高三数学等比数列测试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、等比数列选择题
1.正项等比数列{}n a 满足2
2
37610216a a a a a ++=,则28a a +=( ) A .1 B .2 C .4 D .8 2.设{a n }是等比数列,若a 1 + a 2 + a 3 =1,a 2 + a 3 + a 4 =2,则 a 6 + a 7 + a 8 =( )
A .6
B .16
C .32
D .64
3.已知数列{}n a 满足:11a =,*1()2
n
n n a a n N a +=∈+.则 10a =( ) A .
11021
B .
11022 C .1
1023
D .1
1024
4.已知等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则数列{na n }的前n 项和为( ) A .-3+(n +1)×2n B .3+(n +1)×2n C .1+(n +1)×2n D .1+(n -1)×2n 5.在3和81之间插入2个数,使这4个数成等比数列,则公比q 为( )
A .2±
B .2
C .3±
D .3
6.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个
单音,从第二个单音起,每一个单音的频率与它前一个单音的频率的比都等于六个单音的频率为f ,则( ) A .第四个单音的频率为1
122f - B .第三个单音的频率为1
42f - C .第五个单音的频率为162f
D .第八个单音的频率为1
122f
7.设n S 为等比数列{}n a 的前n 项和,若11
0,,22
n n a a S >=<,则等比数列{}n a 的公比的取值范围是( ) A .30,4
⎛⎤ ⎥⎝
⎦
B .20,3
⎛⎤ ⎥⎝
⎦
C .30,4⎛⎫ ⎪⎝⎭
D .20,3⎛⎫ ⎪⎝⎭
8.等比数列{}n a 的前n 项积为n T ,且满足11a >,10210310a a ->,
1021031
01
a a -<-,则使得1n T >成立的最大自然数n 的值为( )
A .102
B .203
C .204
D .205
9.已知各项不为0的等差数列{}n a 满足2
6780a a a -+=,数列{}n b 是等比数列,且
77b a =,则3810b b b =( )
A .1
B .8
C .4
D .2
10.在数列{}n a 中,32a =,12n n a a +=,则5a =( )
A .32
B .16
C .8
D .4
11.已知等比数列{}n a 的前n 项和为n S ,若123
111
2a a a ++=,22a =,则3S =( ) A .8
B .7
C .6
D .4
12.在流行病学中,基本传染数R 0是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.初始感染者传染R 0个人,为第一轮传染,这R 0个人中每人再传染R 0个人,为第二轮传染,…….R 0一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定.假设新冠肺炎的基本传染数0 3.8R =,平均感染周期为7天,设某一轮新增加的感染人数为M ,则当M >1000时需要的天数至少为( )参考数据:lg38≈1.58 A .34
B .35
C .36
D .37
13.已知q 为等比数列{}n a 的公比,且1212a a =-,31
4a =,则q =( ) A .1- B .4
C .12-
D .12
±
14..在等比数列{}n a 中,若11a =,54a =,则3a =( ) A .2
B .2或2-
C .2-
D
15.已知1,a 1,a 2,9四个实数成等差数列,1,b 1,b 2,b 3,9五个数成等比数列,则b 2(a 2﹣a 1)等于( ) A .8
B .﹣8
C .±8
D .98
16.设等比数列{}n a 的前n 项和为n S ,若23S =,415S =,则6S =( ) A .31
B .32
C .63
D .64
17.正项等比数列{}n a 的公比是1
3
,且241a a =,则其前3项的和3S =( ) A .14
B .13
C .12
D .11
18.设b R ∈,数列{}n a 的前n 项和3n
n S b =+,则( ) A .{}n a 是等比数列
B .{}n a 是等差数列
C .当1b ≠-时,{}n a 是等比数列
D .当1b =-时,{}n a 是等比数列
19.数列{}n a 满足:点()1,n n a -(n N ∈,2n ≥)在函数()2x f x =的图像上,则{}n a 的前10项和为( ) A .4092
B .2047
C .2046
D .1023
20.已知等比数列{}n a 的前n 项和为n S ,且1352
a a +=,245
4a a +=,则n n S =a ( )
A .14n -
B .41n -