完全平方公式的应用.6完全平方公式(第2课时)教案(新版)北师大版
完全平方公式第二课时课件2021—2022学年北师大版七年级数学下册

复习巩固 你能根据图1和图2中的面积解释平方差公式吗?
S2
S1
由图可得:S2=a2-b2 S1=(a+b)(a-b) ∵S1=S2 ∴ (a+b)(a-b)=a2-b2
想一想: 你能根据图1大正方形的面积解释完全平方公式吗?
b
∵S大正方形=(a+b)2
a
ab 图1
S大正方形=a2+ab+ab+b2 =a2+2ab+b2
∴a2+2ab+b2=(a+b)2
想一想: 你能根据图2蓝色小正方形的面积解释完全平方公式吗?
b
a
a
ab 图2
∵S小正方形=(a-b)2 S大正方形=a2-ab-b(a-b) =a2-2ab+b2 ∴a2-2ab+b2=(a-b)2
简单应用:
例2 利用完全平方公式计算
(1) 1022 ;
巩固练习:
式的项数及各项系数的有关规律如下,
后人也将右表称为“杨辉三角”
(a+b)0=1
(a+b)1=a+b
(a+b)2=a2+2ab+b2
(a+b)3=a3+3a2b+3ab2+b3
(a+b)3第三项的系数3=1+2
(a+b)4=a4+4a3b+6a2b2+4ab3+b4 (a+b)4第三项的系数6=1+2+3
则x2 y2 公 _式__变__形__的_。应用三
(3)已知(x y)2 25, (x y)2 16, 则xy ________。
1.6完全平方公式第2课时-2023-2024学年七年级数学下册同步课件(北师大版)

拿出糖果招待他们.如果来1个孩子,老人就给这个孩子1块糖果;如果来2
个孩子,老人就给每个孩子2块糖果;如果来3个孩子,老人就给每个孩子3
块糖果……
假如第一天有a个孩子一起去看老人,第二天有b个孩子一起去看老
人,第三天有(a+b)个孩子一起去看老人,那么第三天老人给出去的糖果
刀沿图中折痕剪开,把它分成四块完全相同的小长方形,然后按图②那样
拼成一个大正方形,则中间空白部分的面积是( C )
A.2m
B.(m+n)2
C.(m-n)2
D.m2-n2
四、当堂练习
6.化简:(x+2)2+4(1-x)= x2+8 .
7.一个正方形的边长增加3 cm,它的面积就增加45 cm2,则这个正方形的
思考:怎样计算1022,992更简便呢?
解:(1)1022=(100+2)2
(2)1972=(200-3)2
=1002+2×100×2+22
=2002-2×200×3+32
=10000+400+4
=40000-1200+9
=10404.
=38809.
你是怎样做的?与同伴进行交流.
二、新知探究
跟踪练习
方法二:逆用平方差公式
=a2+2ab+b2-9.
(x+3)2- x2
=(x+3+x)(x+3- x)
=(2x+3)·3=6x+9.
(3)(x+5)2-(x-2)(x-3).
(3)(x+5)2-(x-2)(x-3)
1.6完全平方公式课件数学北师大版七年级下册

2
30 +2×30× +
2
=
感悟新知
知1-练
2-1. 运用完全平方公式进行简便计算:
(1)1022;
解:原式=(100+2)2=10 000+400+ 4=10 404;
(2)99.82;
原式=(100-0.2)2 =10 000-40+ 0.04=9 960.04;
感悟新知
知1-练
阴影部分面积的关系,可以验证的乘法公式是
②
_______.(填序号)
①(a+b)(a-b)=a2-b2;
② (a-b )2 = a2-2ab+b2;
③(a+b)2=a2+2ab+b2;
④(a+b)2=(a-b)2+4ab.
感悟新知
知识点 3 利用乘法公式进行整式的混合运算
知3-讲
1. 当两个三项式相乘时,先利用添括号使原式变成符合乘
感悟新知
知1-练
1-2. 计算:
(1)(2y-1)2;
解:原式=4y2-4y+1;
(2)(3a+2b)2;
原式=9a2+12ab+4b2;
(3)(-x+2y)2;
原式=x2-4xy+4y2;
(4)(-2xy-1)2.
原式=4x2y2+4xy+1.
感悟新知
知1-练
例2 计算:(1)9992;(2) 2.
=-(4x2+12xy+9y2)
若两项都相同或都相反,
=-4x2-12xy-9y2.
则用完全平方公式计算.
感悟新知
知1-练
1-1. [中考·怀化] 下列计算正确的是( C )
2024北师大版数学七年级下册1.6.2《完全平方公式》教案2

2024北师大版数学七年级下册1.6.2《完全平方公式》教案2一. 教材分析《完全平方公式》是北师大版数学七年级下册第1章第6节的内容,本节课主要让学生掌握完全平方公式的概念和运用。
完全平方公式是初中数学中的一个重要概念,也是解决二次方程和二次不等式问题的关键。
通过对完全平方公式的学习,学生可以更好地理解和运用二次方程和二次不等式,为后续的学习打下基础。
二. 学情分析学生在学习本节课之前,已经学习了有理数的乘法、完全平方数等知识,对于二次方程和二次不等式有一定的了解。
但学生对于完全平方公式的理解和运用还不够熟练,需要通过本节课的学习来进一步掌握。
三. 教学目标1.让学生理解完全平方公式的概念,掌握完全平方公式的运用。
2.培养学生解决二次方程和二次不等式的能力。
3.培养学生合作学习、积极思考的能力。
四. 教学重难点1.完全平方公式的概念和运用。
2.解决二次方程和二次不等式。
五. 教学方法1.采用问题驱动法,引导学生主动探究完全平方公式。
2.采用案例分析法,让学生通过具体案例理解完全平方公式的运用。
3.采用小组合作学习,培养学生合作学习的能力。
六. 教学准备1.PPT课件2.相关案例和练习题3.笔记本和文具七. 教学过程1.导入(5分钟)利用PPT课件,展示一些生活中的完全平方现象,如正方形的面积公式等,引导学生对完全平方公式产生兴趣,激发学生的学习热情。
2.呈现(10分钟)通过PPT课件,呈现完全平方公式的定义和公式,让学生初步了解完全平方公式的概念。
3.操练(10分钟)让学生通过PPT上的练习题,运用完全平方公式进行计算,巩固对完全平方公式的理解和运用。
4.巩固(10分钟)让学生分组讨论,总结完全平方公式的运用方法和注意事项,加深对完全平方公式的理解和运用。
5.拓展(10分钟)通过PPT上的案例分析,让学生运用完全平方公式解决实际问题,提高学生解决二次方程和二次不等式的能力。
6.小结(5分钟)让学生对自己在本节课中学到的知识进行总结,提高学生的自我学习能力。
1.6第2课时完全平方公式的运用(教案)

在教学过程中,教师应针对教学难点和重点进行有针对性的讲解和训练,帮助学生理解核心知识,突破难点,确保学生对完全平方公式的理解和运用达到熟练程度。
四、教学流程
(一)导入新课(用时5分钟)
1.6第2课时完全平方公式的运用(教案)
一、教学内容
本节课为《数学八年级上册》1.6节的第2课时,主题为“完全平方公式的运用”。教学内容主要包括以下三个方面:
1.掌握完全平方公式的结构及特征,即(a±b)²=a²±2ab+b²。
2.学会运用完全平方公式进行因式分解,解决实际问题。
3.能够运用完全平方公式简化计算,提高解题效率。
此外,小组讨论环节中,学生们表现得积极主动,提出了很多有创意的想法。但在分享成果时,部分学生表达不够清晰,这可能是由于他们对完全平方公式的掌握还不够熟练。因此,在接下来的教学中,我要加强对学生表达能力的培养,让他们能够更好地展示自己的思考过程。
在讲授过程中,我也注意到要适时调整教学节奏,让学生有足够的时间消化吸收知识点。特别是在讲解难点时,要通过举例、对比等多种方式,帮助学生理解。同时,要关注每个学生的学习情况,对于掌握程度较差的学生,要给予个别辅导,确保他们能够跟上教学进度。
3.重点难点解析:在讲授过程中,我会特别强调完全平方公式的结构及其在因式分解中的应用。对于难点部分,如符号的判断和公式的灵活运用,我会通过具体例题和练习来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与完全平方公式相关的实际问题,如计算特定图形的面积。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,通过折叠纸张或模型来演示完全平方公式的几何意义。
《完全平方公式》教案【通用七篇】

《完全平方公式》教案【通用七篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、致辞讲话、短语口号、心得感想、条据书信、合同协议、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as summary reports, speeches, phrases and slogans, thoughts and feelings, evidence letters, contracts and agreements, rules and regulations, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!《完全平方公式》教案【通用七篇】《完全平方公式》教案篇1一、教学目标:经历探索完全平方公式的过程,进一步发展符号感和推理能力;在变式中,拓展提高;通过积极参与数学学习活动,培养学生自主探究能力,勇于创新的精神和合作学习的习惯;重点是正确理解完全平方公式(a±b)2=a2±2ab+b2.并初步运用;难点是完全平方公式的运用。
北师大版数学七年级下册1.6《完全平方公式》说课稿2

北师大版数学七年级下册1.6《完全平方公式》说课稿2一. 教材分析《完全平方公式》是北师大版数学七年级下册第1.6节的内容。
这一节主要介绍了完全平方公式的定义和应用。
完全平方公式是初等数学中的一个重要概念,它对于学生理解和掌握二次方程的解法有着重要的作用。
在本节课中,学生将通过探究和发现完全平方公式的规律,培养观察、分析和归纳的能力。
二. 学情分析在七年级下册的学生已经具备了一定的代数基础,例如解一元一次方程、解二元一次方程组等。
他们对代数知识有一定的了解和掌握,但完全平方公式是一个新的概念,需要学生通过探究和发现来理解和掌握。
此外,学生在学习过程中可能存在对完全平方公式的理解不够深入,应用不够灵活的问题,因此需要在教学过程中加以引导和培养。
三. 说教学目标1.知识与技能目标:学生能够理解和掌握完全平方公式的定义和应用。
2.过程与方法目标:学生通过观察、分析和归纳,发现完全平方公式的规律,培养观察、分析和归纳的能力。
3.情感态度与价值观目标:学生能够在解决问题的过程中体验到数学的乐趣,培养对数学的兴趣。
四. 说教学重难点1.教学重点:学生能够理解和掌握完全平方公式的定义和应用。
2.教学难点:学生能够通过观察、分析和归纳,发现完全平方公式的规律。
五. 说教学方法与手段在本节课中,我将采用问题驱动的教学方法,引导学生通过观察、分析和归纳来发现完全平方公式的规律。
同时,我将运用多媒体教学手段,如PPT、动画等,来辅助教学,使学生更加直观地理解和掌握完全平方公式。
六. 说教学过程1.导入:通过一个实际问题,引发学生对完全平方公式的思考,激发学生的学习兴趣。
2.探究:学生分组讨论,观察和分析完全平方公式的规律,归纳出完全平方公式的定义。
3.讲解:教师对完全平方公式的定义和应用进行讲解,引导学生理解和掌握。
4.练习:学生进行练习,巩固对完全平方公式的理解和掌握。
5.总结:教师引导学生总结本节课的主要内容和收获。
北师大版七年级数学下册1.完全平方公式第二课时优秀教学案例

(一)情景创设
为了激发学生的学习兴趣和主动性,我将在教学过程中创设情境,让学生在实际情境中感受和理解完全平方公式的应用。例如,我可以设计一些实际问题,如几何问题、物理问题等,让学生在解决实际问题的过程中自然地引入完全平方公式,从而激发他们的学习兴趣和主动性。
(二)问题导向
在教学过程中,我将采用问题导向的教学方法,引导学生通过观察、分析、归纳和推理等数学活动,自主地探索完全平方公式的内涵和外延。我会提出一系列问题,引导学生思考和探究,从而促进他们深入理解完全平方公式的本质特征。
二、教学目标
(一)知识与技能
本节课的教学目标之一是让学生深入理解完全平方公式的内涵和外延,掌握完全平方公式的推导过程和证明方法。通过观察、分析、归纳和推理等数学活动,引导学生理解完全平方公式的本质特征,提高他们在实际问题中运用完全平方公式的能力。此外,我还希望学生能够通过本节课的学习,提高他们的数学解题能力,培养他们的逻辑思维能力和创新能力。
(二)过程与方法
在本节课的教学过程中,我将注重启发学生思考,引导学生通过观察、分析、归纳和推理等数学活动,深入理解完全平方公式的本质特征。我还将设计一系列具有针对性的练习题,让学生在实践中掌握完全平方公式的应用技巧,提高他们的数学解题能力。此外,我将运用多媒体教学手段,如PPT、数学软件等,以直观、生动的方式展示完全平方公式的推导过程和应用实例,激发学生的学习兴趣,帮助他们更好地理解和掌握完全平方公式。
(五)作业小结
在总结归纳后,我将布置一些作业,让学生在课后巩固所学知识。作业将包括一些练习题和思考题,以培养学生的数学解题能力和创新思维。在作业中,我会强调完全平方公式的应用,鼓励学生在解决实际问题中灵活运用所学知识。同时,我还会要求学生在课后进行自我反思和评价,总结自己的学习成果和不足之处,为下一节课的学习做好准备。
2024年北师大版七下数学1.6完全平方公式第2课时公式法的综合运用教案

2024年北师大版七下数学1.6完全平方公式第2课时公式法的综合运用教案一. 教材分析完全平方公式是初中数学中的重要内容,对于学生理解代数式的构成和解决实际问题具有重要意义。
本节课主要让学生掌握完全平方公式的推导过程,并能够灵活运用公式解决相关问题。
二. 学情分析学生在学习本节课之前,已经掌握了有理数的乘法、完全平方根的概念等基础知识。
但在运用完全平方公式解决实际问题时,部分学生可能会出现理解模糊、运用不当的情况。
三. 教学目标1.知识与技能:让学生掌握完全平方公式的推导过程,并能够灵活运用公式解决相关问题。
2.过程与方法:通过小组合作、讨论等方式,培养学生的团队协作能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们积极思考、勇于探索的精神。
四. 教学重难点1.完全平方公式的推导过程。
2.完全平方公式的灵活运用。
五. 教学方法采用问题驱动法、小组合作法、案例教学法等,引导学生主动探究、积极思考。
六. 教学准备1.准备相关的学习资料和案例。
2.设计好课堂练习题和拓展题。
3.准备好黑板和粉笔。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题,激发学生的学习兴趣。
2.呈现(10分钟)引导学生回顾完全平方根的概念,然后通过几何画板等工具,直观地展示完全平方公式的推导过程。
3.操练(10分钟)让学生独立完成一些简单的练习题,巩固对完全平方公式的理解。
4.巩固(10分钟)通过一些实际问题,让学生运用完全平方公式解决问题,进一步巩固知识。
5.拓展(10分钟)设计一些拓展题,让学生小组合作、讨论,培养他们的团队协作能力和解决问题的能力。
6.小结(5分钟)对本节课的主要内容进行总结,强调完全平方公式的运用方法。
7.家庭作业(5分钟)布置一些相关的练习题,让学生课后巩固知识。
8.板书(5分钟)将本节课的主要内容和公式进行板书,方便学生复习。
通过本节课的教学,发现部分学生在运用完全平方公式解决实际问题时,仍然存在理解模糊、运用不当的情况。
北师大版数学七年级下册1.6.2完全平方公式优秀教学案例

1.培养学生对数学的兴趣和热情,激发学生主动学习的动机。
2.培养学生勇于探究、善于发现的精神,增强学生的自信心。
3.通过数学学习,培养学生严谨、细致的学习态度,提高学生的责任心。
4.使学生认识到数学在生活中的重要作用,培养学生的数学素养,为学生的终身发展奠定基础。
在教学过程中,教师应关注学生的全面发展,将知识与技能、过程与方法、情感态度与价值观有机地结合起来,以提高学生的数学素养为目标,为学生的未来发展提供有力支持。通过本章节的学习,使学生不仅在知识与技能上得到提升,还能在情感态度与价值观上获得全面发展。
三、教学策略
(一)情景创设
为了让学生更好地理解和掌握完全平方公式,教师应结合学生的生活实际,创设富有启发性的教学情境。例如,可以引用面积为1的正方形分割成四个相同的小正方形,通过提问“如何用代数式表示这个过程?”引导学生观察、思考,激发学生的学习兴趣。通过情境创设,让学生感受到数学与生活的紧密联系,提高学生学习数学的积极性。
(五)作业小结
1.教师布置作业,包括基础题、提高题和应用题,涵盖完全平方公式的各个方面,让学生巩固所学知识。
2.学生完成作业后,教师及时批改,给予反馈,帮助学生找到自己的不足,提高解题能力。
3.教师针对作业中存在的问题,进行针对性的辅导,确保每位学生都能掌握完全平方公式。
五、案例亮点
1.生活情境的巧妙融入
3.各小组汇报讨论成果,教师给予点评,总结完全平方公式的应用方法和技巧。
(四)总结归纳
1.教师带领学生回顾本节课所学内容,总结完全平方公式的推导过程、结构特点和应用方法。
2.教师强调完全平方公式在解决实际问题中的重要性,提醒学生要熟练掌握。
3.学生分享学习心得,交流学习过程中遇到的困难和解决方法,共同提高。
1-6 完全平方公式(第二课时) 22-23北师大版数学七年级下册

(2) 992.
解: 1042 = (100+4)2
992 = (100 –1)2
=10000+800+16 =10000 -200+1
=10816.
=9801.
方法总结:运用完全平方公式进行简便计算,要熟 记完全平方公式的特征,将原式转化为能利用完全 平方公式的形式.
ZYT
巩固练习
利用乘法公式计算: (1)982-101×99; (2)20162-2016×4030+20152. 解:(1)原式=(100-2)2-(100+1)(100-1)
=1002-400+4-1002+1=-395; (2)原式=20162-2×2016×2015+20152
=(2016-2015)2=1.
ZYT
典例精析
例2 计算:(1)( x + 3 ) 2 - x 2 ;(2)( a + b + 3 ) ( a + b - 3 );
(3)( x + 5 ) 2 -(x-2)(x-3)
方法总结:要把其中两项看 成一个整体,再按照完全平 方公式进行计算.
ZYT
典例精析
例4 化简:(x-2y)(x2-4y2)(x+2y). 解:原式=(x-2y)(x+2y)(x2-4y2)
=(x2-4y2)2 =x4-8x2y2+16y4.
方法总结:先运用平方差公式,再运用完全平方公式.
典例精析 例4 已知a+b=7,ab=10,求a2+b2,(a-b)2
解:原式=2x2-2y2+[x2+y2 +2xy-xy]+[x2+y2 -2xy+xy] =2x2-2y2+x2+y2 +xy+x2+y2 -xy =2x2-2y2+2x2+2y2=4x2.
北师大版八年级下册数学第2课时完全平方公式课件

=3a(x+y)2; (2)原式=-(x2-4xy+4y2)
=-(x-2y)2.
新课讲授
练一练 因式分解:
(1)-3a2x2+24a2x-48a2; (2)(a2+4)2-16a2. 解:(1)原式=-3a2(x2-8x+16)
=-3a2(x-4)2;
有公因式要先 提公因式
成的图形的面积吗?
a a² a
ab a ab a b²b
b
b
b
同学们拼出图形为:
b ab b²
新课讲授
a a² ab
a
b
这个大正方形的面积可以怎么求?
(a+b)2
= a2+2ab+b2
将上面的等式倒过来看,能得到:
a2+2ab+b2 = (a+b)2
新课讲授
我们把a²+2ab+b²和a²-2ab+b²这样的式子叫作
新课讲授
下列各式是不是完全平方式?
(1)a2-4a+4; 是
(2)1+4a²; 不是
(3)4b2+4b-1; 不是 (4)a2+ab+b2; 不是
(5)x2+x+0.25. 是
分析: (2)因为它只有两项;
(3)4b²与-1的符号不统一;
(4)因为ab不是a与b的积的2倍.
新课讲授
例1 如果x2-6x+N是一个完全平方式,那么N是( B )
(2)a2-2a(b+c)+(b+c)2
解:原式=a2-2·a·(b+c) + (b+c) 2
=[a- (b+c) ]2
《完全平方公式》 (第2课时)示范公开课教学设计【北师大版七年级数学下册】

第一章整式的乘除1.6完全平方公式(2)教学设计一、教学目标1.通过有趣的分糖情景,使学生进一步巩固(a+b)2=a2+2ab+b2,同时帮助学生进一步理解(a+b)2与a2+b2的关系.2.运用完全平方公式进行一些有关数的简便运算,提高最基本的运算技能.3.进一步熟悉乘法公式的运用,体会公式中字母的广泛含义,它可以是数,也可以是整式.二、教学重点及难点重点:1.巩固完全平方公式,区分(a+b)2与a2+b2的关系.2.熟悉乘法公式的运用,体会公式中字母a、b的广泛含义.难点:熟练乘法公式的运用,体会公式中字母a、b的广泛含义.三、教学准备多媒体课件四、相关资源相关图片五、教学过程【复习回顾】一个正方形的边长为a厘米,减少2厘米后,这个正方形的面积减少了多少平方厘米?提示:原来正方形的面积为a2平方厘米,边长减少2厘米后的正方形的面积为(a-2)2平方厘米,所以这个正方形的面积减少了a2-(a-2)2平方厘米,因为a2-(a-2)2=a2-(a2-4a+4)=a2-a2+4a-4=4a-4,所以面积减少了(4a-4)平方厘米.设计意图:解决问题的过程中我们用到了完全平方公式,这节课我们继续探究巩固完全平方公式的应用.【问题情境】老师给学生出了两道抢答题,看哪个学生做的快:1.1022=?2.1972=?老师题目刚在黑板上写完,就立刻有一个学生刷地站起来抢答说:“第一题等于10404,第二题等于38809.”其速度之快,简直就是脱口而出.同学们,你知道他是如何计算的吗?这其中的奥秘,其实我们已经接触过了,通过本节课的学习我们都能这位同学一样聪明,能够迅速得到结果,我们今天来探究原因.设计意图:通过速算问题情境创设,引发学生学习的兴趣,同时激发了学生的好奇心和求知欲,顺利引入新课.【探究新知】活动1.怎样计算1022,1972更简便呢?你是怎样做的?与同伴进行交流.提示:由前面学习平方差公式的应用,就联想能不能用完全平方公式计算呢? 把1022改写成(a+b)2还是(a−b)2?于是1022 =(100+2)2=1002+2×100×2+22=1000+400+4=104041972 =(200-3)2=2002-2×200×3+32=4000-1200+9=38809由此联想到:靠近10的整数次幂的数的平方,可以借助完全平方式进行快速运算.用字母表示为:设这个自然数为a,与它相邻的两个自然数为a-1,a+1,则有:(a-1)2 =a2-2a+1,(a+1)2 =a2+2a+1.设计意图:能够运用完全平方公式进行一些有关数的简便运算,进一步体会完全平方公式在实际当中的应用,并通过练习加以巩固.需要注意的是,本题的目的是进一步巩固完全平方公式,体会符号运算对解决问题的作用,不要在简便运算上做过多练习.活动2.老人分糖有一位老人非常喜欢孩子,每当有孩子到他家做客时,老人都拿出糖果招待他们.来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块糖,……(1)第一天有a个男孩去了老人家,老人一共给了这些孩子多少块糖?(2)第二天有b个女孩去了老人家,老人一共给了这些孩子多少块糖?(3)第三天有(a+b)个孩子一块去看老人,老人一共给了这些孩子多少块糖?(4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?为什么?分析:根据题意,可知:第一天有a个男孩去了老人家,老人给每个孩子发a块糖,所以一共发了a2块糖.第二天有b个女孩去了老人家,老人给每个孩子发b块糖,所以一共发了b2块糖.第三天有(a+b)个孩子去了老人家,老人给每个孩子发(a+b)块糖,所以一共发了(a+b)2块糖.前两天他们得到的糖果总数是(a2+b2)块,因为(a+b)2-(a2+b2)=a2+2ab+b2-a2-b2=2ab.由于a>0,b>0,所以2ab>0.由此可知这些孩子第三天得到的糖果数比前两天他们得到的糖果总数要多,多2ab块糖果.讨论:为什么会多出2ab块糖果呢?下面讨论多出2ab块糖的原因:对于a个男孩来说,每个男孩第三天得到的糖果数是(a+b)块,每个男孩比第一天多b块,一共多了ab块;同理可知这b个女孩第三天得到的糖果总数比第二天也多了ab块.因此,这些孩子第三天得到的糖果数与前两天相比,共计多出了2ab块.设计意图:通过此游戏充分说明了(a+b)2与a2+b2的关系,即(a+b)2≠a2+b2.【典型例题】例1.计算:(1) (x+3)2- x2 (2) (a+b+3)(a+b-3)(3)(x+5)2–(x-2)(x-3)解: (1)(x+3)2-x2=x2+6x+9-x2=6x+9(2)(a+b+3)(a+b-3)=[(a+b)+3][(a+b)-3]=(a+b)2-32=a2+2ab+b2-9(3)(x+5)2–(x-2)(x-3)=(x2+10x+25)-(x2-5x+6)=x2+10x+25-x2+5x-6=15x+19设计意图:通过此例可以发现运用完全平方公式进行一些有关数的运算会很简便,也更进一步体会到符号运算对解决问题的作用.例2.利用完全平方公式计算:(1)2)32(x -;(2)2)42(a ab +;(3)2)221(b am -.解:(1)22229124)3(3222)32(x x x x x +-=+⨯⨯-=-;(2)222222216164)4(422)2()42(a b a b a a a ab ab a ab ++=+⨯⨯+=+;(3)22224241)221(b amb m a b am +-=-. 设计意图:(1)必须注意观察式子的特征,必须符合完全平方公式,才能应用该公式;(2)在进行两数和或两数差的平方时,应注意将两数分别平方,避免出现223124)32(x x x +-=-的错误.例3.(1)若a 2+b 2=2,a +b =1,则ab 的值为( )BA .-1B .-12C .-32D .3 (2)已知x -y =4,xy =12,则x 2+y 2的值是( )BA .28B .40C .26D .25例4.(1)(a -b )2+________=(a +b )2,x 2+21x+__________=(x -_____)2.4ab ,2,1x (2)如果a 2+ma +9是一个完全平方式,那么m =_________.±6例5.计算:(1)2)13(-a ;(2)2)32(y x +-;(3)2)3(y x --. 解:(1)2221132)3()13(+⋅⋅-=-a a a1692+-=a a(2)原式22)3(3)2(2)2(y y x x +⋅-⋅+-=229124y xy x +-=或原式=2)23(x y -22)2(232)3(x x y y +⋅⋅-=224129x xy y +-=(3)原式2)]3([y x +-=2)3(y x +=2232)3(y y x x +⋅⋅+=2269y xy x ++=或原式22)3(2)3(y y x x +⋅-⋅--=2269y xy x ++=设计意图:完全平方公式的灵活应用.例6. 用乘法公式计算:(1)20022(2) 20202-4040×2019+20192.解:(1) 原式=(2000+2)2=20002+2×2×2000+22=4000000+8000+4=4008004(2)原式=20202-2×2020×2019+20192=(2020-2019)2=12.例7.利用整式乘法公式计算:(a -b -3)(a -b +3)解:(a -b -3)(a -b +3)=[(a -b )-3][(a -b )+3]=(a -b )2-32=a 2-2ab +b 2-9设计意图:考查学生的计算能力,解题的关键是将各式化为平方差公式或者完全平方公式进行运算.【随堂练习】1.选择题(1)下列等式成立的是( )CA 、(a -b )2=a 2-ab +b 2B 、(a +3b )2=a 2+9b 2C 、(a +b )2=a 2+2ab +b 2D 、(x +9)(x -9)=x 2-9(2)(a +3b )2-(3a +b )2计算结果是( )CA .8(a -b )2B .8(a +b )2C .8b 2-8a 2D .8a 2-8b 2(3)(5x 2-4y 2)(-5x 2+4y 2)运算的结果是( )BA .-25x 4-16y 4B .-25x 4+40x 2y 2-16y 4C .25x 4-16y 2D .25x 4-40x 2y 2+16y 4(4)运算结果为x 4y 2-2x 2y +1的是( )CA .(x 2y 2-1)2B .(x 2y +1)2C .(x 2y -1)2D .(-x 2y -1)22.填空题(1)(4a -b 2)2=_______________.16a 2-8ab 2+b 4(2)(-21m -1)2=________________.41m 2+m +1(3)(m +n +1)(1-m -n )=________________.1-m 2-2mn -n 2(4)(7a +A )2=49a 2-14ab 2+B ,则A =___________,B =________________.-b 2b 4(5)(a +2b )2-_____________=(a -2b )2.8ab3.已知,a +b =8,ab =24.求21(a 2+b 2)的值.8解:a 2+b 2=(a +b )2-2ab =64+48=16, ()2212a b +=8.4.已知x +x 1=4,求x 2+21x 的值.解:由x +x 1=4,得(x +x 1)2=16.x 2+2+21x =16.所以x 2+21x =16-2=14.5.已知:x 2-2x +y 2+6y +10=0,求x +y 的值.-2解:∵x 2-2x+1+y 2+6y+9=0, ∴(x-1)2+(y+3)2=0,∵x+1=0,y-3=0,∴x=-1,y=3.6. 利用完全平方公式进行计算:(1)2201;(2)299;(3)2)3130(解:(1)4040112002200)1200(201222=+⨯+=+=;(2)980111002100)1100(99222=+⨯-=-=.(3)2)3130(=222)31(3130230)3130(+⨯⨯+=+ .219209120900=++= 7.已知12,3-==+ab b a ,求下列各式的值.(1)22b a +;(2)22b ab a +-;(3)2)(b a -.解:(1)33249)12(232)(2222=+=-⨯-=-+=+ab b a b a(2)451233)12(33)(2222=+=--=-+=+-ab b a b ab a(3)ab b a b ab a b a 2)(2)(22222-+=+-=-572433)12(233=+=-⨯-=设计意图:结合学生情况进行综合练习,巩固完全平方公式的灵活应用. 六、课堂小结1. 完全平方公式的应用:(1)快速运算:靠近10的整数次幂的数的平方,可以借助完全平方式进行快速运算(2)通过实例,我更进一步体会到完全平方公式中的字母a ,b 的含义是很广泛的,它可以是数,也可以是整式.2.在有趣的分糖情景中,不仅巩固了完全平方公式,而且更进一步理解了(a +b )2与a 2+b 2的关系.设计意图:通过归纳总结,使学生熟练掌握完全平方公式,并能灵活地运用公式进行计算.七、板书设计。
1.6完全平方公式第2课时课件初中数学北师大版七年级下册

三、典型例题
归纳总结: 1.第一根据完全平方式的结构特点进行变形整理; 2.在没有说明完全平方和或者完全平方差的情况下要分类讨论.
【当堂检测】
5.若等式x2+4x+a=(x+2)2-3成立,则a的值为( D )
A.4
B.3
C.2
D.1
【分析】应用完全平方的公式,将已知等式右边展开,然后合并, 然后令相等,即可求出.
三、典型例题
例1.利用完全平方公式计算下列两组式子.
(1)(a+2)2和(-a-2)2
(2)(b-2)2和(2-b)2
解:(1)(a+2)2=a2+2·a·2+22 =a2+4a+4
(2)(b-2)2=b2-2·b·2+b2 =b2-4b+4
(-a-2)2=[-(a+2)]2 =(a+2)2 =a2+4a+4
第一章 整式的乘除 1.6 完全平方公式
第2课时
一、学习目标
1.进一步掌握完全平方公式; 2.灵活运用完全平方公式进行计算.(重点,难点)
二、新课导入
复习回顾
1.完全平方公式: (a+b) 2=a2+2ab+b2 (a-b) 2=a2-2ab+b2
2.想一想: (1)两个公式中的字母都能表示什么? (2)完全平方公式在计算化简中有些什么作用? (3)根据两数和或差的完全平方公式,能够计算多个数的和或差的平方吗?
【当堂检测】
2.若(202X-a)(202X-a)=202X,则(a-202X)2+(202X-a)2= 4039 .
解:∵(202X-a)(202X-a)=202X, ∴(a-202X)(202X-a)=-202X,
4.3 公式法 第2课时 完全平方公式北师大版八年级下册数学 4.3 公式法 第2课时 完全平方公式 教案

第2课时完全平方公式1.理解完全平方公式,弄清完全平方公式的形式和特点;(重点)2.掌握运用完全平方公式分解因式的方法,能正确运用完全平方公式把多项式分解因式.(难点)一、情境导入1.分解因式:(1)x2-4y2;(2)3x2-3y2;(3)x4-1;(4)(x+3y)2-(x-3y)2;2.根据学习用平方差公式分解因式的经验和方法,你能将形如“a2+2ab+b2、a2-2ab+b2”的式子分解因式吗?二、合作探究探究点一:用完全平方公式因式分解【类型一】判定能否利用完全平方公式分解因式下列多项式能用完全平方公式分解因式的有()(1)a2+ab+b2;(2)a2-a+14;(3)9a2-24ab+4b2;(4)-a2+8a-16.A.1个B.2个C.3个D.4个解析:(1)a2+ab+b2,乘积项不是两数的2倍,不能运用完全平方公式;(2)a2-a+14=(a-12)2;(3)9a2-24ab+4b2,乘积项是这两数的4倍,不能用完全平方公式;(4)-a2+8a-16=-(a2-8a+16)=-(a-4)2.所以(2)(4)能用完全平方公式分解.故选B.方法总结:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.变式训练:见《学练优》本课时练习“课堂达标训练”第1题【类型二】运用完全平方公式分解因式因式分解:(1)-3a2x2+24a2x-48a2;(2)(a2+4)2-16a2.解析:(1)有公因式,因此要先提取公因式-3a2,再把另一个因式(x2-8x+16)用完全平方公式分解;(2)先用平方差公式,再用完全平方公式分解.解:(1)原式=-3a2(x2-8x+16)=-3a2(x-4)2;(2)原式=(a2+4)2-(4a)2=(a2+4+4a)(a2+4-4a)=(a+2)2(a-2)2.方法总结:分解因式的步骤是一提、二用、三查,即有公因式的首先提公因式,没有公因式的用公式,最后检查每一个多项式的因式,看能否继续分解.变式训练:见《学练优》本课时练习“课堂达标训练”第6题探究点二:用完全平方公式因式分解的应用【类型一】运用因式分解进行简便运算利用因式分解计算:(1)342+34×32+162;(2)38.92-2×38.9×48.9+48.92.解析:利用完全平方公式转化为(a±b)2的形式后计算即可.解:(1)342+34×32+162=(34+16)2=2500;(2)38.92-2×38.9×48.9+48.92=(38.9-48.9)2=100.方法总结:此题主要考查了运用公式法分解因式,正确掌握完全平方公式是解题关键.变式训练:见《学练优》本课时练习“课堂达标训练”第8题【类型二】利用因式分解判定三角形的形状已知a,b,c分别是△ABC三边的长,且a2+2b2+c2-2b(a+c)=0,请判断△ABC的形状,并说明理由.解析:首先利用完全平方公式分组进行因式分解,进一步分析探讨三边关系得出结论即可.解:由a2+2b2+c2-2b(a+c)=0,得a2-2ab+b2+b2-2bc+c2=0,即(a-b)2+(b-c)2=0,∴a-b=0,b-c=0,∴a=b=c,∴△ABC是等边三角形.方法总结:通过配方将原式转化为非负数的和的形式,然后利用非负数性质解答,这是解决此类问题一般的思路.变式训练:见《学练优》本课时练习“课后巩固提升”第6题【类型三】整体代入求值已知a+b=5,ab=10,求12a3b+a2b2+12ab3的值.解析:将12a3b+a2b2+12ab3分解为12ab与(a+b)2的乘积,因此可以运用整体代入的数学思想来解答.解:12a3b+a2b2+12ab3=12ab(a2+2ab+b2)=12ab(a+b)2.当a+b=5,ab=10时,原式=12×10×52=125.方法总结:解答此类问题的关键是对原式进行变形,将原式转化为含已知代数式的形式,然后整体代入.变式训练:见《学练优》本课时练习“课堂达标训练”第9题三、板书设计1.完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.2.完全平方公式的特点:(1)必须是三项式(或可以看成三项的);(2)有两个同号的平方项;(3)有一个乘积项(等于平方项底数的±2倍).简记口诀:首平方,尾平方,首尾两倍在中央.本节课学生的探究活动比较多,教师既要全局把握,又要顺其自然,千万不可拔苗助长,为了后面多做几道练习而主观裁断时间安排.其实公式的探究活动本身既是对学生能力的培养,又是对公式的识记过程,而且还可以提高他们应用公式的本领.。
北师大版七年级数学下册《1.6 完全平方公式》教案

北师大版七年级数学下册《1.6 完全平方公式》教案一. 教材分析《1.6 完全平方公式》是北师大版七年级数学下册的教学内容。
本节课主要介绍完全平方公式,即 (a±b)² = a²±2ab+b²。
完全平方公式是初中学段数学的重要知识点,也是后续学习二次函数、解一元二次方程等知识的基础。
通过学习完全平方公式,学生可以更好地理解平方运算,提高解决问题的能力。
二. 学情分析七年级的学生已经掌握了有理数的乘方、平方根等基础知识,具备一定的运算能力。
但部分学生对完全平方公式的理解和运用还不够熟练,容易混淆。
因此,在教学过程中,教师需要关注学生的学习需求,针对性地进行辅导,提高学生对完全平方公式的掌握程度。
三. 教学目标1.理解完全平方公式的含义和推导过程;2.能够运用完全平方公式进行计算和解决问题;3.培养学生的运算能力、逻辑思维能力和创新意识。
四. 教学重难点1.完全平方公式的推导过程;2.完全平方公式的运用和灵活运用。
五. 教学方法1.采用问题驱动法,引导学生主动探究完全平方公式的推导过程;2.运用实例讲解法,让学生通过具体例子理解完全平方公式的应用;3.采用分组合作法,培养学生的团队协作能力和沟通能力;4.运用激励评价法,激发学生的学习兴趣和自信心。
六. 教学准备1.准备相关的基础知识课件,以便引导学生复习和回顾;2.准备完全平方公式的推导过程课件,以便讲解和展示;3.准备一些典型例题和练习题,以便进行课堂练习和巩固;4.准备分组合作的学习任务,以便学生进行团队协作。
七. 教学过程1.导入(5分钟)利用课件回顾有理数的乘方、平方根等基础知识,为学生学习完全平方公式做好铺垫。
2.呈现(10分钟)利用课件展示完全平方公式的推导过程,引导学生了解完全平方公式的来源和含义。
3.操练(10分钟)运用实例讲解法,让学生通过具体例子理解完全平方公式的应用。
然后,让学生进行课堂练习,运用完全平方公式计算相关问题。
6完全平方公式(二)教学设计

第一章整式的乘除6完全平方公式(第2课时)山东省济南市实验初级中学贾万峰一、学生起点分析学生的知识技能基础:学生通过上一节课的学习,已经经历了探索和推导完全平方公式的过程,并能运用公式进行简单的计算,同时通过前面的学习,学生已经基本掌握了整式的乘法运算,并能简单运用平方差公式和完全平方公式进行计算,这些知识的掌握为本节课的学习奠定了良好的知识技能基础.学生活动经验基础:在前面几节课的学习中,学生已经经历了探索和应用乘法公式的过程,获得了一些数学活动的经验,培养了一定的符号感和推理能力;同时在相关知识的学习过程中,学生经历了很多探究学习的过程,具有了一定的独立探究意识以及与同伴合作交流的能力.本节课是对乘法公式的综合应用,同时乘法公式又是整式乘法中具有特殊结构的一类问题,从而让学生经历由特殊到一般的过程,学会在解题之前进行观察与思考是至关重要的,而这在平方差公式的灵活运用中学生同样也积累了一定的活动经验.二、教学任务分析教科书是在学生已经经历了完全平方公式的探索和推导过程之后,并能够运用完全平方公式进行简单计算的基础上,提出本节课的学习任务的.可以说首先是对完全平方公式的进一步巩固,并能将其运用到有关数的简便运算当中去.同时,虽然本节课是完全平方公式的第二个课时,但其实也是对乘法公式及整式乘法运算的简单的综合运用.为此,本节课的教学目标是:1.知识与技能:熟记完全平方公式,并能说出公式的结构特征,能够运用完全平方公式进行一些数的简便运算,会在多项式、单项式的混合运算中,正确运用完全平方公式进行计算.2.过程与方法:能够运用完全平方公式解决简单的实际问题,并在活动当中培养学生数学建模的意识及应用数学解决实际问题的能力,感悟换元变换的思想方法,提高灵活应用乘法公式的能力,体会符号运算对解决问题的作用,进一步发展学生的符号感.3.情感与态度:在学习中使学生体会学习数学的乐趣,培养学习数学的信心,感爱数学的内在美.三、教学过程设计本节课设计了七个教学环节:回顾与思考、做一做、简单应用、综合应用、课堂小结、布置作业、联系拓广.第一环节回顾与思考活动内容:复习已学过的完全平方公式.1.完全平方公式:(a+b)2 = a2 + 2ab + b2(a-b)2 = a2 - 2ab + b22. 想一想:(1)两个公式中的字母都能表示什么? 数或代数式(2)完全平方公式在计算化简中有些什么作用?(3)根据两数和或差的完全平方公式,能够计算多个数的和或差的平方吗?活动目的:本堂课的学习方向首先仍是对于完全平方公式的进一步巩固应用,因而复习是很有必要的,这为后面的学习奠定了一定的基础,同时经过本环节中的第三个问题的思考,也使学生明确了本节课学习的初步目标,起到了承上启下的作用.实际教学效果:在复习过程中,学生能够顺利地回答出完全平方公式的内容,同时第三个问题的设计适合学生的思维过程,又不难回答,但是却为后面的学习进行了铺垫,起到了很好的效果.第二环节做一做活动内容:出示幻灯片,提出问题.有一位老人非常喜欢孩子,每当有孩子到他家做客时,老人都要拿出糖果招待他们.来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块糖,来三个,就给每人三块糖,……(1) 第一天有a 个男孩一起去了老人家,老人一共给了这些孩子多少块糖?(2) 第二天有b 个女孩一起去了老人家,老人一共给了这些孩子多少块糖?(3) 第三天这(a + b)个孩子一起去看老人,老人一共给了这些孩子多少块糖?(4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?为什么?活动目的:数学源自于生活,通过生活当中的一个有趣的分糖场景,使学生进一步巩固了(a+b)2=a2+2ab+b2,同时帮助学生进一步理解了(a+b)2与a2+b2的关系.同时通过问题串的形式,层层递进,适合学生的思维梯度,学生通过自主探究和交流学到了新的知识,巩固了旧的知识,学生的学习积极性和主动性得到大大的激发.实际教学效果:问题提出后,学生能够主动的去寻找问题的答案.同时问题串的设计具有梯度,在不自觉中学生一步步的对知识得以深入理解,并在解决问题过程中体会到了完全平方公式的作用.同时在教学过程中教师还可以引导学生进一步讨论多出2ab的原因:对于这a个男孩,每个男孩第三天得到的糖果数多b 块,一共多了ab块;同理可知这b个女孩第三天得到的糖果总数比第二天也多了ab块.因此,这些孩子第三天得到的糖果数与前两天相比,共计多出了2ab块.在整个探索过程中老师只是在提出问题和引导学生解决问题,学生通过独立思考与讨论的方式得出了答案,整个过程中学生的自主性得到了充分的体现,课堂气氛平等融洽.第三环节简单应用活动内容:1.例题讲解例2 利用完全平方公式计算:(1) 1022 ; (2) 1972(1)把 1022改写成 (a+b)2还是(a−b)2 ?a、b怎样确定?1022 =(100+2)2=1002+2×100×2+22=1000+400+4=10404(2)把 1972改写成 (a+b)2还是(a−b)2 ?a、b怎样确定?1972 =(200-3)2=2002-2×200×3+32=4000-1200+9=388092. 随堂练习利用整式乘法公式计算:(1) 962;(2) 2032活动目的:能够运用完全平方公式进行一些有关数的简便运算,进一步体会完全平方公式在实际当中的应用,并通过练习加以巩固.需要注意的是,本题的目的是进一步巩固完全平方公式,体会符号运算对解决问题的作用,不要在简便运算上做过多练习.实际教学效果:此环节的设计符合学生的认知水平和认知过程.虽然问题本身难度不大,学生容易解决,但是通过在解题之前的观察与思考,使学生养成认真审题的好习惯,同时对于知识的掌握更有深度,也为后面乘法公式的综合应用奠定了良好的活动基础.第四环节综合应用活动内容: 1.例题讲解例3 计算:(1) (x+3)2 - x2解: (1) 方法一完全平方公式→合并同类项(x+3)2-x2=x2+6x+9-x2=6x+9解: (1) 方法二平方差公式→单项式乘多项式.(x+3)2-x2=(x+3+x)(x+3-x)=(2x+3)·3=6x+9(2)(x+5)2–(x-2)(x-3)解: (2)(x+5)2-(x-2)(x-3)=(x2+10x+25)-(x2-5x+6)=x2+10x+25-x2+5x-6=15x+19温馨提示:1. 注意运算的顺序.2. (x−2)(x−3)展开后的结果要注意添括号.(3) (a+b+3)(a+b-3)解:(a+b+3)(a+b-3)=[(a+b)+3][(a+b)-3]=(a+b)2-32=a2+2ab+b2-9温馨提示:将(a+b)看作一个整体,解题中渗透了整体的思想2.巩固练习(1)(a-b+3)(a-b-3)(2)(x-2)(x+2)-(x+1)(x-3)(3)(ab+1)2-(ab-1)2(4)(2x-y)2-4(x-y)(x+2y)活动目的:使学生进一步熟悉乘法公式的运用,同时进一步体会完全平方公式中字母a,b的含义是很广泛的,它可以是数,也可以是整式.并且在解题过程中体会解题前观察与思考的重要性,学会一题多解情况下的优化选择,并通过例题中的第三个题目体会整体思想,同时渗透添加括号的思想.实际教学效果:对例题1(1),学生经过独立思考容易想到方法一从而借助于完全平方公式来解决问题,但是不容易想到借助逆向使用平方差公式来进行计算,在教师的引导下部分学生可以理解借助平方差公式的方法.虽然此题两种方法解题难度上差别不大,但是在随后练习中的第三小题学生会感悟到借助逆向使用平方差公式更为简单.从而既达到了巩固练习的目的,还使学生有了优化选择的意识.对例题1(2),当整式乘法之间用减号连接时,此时应特别注意后面部分的计算结果应该加上括号,这是学生非常容易出错的地方,应给予强调,并在随后练习中的二、四小题有所体现.对例题1(3),在前面学习中就已经有所渗透整体的思想,此题让学生进一步感悟公式中的“a”“b”除了可以代表数与字母之外,还可以代表代数式,并体会添加括号的思想.第五环节课堂小结活动内容:归纳小结1. 完全平方公式的使用:在做题过程中一定要注意符号问题和正确认识a、b表示的意义,它们可以是数、也可以是单项式,还可以是多项式,所以要记得添括号.2.解题技巧:在解题之前应注意观察思考,选择不同的方法会有不同的效果,要学会优化选择.活动目的:课堂小结并不只是课堂知识点的回顾,要尽量让学生畅谈自己的切身感受,教师对于发言进行鼓励,进一步梳理本节所学,更要有所思考,达到对所学知识巩固的目的.同时本节课更多的属于练习巩固及综合应用,所以应让学生更多的谈在这节课中解题上所获得的收获与体会.实际教学效果:通过学生的畅所欲言,教师在其中能够发现学生掌握较为薄弱的地方,从而在今后教学中可以得以弥补.同时学生谈了更多在某个题目上所获的经验和方法,此时教师应给予总结,进一步明确所涉及的数学思想和数学方法.第六环节布置作业活动内容:1.基础训练:教材习题1.12 .2.扩展训练:联系拓广活动目的:课下将所学知识进一步巩固,并得以反馈.第七环节联系拓广1.(1)如果把完全平方公式中的字母“a”换成“m+n”,公式中的“b”换成“p”,那么 (a+b)2变成怎样的式子?怎样计算(m+n+p)2呢?(m+n+p)2=[(m+n)+p]2=(m+n)2+2(m+n)p+p2=m2+2mn+n2+2mp+2np+p2=m2+ n2 +p2+2mn+2mp+2np(2)把所得结果作为推广了的完全平方公式,试用语言叙述这一公式:三个数和的完全平方等于这三个数的平方和,再加上每两数乘积的2倍.(3)仿照上述结果,你能说出(a−b+c)2所得的结果吗?2. 已知:a+b=5,ab=-6,求下列各式的值(1)(a+b)2 (2)a2+b2若条件换成a-b=5,ab=-6,你能求出a2+b2的值吗?活动目的:对于本节课的进一步拓广,培养学生的探究意识,让学有余力的同学进一步加深对本节课的理解.实际教学效果:确实引起了班内数学较突出同学的兴趣,并能够积极主动地去探究,从而达到了由“小课堂”到课下“大课堂”的目的,培养了学生学习数学的兴趣.四、教学设计反思1. 遵循课程标准所提出的“让学生亲身经历将实际问题抽象成数学模型并进行解释和应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等方面得到进步和发展”的理念,教学中力求使“自主探索、动手实践、合作交流”成为学生学习的主要方式.2. 为了充分展示数学问题的发生、发展及变化过程,本课采用计算机辅助教学.在整个新课的教学中,采用“动脑想,动手写,会观察,齐讨论,得结论”的学习方法.这样做,增加了学生的参与机会,增强了参与意识,教给了学生获取知识的途径,思考问题的方法,使学生真正成为教学的主体;这样做,使学生“学”有所“思”,“思”有所“得”,这样做,体现了素质教育下塑造“创新”型人才的优势.最后,结合本节课教学内容,选择具有典型性,由浅入深的例题,让学生认知内化,形成能力.通过发展提高,培养学生迁移创新精神,有助于智力的发展.。
完全平方公式

272教育版■文/夏夕雅教材分析:本节课内容是北师大版七年级数学上册第一章第6节完全平方公式第二课时完全平方公式的应用。
本课是在学习了整式的加减乘除,平方差公式和初步认识了完全平方公式的基础上,进一步深入学习与训练。
对简化运算,公式推导变形,以及后期学习逆运算因式分解,求解二次方程以及二次函数等的学习有着非常重要的作用,因此,本节课在数学学习中有着非常重要的地位。
教学目标:预习目标:1.完全平方公式的基本特征(首平方,尾平方,二倍乘积放中央);2. 两个公式中的字母都能表示什么?3. 理解 与a2+b2的关系;课堂目标:1.知识与技能:(1)通过举例,进一步巩固完全平方公式,体会符号运算对解决问题的作用;(2)会用完全平方公式进行乘法运算;(3)会综合运用平方差公式和完全平方公式进行整式的简便运算。
过程与方法:(1)在练习中培养学生的逻辑思维能力;(2)通过完全平方公式逆运算及公式特征的辨析,发展学生的数学运算能力;(3)通过游戏增加课堂的趣味性,让学生在思维导图中学会课上与课下学习内容做到兼容,体会归纳整理的能力。
情感态度价值观:经历在现实情境中进一步认识完全平方公式的过程,感受数学运算的多样性,注意学生的学习积极性、主动性参与课堂的调动,增强学生学习数学的信心。
教学重难点:重点:完全平方公式的学习与理解;难点:对公式的理解与灵活运用。
学习者特征分析:学生对完全平方公式有了基本的认知与了解,但是对变式训练并不能敏感的捕捉关键信息,如符号与2倍项的易错辨析,总是出现是似而非或差不多的心态,对公式的变化以及数形结合亟待加强。
教学过程:一、课前:1.完全平方公式的基本特征(首平方,尾平方,二倍乘积放中央);2. 两个公式中的字母都能表示什么?3. 与a2+b2的关系。
课前预习本课视频+预习题目,软件后台实时监控督促,获取学生数据。
课前在家,在软件上进行预习(视频+基础过关题)二、课中:环节一: 1.预习汇报(学习大数据通告)(图略);2.自主预习大数据答疑:针对本节课同学们容易出现的问题提前进行预设,在预习中带领同学们归纳出本课的易错点:1.符号错误;2.2倍项错误;3.完全平方公式与平方差综合运用(图略);3.类型归纳:(错误集中展示,目的在于从预习提前出示本课重难点)(图略)再次强调本课的重难点及容易出现错误的部分进行归纳,让学生在错误中学会成长,学会感恩自己的错误,排除畏惧的心理,勇于挑战,增强信心。
北师大版数学七年级下册1.6 完全平方公式(第2课时)同步课件

北师大版 七年级下册
1.6 完全平方公式 (第2课时)
教学目标
1.能够运用完全平方公式进行简便运算。 2.会在多项式、单项式的混合运算中,正确运用完全平方公式。 3.掌握完全平方公式的几种变形,并且会应用变形公式解题。 4.感受整体思想、数形结合思想。
温故知新
1.完全平方公式: (a+b) 2=a2+2ab+b2 (a-b) 2=a2-2ab+b2
归纳总结
归纳小结公式的变式,准确灵活运用公式: ① 位置变化,(x+y)(-y+x)=x2-y2 ② 符号变化,(-x+y)(-x-y)=(-x)2-y2= x2-y2 ③ 指数变化,(x2+y2)(x2-y2)=x4-y4 ④ 系数变化,(2a+b)(2a-b)=4a2-b2 ⑤ 换式变化,[xy+(z+m)][xy-(z+m)]=(xy)2-(z+m)2= x2y2-(z2+2zm+m2)=x2y2z2-2zm-m2 ⑥ 增项变化,(x-y+z)(x-y-z)=(x-y)2-z2 =x2-2xy +y2-z2 ⑦ 连用公式变化,(x+y)(x-y)(x2+y2)=(x2-y2)(x2+y2)=x4-y4 ⑧ 逆用公式变化,(x-y+z)2-(x+y-z)2=[(x-y+z)+(x+y-z)][(x-y+z)-(x+y-z)]
解:1972 =(200-3)2 =2002-2×200×3+32 =40000-1200+9 =38809
通过上面的计算, 你发现了什么?
归纳总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6完全平方公式(第2课时)教学目标是:1.知识与技能:熟记完全平方公式,并能说出公式的结构特征,能够运用完全平方公式进行一些数的简便运算,会在多项式、单项式的混合运算中,正确运用完全平方公式进行计算.2.过程与方法:能够运用完全平方公式解决简单的实际问题,并在活动当中培养学生数学建模的意识及应用数学解决实际问题的能力,感悟换元变换的思想方法,提高灵活应用乘法公式的能力,体会符号运算对解决问题的作用,进一步发展学生的符号感.3.情感与态度:在学习中使学生体会学习数学的乐趣,培养学习数学的信心,感爱数学的内在美.一、教学过程设计本节课设计了七个教学环节:回顾与思考、做一做、简单应用、综合应用、课堂小结、布置作业、联系拓广.第一环节回顾与思考活动内容:复习已学过的完全平方公式.1.完全平方公式:(a+b)2 = a2 + 2ab + b2(a-b)2 = a2 - 2ab + b22. 想一想:(1)两个公式中的字母都能表示什么? 数或代数式(2)完全平方公式在计算化简中有些什么作用?(3)根据两数和或差的完全平方公式,能够计算多个数的和或差的平方吗?活动目的:本堂课的学习方向首先仍是对于完全平方公式的进一步巩固应用,因而复习是很有必要的,这为后面的学习奠定了一定的基础,同时经过本环节中的第三个问题的思考,也使学生明确了本节课学习的初步目标,起到了承上启下的作用.实际教学效果:在复习过程中,学生能够顺利地回答出完全平方公式的内容,同时第三个问题的设计适合学生的思维过程,又不难回答,但是却为后面的学习进行了铺垫,起到了很好的效果.第二环节做一做活动内容:出示幻灯片,提出问题.有一位老人非常喜欢孩子,每当有孩子到他家做客时,老人都要拿出糖果招待他们.来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块糖,来三个,就给每人三块糖,……(1) 第一天有a 个男孩一起去了老人家,老人一共给了这些孩子多少块糖?(2) 第二天有b 个女孩一起去了老人家,老人一共给了这些孩子多少块糖?(3) 第三天这(a + b)个孩子一起去看老人,老人一共给了这些孩子多少块糖?(4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?为什么?活动目的:数学源自于生活,通过生活当中的一个有趣的分糖场景,使学生进一步巩固了(a+b)2=a2+2ab+b2,同时帮助学生进一步理解了(a+b)2与a2+b2的关系.同时通过问题串的形式,层层递进,适合学生的思维梯度,学生通过自主探究和交流学到了新的知识,巩固了旧的知识,学生的学习积极性和主动性得到大大的激发.实际教学效果:问题提出后,学生能够主动的去寻找问题的答案.同时问题串的设计具有梯度,在不自觉中学生一步步的对知识得以深入理解,并在解决问题过程中体会到了完全平方公式的作用.同时在教学过程中教师还可以引导学生进一步讨论多出2ab的原因:对于这a个男孩,每个男孩第三天得到的糖果数多b块,一共多了ab块;同理可知这b个女孩第三天得到的糖果总数比第二天也多了ab块.因此,这些孩子第三天得到的糖果数与前两天相比,共计多出了2ab块.在整个探索过程中老师只是在提出问题和引导学生解决问题,学生通过独立思考与讨论的方式得出了答案,整个过程中学生的自主性得到了充分的体现,课堂气氛平等融洽.第三环节简单应用活动内容:1.例题讲解例2 利用完全平方公式计算:(1) 1022 ; (2) 1972(1)把 1022改写成 (a+b)2还是(a−b)2 ?a、b怎样确定?1022 =(100+2)2=1002+2×100×2+22=1000+400+4=10404(2)把 1972改写成 (a+b)2还是(a−b)2 ?a、b怎样确定?1972 =(200-3)2=2002-2×200×3+32=4000-1200+9=388092. 随堂练习利用整式乘法公式计算:(1) 962; (2) 2032活动目的:能够运用完全平方公式进行一些有关数的简便运算,进一步体会完全平方公式在实际当中的应用,并通过练习加以巩固.需要注意的是,本题的目的是进一步巩固完全平方公式,体会符号运算对解决问题的作用,不要在简便运算上做过多练习.实际教学效果:此环节的设计符合学生的认知水平和认知过程.虽然问题本身难度不大,学生容易解决,但是通过在解题之前的观察与思考,使学生养成认真审题的好习惯,同时对于知识的掌握更有深度,也为后面乘法公式的综合应用奠定了良好的活动基础.第四环节综合应用活动内容: 1.例题讲解例3 计算:(1) (x+3)2 - x2解: (1) 方法一完全平方公式→合并同类项(x+3)2-x2=x2+6x+9-x2=6x+9解: (1) 方法二平方差公式→单项式乘多项式.(x+3)2-x2=(x+3+x)(x+3-x)=(2x+3)·3=6x+9(2)(x+5)2–(x-2)(x-3)解: (2)(x+5)2-(x-2)(x-3)=(x2+10x+25)-(x2-5x+6)=x2+10x+25-x2+5x-6=15x+19温馨提示:1. 注意运算的顺序.2. (x−2)(x−3)展开后的结果要注意添括号.(3) (a+b+3)(a+b-3)解:(a+b+3)(a+b-3)=[(a+b)+3][(a+b)-3]=(a+b)2-32=a2+2ab+b2-9温馨提示:将(a+b)看作一个整体,解题中渗透了整体的思想2.巩固练习(1)(a-b+3)(a-b-3)(2)(x-2)(x+2)-(x+1)(x-3)(3)(ab+1)2-(ab-1)2(4)(2x-y)2-4(x-y)(x+2y)活动目的:使学生进一步熟悉乘法公式的运用,同时进一步体会完全平方公式中字母a,b的含义是很广泛的,它可以是数,也可以是整式.并且在解题过程中体会解题前观察与思考的重要性,学会一题多解情况下的优化选择,并通过例题中的第三个题目体会整体思想,同时渗透添加括号的思想.实际教学效果:对例题1(1),学生经过独立思考容易想到方法一从而借助于完全平方公式来解决问题,但是不容易想到借助逆向使用平方差公式来进行计算,在教师的引导下部分学生可以理解借助平方差公式的方法.虽然此题两种方法解题难度上差别不大,但是在随后练习中的第三小题学生会感悟到借助逆向使用平方差公式更为简单.从而既达到了巩固练习的目的,还使学生有了优化选择的意识.对例题1(2),当整式乘法之间用减号连接时,此时应特别注意后面部分的计算结果应该加上括号,这是学生非常容易出错的地方,应给予强调,并在随后练习中的二、四小题有所体现.对例题1(3),在前面学习中就已经有所渗透整体的思想,此题让学生进一步感悟公式中的“a”“b”除了可以代表数与字母之外,还可以代表代数式,并体会添加括号的思想.第五环节课堂小结活动内容:归纳小结1. 完全平方公式的使用:在做题过程中一定要注意符号问题和正确认识a、b表示的意义,它们可以是数、也可以是单项式,还可以是多项式,所以要记得添括号.2.解题技巧:在解题之前应注意观察思考,选择不同的方法会有不同的效果,要学会优化选择.活动目的:课堂小结并不只是课堂知识点的回顾,要尽量让学生畅谈自己的切身感受,教师对于发言进行鼓励,进一步梳理本节所学,更要有所思考,达到对所学知识巩固的目的.同时本节课更多的属于练习巩固及综合应用,所以应让学生更多的谈在这节课中解题上所获得的收获与体会.实际教学效果:通过学生的畅所欲言,教师在其中能够发现学生掌握较为薄弱的地方,从而在今后教学中可以得以弥补.同时学生谈了更多在某个题目上所获的经验和方法,此时教师应给予总结,进一步明确所涉及的数学思想和数学方法.第六环节布置作业活动内容:1.基础训练:教材习题1.12 .2.扩展训练:联系拓广活动目的:课下将所学知识进一步巩固,并得以反馈.第七环节联系拓广1.(1)如果把完全平方公式中的字母“a”换成“m+n”,公式中的“b”换成“p”,那么 (a+b)2变成怎样的式子?怎样计算(m+n+p)2呢?(m+n+p)2=[(m+n)+p]2=(m+n)2+2(m+n)p+p2=m2+2mn+n2+2mp+2np+p2=m2+ n2 +p2+2mn+2mp+2np(2)把所得结果作为推广了的完全平方公式,试用语言叙述这一公式:三个数和的完全平方等于这三个数的平方和,再加上每两数乘积的2倍.(3)仿照上述结果,你能说出(a−b+c)2所得的结果吗?2. 已知:a+b=5,ab=-6,求下列各式的值(1)(a+b)2 (2)a2+b2若条件换成a-b=5,ab=-6,你能求出a2+b2的值吗?活动目的:对于本节课的进一步拓广,培养学生的探究意识,让学有余力的同学进一步加深对本节课的理解.实际教学效果:确实引起了班内数学较突出同学的兴趣,并能够积极主动地去探究,从而达到了由“小课堂”到课下“大课堂”的目的,培养了学生学习数学的兴趣.四、教学设计反思1. 遵循课程标准所提出的“让学生亲身经历将实际问题抽象成数学模型并进行解释和应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等方面得到进步和发展”的理念,教学中力求使“自主探索、动手实践、合作交流”成为学生学习的主要方式.2. 为了充分展示数学问题的发生、发展及变化过程,本课采用计算机辅助教学.在整个新课的教学中,采用“动脑想,动手写,会观察,齐讨论,得结论”的学习方法.这样做,增加了学生的参与机会,增强了参与意识,教给了学生获取知识的途径,思考问题的方法,使学生真正成为教学的主体;这样做,使学生“学”有所“思”,“思”有所“得”,这样做,体现了素质教育下塑造“创新”型人才的优势.最后,结合本节课教学内容,选择具有典型性,由浅入深的例题,让学生认知内化,形成能力.通过发展提高,培养学生迁移创新精神,有助于智力的发展.。