0 ,又
21
PP PP = 32
,
所以λ=-3
2 .
[说明] 本题已知三点坐标求定比λ的值,学生往往偏爱第一种解法;解法二是定比分点公式的一个应用,其前提是三点共线,代公式时要注意始点、终点、分点坐标的位置;解法三是求定比λ的有效方法,简洁方便,鼓励学生大胆去尝试. 课后作业。