平行线分线段成比例教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行线分线段成比例
一、学生知识状况分析
学生在本章前两课时的学习中,通过对相似图形的直观感知,体会到可以用对应线段长度的比来描述两个形状相同的平面图形的大小关系。从而认识了线段的比,成比例线段。通过对方格纸中成比例线段的探究,了解了合比性质与等比性质,并在探究活动中积累了一定的合作交流的经验,培养了提出问题与解决问题的能力。同时学生通过对合比性质与等比性质的演绎证明,也进一步发展了逻辑推理能力。
二、教学任务分析
本节课依旧采用前两节在方格纸中探究的方式,引导学生得出平行线分线段成比例及其推论。平行线分线段成比例定理是研究相似形的最重要和最基本的理论,是《课程标准》图形的性质及其证明中列出的九个基本事实之一。在知识技能方面,要求学生理解并掌握平行线分线段成比例定理及其推论,并会灵活应用。学生经历运用平行线分线段成比例及其推论解决问题的过程,在观察、计算、讨论、推理等活动获取知识。让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法。进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系。
教学目标:
(一)知识目标
理解并掌握平行线分线段成比例的基本事实及其推论,并会灵活应用。
(二)能力目标
通过应用,培养识图能力和推理论证能力。
(三)情感与价值观目标
(1)、培养学生积极的思考、动手、观察的能力,使学生感悟几何知识在生活中的价值。
(2)、在进行探索的活动过程中发展学生的探索发现归纳意识并养成合作交流的习惯。
教学重点:平行线分线段成比例定理和推论及其应用。
教学难点:平行线分线段成比例定理及推论的灵活应用,平行线分线段成比例定理的变式。
三、教学过程分析
本节课设计了五个教学环节:第一环节:复习设疑,引入新课;第二环节:探索发现平行线分线段成比例定理及其推论;第三环节:平行线分线段成比例定理及其推论的简单应用;第四环节:课堂小结;第五环节:布置作业.
第一环节:复习设疑,引入新课
内容:教师提问:
(1)什么是成比例线段
(2)你能不通过测量快速将一根绳子分成两部分,使得这两部分的比是2:3
目的:(1)复习成比例线段的内容,回顾上节课通过方格纸探究成比例线段性质的过程。(2)通过一个生活中的实例激发学生探究的欲望。
效果:学生对不通过测量快速将一根绳子分成两部分,使得这两部分的比是2:3,这一问题很感兴趣,急切想要知道解决办法。
第二环节:小组活动,探究定理
1. 探究活动一:
内容:如图(1)小方格的边长都是1,直线 a ∥b∥ c ,分别交直线m,n
于 A
1,A
2
,A
3
,B
1
,B
2
,B
3
。
(1)计算
1212
2323
,A A B B A A B B 你有什么发现 (2)将b向下平移到如下图2的位置,直线m,n与直线b的交点分别为A 2,B 2 。你在问题(1)中发现的结论还成立吗如果将b平移到其他位置呢
(图2)
(3)在平面上任意作三条平行线,用它们截两条直线,截得的线段成比例吗
归纳:平行线分线段成比例定理:两条直线被一组平行线所截,所得的对应线段成比例;
目的:让学生通过观察、度量、计算、猜测、验证、推理与交流等数学活动,达到对平行线分线段成比例定理的意会、感悟。
效果:学生在以前的学习中,尤其是本章前两节的探究也是通过表格中的多边形来完成的。所以学生有种熟悉感,并不感到困难。
2.议一议:
内容:教师提问:1.如何理解“对应线段”
2.平行线分线段成比例定理的符号语言如何表示
3.“对应线段”成比例都有哪些表达形式
若a ∥b ∥ c ,则
1212
2323A A B B A A B B =。
由比例的性质还可以得到:1212
1313A A B B A A B B =
,232312
12A A B B A A B B =,2323
1313A A B B A A B B =等。
目的:让学生在探究得出结论的基础上,对平行线分线段成比例定理的有
进一步的理解。并掌握定理的符号语言,进一步发展推理能力。
效果:学生从几何直观上很容易找出“对应线段”。利用比例的性质写出
成比例线段时,感觉结论很多,老师这时可以引导总结出成比例线段的特点,那
就是都体现了“对应”二字。
2.探究活动二:
内容:如图3,直线a ∥b ∥ c ,分别交直线m,n 于 A 1,A 2,A 3,B 1,B 2,B 3 。过点A 1作直线n 的平行线,分别交直线b ,c 于点C 2,C 3。(如图4 ),图4中有哪些成比例线段
(图3) (图4)
推论:平行于三角形一边的直线与其他两边相交,截得的对应线段成比例。 目的:让学生脱离表格,不通过计算,运用平行四边形的性质推理得出平行线等分线段定理的推论。
效果:学生已经学习过特殊四边形的性质与证明,所以很容易得出A 1C 2=B 1B 2,C 2C 3=B 2B 3,进而得出推论。而且让学生归纳表述结论,可培养学生的抽象概括能力及语言表达能力。
进一步探究内容:熟悉该定理及推论的几种基本图形
A
B
D
E
F A
B C
D
E
F
A
B C
D E
A B C
D E
F
A
B
C D
E