七年级数学上册 1.2.4绝对值教案1 人教新课标版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级第一章第二节绝对值(一)
【教学目标】
(一)知识技能
1.使学生掌握有理数的绝对值概念及表示方法.
2.使学生熟练掌握有理数绝对值的求法和有关计算问题.
(二)过程方法
1.在绝对值概念形成的过程中,渗透数形结合等思想方法,并注意培养学生的概括能力.
2.能根据一个数的绝对值表示“距离”,初步理解绝对值的概念.
3.给出一个数,能求它的绝对值.
(三)情感态度
从上节课学的相反数到本节的绝对值,使学生感知数学知识具有普遍的联系性.
教学重点
给出一个数会求它的绝对值.
教学难点
绝对值的几何意义,代数定义的导出;负数的绝对值是它的相反数.
【情景引入】
问题:两辆汽车,第一辆沿公路向东行驶了5千米,第二辆向西行驶了4千米.为了表示行驶的方向(规定向东为正)和所在位置,分别记作+5千米和-4千米.这样,利用有理数就可以明确表示每辆汽车在公路上的位置了.
我们知道,出租汽车是计程收费的,这时我们只需要考虑汽车行驶的距离,不需要考虑方向.当不考虑方向时,两辆汽车行驶的距离就可以记为5千米和4千米(在图上标出距离).这里的5叫做+5的绝对值,4叫做-4的绝对值.
【教学过程】
1.绝对值的定义:
我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值).记作|a|.
例如,在数轴上表示数―6与表示数6的点与原点的距离都是6,所以―6和6的绝对值都是6,记作|―6|=|6|=6.同样可知|―4|=4,|+1.7|=1.7.
2.试一试:你能从中发现什么规律? 由绝对值的意义,我们可以知道:
(1)|+2|= ,51
= ,|+8.2|= ; (2)|0|= ;
(3)|―3|= ,|―0.2|= ,|―8.2|= .
概括:通过对具体数的绝对值的讨论,并注意观察在原点右边的点表示的数(正数)的绝对值有什么特点?在原点左边的点表示的数(负数)的绝对值又有什么特点?由学生分类讨论,归纳出数a 的绝对值的一般规律:
(1)一个正数的绝对值是它本身;
(2) 0的绝对值是0;
(3) 一个负数的绝对值是它的相反数.
即:①若a >0,则|a |=a ;
②若a <0,则|a |=–a ; 或写成:)0()0()0(0<=>⎪⎩
⎪⎨⎧-=a a a a a a . ③若a =0,则|a |=0;
3.绝对值的非负性
由绝对值的定义可知:不论有理数a 取何值,它的绝对值总是正数或0(通常也称非负数),绝对值具有非负性,即|a |≥0.
4.例题解析
例1:求下列各数的绝对值:217-,10
1,―4.75,10.5. 解:217-=217;101+=10
1;|―4.75|=4.75;|10.5|=10.5. 例2: 化简:(1)⎪⎪⎭
⎫ ⎝⎛+-21; (2)311--. 解:(1) 2121211=-=⎪⎪⎭⎫ ⎝⎛+-; (2) 31
1311-=--.
例3:计算:(1)|0.32|+|0. 3|;
(2)|–4.2|–|4.2|; (3)|–32|–(–3
2). 分析:求一个数的绝对值必须先判断这个数是正数还是负数,然后由绝对值的性质得到.在(3)中要注意区分绝对值符号与括号的不同含义.
解答:(1)0.62; (2)0; (3)3
4.
解:|8|=8,|-8|=8,|41|=41,|-41|=41,|0|=0,|6-π|=6-π,|π-5|=5-π 例5. ,求x.
分析:本题应用了绝对值的一个基本性质:互为相反数的两个数的绝对值相等.即或
,由此可求出正确答案或.
解:
或
或 补充:一对相反数的绝对值相等. 【课堂作业】
1.在括号里填写适当的数:
-|+3|=( ); |( )|=1, |( )|=0; -|( )|=-2.
2. 求+7,-2,
31,-8.3,0,+0.01,-52,12
1的绝对值. 3. (1)绝对值是43的数有几个?各是什么? (2)绝对值是0的数有几个?各是什么? (3)有没有绝对值是-2的数?
(4)求绝对值小于4的所有整数.
4. 计算:
(1)|-15|-|-6|; (2)|-0.24|+|-5.06|; (3)|-3|×|-2|;
(4)|+4|×|-5|; (3)|-12|÷|+2|; (6)|20|÷|-2
1| 5.检查了5个排球的重量(单位:克),其中超过标准重量记为正数,不足的记为负数,结果如下:
-3.5,+0.7,-2.5,-0.6.
其中哪个球的重量最接近标准?
参考答案: 1. 3.5 211 -5 -3 ±1 0 ±2
2. |+7|=7,|-2|=2,|31|=3
1,|-8.3|=8.3, |0|=0,|+0.01|=0.01,|-
52|=52,|121|=121 3.(1)2个,4
343 和 (2)1个,0 (3)没有 (4)0,-1,1,-2,2,-3,3
4. (1) 9; (2)
5.3; (3)6;
(4)20; (3)6; (6)40
5. ∵|-3.5| > |-2.5| > |+0.7| > |-0.6|
∴第4个排球最接近标准.
【教学反思】
绝对值是中学数学中一个非常重要的概念,它具有非负性,在数学中有着广泛的应用.本节从几何与代数的角度阐述绝对值的概念,重点是让学生掌握求一个已知数的绝对值,对绝对值的几何意义、代数定义的导出、对“负数的绝对值是它的相反数”的理解是教学中的难点.
课堂上留给学生一定的提问时间,很容易暴露学生知识的缺陷,通过问题引导学生联想,大胆猜想,可以拓宽学生的知识面,增强知识的系统性,加深对课本知识的理解,培养学生的创新意识和发散思维.教师在课堂上也往往能收到意想不到的收获.