高中文科数学导数练习题
文科求函数的导数练习题
文科求函数的导数练习题一、基本初等函数求导1. 求函数 f(x) = x^3 的导数。
2. 求函数 f(x) = 5x^2 的导数。
3. 求函数 f(x) = 3x + 7 的导数。
4. 求函数 f(x) = 1/x 的导数。
5. 求函数f(x) = √x 的导数。
二、复合函数求导6. 求函数 f(x) = (x^2 + 3x + 2)^5 的导数。
7. 求函数f(x) = √(4x^2 9) 的导数。
8. 求函数 f(x) = e^(2x 1) 的导数。
9. 求函数 f(x) = ln(3x + 1) 的导数。
10. 求函数f(x) = sin(πx) 的导数。
三、隐函数求导11. 已知 y = x^2 + 3xy + y^3,求 dy/dx。
12. 已知 x^3 + y^3 = 6xy,求 dy/dx。
13. 已知 e^x + e^y = xy,求 dy/dx。
14. 已知 sin(x + y) = ycosx,求 dy/dx。
15. 已知 lnx + ln(y 1) = x,求 dy/dx。
四、参数方程求导16. 已知参数方程 x = 2t^3,y = t^2 + 1,求 dy/dx。
17. 已知参数方程x = cosθ,y = sinθ,求 dy/dx。
18. 已知参数方程 x = e^t,y = ln(t),求 dy/dx。
19. 已知参数方程x = 3cosθ,y = 3sinθ,求 dy/dx。
20. 已知参数方程 x = t^2 + 1,y = 2t + 3,求 dy/dx。
五、高阶导数21. 求函数 f(x) = x^4 的二阶导数。
22. 求函数 f(x) = e^x 的二阶导数。
23. 求函数 f(x) = sinx 的三阶导数。
24. 求函数 f(x) = ln(x^2 + 1) 的一阶和二阶导数。
25. 求函数 f(x) = arctanx 的一阶导数。
六、分段函数求导26. 求函数 f(x) = { x^2 + 1, x < 0{ 2x 3, x ≥ 0 的导数。
高二文科数学期末复习导数练习题
导数专练答案一、选择题1.下列函数求导运算正确的个数为( )①(3x)′=3xlog 3e ;②(log 2x )′=1x ·ln 2;③(e x)′=e x ;④⎝ ⎛⎭⎪⎪⎫1ln x ′=x ;⑤(x ·e x )′=e x +1. A .1 B .2 C .3 D .4 【解析】 ①(3x)′=3xln 3;②(log 2x )′=1x ln 2;③(e x)′=e x;④⎝ ⎛⎭⎪⎪⎫1ln x ′=-1x(ln x )2=-1x ·(ln x )2;⑤(x ·e x )′=e x +x ·e x =e x(x +1),故选B.2. 曲线221y x =+在点(1,3)P -处的切线方程为()A .41y x =--B .47y x =--C .41y x =-D .47y x =+3.函数()f x 的定义域为(),a b ,导函数()f x '在(),a b 内的图像如图所示,则函数()f x 在(),a b 内有极小值点A .1个B .2个C .3个D .4个4.(2012·辽宁高考)函数y =12x 2-ln x 的单调递减区间为( )A .(-1,1]B .(0,1]C .[1,+∞)D .(0,+∞)【解析】 由题意知,函数的定义域为(0,+∞),又由y ′=x -1x ≤0,解得0<x ≤1,所以函数的单调递减区间为(0,1].【答案】 B 5.【2012高考陕西文9】设函数f (x )=2x+lnx 则 ( ) A .x=12是f(x)极大值点 B .x=12是f(x)极小值点 C .x=2是 f(x)极大值点 D .x=2是 f(x)极小值点 【解析】()22212'x f x x x x-=-+=,令()'0f x =,则2x =. 当2x <时,()f x 是单调递减的;当2x >时,()f x 是单调递增的.所以2x =是()f x 的极小值点.故选D .6. 若函数3()3f x x x a =--在区间[0,3]上的最大值、最小值分别为M 、N ,则M N -的值为( )A .2B .4C .18D .207.(山东省烟台市2014届高三3月)函数f(x)=1nx-212x 的图像大致是( )【答案】函数的定义域为{0}x x >,函数的导数微微211'()x f x x x x -=-=,由21'()0x f x x -=>得, 01x <<,即增区间为(0,1).由21'()0x f x x-=<得,1x >,即减区间为(1,)+∞,所以当1x =时,函数取得极大值,且1(1)02f =-<,所以选B.8. (临沂市2014届高三5月)曲线e x y =在点A 处的切线与直线30x y -+=平行,则点A 的坐标为(A)()11,e -- (B)()0,1 (C)()1,e (D)()0,2 【答案】B 直线30x y -+=的斜率为1,所以切线的斜率为1,因为'x y e =,所以由'1x y e ==,解得0x =,此时01y e ==,即点A 的坐标为()0,1,选B.9、[2014·辽宁卷] 当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是A .[-5,-3] B.⎣⎢⎡⎦⎥⎤-6,-98 C .[-6,-2] D .[-4,-3]10.[2014·新课标全国卷Ⅱ] 若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞) 二、填空题11. .曲线sin x y x=在点(,0)M π处的切线方程为12、已知函数223)(a bx ax x x f +++=在x=1处有极值为10,则f (2)等于____________.13.已知函数3()f x x ax =+在R 上有两个极值点,则实数a 的取值范围是14.(山东省实验中学2014届高三第二次诊断)若函数a x x x f +-=3)(3有三个不同的零点,则实数a 的取值范围是____________.【答案】(2,2)-【解析】由3()30f x x x a =-+=,得2'()33f x x =-,当2'()330f x x =-=,得1x =±,由图象可知(1)=2(1)=2f a f a -+-极大值极小值,,要使函数a x x x f +-=3)(3有三个不同的零点,则有(1)=20,(1)=20f a f a -+>-<极大值极小值,即22a -<<,所以实数a 的取值范围是(2,2)-.15.(山东省泰安市2014届高三上学期期末)已知函数()f x 的定义域为[]1,5-,部分对应值如下表,()f x 的导函数()y f x '=的图像如图所示若函数()y f x a =-有4个零点,则a 的取值范围为__________. 【答案】[1,2)【解析】由导数图象可知,当10x -<<或24x <<时,'()0f x >,函数递增.当02x <<或45x <<时,'()0f x <,函数递减.所以在2x =处,函数取得极小值.由()0y f x a =-=得()f x a =.由图象可知,要使函数()y f x a =-有4个零点,由图象可知12a ≤<,所以a 的取值范围为12a ≤<,即[1,2). 三、解答题16.[2014·重庆卷] 已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值; (2)求函数f (x )的单调区间与极值.解:(1)对f (x )求导得f ′(x )=14-a x 2-1x,由f (x )在点(1,f (1))处的切线垂直于直线y =12x 知f ′(1)=-34-a =-2,解得a =54.(2)由(1)知f (x )=x 4+54x -ln x -32,则f ′(x )=x 2-4x -54x 2.令f ′(x )=0,解得x =-1或x =5.因为x =-1不在f (x )的定义域(0,+∞)内,故舍去.当x ∈(0,5)时,f ′(x )<0,故f (x )在(0,5)上为减函数;当x ∈(5,+∞)时,f ′(x )>0,故f (x )在(5,+∞)上为增函数.由此知函数f (x )在x =5时取得极小值f (5)=-ln 5.17、[2014·福建卷] 已知函数f (x )=e x -ax (a 为常数)的图像与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值; (2)证明:当x >0时,x 2<e x ; 解: (1)由f (x )=e x -ax ,得f ′(x )=e x -a .又f ′(0)=1-a =-1,得a =2.所以f (x )=e x -2x ,f ′(x )=e x -2. 令f ′(x )=0,得x =ln 2.当x <ln 2时,f ′(x )<0,f (x )单调递减;当x >ln 2时,f ′(x )>0,f (x )单调递增.所以当x =ln 2时,f (x )有极小值,且极小值为f (ln 2)=e ln 2-2ln 2=2-ln 4,f (x )无极大值.(2)证明:令g (x )=e x -x 2,则g ′(x )=e x -2x .由(1)得,g ′(x )=f (x )≥f (ln 2)=2-ln 4>0,即g ′(x )>0.所以g (x )在R 上单调递增,又g (0)=1>0,所以当x >0时,g (x )>g (0)>0,即x 2<e x .18.(【解析】山东省济南市2013届高三上学期期末考试文科数学)已知函数()()12ln 2(0)f x a x ax a x=-++≤. (1)当0a =时,求()f x 的极值; (2)当0a <时,讨论()f x 的单调性;【答案】解:(1)当0a =时,()()22121212ln ,(0).x f x x f x x xxx x -'=+=-=> 由()2210x f x x -'=>,解得12x > ∴()f x 在10,2⎛⎫ ⎪⎝⎭上是减函数,在1,2⎛⎫+∞ ⎪⎝⎭上是增函数∴()f x 的极小值为122ln 22f ⎛⎫=- ⎪⎝⎭,无极大值(2)()()()()2222221121212(0)ax a x ax x a f x a x x x x x +--+--'=-+==>①当20a -<<时,()f x 在10,2⎛⎫ ⎪⎝⎭和1,a ⎛⎫-+∞ ⎪⎝⎭上是减函数,在11,2a ⎛⎫- ⎪⎝⎭上是增函数;②当2a =-时,()f x 在()0,+∞上是减函数;③当2a <-时,()f x 在1,2⎛⎫+∞ ⎪⎝⎭和10,a ⎛⎫- ⎪⎝⎭上是减函数,在11,2a ⎛⎫- ⎪⎝⎭上是增函数19.(【解析】山东省实验中学2013届高三第一次诊断性测试数学(文)试题)已知2()1,f x x ax nx a R =+-∈.(1)若a=0时,求函数()y f x =在点(1,()f x )处的切线方程; (2)若函数()f x 在[1,2]上是减函数,求实数a 的取值范围;(3)令2()(),g x f x x =-是否存在实数a,当(0,](x e e ∈是自然对数的底)时,函数()g x 的最小值是3,若存在,求出a 的值;若不存在,说明理由.20.(【解析】山东省济宁市2013届高三第一次模拟考试文科数学 )已知函数a f (x )ln x x=-.(I)若a >0,试判断f (x )在定义域内的单调性; (Ⅱ)若f (x )在[1,e]上的最小值为32,求a 的值; (III)若2f (x )x <在(1,+∞)上恒成立,求a 的取值范围 【答案】解 (I)由题意知f (x )的定义域为(0,+∞), 且f ′(x )=1x +a x 2=x +a x2∵a >0,∴f ′(x )>0,故f (x )在(0,+∞)上是单调递增函数(II)由(I)可知,f ′(x )=x +ax2.①若a ≥-1,则x +a ≥0,即f ′(x )≥0在[1,e]上恒成立, 此时f (x )在[1,e]上为增函数, ∴f (x )min =f (1)=-a =32,∴a =-32(舍去)②若a ≤-e,则x +a ≤0,即f ′(x )≤0在[1,e]上恒成立, 此时f (x )在[1,e]上为减函数, ∴f (x )min =f (e)=1-a e =32,∴a =-e2(舍去)③若-e<a <-1,令f ′(x )=0得x =-a ,当1<x <-a 时,f ′(x )<0,∴f (x )在(1,-a )上为减函数; 当-a <x <e 时,f ′(x )>0,∴f (x )在(-a ,e)上为增函数, ∴f (x )min =f (-a )=ln(-a )+1=32,∴a =-e .综上所述,a =-e(Ⅲ)∵f (x )<x 2,∴ln x -a x<x 2.又x >0,∴a >x ln x -x 3令g (x )=x ln x -x 3,h (x )=g ′(x )=1+ln x -3x 2, h ′(x )=1x -6x =1-6x 2x.∵x ∈(1,+∞)时,h ′(x )<0, ∴h (x )在(1,+∞)上是减函数. ∴h (x )<h (1)=-2<0,即g ′(x )<0, ∴g (x )在(1,+∞)上也是减函数. g (x )<g (1)=-1,∴当a ≥-1时,f (x )<x 2在(1,+∞)上恒成立21. (14分)(2014·淄博模拟)已知f(x)=ax -ln x ,a ∈R. (1)当a =2时,求曲线f(x)在点(1,f(1))处的切线方程; (2)若f(x)在x =1处有极值,求f(x)的单调递增区间; (3)是否存在实数a ,使f(x)在区间(0,e]的最小值是3?若存在,求出a 的值;若不存在,请说明理由.(1)由已知得f(x)的定义域为(0,+∞),∵f(x)=ax -ln x ,∴f ′(x)=a -1x ,当a =2时, f(x)=2x -ln x ,∴f(1)=2, ∵f ′(x)=2-1x ,∴f ′(1)=2-11=1 .(2分)∴曲线f(x)在点(1,f(1))处的切线方程为y -2=f ′(1)(x -1),即 x -y +1=0.(4分)(2)∵f(x)在x =1处有极值,∴f ′(1)=0,由(1)知 f ′(1)=a -1,∴a =1,经检验,a =1时f(x)在x =1处有极值.(6分)∴f(x)=x -ln x ,令f ′(x)=1-1x >0,解得x >1或x <0; ∵f(x)的定义域为(0,+∞),∴f ′(x)>0的解集为(1,+∞),即f(x)的单调递增区间为(1,+∞).(8分)(3)假设存在实数a ,使f(x)=ax -ln x(x ∈(0,e])有最小值3, ①当a ≤0时,∵x ∈(0,e],∴f ′(x)<0,∴f(x)在(0,e]上单调递减, f(x)min =f(e)=ae -1=3,解得a =4e(舍去).(10分)②当0<1a <e 时,f(x)在⎝ ⎛⎭⎪⎫0,1a 上单调递减,在⎝ ⎛⎦⎥⎤1a ,e 上单调递增, f(x)min =f ⎝ ⎛⎭⎪⎫1a =1+ln a =3,解得a =e 2,满足条件.(12分)③当1a ≥e 时,∵x ∈(0,e],∴f ′(x)<0,∴ f(x)在(0,e]上单调递减, f(x)min =f(e)=ae -1=3,解得a =4e(舍去).综上,存在实数a =e 2,使得当x ∈(0,e]时,f(x)有最小值3.(14分)。
高三数学:2024届高考数学导数大题精选30题(解析版)(共31页)
2024届新高考数学导数大题精选30题1(2024·安徽·二模)已知函数f (x )=x 2-10x +3f (1)ln x .(1)求函数f (x )在点(1,f (1))处的切线方程;(2)求f (x )的单调区间和极值.【答案】(1)y =4x -13;(2)递增区间为(0,2),(3,+∞),递减区间为2,3 ,极大值-16+12ln2,极小值-21+12ln3.【分析】(1)求出函数f (x )的导数,赋值求得f (1),再利用导数的几何意义求出切线方程.(2)由(1)的信息,求出函数f (x )的导数,利用导数求出单调区间及极值.【详解】(1)函数f (x )=x 2-10x +3f (1)ln x ,求导得f(x )=2x -10+3f (1)x,则f (1)=-8+3f (1),解得f (1)=4,于是f (x )=x 2-10x +12ln x ,f (1)=-9,所以所求切线方程为:y +9=4(x -1),即y =4x -13.(2)由(1)知,函数f (x )=x 2-10x +12ln x ,定义域为(0,+∞),求导得f (x )=2x -10+12x =2(x -2)(x -3)x,当0<x <2或x >3时,f (x )>0,当2<x <3时,f (x )<0,因此函数f (x )在(0,2),(3,+∞)上单调递增,在(2,3)上单调递减,当x =2时,f (x )取得极大值f (2)=-16+12ln2,当x =3时,f (x )取得极小值f (3)=-21+12ln3,所以函数f (x )的递增区间为(0,2),(3,+∞),递减区间为(2,3),极大值-16+12ln2,极小值-21+12ln3.2(2024·江苏南京·二模)已知函数f (x )=x 2-ax +ae x,其中a ∈R .(1)当a =0时,求曲线y =f (x )在(1,f (1))处的切线方程;(2)当a >0时,若f (x )在区间[0,a ]上的最小值为1e,求a 的值.【答案】(1)x -ey =0(2)a =1【分析】(1)由a =0,分别求出f (1)及f (1),即可写出切线方程;(2)计算出f (x ),令f (x )=0,解得x =2或x =a ,分类讨论a 的范围,得出f (x )的单调性,由f (x )在区间[0,a ]上的最小值为1e,列出方程求解即可.【详解】(1)当a =0时,f (x )=x 2e x ,则f (1)=1e ,f (x )=2x -x 2ex,所以f (1)=1e ,所以曲线y =f (x )在(1,f (1))处的切线方程为:y -1e =1e(x -1),即x -ey =0.(2)f(x )=-x 2+(a +2)x -2a e x =-(x -2)(x -a )ex,令f (x )=0,解得x =2或x =a ,当0<a <2时,x ∈[0,a ]时,f (x )≤0,则f (x )在[0,a ]上单调递减,所以f (x )min =f (a )=a ea =1e ,则a =1,符合题意;当a >2时,x ∈[0,2]时,f (x )≤0,则f (x )在[0,2]上单调递减,x ∈(2,a ]时,f (x )>0,则f (x )在(2,a ]上单调递增,所以f (x )min =f (2)=4-a e2=1e ,则a =4-e <2,不合题意;当a =2时,x ∈[0,2]时,f (x )≤0,则f (x )在[0,2]上单调递减,所以f (x )min =f (2)==2e 2≠1e ,不合题意;综上,a =1.3(2024·浙江绍兴·模拟预测)已知f x =ae x -x ,g x =cos x . (1)讨论f x 的单调性.(2)若∃x 0使得f x 0 =g x 0 ,求参数a 的取值范围.【答案】(1)当a ≤0时,f x 在-∞,+∞ 上单调递减;当a >0时,f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.(2)-∞,1【分析】(1)对f x =ae x -x 求导数,然后分类讨论即可;(2)直接对a >1和a ≤1分类讨论,即可得到结果.【详解】(1)由f x =ae x -x ,知f x =ae x -1.当a ≤0时,有f x =ae x -1≤0-1=-1<0,所以f x 在-∞,+∞ 上单调递减;当a >0时,对x <-ln a 有f x =ae x -1<ae -ln a -1=1-1=0,对x >-ln a 有f x =ae x -1>ae -ln a -1=1-1=0,所以f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.综上,当a ≤0时,f x 在-∞,+∞ 上单调递减;当a >0时,f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.(2)当a >1时,由(1)的结论,知f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增,所以对任意的x 都有f x ≥f -ln a =ae -ln a +ln a =1+ln a >1+ln1=1≥cos x =g x ,故f x >g x 恒成立,这表明此时条件不满足;当a ≤1时,设h x =ae x -x -cos x ,由于h -a -1 =ae -a -1+a +1-cos -a -1 ≥ae-a -1+a ≥-a e-a -1+a =a 1-e-a -1≥a 1-e 0=0,h 0 =ae 0-0-cos0=a -1≤0,故由零点存在定理,知一定存在x 0∈-a -1,0 ,使得h x 0 =0,故f x 0 -g x 0 =ae x 0-x 0-cos x 0=h x 0 =0,从而f x 0 =g x 0 ,这表明此时条件满足.综上,a 的取值范围是-∞,1 .4(2024·福建漳州·一模)已知函数f x =a ln x -x +a ,a ∈R 且a ≠0.(1)证明:曲线y =f x 在点1,f 1 处的切线方程过坐标原点.(2)讨论函数f x 的单调性.【答案】(1)证明见解析(2)答案见解析【分析】(1)先利用导数的几何意义求得f x 在1,f 1 处的切线方程,从而得证;(2)分类讨论a <0与a >0,利用导数与函数的单调性即可得解.【详解】(1)因为f x =a ln x -x +a x >0 ,所以f (x )=a x -1=a -xx,则f (1)=a ln1-1+a =a -1,f (1)=a -1,所以f x 在1,f 1 处的切线方程为:y -(a -1)=(a -1)(x -1),当x =0时,y -(a -1)=(a -1)(0-1)=-(a -1),故y =0,所以曲线y =f (x )在点1,f 1 处切线的方程过坐标原点.(2)由(1)得f (x )=ax -1=a -xx,当a<0时,a-x<0,则f x <0,故f(x)单调递减;当a>0时,令f (x)=0则x=a,当0<x<a时,f (x)>0,f(x)单调递增;当x>a时,f (x)<0,f(x)单调递减;综上:当a<0时,f(x)在(0,+∞)上单调递减;当a>0时,f(x)在(0,a)上单调递增,在(a,+∞)上单调递减.5(2024·山东·二模)已知函数f x =a2xe x-x-ln x.(1)当a=1e时,求f x 的单调区间;(2)当a>0时,f x ≥2-a,求a的取值范围.【答案】(1)f x 的减区间为0,1,增区间为1,+∞(2)a≥1【分析】(1)当a=1e时,f x =xe x-1-x-ln x,x>0,求导得f x =x+1xxe x-1-1,令g x =xe x-1-1,求g x 确定g x 的单调性与取值,从而确定f x 的零点,得函数的单调区间;(2)求f x ,确定函数的单调性,从而确定函数f x 的最值,即可得a的取值范围.【详解】(1)当a=1e时,f x =xe x-1-x-ln x,x>0,则f x =x+1e x-1-1-1x=x+1xxe x-1-1,设g x =xe x-1-1,则g x =x+1e x-1>0恒成立,又g1 =e0-1=0,所以当x∈0,1时,f x <0,f x 单调递减,当x∈1,+∞时,f x >0,f x 单调递增,所以f x 的减区间为0,1,增区间为1,+∞;(2)f x =a2x+1e x-1-1x=x+1xa2xe x-1,设h x =a2xe x-1,则h x =a2x+1e x>0,所以h x 在0,+∞上单调递增,又h0 =-1<0,h1a2=e1a2-1>0,所以存在x0∈0,1 a2,使得h x0 =0,即a2x0e x0-1=0,当x∈0,x0时,f x <0,f x 单调递减,当x∈x0,+∞时,f x >0,f x 单调递增,当x=x0时,f x 取得极小值,也是最小值,所以f x ≥f x0=a2x0e x0-x0-ln x0=1-ln x0e x0=1+2ln a,所以1+2ln a≥2-a,即a+2ln a-1≥0,设F a =a+2ln a-1,易知F a 单调递增,且F1 =0,所以F a ≥F1 ,解得a≥1,综上,a≥1.6(2024·山东·一模)已知函数f(x)=ln x+12a(x-1)2.(1)当a=-12时,求函数f(x)的单调区间;(2)若函数g(x)=f(x)-2x+1有两个极值点x1,x2,且g(x1)+g(x2)≥-1-32a,求a的取值范围.【答案】(1)增区间(0,2),减区间(2,+∞)(2)[1,+∞)【分析】(1)将a=-12代入求导,然后确定单调性即可;(2)求导,根据导函数有两个根写出韦达定理,代入g(x1)+g(x2)≥-1-32a,构造函数,求导,研究函数性质进而求出a的取值范围.【详解】(1)当a=-12时,f(x)=ln x-14(x-1)2,x>0,则f (x)=1x-12(x-1)=-(x-2)(x+1)2x,当x∈(0,2),f (x)>0,f(x)单调递增,当x∈(2,+∞),f (x)<0,f(x)单调递减,所以f(x)的单调递增区间是(0,2),单调递减区间是(2,+∞);(2)g(x)=f(x)-2x+1=ln x+12a(x-1)2-2x+1,所以g (x)=1x+a(x-1)-2=ax2-(a+2)x+1x,设φ(x)=ax2-(a+2)x+1,令φ(x)=0,由于g(x)有两个极值点x1,x2,所以Δ=(a+2)2-4a=a2+4>0x1+x2=a+2a>0x1x2=1a>0,解得a>0.由x1+x2=a+2a,x1x2=1a,得g x1+g x2=ln x1+12a x1-12-2x1+1+ln x2+12a x2-12-2x2+1=ln x1x2+12a x1+x22-2x1x2-2x1+x2+2-2x1+x2+2=ln1a +12a a+2a2-2a-2⋅a+2a+2-2⋅a+2a+2=ln1a +a2-2a-1≥-1-32a,即ln a-12a-1a≤0,令m(a)=ln a-12a-1a,则m (a)=1a-12-12a2=-(a-1)22a2≤0,所以m(a)在(0,+∞)上单调递减,且m(1)=0,所以a≥1,故a的取值范围是[1,+∞).7(2024·湖北·二模)求解下列问题,(1)若kx-1≥ln x恒成立,求实数k的最小值;(2)已知a,b为正实数,x∈0,1,求函数g x =ax+1-xb-a x⋅b1-x的极值.【答案】(1)1(2)答案见解析【分析】(1)求导,然后分k≤0和k>0讨论,确定单调性,进而得最值;(2)先发现g0 =g1 =0,当a=b时,g x =0,当0<x<1,a≠b时,取ab=t,L x =tx+1-x-t x,求导,研究单调性,进而求出最值得答案.【详解】(1)记f x =kx-1-ln x x>0,则需使f x ≥0恒成立,∴f x =k-1xx>0,当k≤0时,f x <0恒成立,则f x 在(0,+∞)上单调递减,且在x>1时,f x <0,不符合题意,舍去;当k >0时.令f x =0,解得x =1k,则f x 在0,1k 上单调递减,在1k ,+∞ 上单调递增,所以f x min =f 1k =-ln 1k=ln k ,要使kx -1≥ln x 恒成立,只要ln k ≥0即可,解得k ≥1,所以k 的最小值为1;(2)g (x )=ax +(1-x )b -a x ⋅b 1-x ,x ∈[0,1],a >0,b >0,易知g 0 =g 1 =0,当a =b 时,g x =ax +a -ax -a =0,此时函数无极值;当0<x <1,a ≠b 时,g (x )=ax +(1-x )b -b ⋅a b x =b a b x +1-x -a b x,取ab=t ,t >0,t ≠1,L x =tx +1-x -t x ,t >0,t ≠1,x ∈0,1 ,则L x =t -1-t x ln t ,当t >1时,由L x ≥0得x ≤ln t -1ln tln t,由(1)知t -1≥ln t ,当t >1时,t -1ln t>1,因为x -1≥ln x ,所以1x -1≥ln 1x ,所以ln x ≥1-1x ,即x >0,当t >1时,ln t >1-1t,所以t >t -1ln t ,则ln t >ln t -1ln t >0,所以ln t -1ln tln t<1,即L x 在0,ln t -1ln t ln t 上单调递增,在ln t -1ln tln t,1单调递减.所以函数g x 极大=gln t -1lntln t,t =ab,a ≠b ,当0<t <1时,同理有ln t -1lntln t∈0,1 ,由Lx ≥0得x ≤ln t -1lntln t,即(x )在0,ln t -1lntln t上单调递增,在ln t -1lntln t,1上单调递减.所以函数g x 极大=gln t -1lntln t,t =a b,a ≠b ,综上可知,当a =b 时,函数g x 没有极值;当a ≠b 时,函数g x 有唯一的极大值g ln t -1lntln t,其中t =ab,没有极小值.【点睛】关键点点睛:取ab=t ,将两个参数的问题转化为一个参数的问题,进而求导解答问题.8(2024·湖北武汉·模拟预测)函数f (x )=tan x +sin x -92x ,-π2<x <π2,g (x )=sin n x -x n cos x ,x ∈0,π2,n ∈N +.(1)求函数f (x )的极值;(2)若g (x )>0恒成立,求n 的最大值.【答案】(1)极小值为f π3 =3(3-π)2,极大值为f -π3 =3(π-3)2;(2)3.【分析】(1)判断函数f (x )为奇函数,利用导数求出f (x )在区间0,π2上的极值,利用奇偶性即可求得定义域上的极值.(2)利用导数证明当n =1时,g (x )>0恒成立,当n >1时,等价变形不等式并构造函数F (x )=x -sin x cos 1nx,0<x <π2,利用导数并按导数为负为正确定n 的取值范围,进而确定不等式恒成立与否得解.【详解】(1)函数f (x )=tan x +sin x -92x ,-π2<x <π2,f (-x )=tan (-x )+sin (-x )-92(-x )=-f (x ),即函数f (x )为奇函数,其图象关于原点对称,当0<x <π2时,f (x )=sin x cos x +sin x -92x ,求导得:f(x )=1cos 2x +cos x -92=2cos 3x -9cos 2x +22cos 2x =(2cos x -1)(cos x -2-6)(cos x -2+6)2cos 2x,由于cos x ∈(0,1),由f (x )>0,得0<cos x <12,解得π3<x <π2,由f (x )<0,得12<cos x <1,解得0<x <π3,即f (x )在0,π3 上单调递减,在π3,π2上单调递增,因此函数f (x )在0,π2 上有极小值f π3 =3(3-π)2,从而f (x )在-π2,π2 上的极小值为f π3 =3(3-π)2,极大值为f -π3 =3(π-3)2.(2)当n =1时,g (x )>0恒成立,即sin x -x cos x >0恒成立,亦即tan x >x 恒成立,令h (x )=tan x -x ,x ∈0,π2 ,求导得h (x )=1cos 2x -1=1-cos 2x cos 2x=tan 2x >0,则函数h (x )在0,π2上为增函数,有h (x )>h (0)=0,因此tan x -x >0恒成立;当n >1时,g (x )>0恒成立,即不等式sin xn cos x>x 恒成立,令F (x )=x -sin x cos 1n x ,0<x <π2,求导得:F (x )=1-cos x ⋅cos 1nx -1n⋅cos1n-1x ⋅(-sin x )⋅sin xcos 2nx=1-cos1+n nx +1n⋅sin 2x ⋅cos1-n nxcos 2nx=1-cos 2x +1n ⋅sin 2xcos n +1nx =cosn +1nx -cos 2x -1n (1-cos 2x )cos n +1nx =cosn +1nx -1n -n -1ncos 2x cosn +1nx令G (x )=cos n +1nx -1n -n -1n cos 2x ,求导得则G (x )=n +1n cos 1nx ⋅(-sin x )-n -1n⋅2cos x ⋅(-sin x )=sin x n (2n -2)cos x -(n +1)cos 1n x =2n -2n ⋅sin x cos x -n +12n -2cos 1n x=2n -2n ⋅sin x ⋅cos 1n x cos n -1n x -n +12n -2,由n >1,x ∈0,π2 ,得2n -2n⋅sin x ⋅cos 1nx >0,当n +12n -2≥1时,即n ≤3时,G (x )<0,则函数G (x )在0,π2上单调递减,则有G (x )<G (0)=0,即F (x )<0,因此函数F (x )在0,π2 上单调递减,有F (x )<F (0)=0,即g (x )>0,当n +12n -2<1时,即n >3时,存在一个x 0∈0,π2 ,使得cos n -1n x 0=n +12n -2,且当x ∈(0,x 0)时,G (x )>0,即G (x )在(0,x 0)上单调递增,且G (x )>G (0)=0,则F (x )>0,于是F (x )在(0,x 0)上单调递增,因此F (x )>F (0)=0,即sin xn cos x<x ,与g (x )>0矛盾,所以n 的最大值为3.【点睛】方法点睛:对于利用导数研究不等式的恒成立与有解问题的求解策略:①通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;②利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.③根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.9(2024·湖北·模拟预测)已知函数f x =ax 2-x +ln x +1 ,a ∈R ,(1)若对定义域内任意非零实数x 1,x 2,均有f x 1 f x 2x 1x 2>0,求a ;(2)记t n =1+12+⋅⋅⋅+1n ,证明:t n -56<ln n +1 <t n .【答案】(1)a =12(2)证明见解析【分析】(1)求导可得f 0 =0,再分a ≤0与a >0两种情况分析原函数的单调性,当a >0时分析极值点的正负与原函数的正负区间,从而确定a 的值;(2)由(1)问的结论可知,1n -12n2<ln 1n +1 <1n ,再累加结合放缩方法证明即可.【详解】(1)f x 的定义域为-1,+∞ ,且f 0 =0;f x =2ax -1+1x +1=2ax -x x +1=x 2a -1x +1,因此f 0 =0;i.a ≤0时,2a -1x +1<0,则此时令f x >0有x ∈-1,0 ,令f x <0有x ∈0,+∞ ,则f x 在-1,0 上单调递增,0,+∞ 上单调递减,又f 0 =0,于是f x ≤0,此时令x 1x 2<0,有f x 1 f x 2x 1x 2<0,不符合题意;ii .a >0时,f x 有零点0和x 0=12a-1,若x 0<0,即a >12,此时令f x <0有x ∈x 0,0 ,f x 在x 0,0 上单调递减,又f 0 =0,则f x 0 >0,令x 1>0,x 2=x 0,有f x 1 f x 2x 1x 2<0,不符合题意;若x 0>0,即0<a <12,此时令f x <0有x ∈0,x 0 ,f x 在0,x 0 上单调递减,又f 0 =0,则f x 0 <0,令-1<x 1<0,x 2=x 0,有f x 1 f x 2x 1x 2<0,不符合题意;若x 0=0,即a =12,此时fx =x 2x +1>0,f x 在-1,+∞ 上单调递增,又f 0 =0,则x >0时f x >0,x <0时f x <0;则x ≠0时f x x >0,也即对x 1x 2≠0,f x 1 f x 2x 1x 2>0,综上,a =12(2)证:由(1)问的结论可知,a =0时,f x =-x +ln x +1 ≤0;且a =12时x >0,f x =12x 2-x +ln x +1 >0;则x>0时,x-12x2<ln x+1<x,令x=1n,有1n-12n2<ln1n+1<1n,即1n-12n2<ln n+1-ln n<1n,于是1n-1-12n-12<ln n-ln n-1<1n-11-12<ln2<1将上述n个式子相加,t n-121+122+⋅⋅⋅+1n2<ln n+1<t n;欲证t n-56<ln n+1<t n,只需证t n-56<t n-121+122+⋅⋅⋅+1n2,只需证1+122+⋅⋅⋅+1n2<53;因为1n2=44n2<44n2-1=212n-1-12n+1,所以1+122+⋅⋅⋅+1n2<1+213-15+15-17+⋅⋅⋅+12n-1-12n+1=53-22n+1<53,得证:于是得证t n-56<ln n+1<t n.【点睛】方法点睛:(1)此题考导数与函数的综合应用,找到合适的分类标准,设极值点,并确定函数正负区间是解此题的关键;(2)对累加结构的不等式证明,一般需要应用前问的结论,取特定参数值,得出不等式累加证明,遇到不能累加的数列结构,需要进行放缩证明.10(2024·湖南·一模)已知函数f x =sin x-ax⋅cos x,a∈R.(1)当a=1时,求函数f x 在x=π2处的切线方程;(2)x∈0,π2时;(ⅰ)若f x +sin2x>0,求a的取值范围;(ⅱ)证明:sin2x⋅tan x>x3.【答案】(1)πx-2y+2-π22=0.(2)(ⅰ)a≤3(ⅱ)证明见解析【分析】(1)令a=1时,利用导数的几何意义求出斜率,进行计算求出切线方程即可.(2)(ⅰ)设g(x)=2sin x+tan x-ax,x∈0,π2,由g x >0得a≤3,再证明此时满足g x >0.(ⅱ)根据(ⅰ)结论判断出F x =sin2x⋅tan x-x3在0,π2上单调递增,∴F(x)>F(0)=0,即sin2x tan x >x3.【详解】(1)当a=1时,f(x)=sin x-x⋅cos x,f (x)=cos x-(cos x-x⋅sin x)=x⋅sin x,fπ2=π2,fπ2=1.所以切线方程为:y-1=π2x-π2,即πx-2y+2-π22=0.(2)(ⅰ)f(x)+sin2x=sin x-ax⋅cos x+sin2x>0,即tan x-ax+2sin x>0,x∈0,π2,设g(x)=2sin x+tan x-ax,x∈0,π2,g (x )=2cos x +1cos 2x -a =1cos 2x(2cos 3x -a cos 2x +1).又∵g (0)=0,g (0)=3-a ,∴g (0)=3-a ≥0是g (x )>0的一个必要条件,即a ≤3.下证a ≤3时,满足g (x )=2sin x +tan x -ax >0,x ∈0,π2,又g (x )≥1cos 2x(2cos 3x -3cos 2x +1),设(t )=2t 3-3t 2+1,t ∈(0,1),h (t )=6t 2-6t =6t (t -1)<0,h (t )在(0,1)上单调递减,所以h (t )>h (1)=0,又x ∈0,π2 ,cos x ∈(0,1),∴g (x )>0,即g (x )在0,π2 单调递增.∴x ∈0,π2时,g (x )>g (0)=0;下面证明a >3时不满足g (x )=2sin x +tan x -ax >0,x ∈0,π2,,g (x )=2cos x +1cos 2x-a ,令h (x )=g (x )=2cos x +1cos 2x -a ,则h (x )=-2sin x +2sin x cos 3x =2sin x 1cos 3x-1,∵x ∈0,π2 ,∴sin x >0,1cos 3x-1>0,∴h (x )>0,∴h (x )=g (x )在0,π2为增函数,令x 0满足x 0∈0,π2,cos x 0=1a ,则g x 0 =2cos x 0+1cos 2x 0-a =2cos x 0+a -a >0,又g (0)=3-a <0,∴∃x 1∈0,x 0 ,使得g x 1 =0,当x ∈0,x 1 时,g (x )<g x 1 =0,∴此时g (x )在0,x 1 为减函数,∴当x ∈0,x 1 时,g (x )<g (0)=0,∴a >3时,不满足g (x )≥0恒成立.综上a ≤3.(ⅱ)设F (x )=sin 2x ⋅tan x -x 3,x ∈0,π2 ,F (x )=2sin x ⋅cos x ⋅tan x +sin 2x ⋅1cos 2x-3x 2=2sin 2x +tan 2x -3x 2=2(sin x -x )2+(tan x -x )2+2(2sin x +tan x )x -2x 2-x 2-3x 2.由(ⅰ)知2sin x +tan x >3x ,∴F (x )>0+0+2x ⋅3x -6x 2=0,,F x 在0,π2上单调递增,∴F (x )>F (0)=0,即sin 2x tan x >x 3.【点睛】关键点点睛:本题考查导数,解题关键是进行必要性探路,然后证明充分性,得到所要求的参数范围即可.11(2024·全国·模拟预测)已知函数f (x )=ln (1+x )-11+x.(1)求曲线y =f (x )在(0,f (0))处的切线方程;(2)若x ∈(-1,π),讨论曲线y =f (x )与曲线y =-2cos x 的交点个数.【答案】(1)y =32x -1;(2)2.【分析】(1)求导,即可根据点斜式求解方程,(2)求导,分类讨论求解函数的单调性,结合零点存在性定理,即可根据函数的单调性,结合最值求解.【详解】(1)依题意,f x =11+x +121+x 32,故f 0 =32,而f 0 =-1,故所求切线方程为y +1=32x ,即y =32x -1.(2)令ln 1+x -11+x =-2cos x ,故ln 1+x +2cos x -11+x=0,令g x =ln 1+x +2cos x -11+x ,g x =11+x -2sin x +121+x -32,令h x =g x =11+x -2sin x +121+x -32,hx =-11+x2-2cos x -341+x -52.①当x ∈-1,π2时,cos x ≥0,1+x 2>0,1+x-52>0,∴h x <0,∴h x 在-1,π2上为减函数,即gx 在-1,π2 上为减函数,又g 0 =1+12>0,g1 =12-2sin1+12⋅2-32<12-2⋅sin1+12<1-2×12=0,∴g x 在0,1 上有唯一的零点,设为x 0,即g x 0 =00<x 0<1 .∴g x 在-1,x 0 上为增函数,在x 0,π2上为减函数.又g 0 =2-1>0,g -π4 =ln 1-π4 +2cos -π4 -11-π4=ln 1-π4+2-11-π4<0,g π2=ln 1+π2 -11+π2>0,∴g x 在-1,x 0 上有且只有一个零点,在x 0,π2上无零点;②当x ∈π2,5π6 时,g x <11+x -1+121+x-32<0,g x 单调递减,又g π2 >0,g 5π6 =ln 1+5π6 -3-1+5π6-12<ln4-3<0,∴g x 在π2,5π6内恰有一零点;③当x ∈5π6,π 时,hx =-11+x2-2cos x -341+x -52为增函数,∴hx =h 5π6 =-11+5π62+1-34⋅1+5π6-52>0,∴g x 单调递增,又g π >0,g 5π6 <0,所以存在唯一x 0∈5π6,π ,g x 0 =0,当x ∈5π6,x 0 时,g x <0,g x 递减;当x ∈x 0,π 时,g x >0,g x 递增,g x ≤max g 5π6 ,g π <0,∴g x 在5π6,π内无零点.综上所述,曲线y =f x 与曲线y =-2cos x 的交点个数为2.【点睛】方法点睛:本题考查了导数的综合运用,求某点处的切线方程较为简单,利用导数求单调性时,如果求导后的正负不容易辨别,往往可以将导函数的一部分抽离出来,构造新的函数,利用导数研究其单调性,进而可判断原函数的单调性.在证明不等式时,常采用两种思路:求直接求最值和等价转化.无论是那种方式,都要敢于构造函数,构造有效的函数往往是解题的关键.12(2024·广东佛山·二模)已知f x =-12e 2x +4e x -ax -5.(1)当a =3时,求f x 的单调区间;(2)若f x 有两个极值点x 1,x 2,证明:f x 1 +f x 2 +x 1+x 2<0.【答案】(1)答案见解析(2)证明见解析【分析】(1)求导后,借助导数的正负即可得原函数的单调性;(2)借助换元法,令t =e x ,t 1=e x 1,t 2=e x 2,可得t 1、t 2是方程t 2-4t +a =0的两个正根,借助韦达定理可得t 1+t 2=4,t 1t 2=a ,即可用t 1、t 2表示f x 1 +f x 2 +x 1+x 2,进而用a 表示f x 1 +f x 2 +x 1+x 2,构造相关函数后借助导数研究其最大值即可得.【详解】(1)当a =3时,f x =-12e 2x +4e x -3x -5,f x =-e 2x +4e x -3=-e x -1 e x -3 ,则当e x ∈0,1 ∪3,+∞ ,即x ∈-∞,0 ∪ln3,+∞ 时,f x <0,当e x ∈1,3 ,即x ∈0,ln3 时,f x >0,故f x 的单调递减区间为-∞,0 、ln3,+∞ ,单调递增区间为0,ln3 ;(2)f x =-e 2x +4e x -a ,令t =e x ,即f x =-t 2+4t -a ,令t 1=e x 1,t 2=e x 2,则t 1、t 2是方程t 2-4t +a =0的两个正根,则Δ=-4 2-4a =16-4a >0,即a <4,有t 1+t 2=4,t 1t 2=a >0,即0<a <4,则f x 1 +f x 2 +x 1+x 2=-12e 2x 1+4e x 1-ax 1-5-12e 2x2+4e x 2-ax 2-5+x 1+x 2=-12t 21+t 22 +4t 1+t 2 -a -1 ln t 1+ln t 2 -10=-12t 1+t 2 2-2t 1t 2 +4t 1+t 2 -a -1 ln t 1t 2-10=-1216-2a +16-a -1 ln a -10=a -a -1 ln a -2,要证f x 1 +f x 2 +x 1+x 2<0,即证a -a -1 ln a -2<00<a <4 ,令g x =x -x -1 ln x -20<x <4 ,则g x =1-ln x +x -1x =1x-ln x ,令h x =1x -ln x 0<x <4 ,则h x =-1x 2-1x <0,则g x 在0,4 上单调递减,又g 1 =11-ln1=1,g 2 =12-ln2<0,故存在x 0∈1,2 ,使g x 0 =1x 0-ln x 0=0,即1x 0=ln x 0,则当x ∈0,x 0 时,g x >0,当x ∈x 0,4 时,g x <0,故g x 在0,x 0 上单调递增,g x 在x 0,4 上单调递减,则g x ≤g x 0 =x 0-x 0-1 ln x 0-2=x 0-x 0-1 ×1x 0-2=x 0+1x 0-3,又x 0∈1,2 ,则x 0+1x 0∈2,52 ,故g x 0 =x 0+1x 0-3<0,即g x <0,即f x 1 +f x 2 +x 1+x 2<0.【点睛】关键点点睛:本题关键点在于借助换元法,令t =e x ,t 1=e x 1,t 2=e x 2,从而可结合韦达定理得t 1、t 2的关系,即可用a 表示f x 1 +f x 2 +x 1+x 2,构造相关函数后借助导数研究其最大值即可得.13(2024·广东广州·模拟预测)已知函数f x =x e x -kx ,k ∈R .(1)当k =0时,求函数f x 的极值;(2)若函数f x 在0,+∞ 上仅有两个零点,求实数k 的取值范围.【答案】(1)极小值为-1e,无极大值(2)e ,+∞【分析】(1)求出导函数,然后列表求出函数的单调区间,根据极值定义即可求解;(2)把原函数有两个零点转化为g x =e x -kx 在0,+∞ 上仅有两个零点,分类讨论,利用导数研究函数的单调性,列不等式求解即可.【详解】(1)当k =0时,f x =xe x (x ∈R ),所以f x =1+x e x ,令f x =0,则x =-1,x -∞,-1-1-1,+∞f x -0+f x单调递减极小值单调递增所以f (x )min =f -1 =-e -1=-1e,所以f x 的极小值为-1e,无极大值.(2)函数f x =x e x -kx 在0,+∞ 上仅有两个零点,令g x =e x -kx ,则问题等价于g x 在0,+∞ 上仅有两个零点,易知g x =e x -k ,因为x ∈0,+∞ ,所以e x >1.①当k ∈-∞,1 时,g x >0在0,+∞ 上恒成立,所以g x 在0,+∞ 上单调递增,所以g x >g 0 =1,所以g x 在0,+∞ 上没有零点,不符合题意;②当k ∈1,+∞ 时,令g x =0,得x =ln k ,所以在0,ln k 上,g x <0,在ln k ,+∞ 上,g x >0,所以g x 在0,ln k 上单调递减,在(ln k ,+∞)上单调递增,所以g x 的最小值为g ln k =k -k ⋅ln k .因为g x 在0,+∞ 上有两个零点,所以g ln k =k -k ⋅ln k <0,所以k >e.因为g 0 =1>0,g ln k 2 =k 2-k ⋅ln k 2=k k -2ln k ,令h x =x -2ln x ,则h x =1-2x =x -2x,所以在0,2 上,h x <0,在2,+∞ 上,h x >0,所以h x 在0,2 上单调递减,在2,+∞ 上单调递增,所以h x ≥2-2ln2=ln e 2-ln4>0,所以g ln k 2 =k k -2ln k >0,所以当k >e 时,g x 在0,ln k 和(ln k ,+∞)内各有一个零点,即当k >e 时,g x 在0,+∞ 上仅有两个零点.综上,实数k 的取值范围是e ,+∞ .【点睛】方法点睛:求解函数单调区间的步骤:(1)确定f x 的定义域.(2)计算导数f x .(3)求出f x =0的根.(4)用f x =0的根将f x 的定义域分成若干个区间,判断这若干个区间内f x 的符号,进而确定f x 的单调区间.f x >0,则f x 在对应区间上单调递增,对应区间为增区间;f x <0,则f x 在对应区间上单调递减,对应区间为减区间.如果导函数含有参数,那么需要对参数进行分类讨论,分类讨论要做到不重不漏.14(2024·江苏南通·二模)已知函数f x =ln x -ax ,g x =2ax,a ≠0.(1)求函数f x 的单调区间;(2)若a >0且f x ≤g x 恒成立,求a 的最小值.【答案】(1)答案见解析(2)2e 3.【分析】(1)求导后,利用导数与函数单调性的关系,对a >0与a <0分类讨论即可得;(2)结合函数的单调性求出函数的最值,即可得解.【详解】(1)f x =1x -a =1-axx(a ≠0),当a <0时,由于x >0,所以f x >0恒成立,从而f x 在0,+∞ 上递增;当a >0时,0<x <1a ,f x >0;x >1a ,fx <0,从而f x 在0,1a 上递增,在1a,+∞ 递减;综上,当a <0时,f x 的单调递增区间为0,+∞ ,没有单调递减区间;当a >0时,f x 的单调递增区间为0,1a ,单调递减区间为1a ,+∞ .(2)令h x =f x -g x =ln x -ax -2ax,要使f x ≤g x 恒成立,只要使h x ≤0恒成立,也只要使h x max ≤0.h x =1x -a +2ax 2=-ax +1 ax -2 ax 2,由于a >0,x >0,所以ax +1>0恒成立,当0<x <2a 时,h x >0,当2a<x <+∞时,h x <0,所以h x max =h 2a =ln 2a -3≤0,解得:a ≥2e 3,所以a 的最小值为2e3.15(2024·山东济南·二模)已知函数f x =ax 2-ln x -1,g x =xe x -ax 2a ∈R .(1)讨论f x 的单调性;(2)证明:f x +g x ≥x .【答案】(1)答案见详解(2)证明见详解【分析】(1)求导可得fx =2ax 2-1x,分a ≤0和a >0两种情况,结合导函数的符号判断原函数单调性;(2)构建F x =f x +g x -x ,x >0,h x =e x -1x,x >0,根据单调性以及零点存在性定理分析h x 的零点和符号,进而可得F x 的单调性和最值,结合零点代换分析证明.【详解】(1)由题意可得:f x 的定义域为0,+∞ ,fx =2ax -1x =2ax 2-1x,当a ≤0时,则2ax 2-1<0在0,+∞ 上恒成立,可知f x 在0,+∞ 上单调递减;当a >0时,令f x >0,解得x >12a;令f x <0,解得0<x <12a;可知f x 在0,12a 上单调递减,在12a,+∞ 上单调递增;综上所述:当a ≤0时,f x 在0,+∞ 上单调递减;当a >0时,f x 在0,12a 上单调递减,在12a,+∞ 上单调递增.(2)构建F x =f x +g x -x =xe x -ln x -x -1,x >0,则F x =x +1 e x -1x -1=x +1 e x -1x,由x >0可知x +1>0,构建h x =e x -1x ,x >0,因为y =e x ,y =-1x在0,+∞ 上单调递增,则h x 在0,+∞ 上单调递增,且h 12=e -20,h 1 =e -1 0,可知h x 在0,+∞ 上存在唯一零点x 0∈12,1 ,当0<x <x 0,则h x <0,即Fx <0;当x >x 0,则h x >0,即F x >0;可知F x 在0,x 0 上单调递减,在x 0,+∞ 上单调递增,则F x ≥F x 0 =x 0e x 0-ln x 0-x 0-1,又因为e x 0-1x 0=0,则e x 0=1x 0,x 0=e -x 0,x 0∈12,1 ,可得F x 0 =x 0×1x 0-ln e -x-x 0-1=0,即F x ≥0,所以f x +g x ≥x .16(2024·福建·模拟预测)已知函数f (x )=a ln x -bx 在1,f 1 处的切线在y 轴上的截距为-2.(1)求a 的值;(2)若f x 有且仅有两个零点,求b 的取值范围.【答案】(1)2(2)b ∈0,2e 【分析】(1)借助导数的几何意义计算即可得;(2)借助函数与方程的关系,可将f x 有且仅有两个零点转化为方程b =2ln xx有两个根,构造对应函数并借助导数研究单调性及值域即可得.【详解】(1)f (x )=ax-b ,f 1 =a -b ,f (1)=a ×0-b =-b ,则函数f (x )=a ln x -bx 在1,f 1 处的切线为:y +b =a -b x -1 ,即y =a -b x -a ,令x =0,则有y =-a =-2,即a =2;(2)由a =2,即f (x )=2ln x -bx ,若f x 有且仅有两个零点,则方程2ln x-bx=0有两个根,即方程b=2ln xx有两个根,令g x =2ln xx,则gx =21-ln xx2,则当x∈0,e时,g x >0,则当x∈e,+∞时,g x <0,故g x 在0,e上单调递增,在e,+∞上单调递减,故g x ≤g e =2ln ee=2e,又x→0时,g x →-∞,x→+∞时,g x →0,故当b∈0,2 e时,方程b=2ln x x有两个根,即f x 有且仅有两个零点.17(2024·浙江杭州·二模)已知函数f x =a ln x+2-12x2a∈R.(1)讨论函数f x 的单调性;(2)若函数f x 有两个极值点,(ⅰ)求实数a的取值范围;(ⅱ)证明:函数f x 有且只有一个零点.【答案】(1)答案见解析;(2)(ⅰ)-1<a<0;(ⅱ)证明见解析【分析】(1)求出函数的导函数,再分a≤-1、-1<a<0、a≥0三种情况,分别求出函数的单调区间;(2)(ⅰ)由(1)直接解得;(ⅱ)结合函数的最值与零点存在性定理证明即可.【详解】(1)函数f x =a ln x+2-12x2a∈R的定义域为-2,+∞,且f x =ax+2-x=-x+12+a+1x+2,当a≤-1时,f x ≤0恒成立,所以f x 在-2,+∞单调递减;当-1<a<0时,令f x =0,即-x+12+a+1=0,解得x1=-a+1-1,x2=a+1-1,因为-1<a<0,所以0<a+1<1,则-2<-a+1-1<-1,所以当x∈-2,-a+1-1时f x <0,当x∈-a+1-1,a+1-1时f x >0,当x∈a+1-1,+∞时f x <0,所以f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减;当a≥0时,此时-a+1-1≤-2,所以x∈-2,a+1-1时f x >0,当x∈a+1-1,+∞时f x <0,所以f x 在-2,a+1-1上单调递增,在a+1-1,+∞上单调递减.综上可得:当a≤-1时f x 在-2,+∞单调递减;当-1<a<0时f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减;当a≥0时f x 在-2,a+1-1上单调递增,在a+1-1,+∞上单调递减.(2)(ⅰ)由(1)可知-1<a<0.(ⅱ)由(1)f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减,所以f x 在x=a+1-1处取得极大值,在x=-a+1-1处取得极小值,又-1<a<0,所以0<a+1<1,则1<a+1+1<2,又f x极大值=f a+1-1=a ln a+1+1-12a+1-12<0,又f-a+1-1<f a+1-1<0,所以f x 在-a+1-1,+∞上没有零点,又-1<a<0,则4a<-4,则0<e4a<e-4,-2<e4a-2<e-4-2,则0<e 4a-22<4,所以f e 4a-2=4-12e4a-22>0,所以f x 在-2,-a+1-1上存在一个零点,综上可得函数f x 有且只有一个零点.18(2024·河北沧州·模拟预测)已知函数f(x)=ln x-ax+1,a∈R.(1)讨论f x 的单调性;(2)若∀x>0,f x ≤xe2x-2ax恒成立,求实数a的取值范围.【答案】(1)答案见解析(2)-∞,2.【分析】(1)利用导数分类讨论判断函数f x 的单调性,即可求解;(2)先利用导数证明不等式e x≥x+1,分离变量可得a≤e2x-ln x+1x恒成立,进而e 2x-ln x+1x≥2x+ln x+1-(ln x+1)x=2,即可求解.【详解】(1)函数f x =ln x-ax+1,a∈R的定义域为0,+∞,且f (x)=1x-a.当a≤0时,∀x∈0,+∞,f (x)=1x-a≥0恒成立,此时f x 在区间0,+∞上单调递增;当a>0时,令f (x)=1x-a=1-axx=0,解得x=1a,当x∈0,1 a时,f x >0,f x 在区间0,1a上单调递增,当x∈1a,+∞时,f x <0,f x 在区间1a,+∞上单调递减.综上所述,当a≤0时,f x 在区间0,+∞上单调递增;当a>0时,f x 在区间0,1 a上单调递增,在区间1a,+∞上单调递减.(2)设g x =e x-x-1,则g x =e x-1,在区间(-∞,0)上,g x <0,g x 单调递减,在区间0,+∞上,g x >0,g x 单调递增,所以g x ≥g0 =e0-0-1=0,所以e x≥x+1(当且仅当x=0时等号成立).依题意,∀x>0,f x ≤xe2x-2ax恒成立,即a≤e2x-ln x+1x恒成立,而e2x-ln x+1x=xe2x-(ln x+1)x=e2x+ln x-(ln x+1)x≥2x+ln x+1-(ln x+1)x=2,当且仅当2x+ln x=0时等号成立.因为函数h x =2x+ln x在0,+∞上单调递增,h1e=2e-1<0,h(1)=2>0,所以存在x0∈1e,1,使得2x0+ln x0=0成立.所以a ≤e 2x -ln x +1xmin =2,即a 的取值范围是-∞,2 .【点睛】方法点睛:利用导数证明不等式的恒成立问题的求解策略:形如f x ≥g x 的恒成立的求解策略:1、构造函数法:令F x =f x -g x ,利用导数求得函数F x 的单调性与最小值,只需F x min ≥0恒成立即可;2、参数分离法:转化为a ≥φx 或a ≤φx 恒成立,即a ≥φx max 或a ≤φx min 恒成立,只需利用导数求得函数φx 的单调性与最值即可;3,数形结合法:结合函数y =f x 的图象在y =g x 的图象的上方(或下方),进而得到不等式恒成立.19(2024·广东·二模)已知f x =12ax 2+1-2a x -2ln x ,a >0.(1)求f x 的单调区间;(2)函数f x 的图象上是否存在两点A x 1,y 1 ,B x 2,y 2 (其中x 1≠x 2),使得直线AB 与函数f x 的图象在x 0=x 1+x22处的切线平行?若存在,请求出直线AB ;若不存在,请说明理由.【答案】(1)f (x )在(0,2)上单调递减,在(2,+∞)上单调递增.(2)不存在,理由见解析【分析】(1)求出导函数,根据导函数的正负来确定函数的单调区间;(2)求出直线AB 的斜率,再求出f (x 0),从而得到x 1,x 2的等式,再进行换元和求导,即可解出答案.【详解】(1)由题可得f(x )=ax +1-2a -2x =ax 2+(1-2a )x -2x =(ax +1)(x -2)x(x >0)因为a >0,所以ax +1>0,所以当x ∈(0,2)时,f (x )<0,f (x )在(0,2)上单调递减,当x ∈(2,+∞)时,f (x )>0,f (x )在(2,+∞)上单调递增.综上,f (x )在(0,2)上单调递减,在(2,+∞)上单调递增.(2)由题意得,斜率k =y 2-y 1x 2-x 1=12ax 22+(1-2a )x 2-2ln x 2 -12ax 21+(1-2a )x 1-2ln x 1 x 2-x 1=12a (x 22-x 21)+(1-2a )(x 2-x 1)-2ln x 2x 1x 2-x 1=a 2(x 1+x 2)+1-2a -2ln x2x 1x 2-x 1,f x 1+x 22 =a (x 1+x 2)2+1-2a -4x 1+x 2,由k =f x 1+x22 得,ln x2x 1x 2-x 1=2x 1+x 2,即ln x 2x 1=2(x 2-x 1)x 1+x 2,即ln x 2x 1-2x2x 1-1 x 2x1+1=0令t =x 2x 1,不妨设x 2>x 1,则t >1,记g (t )=ln t -2(t -1)t +1=ln t +4t +1-2(t >1)所以g(t )=1t -4t +1 2=t -1 2t t +1 2>0,所以g (t )在(1,+∞)上是增函数,所以g (t )>g (1)=0,所以方程g (t )=0无解,则满足条件的两点A ,B 不存在.20(2024·广东深圳·二模)已知函数f x =ax +1 e x ,f x 是f x 的导函数,且f x -f x =2e x .(1)若曲线y =f x 在x =0处的切线为y =kx +b ,求k ,b 的值;(2)在(1)的条件下,证明:f x ≥kx +b .【答案】(1)k =3,b =1;(2)证明见解析.【分析】(1)根据题意,求导可得a 的值,再由导数意义可求切线,得到答案;(2)设函数g x =2x +1 e x -3x -1,利用导数研究函数g (x )的单调性从而求出最小值大于0,可得证.【详解】(1)因为f x =ax +1 e x ,所以f x =ax +a +1 e x ,因为f x -f x =2e x ,所以a =2.则曲线y =f (x )在点x =0处的切线斜率为f 0 =3.又因为f 0 =1,所以曲线y =f (x )在点x =0处的切线方程为y =3x +1,即得k =3,b =1.(2)设函数g x =2x +1 e x -3x -1,x ∈R ,则g x =2x +3 e x -3,设h x =g x ,则h x =e x 2x +5 ,所以,当x >-52时,h x >0,g x 单调递增.又因为g0 =0,所以,x >0时,g x >0,g x 单调递增;-52<x <0时,g x <0,g x 单调递减.又当x ≤-52时,g x =2x +3 e x -3<0,综上g x 在-∞,0 上单调递减,在0,+∞ 上单调递增,所以当x =0时,g x 取得最小值g 0 =0,即2x +1 e x -3x -1≥0,所以,当x ∈R 时,f x ≥3x +1.21(2024·辽宁·二模)已知函数f x =ax 2-ax -ln x .(1)若曲线y =f x 在x =1处的切线方程为y =mx +2,求实数a ,m 的值;(2)若对于任意x ≥1,f x +ax ≥a 恒成立,求实数a 的取值范围.【答案】(1)a =-1,m =-2(2)12,+∞ 【分析】(1)根据导数几何意义和切线方程,可直接构造方程组求得结果;(2)构造函数g x =ax 2-ln x -a x ≥1 ,将问题转化为g x ≥0恒成立;求导后,分别在a ≤0、a ≥12和0<a <12的情况下,结合单调性和最值求得符合题意的范围.【详解】(1)∵f x =2ax -a -1x,∴f 1 =2a -a -1=a -1,∵y =f x 在x =1处的切线为y =mx +2,∴f 1 =a -1=mf 1 =0=m +2 ,解得:a =-1,m =-2.(2)由f x +ax ≥a 得:ax 2-ln x -a ≥0,令g x =ax 2-ln x -a x ≥1 ,则当x ≥1时,g x ≥0恒成立;。
高考文科数学求导练习题
高考文科数学求导练习题1. 求函数 \( f(x) = 3x^2 - 2x + 1 \) 的导数。
2. 计算函数 \( g(x) = \frac{1}{x} \) 在 \( x = 2 \) 处的导数值。
3. 确定函数 \( h(x) = \sqrt{x} \) 的导数,并解释其几何意义。
4. 求函数 \( k(x) = e^x \) 的导数,并验证其导数等于函数本身。
5. 计算函数 \( m(x) = \ln(x) \) 的导数,并讨论其在 \( x = 1 \) 处的值。
6. 求函数 \( n(x) = \sin(x) \) 的导数,并解释其在 \( x =\frac{\pi}{2} \) 处的导数值。
7. 计算函数 \( p(x) = \cos(x) \) 的导数,并讨论其在 \( x = 0 \) 处的导数值。
8. 求函数 \( q(x) = \tan(x) \) 的导数,并解释其在 \( x =\frac{\pi}{4} \) 处的导数值。
9. 计算函数 \( r(x) = \arcsin(x) \) 的导数,并讨论其在 \( x = \frac{1}{2} \) 处的导数值。
10. 求函数 \( s(x) = \arctan(x) \) 的导数,并解释其在 \( x =1 \) 处的导数值。
11. 计算函数 \( t(x) = \log_{10}(x) \) 的导数,并讨论其在\( x = 10 \) 处的导数值。
12. 求函数 \( u(x) = x^3 - 5x^2 + 7x - 2 \) 的导数,并讨论其在 \( x = 1 \) 处的导数值。
13. 计算函数 \( v(x) = \frac{x^2 - 4}{x - 2} \) 的导数,并讨论其在 \( x = 3 \) 处的导数值。
14. 求函数 \( w(x) = (x^2 + 1)^3 \) 的导数,并解释其几何意义。
15. 计算函数 \( x(x) = \frac{1}{\sqrt{x}} \) 的导数,并讨论其在 \( x = 4 \) 处的导数值。
(word完整版)高中文科数学导数练习题
专题 8:导数(文)经典例题分析考点一:求导公式。
例 1. f (x) 是 f (x) 1 x32x 1 的导函数,则 f ( 1) 的值是。
3分析: f ' x x 22,所以 f ' 1 1 23答案: 3考点二:导数的几何意义。
例 2.已知函数 y f ( x) 的图象在点 M (1, f (1)) 处的切线方程是 y 1x 2 ,则2f (1) f (1)。
分析:由于 k 1,所以25,所以 f 15,所以221f ' 1,由切线过点M (1,f (1)),可得点M的纵坐标为2f 1 f ' 13答案: 3例 3.曲线y x32x24x 2 在点 (1, 3) 处的切线方程是。
分析: y'3x24x 4 ,点 (1, 3) 处切线的斜率为k 3 4 4 5 ,所以设切线方程为 y5x b ,将点 (1, 3) 带入切线方程可得b 2 ,所以,过曲线上点(1,3)处的切线方程为:5x y 2 0答案: 5x y 20评论:以上两小题均是对导数的几何意义的考察。
考点三:导数的几何意义的应用。
例 4.已知曲线 C :y x33x 22x,直线 l : y kx ,且直线l 与曲线C相切于点x0 , y0 x00 ,求直线l的方程及切点坐标。
解析:直线过原点,则 k y0 x0 0 。
由点x0, y0在曲线 C 上,则x0y 0 x 0 3 3x 0 22x 0 , y 0x 0 23x 02。
又 y' 3x 26x2 ,在x 0x 0 , y 0处 曲 线 C 的 切 线 斜 率 为 k f ' x 03x 0 2 6x 02 ,23x 0 22 6x 02 ,整理得: 2 x 0 3x 0 0 ,解得: x 03 0x 03x 0或 x 02(舍),此时,y 03 , k 1 。
所以,直线 l 的方程为 y1x ,切点坐标是8443 , 3 。
(word完整版)高中文科数学导数练习题
专题8导数(文)经典例题剖析考点一:求导公式。
1 3例1. f (x)是f(x) —X3 2x 1的导函数,贝y f ( 1)的值是_____________________________ 。
3解析:f' x x22,所以f' 1 1 2 3答案:3考点二:导数的几何意义。
1例2.已知函数y f(x)的图象在点M (1, f (1))处的切线方程是y x 2,则2f(1) f (1) ______________ 。
1 1解析:因为k —,所以f' 1 ―,由切线过点M(1, f (1)),可得点M的纵坐标为2 25 5—,所以f 1 —,所以f 1 f' 1 32 2答案:3例3.曲线y x3 2x2 4x 2在点(1, 3)处的切线方程是_______________________ 。
解析:y' 3x2 4x 4, 点(1, 3)处切线的斜率为k 3 4 4 5,所以设切线方程为y 5x b,将点(1, 3)带入切线方程可得b 2,所以,过曲线上点(1, 3) 处的切线方程为:5x y 2 0答案:5x y 2 0点评:以上两小题均是对导数的几何意义的考查。
考点三:导数的几何意义的应用。
3 2例4•已知曲线C: y x 3x 2x ,直线l : y kx,且直线l与曲线C相切于点x o, y o x o 0 ,求直线l的方程及切点坐标。
解析:直线过原点,则k 仏x00。
由点x0, y0在曲线C上,则y。
x 323x。
2x。
,y ox。
2X o 3X o 2。
又y' 3x26x 2,在X。
,y o 处曲线 C 的切线斜率为k f' X o3x o26x o 2,2X 。
3x。
23x。
26x o 2,整理得::2x o3xo。
,解得:Xo—或X o 。
3 1x,2(舍),此时,y。
,k 1。
所以,直线I 的方程为y切点坐标是8 4 43 3- —。
高中文科数学导数练习题(优选.)
最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改专题8:导数(文)经典例题剖析考点一:求导公式。
例1. ()f x '是31()213f x x x =++的导函数,则(1)f '-的值是 。
考点二:导数的几何意义。
例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是122y x =+,则(1)(1)f f '+= 。
例3.曲线32242y x x x =--+在点(13)-,处的切线方程是 。
考点三:导数的几何意义的应用。
例 4.已知曲线C :x x x y 2323+-=,直线kx y l =:,且直线l 与曲线C 相切于点()00,y x 00≠x ,求直线l 的方程及切点坐标。
考点四:函数的单调性。
例5.已知()1323+-+=x x ax x f 在R 上是减函数,求a 的取值范围。
考点五:函数的极值。
例6. 设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值。
(1)求a 、b 的值;(2)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围。
考点六:函数的最值。
例7. 已知a 为实数,()()()a x x x f --=42。
求导数()x f ';(2)若()01'=-f ,求()x f 在区间[]2,2-上的最大值和最小值。
考点七:导数的综合性问题。
例8. 设函数3()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线670x y --=垂直,导函数'()f x 的最小值为12-。
(1)求a ,b ,c 的值;(2)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值。
完整版)导数最新文科高考数学真题
完整版)导数最新文科高考数学真题1.曲线y=xex-1在点(1,1)处的切线斜率为2e。
(选项C)2.曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,因此a=3.(选项D)3.根据导函数y'=f'(x)的图象,确定函数y=f(x)的图象为B。
4.函数f(x)=2/x+lnx,其导数为f'(x)=-2/x^2+1/x。
解方程f'(x)=0,得到x=2为f(x)的极小值点。
(选项D)5.如果p:f(x)=q:x是f(x)的极值点,则p是q的必要条件,但不是充分条件。
(选项C)6.曲线y=x^3-x+3在点(1,3)处的切线方程为2x-y+1=0.7.曲线y=kx+lnx在点(1,k)处的切线平行于x轴,因此k=-1.8.曲线y=ax-lnx在点(1,a)处的切线平行于x轴,因此a=1/2.(选项1/2)9.曲线y=-5ex+3在点(0,-2)处的切线方程为5x+y+2=0.10.曲线y=x+1(α∈R)在点(1,2)处的切线经过坐标原点,因此α=2.11.曲线y=x(3lnx+1)在点(1,1)处的切线方程为4x-y-3=0.12.曲线y=e^x上点P处的切线平行于直线2x+y+1=0,因此P的坐标为(-ln2,2)。
13.曲线y=xlnx上点P处的切线平行于直线2x-y+1=0,因此P的坐标为(e,e)。
14.函数y=-x^2没有明显的问题,但是缺少了后面的部分,因此无法确定答案。
15.若函数f(x)=kx-lnx在区间(1,+∞)单调递增,则k的取值范围是[1,+∞)。
16.函数f(x)=(1-cosx)sinx在[-π,π]的图象大致为下凸的W 形,拐点为x=0.17.已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax+(a+2)x+1相切,则2a=8.18.函数y=xe在其极值点处的切线方程为y=-x/e。
19.已知函数f(x)=axlnx,其中a为实数,且f'(x)为f(x)的导函数,若f'(1)=3,则a的值为3.20.曲线y=x^2的在点(1,2)处的切线方程为x-y+1=0.21.函数y=f(x)的导函数y=f'(x)的图象为下凸的W形,则函数y=f(x)的图象可能是D。
高二文科导数求导练习题
高二文科导数求导练习题1. 求导函数:f(x) = 3x^2 - 2x + 5我们将使用导数的定义来求解这个练习题。
首先,我们需要确定函数f(x)在给定的区间内是可导的。
在这种情况下,我们不需要担心定义域或间断点。
根据导数的定义,导数f'(x)为函数f(x)在x点的极限值:f'(x) = lim(h->0) [f(x+h) - f(x)] / h我们将使用极限的性质来简化这个表达式。
首先,我们计算f(x+h):f(x+h) = 3(x+h)^2 - 2(x+h) + 5= 3(x^2 + 2xh + h^2) - 2x - 2h + 5= 3x^2 + 6xh + 3h^2 - 2x - 2h + 5接下来,我们计算f(x+h) - f(x):f(x+h) - f(x) = (3x^2 + 6xh + 3h^2 - 2x - 2h + 5) - (3x^2 - 2x + 5)= 6xh + 3h^2 - 2h现在我们可以将此结果代入到导数的定义中:f'(x) = lim(h->0) [6xh + 3h^2 - 2h] / h我们可以通过取消分式中的h来简化上述表达式:f'(x) = lim(h->0) 6x + 3h - 2最后,当h趋近于0时,只有常数项6x会影响极限的结果:f'(x) = 6x最后的结果表明,在给定的区间内,函数f(x)的导数f'(x)是6x。
2. 求导函数:g(x) = sqrt(x^3) + 2x与第一个练习题相似,我们将使用导数的定义来求解这个问题。
同样地,我们需要确定函数g(x)在给定的区间内是可导的。
根据导数的定义,导数g'(x)为函数g(x)在x点的极限值:g'(x) = lim(h->0) [g(x+h) - g(x)] / h首先,我们计算g(x+h):g(x+h) = sqrt((x+h)^3) + 2(x+h)= sqrt(x^3 + 3x^2h + 3xh^2 + h^3) + 2x + 2h接下来,我们计算g(x+h) - g(x):g(x+h) - g(x) = (sqrt(x^3 + 3x^2h + 3xh^2 + h^3) + 2x + 2h) - (sqrt(x^3) + 2x)= sqrt(x^3 + 3x^2h + 3xh^2 + h^3) + 2x + 2h - sqrt(x^3) - 2x= sqrt(x^3 + 3x^2h + 3xh^2 + h^3) - sqrt(x^3) + 2h现在我们可以将此结果代入到导数的定义中:g'(x) = lim(h->0) [sqrt(x^3 + 3x^2h + 3xh^2 + h^3) - sqrt(x^3) + 2h] / h将分式中的h进行约分,我们可以得到:g'(x) = lim(h->0) [(sqrt(x^3 + 3x^2h + 3xh^2 + h^3) - sqrt(x^3)) / h + 2]当h趋近于0时,我们只需要考虑第一项中的根式部分,其他项不会影响极限的结果:g'(x) = lim(h->0) [(sqrt(x^3 + 3x^2h + 3xh^2 + h^3) - sqrt(x^3)) / h]为了使计算更加便捷,我们将使用导函数的性质。
高考文科数学专题复习导数训练题
高考文科数学专题复习导数训练题〔文〕一、考点回忆1.导数的概念及其运算是导数应用的根底,是高考重点考察的内容.考察方式以客观题为主,主要考察导数的根本公式与运算法那么,以及导数的几何意义.2.导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工具,特别是利用导数来解决函数的单调性及最值问题是高考热点问题.选择填空题侧重于利用导数确定函数的单调性、单调区间与最值问题,解答题侧重于导数的综合应用,即及函数、不等式、数列的综合应用.3.应用导数解决实际问题,关键是建立适当的数学模型〔函数关系〕,如果函数在给定区间内只有一个极值点,此时函数在这点有极值,而此时不用与端点值进展比拟,也可以得知这就是最值. 二、经典例题剖析 考点一:求导公式例1)(/x f 是1231)(3++=x x x f 的导函数,那么=-)1(/f . 考点二:导数的几何意义例2. 函数)(x f y =的图象在点))1(,1(f M 处的切线方程是221+=x y ,那么=+)1()1(/f f .考点三:导数的几何意义的应用例3.曲线,23:23x x x y C +-=直线,:kx y l =且直线l 及曲线C 相切于点()(),0,000≠x y x 求直线l 的方程及切点坐标.考点四:函数的单调性例4.设函数c bx ax x x f 8332)(23+++=在1=x 及2=x 时取得极值. (1)求b a ,的值及函数)(x f 的单调区间;(2)假设对于任意的[],3,0∈x 都有)(x f <2c 成立,求c 的取值范围. 考点五:函数的最值例5.a 为实数,).)(4()(2a x x x f --=(1)求导数)(/x f ;(2)假设,0)1(/=-f 求)(x f 在区间[]2,2-上的最值.考点六:导数的综合性问题例6. 设函数)0()(3≠++=a c bx ax x f 为奇函数,其图象在点())1(,1f 处的切线及直线076=--y x 垂直,导函数.12|)(min /-=x f (1)求c b a ,,的值;(2)求函数)(x f 的单调递增区间,并求函数)(x f 在[]3,1-上的最大值与最小值. 例7.cx bx ax x f ++=23)(在区间[]1,0上是增函数,在区间()()+∞∞-,1,0,上是减函数,又1322f ⎛⎫'= ⎪⎝⎭. 〔Ⅰ〕求()f x 的解析式;〔Ⅱ〕假设在区间[0](0)m m >,上恒有()f x x ≤成立,求m 的取值范围.例8.设函数2()()f x x x a =--〔x ∈R 〕,其中a ∈R .〔Ⅰ〕当1a =时,求曲线()y f x =在点(2(2))f ,处的切线方程;〔Ⅱ〕当0a ≠时,求函数()f x 的极大值与极小值;〔Ⅲ〕当3a >时,证明存在[]10k ∈-,,使得不等式22(cos )(cos )f k x f k x --≥对任意的x ∈R 恒成立.例9.),,()(23R c b a c bx x ax x f ∈++-=在()0,∞-上是增函数,[]3,0上是减函数,方程0)(=x f 有三个实根,它们分别是.,2,βα(1)求b 的值,并求实数a 的取值范围;(2)求证:βα+≥.25三、 方法总结〔一〕方法总结导数是中学限选内容中较为重要的知识,由于其应用的广泛性,为我们解决所学过的有关函数问题提供了一般性方法,是解决实际问题强有力的工具.导数的概念及其运算是导数应用的根底,是高考重点考察的对象.要牢记导数公式,熟练应用导数公式求函数的导数,掌握求导数的方法.应用导数解决实际问题的关键是要建立恰当的数学模型,了解导数概念的实际背景.应用导数求函数最值及极值的方法在例题讲解中已经有了比拟详细的表达.〔二〕高考预测导数的考察方式以客观题为主,主要考察求导数的根本公式与法那么,以及导数的几何意义.也可以解答题的形式出现,即以导数的几何意义为背景设置成导数及解析几何的综合题.导数的应用是重点,侧重于利用导数确定函数的单调性与极值、最值、值域问题. 四、强化训练1.曲线42x y =的一条切线的斜率为21,那么切点的横坐标为〔 A 〕A .1B .2C .3D .42.函数,93)(23-++=x ax x x f )(x f 在3-=x 时取得极值,那么=a 〔 D 〕 〔A 〕2〔B 〕3 〔C 〕4 〔D 〕53.函数32312)(x x x f -=在区间[]6,0上的最大值是〔 A 〕A .323B .163C .12D .94.三次函数x ax y +=3在()+∞∞-∈,x 内是增函数,那么 〔 A 〕 A . 0>aB .0<aC .1=aD .31=a5.在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是〔 D 〕 A .3B .2C .1D .06.函数,)(23c bx ax x x f +++=当1-=x 时,取得极大值7;当1-=x 时,取得极小值.求这个极小值及c b a ,,的值.7.设函数).()(23R x cx bx x x f ∈++=)()()(/x f x f x g -=是奇函数. 〔1〕求c b ,的值;〔2〕求)(x g 的单调区间及极值.8.用长为18 的钢条围成一个长方体形状的框架,要求长方体的长及宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?9.函数()()()331,5f x x ax g x f x ax =+-=--,其中()'f x 是的导函数. (I)对满足11a -≤≤的一切a 的值,都有()0g x <,求实数x 的取值范围; ()设2a m =-,当实数m 在什么范围内变化时,函数()y f x =的图象及直线3y =只有一个公共点.10.设函数22()21(0)f x tx t x t x t =++-∈>R ,.(I)求()f x 的最小值()h t ; ()假设()2h t t m <-+对(02)t ∈,恒成立,求实数m 的取值范围.11.设函数).,(4)1(3)(23R b a b ax x a x x f ∈+++-=(I)假设函数)(x f 在3=x 处取得极小值,21求b a ,的值;()求函数)(x f 的单调递增区间;() 假设函数)(x f 在)1,1(-上有且只有一个极值点,求实数a 的取值范围.12.二次函数),,()(2R c b a c bx ax x f ∈++=满足:对任意R x ∈,都有)(x f ≥,x 且当)3,1(∈x 时,有)(x f ≤2)2(81+x 成立.(I)试求)2(f 的值;()假设,0)2(=-f 求)(x f 的表达式;()在()的条件下,假设[)+∞∈,0x 时,)(x f >412+x m 恒成立,求实数m 的取值范围. 13.函数).,(4)(,6)23(213)(223R m a m x ax x g x x a x ax f ∈-+-=++-= (I)当[]3,0,1∈=x a 时,求()f x 的最大值与最小值;()当a <2且0≠a 时,无论a 如何变化,关于x 的方程)()(x g x f =总有三个不同实根,求m 的取值范围. 例题参考答案例1 3;例2 3;例3 ⎪⎭⎫⎝⎛--=83,23,41x y ;例4 (1) ,4,3=-=b a 增区间为()()+∞∞-,2,1,;减区间为()2,1,(2) ()()+∞-∞-,91, ;例5 (1),423)(2/--=ax x x f (2).2750)34()(,29)1()(min max -===-=f x f f x f ; 例6 (1).0,12,2=-==c b a (2) ()().28)2()(,18)3()(;,2,2,min max -====+∞-∞-f x f f x f ; 例7解:〔Ⅰ〕2()32f x ax bx c '=++,由(0)(1)0f f ''==,即0320c a b c =⎧⎨++=⎩,,解得032c b a =⎧⎪⎨=-⎪⎩,. 〔Ⅱ〕令()f x x ≤,即32230x x x -+-≤,(21)(1)0x x x ∴--≥,102x ∴≤≤或1x ≥. 又()f x x ≤在区间[]0m ,上恒成立,102m ∴<≤.例8解:〔Ⅰ〕当1a =时,232()(1)2f x x x x x x =--=-+-,得(2)2f =-,且所以,曲线2(1)y x x =--在点(22)-,处的切线方程是25(2)y x +=--,整理得580x y +-=.〔Ⅱ〕解:2322()()2f x x x a x ax a x =--=-+-,22()34(3)()f x x ax a x a x a '=-+-=---.令()0f x '=,解得3a x =或x a =. 由于0a ≠,以下分两种情况讨论.〔1〕假设0a >,当x 变化时,()f x '的正负如下表:因此,函数()f x 在3ax =处取得极小值3af ⎛⎫ ⎪⎝⎭,且34327af a ⎛⎫=- ⎪⎝⎭; 函数()f x 在x a =处取得极大值()f a ,且()0f a =. 〔2〕假设0a <,当x 变化时,()f x '的正负如下表:因此,函数()f x 在x a =处取得极小值()f a ,且()0f a =;函数()f x 在3a x =处取得极大值3a f ⎛⎫ ⎪⎝⎭,且34327a f a ⎛⎫=- ⎪⎝⎭. 〔Ⅲ〕证明:由3a >,得13a>,当[]10k ∈-,时,cos 1k x -≤,22cos 1k x -≤. 由〔Ⅱ〕知,()f x 在(]1-∞,上是减函数,要使22(cos )(cos )f k x f k x --≥,x ∈R 只要22cos cos ()k x k x x --∈R ≤ 即22cos cos ()x x k k x --∈R ≤①设2211()cos cos cos 24g x x x x ⎛⎫=-=-- ⎪⎝⎭,那么函数()g x 在R 上的最大值为2. 要使①式恒成立,必须22k k -≥,即2k ≥或1k -≤.所以,在区间[]10-,上存在1k =-,使得22(cos )(cos )f k x f k x --≥对任意的x ∈R 恒成立.例9解:(1))(,23)(2/x f b x ax x f +-= 在()0,∞-上是增函数,在[]3,0上是减函数, 所以当0=x 时,)(x f 取得极小值,又方程0)(=x f 有三 实根,023)(.02/=+-=∴≠∴b x ax x f a 的两根分别为.32,021ax x == 又)(x f 在()0,∞-上是增函数,在[]3,0上是减函数,)(/x f ∴>0在()0,∞-上恒成立,)(/x f <0在[]3,0上恒成立.由二次函数的性质知,a >0且a 32≥0,3∴<a ≤.92故实数a 的取值范围为.92,0⎥⎦⎤⎝⎛ (2) βα,2, 是方程0)(=x f 的三个实根,那么可设.2)22()2())(2)(()(23αβαββαβαβαa x a x a ax x x x a x f -+++++-=---= 又),,()(23R c b a c bx x ax x f ∈++-=有,21,1)2(-=+∴=++aa βαβα 强化训练答案:6.解:b ax x x f ++=23)(2/.据题意,-1,3是方程0232=++b ax x 的两个根,由韦达定理得 ∴极小值25239333)3(23-=+⨯-⨯-=f 7.解:〔1〕∵()32f x x bx cx=++,∴()232f x x bx c'=++。
文科《导数》高考常考题型专题训练
文科《导数》高考常考题型专题训练1.已知函数/。
)= 6'一。
工一3(。
£/?)(1)若函数段)在函,—1))处的切线与直线木广0平行,求实数”的值;(2)当a=2, k为整数,且当Q1时,“一外/'(x) + 2x + l>0,求〃的最大值.1 .【解析】(1)由/(x) = "—ax — 3,则/'*・) = "—〃又函数7U)在(1,火1))处的切线与直线片厂0平行,则=(2)当〃=2,且当x>l 时,&一行(。
”一+ 2x + l>0等价于2), 2x+l)当x>l 时,k< x + ^—k " - 2 7m j n2x + \,-2X-3)令g(x) = x + ^-则g (幻=—:-------------------e -2 (。
”-2)-再令h(x) = e x - 2x - 3(x > 1),则/(x) = " - 2 > 0 ,所以,〃(x)在(L+o。
)上单调递增,且以l)vO,以2)>0,所以,/?(x)在(1, 2)上有唯一的零点,设该零点为小,则x°w(l,2),且e"=2%+3, 当xw。
,,q)时,〃(%)v。
,即g'(x)<。
:当xw(小,+°°)时,"(x)>。
,即g'(x)>0, 所以,g (x)在。
,小)单调递减,在(/,+8)单调递增,2( +1所以,g(X)min +c - z而x°e(L2),故一+le(2,3)且"vg(瓦),又k为整数,所以k的最大值为2.2.已知函数/(x) = 6 + sinx,其中(1)若函数”刈在区间上单调递增,求k的取值范围:⑵若k = l时,不等式/Oarcosx在区间0尚上恒成立,求实数。
的取值范围.2・1解析】(1)由题意,f\x) = k+cosx t(冗5兀।「兀5兀、因为/(”)在区间二;上单调递增,所以工£二:时,/'(x) = Z + cosxNO恒成立,即k 3 6 7 V3 6 yk>—COSX9因为函数)'= -cosx在(工:上单调递增,所以—cosxK—cos^ =无,所以攵之五. (361 6 2 2(2) 〃 = 1 时,/(x) = x + sinx,令g(x) = /(x)—ovcosx = x+sinx-arcosx, xw[o.g],则g(x)A。
高考文科数学导数真题汇编(带答案)
高考文科数学导数真题汇编(带答案)高考数学文科导数真题汇编答案一、客观题组4.设函数f(x)在R上可导,其导函数f'(x),且函数f(x)在x=-2处取得极小值,则函数y=xf'(x)的图象可能是。
5.设函数f(x)=x^2-2x,则f(x)的单调递减区间为。
7.设函数f(x)在R上可导,其导函数f'(x),且函数f(x)在x=2处取得极大值,则函数y=xf'(x)的图象可能是。
8.设函数f(x)=1/(2x-lnx),则x=2为f(x)的极小值点。
9.函数y=1/(2x-lnx)的单调递减区间为(0,1]。
11.已知函数f(x)=x^2+bx+c的图象经过点(1,2),且在点(2,3)处的切线斜率为4,则b=3.12.已知函数f(x)=ax^2+bx+c的图象过点(1,1),且在点(2,3)处的切线斜率为5,则a=2.二、大题组2011新课标】21.已知函数f(x)=aln(x/b)+2,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y-3=0.(1) 求a、b的值;(2) 证明:当x>1,且x≠b时,f(x)>2ln(x/b)。
解析】1) f'(x)=a/(xlnb)+2/x,由于直线x+2y-3=0的斜率为-1/2,且过点(1,f(1)),解得a=1,b=1.2) 由(1)知f(x)=ln(x)+1,所以f(x)-2ln(x/b)=ln(x/b)+1>0,当x>1,且x≠b时,f(x)>2ln(x/b)成立。
2012新课标】21.设函数f(x)=ex-ax-2.(1) 求f(x)的单调区间;(2) 若a=1,k为整数,且当x>0时,(x-k)f'(x)+x+1>0,求k的最大值。
解析】1) f(x)的定义域为(-∞,+∞),f'(x)=ex-a,若a≤0,则f'(x)>0,所以f(x)在(-∞,+∞)单调递增。
高中文科经典导数练习题及答案
高二数学导数单元练习一、选择题1.一个物体的运动方程为S=1+t+t^2其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是()A 7米/秒B 6米/秒C 5米/秒D 8米/秒2.已知函数f (x )=ax 2+c ,且(1)f '=2,则a 的值为()3()f x ''()()x g x =,5.0,则7.曲线3()2f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为()A (1,0)B (2,8)C (1,0)和(1,4)--D (2,8)和(1,4)--8.函数313y x x =+-有()A.极小值-1,极大值1B.极小值-2,极大值3C.极小值-1,极大值3D.极小值-2,极大值29对于R 上可导的任意函数()f x ,若满足'(1)()0x f x -≥,则必有()A (0)(2)2(1)f f f +<B (0)(2)2(1)f f f +≤14.n 项和的1516 17.2y x =-,请解答下列问题:(1)求)(x f y =的解析式;(2)求)(x f y =的单调递增区间。
18.已知函数323()(2)632f x ax a x x =-++-(1)当2a >时,求函数()f x 极小值;(2)试讨论曲线()y f x =与x 轴公共点的个数。
20.已知1x =是函数32()3(1)1f x mx m x nx =-+++的一个极值点,其中,,0m n R m ∈<,(1)求m 与n 的关系式;(3111) )012n+,所以21n n a n =+,则数列1n a n ⎧⎫⎨⎬+⎩⎭的前n 项和()12122212n n n S +-==--三、解答题:15.解:设切点为(,)P a b ,函数3235y xx =+-的导数为'236y x x =+ 切线的斜率'2|363x a k y a a ===+=-,得1a =-,代入到3235y x x =+-得3b =-,即(1,3)P --,33(1),360y x x y +=-+++=16.解:设小正方形的边长为x 厘米,则盒子底面长为82x -,宽为52x -'2'10125240,0,1,3V x x V x x =-+===令得或,103x =(舍去) (1)18V V ==极大值,在定义域内仅有一个极大值, c bx ax x f ++=24182a =- (20<, 轴有三个交点;()x 的图像与x 轴只有一个交点;综上知,若0,()a f x ≥的图像与x 轴只有一个交点;若0a <,()f x 的图像与x 轴有三个交点。
高考文科数学试卷导数大题
一、题目已知函数$f(x) = x^3 - 3x^2 + 2x + 1$,求:(1)函数$f(x)$在$x=1$处的切线方程;(2)函数$f(x)$的极值点。
二、解题过程(1)求切线方程首先,我们需要求出函数$f(x)$在$x=1$处的导数,即切线的斜率。
由导数的定义,我们有:$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x+\Delta x) - f(x)}{\Delta x}$$对于函数$f(x) = x^3 - 3x^2 + 2x + 1$,我们有:$$f'(x) = \lim_{\Delta x \to 0} \frac{(x+\Delta x)^3 - 3(x+\Delta x)^2 + 2(x+\Delta x) + 1 - (x^3 - 3x^2 + 2x + 1)}{\Delta x}$$展开并化简上式,得到:$$f'(x) = \lim_{\Delta x \to 0} \frac{3x^2\Delta x + 3x\Delta x^2 +\Delta x^3 - 6x\Delta x - 6\Delta x^2 + 2\Delta x}{\Delta x}$$化简后得到:$$f'(x) = 3x^2 + 3x - 6x - 6 + 2$$进一步化简,得到:$$f'(x) = 3x^2 - 3x - 4$$将$x=1$代入上式,得到切线的斜率$k$:$$k = f'(1) = 3 \times 1^2 - 3 \times 1 - 4 = -4$$接下来,我们需要求出切点的纵坐标。
将$x=1$代入原函数$f(x)$,得到:$$f(1) = 1^3 - 3 \times 1^2 + 2 \times 1 + 1 = 1$$因此,切点为$(1, 1)$。
最后,我们可以写出切线方程。
由于切线的斜率为$k=-4$,切点为$(1, 1)$,所以切线方程为:$$y - 1 = -4(x - 1)$$化简后得到:$$y = -4x + 5$$(2)求极值点为了求出函数$f(x)$的极值点,我们需要找到函数的导数$f'(x)$的零点。
高三文科导数练习题
高三文科导数练习题1. 某物体运动的位移函数为 $s(t) = 2t^3 - 3t^2 + 6t + 1$,求该物体在 $t=2$ 时的速度和加速度。
解析:位移函数的导数即为速度函数,速度函数的导数即为加速度函数。
我们可以先求位移函数的导数,然后再求导一次得到加速度函数。
首先求位移函数的导数:$s'(t) = \frac{d}{dt}(2t^3 - 3t^2 + 6t + 1)$根据求导法则,我们可以依次对每一项求导:$s'(t) = \frac{d}{dt}(2t^3) - \frac{d}{dt}(3t^2) + \frac{d}{dt}(6t) +\frac{d}{dt}(1)$对于多项式函数的求导,我们可以应用幂函数的导数规则:$s'(t) = 6t^2 - 6t + 6$接下来求速度函数的导数,即加速度函数:$s''(t) = \frac{d}{dt}(6t^2 - 6t + 6)$同样地,我们对每一项应用幂函数的导数规则:$s''(t) = 12t - 6$因此,该物体在 $t=2$ 时的速度为 $s'(2) = 6(2)^2 - 6(2) + 6 = 24$,加速度为 $s''(2) = 12(2) - 6 = 18$。
2. 已知函数 $f(x) = \frac{3}{x^2}$,求 $f'(x)$ 和 $f''(x)$。
解析:首先求 $f(x)$ 的导数 $f'(x)$。
根据导数的定义和商规则:$f'(x) = \frac{d}{dx}\left(\frac{3}{x^2}\right) = \frac{0*x^2 -3*2x}{(x^2)^2} = \frac{-6x}{x^4} = -6\frac{1}{x^3}$接下来求 $f'(x)$ 的导数 $f''(x)$。
高三文科数学基础题(导数、切线方程)
文科导数、切线方程练习一、选择题1.函数()22)(x x f π=的导数是( ) A.x x f π4)(=' B.x x f 24)(π=' C. x x f 28)(π=' D. x x f π16)(=' 2.曲线2313-=x y 在点)37,1(--处的切线的倾斜角为( ) A . 30o B . 45o C . 135o D . -45o3. 已知函数f (x )=ax 2+c ,且(1)f '=2,则a 的值为( )A.1B.2C.-1D. 0 4.曲线3()2f x x x 在0p 处的切线平行于直线41y x ,则0p 点的坐标为( )A. (1,0)B. (2,8)C. (1,0)和(1,4)--D. (2,8)和(1,4)--5.曲线223y x x =-+在点(1,2)处的切线方程为( )A .31y x =-B .35y x =-+C .35y x =+D .2y x =6.曲线x y e =在点A (0,1)处的切线斜率为( )A .1B .2C .eD .1e 7.曲线2y 21x x =-+在点(1,0)处的切线方程为( )A .1y x =-B .1y x =-+C .22y x =-D .22y x =-+8.若曲线2y x ax b =++在点(0,)b 处的切线方程是10x y -+=,则A .1,1a b ==B . 1,1a b =-=C .1,1a b ==-D . 1,1a b =-=-9.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++=10.曲线x y e =在点2(2)e ,处的切线与坐标轴所围三角形的面积为( ) A.294e B.22e C.2e D.22e 二、填空题 11.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________.12.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________13.若()sin cos f x x α=-,则'()f α等于_______________14.若23ln 4x y x =-的一条切线垂直于直线20x y m +-=,则切点坐标为 三、解答题:13.已知a ∈R,函数f(x)=2x 3-3(a +1)x 2+6a x 若a =1,求曲线y=f(x)在点(2,f(2))处的切线方程;14.已知函数1()ln 1()a f x x ax a R x-=-+-∈)当1a =-时,求曲线()y f x =在点(2,(2))f 处的切线方程;15.已知函数f (x )=3231()2ax x x R -+∈,其中a >0. 若a =1,求曲线y=f (x )在 点(2,f (2))处的切线方程;16. 已知函数f (x )=3213x x ax b -++的图像在点P (0,f(0))处的切线方程为y=3x-2. 求实数a , b 的值;17. 已知函数32()23 3.f x x x =-+求曲线()y f x =在点2x =处的切线方程;18.求垂直于直线2610x y -+=并且与曲线3235y x x =+-相切的直线方程。
高中导数试题及答案解析
高中导数试题及答案解析一、选择题1. 函数y=x^3-3x^2+2的导数是()A. y'=3x^2-6xB. y'=x^2-3xC. y'=3x^2-6x+2D. y'=x^3-3x^2答案:A解析:根据导数的运算法则,对于函数y=x^3-3x^2+2,我们分别对每一项求导:y' = (x^3)' - (3x^2)' + (2)'根据幂函数的导数法则,我们有:(x^3)' = 3x^2(3x^2)' = 6x常数项的导数为0,所以:y' = 3x^2 - 6x2. 函数y=sinx的导数是()A. y'=cosxB. y'=-sinxC. y'=sinxD. y'=-cosx答案:A解析:根据三角函数的导数法则,我们知道:(sinx)' = cosx3. 函数y=e^x的导数是()A. y'=e^xB. y'=-e^xC. y'=e^(-x)D. y'=0答案:A解析:根据指数函数的导数法则,我们知道:(e^x)' = e^x二、填空题4. 函数y=x^2-4x+3的导数是()。
答案:y'=2x-4解析:根据导数的运算法则,对于函数y=x^2-4x+3,我们分别对每一项求导:y' = (x^2)' - (4x)' + (3)'根据幂函数的导数法则,我们有:(x^2)' = 2x(4x)' = 4常数项的导数为0,所以:y' = 2x - 45. 函数y=lnx的导数是()。
答案:y'=1/x解析:根据对数函数的导数法则,我们知道:(lnx)' = 1/x三、解答题6. 求函数y=x^4-2x^3+3x^2-4x+5的导数,并求在x=1处的导数值。
答案:y' = 4x^3 - 6x^2 + 6x - 4当x=1时,y' = 4(1)^3 - 6(1)^2 + 6(1) - 4 = 4 - 6 + 6 - 4 = 0解析:首先,我们对函数y=x^4-2x^3+3x^2-4x+5的每一项求导:y' = (x^4)' - (2x^3)' + (3x^2)' - (4x)' + (5)'根据幂函数的导数法则,我们有:(x^4)' = 4x^3(2x^3)' = 6x^2(3x^2)' = 6x(4x)' = 4常数项的导数为0,所以:y' = 4x^3 - 6x^2 + 6x - 4然后,我们将x=1代入导数表达式中:y' = 4(1)^3 - 6(1)^2 + 6(1) - 4 = 4 - 6 + 6 - 4 = 0 7. 已知函数y=f(x)=x^2-4x+3,求f'(2)的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题8:导数(文)经典例题剖析考点一:求导公式。
例1. ()f x '是31()213f x x x =++的导函数,则(1)f '-的值是 。
解析:()2'2+=x x f ,所以()3211'=+=-f 答案:3考点二:导数的几何意义。
例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是122y x =+,则(1)(1)f f '+= 。
解析:因为21=k ,所以()211'=f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25,所以()251=f ,所以()()31'1=+f f 答案:3|例3.曲线32242y x x x =--+在点(13)-,处的切线方程是 。
解析:443'2--=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-,带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x点评:以上两小题均是对导数的几何意义的考查。
考点三:导数的几何意义的应用。
例 4.已知曲线C :x x x y 2323+-=,直线kx y l =:,且直线l 与曲线C 相切于点()00,y x 00≠x ,求直线l 的方程及切点坐标。
解析: 直线过原点,则()000≠=x x y k 。
由点()00,y x 在曲线C 上,则02030023x x x y +-=,∴2302000+-=x x x y 。
又263'2+-=x x y ,∴ 在()00,y x 处曲线C的切线斜率为()263'0200+-==x x x f k ,∴26323020020+-=+-x x x x ,整理得:03200=-x x ,解得:230=x 或00=x (舍),此时,830-=y ,41-=k 。
所以,直线l 的方程为x y 41-=,切点坐标是⎪⎭⎫⎝⎛-83,23。
答案:直线l 的方程为x y 41-=,切点坐标是⎪⎭⎫ ⎝⎛-83,23 点评:本小题考查导数几何意义的应用。
解决此类问题时应注意“切点既在曲线上又在切线上”这个条件的应用。
函数在某点可导是相应曲线上过该点存在切线的充分条件,而不是必要条件。
考点四:函数的单调性。
.例5.已知()1323+-+=x x ax x f 在R 上是减函数,求a 的取值范围。
解析:函数()x f 的导数为()163'2-+=x ax x f 。
对于R x ∈都有()0'<x f 时,()x f 为减函数。
由()R x x ax ∈<-+01632可得⎩⎨⎧<+=∆<012360a a ,解得3-<a 。
所以,当3-<a 时,函数()x f 对R x ∈为减函数。
(1) 当3-=a 时,()98313133323+⎪⎭⎫ ⎝⎛--=+-+-=x x x x x f 。
由函数3x y =在R 上的单调性,可知当3-=a 是,函数()x f 对R x ∈为减函数。
(2) 当3->a 时,函数()x f 在R 上存在增区间。
所以,当3->a 时,函数()x f 在R 上不是单调递减函数。
综合(1)(2)(3)可知3-≤a 。
答案:3-≤a 点评:本题考查导数在函数单调性中的应用。
对于高次函数单调性问题,要有求导意识。
考点五:函数的极值。
例6. 设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值。
》(1)求a 、b 的值;(2)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围。
解析:(1)2()663f x x ax b '=++,因为函数()f x 在1x =及2x =取得极值,则有(1)0f '=,(2)0f '=.即6630241230a b a b ++=⎧⎨++=⎩,.,解得3a =-,4b =。
(2)由(Ⅰ)可知,32()29128f x x x x c =-++,2()618126(1)(2)f x x x x x '=-+=--。
当(01)x ∈,时,()0f x '>;当(12)x ∈,时,()0f x '<;当(23)x ∈,时,()0f x '>。
所以,当1x =时,()f x 取得极大值(1)58f c =+,又(0)8f c =,(3)98f c =+。
则当[]03x ∈,时,()f x 的最大值为(3)98f c =+。
因为对于任意的[]03x ∈,,有2()f x c <恒成立,所以 298c c +<,解得 1c <-或9c >,因此c 的取值范围为(1)(9)-∞-+∞,,。
答案:(1)3a =-,4b =;(2)(1)(9)-∞-+∞,,。
点评:本题考查利用导数求函数的极值。
求可导函数()x f 的极值步骤:①求导数()x f '; ②求()0'=x f 的根;③将()0'=x f 的根在数轴上标出,得出单调区间,由()x f '在各区间上取值的正负可确定并求出函数()x f 的极值。
考点六:函数的最值。
(例7. 已知a 为实数,()()()a x x x f --=42。
求导数()x f ';(2)若()01'=-f ,求()x f 在区间[]2,2-上的最大值和最小值。
解析:(1)()a x ax x x f 4423+--=,∴ ()423'2--=ax x x f 。
(2)()04231'=-+=-a f ,21=∴a 。
()()()14343'2+-=--=∴x x x x x f 令()0'=x f ,即()()0143=+-x x ,解得1-=x 或34=x , 则()x f 和()x f '在区间[]2,2-()291=-f ,275034-=⎪⎭⎫⎝⎛f 。
所以,()x f 在区间[]2,2-上的最大值为275034-=⎪⎭⎫⎝⎛f ,最小值为()291=-f 。
答案:(1)()423'2--=ax x x f ;(2)最大值为275034-=⎪⎭⎫⎝⎛f ,最小值为()291=-f 。
、点评:本题考查可导函数最值的求法。
求可导函数()x f 在区间[]b a ,上的最值,要先求出函数()x f 在区间()b a ,上的极值,然后与()a f 和()b f 进行比较,从而得出函数的最大最小值。
考点七:导数的综合性问题。
例8. 设函数3()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线670x y --=垂直,导函数'()f x 的最小值为12-。
(1)求a ,b ,c 的值;(2)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值。
解析: (1)∵()f x 为奇函数,∴()()f x f x -=-,即33ax bx c ax bx c --+=---∴0c =,∵2'()3f x ax b =+的最小值为12-,∴12b =-,又直线670x y --=的斜率为16,因此,'(1)36f a b =+=-,∴2a =,12b =-,0c =.(2)3()212f x x x =-。
2'()6126(f x x x x =-=,列表如下:所以函数()f x 的单调增区间是(,-∞和)+∞,∵(1)10f -=,f =-,(3)18f =,∴()f x 在[1,3]-上的最大值是(3)18f =,最小值是f =-答案:(1)2a =,12b =-,0c =;(2)最大值是(3)18f =,最小值是f =- 点评:本题考查函数的奇偶性、单调性、二次函数的最值、导数的应用等基础知识,以及推理能力和运算能力。
导数强化训练(一) 选择题"1. 已知曲线24x y =的一条切线的斜率为12,则切点的横坐标为( A )A .1B .2C .3D .42. 曲线1323+-=x x y 在点(1,-1)处的切线方程为 ( B )A .43-=x yB .23+-=x yC .34+-=x yD .54-=x y3. 函数)1()1(2-+=x x y 在1=x 处的导数等于 ( D )A .1B .2C .3D .44. 已知函数)(,31)(x f x x f 则处的导数为在=的解析式可能为 ( A )A .)1(3)1()(2-+-=x x x fB .)1(2)(-=x x fC .2)1(2)(-=x x fD .1)(-=x x f5. 函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( D );(A )2(B )3 (C )4 (D )56. 函数32()31f x x x =-+是减函数的区间为( D ) (A)(2,)+∞(B)(,2)-∞(C)(,0)-∞(D)(0,2)7. 若函数()c bx x x f ++=2的图象的顶点在第四象限,则函数()x f '的图象是( A )A[DCx BA .323B .163C .12D .99. 函数x x y 33-=的极大值为m ,极小值为n ,则n m +为 ( A ) A .0B .1C .2D .410. 三次函数()x ax x f +=3在()+∞∞-∈,x 内是增函数,则 ( A )A . 0>aB .0<aC .1=aD .31=a 11. 在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是( D ) A .3B .2C .1D .0;12. 函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( A )A .1个B .2个C .3个D . 4个(二) 填空题》13. 曲线3x y =在点()1,1处的切线与x 轴、直线2=x 所围成的三角形的面积为__________。
14. 已知曲线31433y x =+,则过点(2,4)P “改为在点(2,4)P ”的切线方程是______________ 15. 已知()()n f x 是对函数()f x 连续进行n 次求导,若65()f x x x =+,对于任意x R ∈,都有()()n fx =0,则n 的最少值为 。