初二数学竞赛讲义一
八年级数学培优.竞赛资料(共24讲)
![八年级数学培优.竞赛资料(共24讲)](https://img.taocdn.com/s3/m/d7aafd8fb8f67c1cfad6b8ac.png)
B AC D EF 第01讲 全等三角形的性质与判定考点·方法·破译1.能够完全重合的两个三角形叫全等三角形.全等三角形的形状和大小完全相同; 2.全等三角形性质:①全等三角形对应边相等,对应角相等;②全等三角形对应高、角平分线、中线相等;③全等三角形对应周长相等,面积相等;3.全等三角形判定方法有:SAS ,ASA ,AAS ,SSS ,对于两个直角三角形全等的判定方法,除上述方法外,还有HL 法;4.证明两个三角形全等的关键,就是证明两个三角形满足判定方法中的三个条件,具体分析步骤是先找出两个三角形中相等的边或角,再根据选定的判定方法,确定还需要证明哪些相等的边或角,再设法对它们进行证明;5..证明两个三角形全等,根据条件,有时能直接进行证明,有时要证的两个三角形并不全等,这时需要添加辅助线构造全等三角形,构造全等三角形常用的方法有:平移、翻折、旋转、等倍延长线中线、截取等等.经典·考题·赏析【例1】如图,AB ∥EF ∥DC ,∠ABC =90°,AB =CD ,那么图中有全等三角形( ) A .5对 B .4对 C .3对 D .2对【解法指导】从题设题设条件出发,首先找到比较明显的一对全等三角形,并由此推出结论作为下面有用的条件,从而推出第二对,第三对全等三角形.这种逐步推进的方法常用到.解:⑴∵AB ∥EF ∥DC ,∠ABC =90. ∴∠DCB =90. 在△ABC 和△DCB 中AB DC ABC DCB BC CB =⎧⎪=⎨⎪=⎩∠∠ ∴△ABC ≌∴△DCB (SAS ) ∴∠A =∠D ⑵在△ABE 和△DCE 中A DAED DEC AB DC =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△ABE ≌∴△DCE ∴BE =CE ⑶在Rt △EFB 和Rt △EFC 中BE CEEF EF=⎧⎨=⎩ ∴Rt △EFB ≌Rt △EFC (HL )故选C . 【变式题组】 01.(天津)下列判断中错误的是( )A .有两角和一边对应相等的两个三角形全等B .有两边和一角对应相等的两个三角形全等C .有两边和其中一边上的中线对应相等的两个三角形全等D .有一边对应相等的两个等边三角形全等A F C E DB 02.(丽水)已知命题:如图,点A 、D 、B 、E 在同一条直线上,且AD =BE ,∠A =∠FDE ,则△ABC ≌△DEF .判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.03.(上海)已知线段AC 与BD 相交于点O , 连接AB 、DC ,E 为OB 的中点,F 为OC 的中点,连接EF (如图所示).⑴添加条件∠A =∠D ,∠OEF =∠OFE ,求证:AB =DC ; ⑵分别将“∠A =∠D ”记为①,“∠OEF =∠OFE ”记为②,“AB =DC ”记为③,添加①、③,以②为结论构成命题1;添加条件②、③,以①为结论构成命题2.命题1是______命题,命题2是_______命题(选择“真”或“假”填入空格).【例2】已知AB =DC ,AE =DF ,CF =FB . 求证:AF =DE .【解法指导】想证AF =DE ,首先要找出AF 和DE 所在的三角形.AF 在△AFB 和△AEF 中,而DE 在△CDE 和△DEF 中,因而只需证明△ABF ≌△DCE 或△AEF ≌△DFE 即可.然后再根据已知条件找出证明它们全等的条件.证明:∵FB =CE ∴FB +EF =CE +EF ,即BE =CF 在△ABE 和△DCF 中, AB DCAE DF BE CF =⎧⎪=⎨⎪=⎩∴△ABE ≌△DCF (SSS ) ∴∠B =∠C在△ABF 和△DCE 中, AB DC B C BF CE =⎧⎪=⎨⎪=⎩∠∠ ∴△ABF ≌△DCE ∴AF =DE【变式题组】01.如图,AD 、BE 是锐角△ABC 的高,相交于点O ,若BO =AC ,BC =7,CD =2,则AO 的长为( ) A .2 B .3 C .4 D .5A B C D O FE A CEFBD02.如图,在△ABC 中,AB =AC ,∠BAC =90°,AE 是过A 点的一条直线,AE ⊥CE 于E ,BD⊥AE 于D ,DE =4cm ,CE =2cm ,则BD =__________. \ 03.(北京)已知:如图,在△ABC 中,∠ ACB =90°,CD ⊥AB 于点D ,点E 在AC 上,CE =BC ,过点E 作AC 的垂线,交CD 的延长线于点F . 求证:AB =FC .【例3】如图①,△ABC ≌△DEF ,将△ABC 和△DEF 的顶点B 和顶点E 重合,把△DEF 绕点B 顺时针方向旋转,这时AC 与DF 相交于点O .⑴当△DEF 旋转至如图②位置,点B (E )、C 、D 在同一直线上时,∠AFD 与∠DCA 的数量关系是________________;⑵当△DEF 继续旋转至如图③位置时,⑴中的结论成立吗?请说明理由_____________.【解法指导】⑴∠AFD =∠DCA⑵∠AFD =∠DCA 理由如下:由△ABC ≌△DEF ,∴AB =DE ,BC =EF , ∠ABC =∠DEF , ∠BAC =∠EDF ∴∠ABC -∠FBC =∠DEF -∠CBF , ∴∠ABF =∠DEC在△ABF 和△DEC 中, AB DE ABF DEC BF EC =⎧⎪=⎨⎪=⎩∠∠∴△ABF ≌△DEC ∠BAF =∠DEC ∴∠BAC -∠BAF =∠EDF -∠EDC , ∴∠FAC =∠CDF∵∠AOD =∠FAC +∠AFD =∠CDF +∠DCA∴∠AFD =∠DCAB (E )OC F 图③DAAE第1题图A BCDEBCDO第2题图AFECB D【变式题组】 01.(绍兴)如图,D 、E 分别为△ABC 的AC 、BC 边的中点,将此三角形沿DE 折叠,使点C落在AB 边上的点P 处.若∠CDE =48°,则∠APD 等于( ) A .42° B .48° C .52° D .58° 02.如图,Rt △ABC 沿直角边BC 所在的直线向右平移得到△DEF ,下列结论中错误的是( )A .△ABC ≌△DEFB .∠DEF =90°C . AC =DFD .EC =CF03.一张长方形纸片沿对角线剪开,得到两种三角形纸片,再将这两张三角形纸片摆成如下图形式,使点B 、F 、C 、D 在同一条直线上. ⑴求证:AB ⊥ED ;⑵若PB =BC ,找出图中与此条件有关的一对全等三角形,并证明.【例4】(第21届江苏竞赛试题)已知,如图,BD 、CE 分别是△ABC 的边A C 和AB 边上的高,点P 在BD 的延长线,BP =AC ,点Q 在CE 上,CQ =AB. 求证:⑴ AP =AQ ;⑵AP ⊥AQ【解法指导】证明线段或角相等,也就是证线段或角所在的两三角形全等.经观察,证AP =AQ ,也就是证△APD 和△AQE ,或△APB 和△QAC 全等,由已知条件BP =AC ,CQ =AB ,应该证△APB ≌△QAC ,已具备两组边对应相等,于是再证夹角∠1=∠2即可. 证AP ⊥AQ ,即证∠PAQ =90°,∠PAD +∠QAC =90°就可以.证明:⑴∵BD 、CE 分别是△ABC 的两边上的高,∴∠BDA =∠CEA =90°, ∴∠1+∠BAD =90°,∠2+∠BAD =90°,∴∠1=∠2. 在△APB 和△QAC 中, 2AB QC BP CA =⎧⎪=⎨⎪=⎩∠1∠ ∴△APB ≌△QAC ,∴AP =AQEFB ACDG第2题图21ABCPQE F D⑵∵△APB ≌△QAC ,∴∠P =∠CAQ , ∴∠P +∠PAD =90° ∵∠CAQ +∠PAD =90°,∴AP ⊥AQ 【变式题组】01.如图,已知AB =AE ,∠B =∠E ,BA =ED ,点F 是CD 的中点,求证:02.直距离MA 为am ,此时梯子的倾斜角为75°,如果梯子底端不动,顶端靠在对面的墙上,此时梯子顶端距地面的垂直距离NB 为bm ,梯子倾斜角为45°,这间房子的宽度是( )A .2a bm + B .2a bm - C .bm D .am03.如图,已知五边形ABCDE 中,∠ ABC =∠AED =90°,AB =CD =AE =BC +DE =2,则五边形ABCDE 的面积为__________演练巩固·反馈提高01.(海南)已知图中的两个三角形全等,则∠α度数是( )A .72°B .60°C .58°D .50°02.如图,△ACB ≌△A /C /B /,∠ BCB /=30°,则∠ACA /的度数是( )A .20°B .30°C .35°D .40° 03.(牡丹江)尺规作图作∠AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得△OCP ≌△ODP 的根据是( )第1题图a αcca50° b72° 58°AECBA 75° C45° BNM第2题图第3题图DA .SASB .ASAC .AASD .SSS 04.(江西)如图,已知AB =AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是( )A . CB =CD B .∠BAC =∠DAC C . ∠BCA =∠DCAD .∠B =∠D =90°05.有两块不同大小的等腰直角三角板△ABC 和△BDE ,将它们的一个锐角顶点放在一起,将它们的一个锐角顶点放在一起,如图,当A 、B 、D 不在一条直线上时,下面的结论不正确的是( )A . △ABE ≌△CBDB . ∠ABE =∠CBDC . ∠ABC =∠EBD =45° D . AC ∥BE06.如图,△ABC 和共顶点A ,AB=AE ,∠1=∠2,∠B =∠E . BC 交AD 于M ,DE 交AC 于N ,小华说:“一定有△ABC ≌△AED .”小明说:“△ABM ≌△AEN .”那么( ) A . 小华、小明都对 B . 小华、小明都不对 C . 小华对、小明不对 D .小华不对、小明对07.如图,已知AC =EC , BC =CD , AB =ED ,如果∠BCA =119°,∠ACD =98°,那么∠ECA 的度数是___________.08.如图,△ABC ≌△ADE ,BC 延长线交DE 于F ,∠B =25°,∠ACB =105°,∠DAC =10°,则∠DFB 的度数为_______.09.如图,在Rt △ABC 中,∠C =90°, DE ⊥AB 于D , BC =BD . AC =3,那么AE +DE =______10.如图,BA ⊥AC , CD ∥AB . BC =DE ,且BC ⊥DE ,若AB =2, CD =6,则AE =_____. 11.如图, AB =CD , AB ∥CD . BC =12cm ,同时有P 、Q 两只蚂蚁从点C 出发,沿CB 方向爬行,P 的速度是0.1cm /s , Q 的速度是0.2cm /s . 求爬行时间t 为多少时,△APB ≌△QDC .DA C .Q P.BA E FB DC 12.如图, △ABC 中,∠BCA =90°,AC =BC ,AE 是BC 边上的中线,过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于D . ⑴求证:AE =CD ;⑵若AC =12cm , 求BD 的长.13.(吉林)如图,AB =AC ,AD ⊥BC 于点D ,AD 等于AE ,AB 平分∠DAE 交DE 于点F , 请你写出图中三对全等三角形,并选取其中一对加以证明.14.如图,将等腰直角三角板ABC 的直角顶点C 放在直线l 上,从另两个顶点A 、B 分别作l 的垂线,垂足分别为D 、E .⑴找出图中的全等三角形,并加以证明; ⑵若DE =a ,求梯形DABE 的面积.(温馨提示:补形法)15.如图,AC ⊥BC , AD ⊥BD , AD =BC ,CE ⊥AB ,DF ⊥AB ,垂足分别是E 、F .求证:CE =DF .16.我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等,那么在什么情况下,它们会全等? ⑴阅读与证明:对于这两个三角形均为直角三角形,显然它们全等;对于这两个三角形均为钝角三角形,可证明它们全等(证明略); 对于这两个三角形均为锐角三角形,它们也全等,可证明如下;已知△ABC 、△A 1B 1C 1均为锐角三角形,AB =A 1B 1,BC =B 1C 1,∠C =∠C 1.求证:△ABC ≌△A 1B 1C 1.(请你将下列证明过程补充完整)⑵归纳与叙述:由⑴可得一个正确结论,请你写出这个结论.ABCDA 1B 1C 1D 1D B A C EF A E B F D CAEF C DB 培优升级·奥赛检测01.如图,在△ABC 中,AB =AC ,E 、F 分别是AB 、AC 上的点,且AE =AF ,BF 、CE 相交于点O ,连接AO 并延长交BC 于点D ,则图中全等三角形有( ) A .4对 B .5对 C .6对 D .7对02.如图,在△ABC 中,AB =AC ,OC =OD ,下列结论中:①∠A =∠B ②DE =CE ,③连接DE , 则OE 平分∠AOB ,正确的是( ) A .①② B .②③ C .①③ D .①②③03.如图,A 在DE 上,F 在AB 上,且AC =CE , ∠1=∠2=∠3, 则DE 的长等于()A .DCB . BC C . ABD .AE +AC04.下面有四个命题,其中真命题是( )A .两个三角形有两边及一角对应相等,这两个三角形全等B .两边和第三边上的高对应相等的两个三角形全等C . 有一角和一边对应相等的两个直角三角形全等D . 两边和第三边上的中线对应相等的两个三角形全等05.在△ABC 中,高AD 和BE 所在直线相交于H 点,且BH =AC ,则∠ABC =_______.06.如图,EB 交AC 于点M , 交FC 于点D , AB 交FC 于点N ,∠E =∠F =90°,∠B =∠C , AE=AF . 给出下列结论:①∠1=∠2;②BE =CF ; ③△ACN ≌△ABM ; ④CD =DB ,其中正确的结论有___________.(填序号)07.如图,AD 为在△ABC 的高,E 为AC 上一点,BE 交AD 于点F ,且有BF =AC ,FD =CD .⑴求证:BE ⊥AC ;⑵若把条件“BF =AC ”和结论“BE ⊥AC ”互换,这个命题成立吗?证明你的判定.08.如图,D 为在△ABC 的边BC 上一点,且CD =AB ,∠BDA =∠BAD ,AE 是△ABD 的中线.求证:AC =2AE .09.如图,在凸四边形ABCD 中,E 为△ACD 内一点,满足AC =AD ,AB =AE , ∠BAE +∠BCEF第6题图2 1AB CE N M3 21ADEBC FADECOA E O BFCD 第1题图B第2题图第3题图ABE D CAB C DEAEBDC=90°, ∠BAC =∠EAD .求证:∠CED =90°.10.(沈阳)将两个全等的直角三角形ABC 和DBE 按图①方式摆放,其中∠ACB =∠DEB =90°,∠A =∠D =30°,点E 落在AB 上,DE 所在直线交AC 所在直线于点F .⑴求证:AF +EF =DE ;⑵若将图①中△DBE 绕点B 顺时针方向旋转角α,且0°<α<60°,其他条件不变,请在图②中画出变换后的图形,并直接写出(1)中结论是否仍然成立;⑶若将图①中△DBE 绕点B 按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③你认为(1)中结论还成立吗?若成立,写出证明过程;若不成立,请写出此时AF 、EF 与DE 之间的关系,并说明理由。
八年级数学竞赛培优讲义
![八年级数学竞赛培优讲义](https://img.taocdn.com/s3/m/a4308378a36925c52cc58bd63186bceb19e8edc4.png)
1、用提公因式法把多项式进行因式分解【知识精读】假如多项式的各项有公因式,依据乘法分派律的逆运算,能够把这个公因式提到括号外面,将多项式写成因式乘积的形式。
提公因式法是因式分解的最基本也是最常用的方法。
它的理论依据就是乘法分派律。
多项式的公因式确实定方法是:(1)当多项式有同样字母时,取同样字母的最低次幂。
(2)系数和各项系数的最大条约数,公因式能够是数、单项式,也能够是多项式。
下边我们经过例题进一步学惯用提公因式法因式分解【分类分析】1.把以下各式因式分解(1)a2 x m 2abx m 1acx m ax m3(2)a(a b) 32a2 (b a) 22ab(b a)分析:(1)若多项式的第一项系数是负数,一般要提出“-”号,使括号内的第一项系数是正数,在提出“-”号后,多项式的各项都要变号。
解: a 2 x m 2abx m 1acx m ax m 3ax m (ax 2bx c x 3 )(2)有时将因式经过符号变换或将字母从头摆列后可化为公因式,如:当 n 为自然数时,(a b) 2n(b a) 2n; (a b) 2n 1(b a) 2 n 1,是在因式分解过程中常用的因式变换。
解: a(a b)3 2a 2 (b a) 2 2ab(b a)2. 利用提公因式法简化计算过程987 987 987 987 例:计算 1232684565211368136813681368分析:算式中每一项都含有987,能够把它当作公因式提拿出来,1368再算出结果。
解:原式987 (123 268 456 521)13683. 在多项式恒等变形中的应用例:不解方程组2x y 3 ,求代数式 (2 xy)(2 x3y) 3x( 2x y) 的5x 3y2值。
分析:不要求解方程组,我们能够把2xy 和 5x 3y 当作整体,它们的值分别是 3 和2 ,察看代数式,发现每一项都含有2x y ,利用提公因式法把代数式恒等变形,化为含有 2x y 和 5x 3y 的式子,即可求出结果。
初中数学竞赛讲义(1)
![初中数学竞赛讲义(1)](https://img.taocdn.com/s3/m/019dd1cfa76e58fafbb00333.png)
初中数学竞赛讲义
1、证明:对于任意自然数k,存在无穷多个不含数码0的自然数t(十进制计数法),使得t与kt数码和相同。
2、设n是一个正整数,且d是十进制中的一个一位数,若
=0.d25d25d25…,求n
3、两位数
能整除十位数字为零的三位数。
求。
4、设n=99…9(100个9),则n3 的10进制表示中含有的数字9的个数为多少
5、求
…,1234567892的和的个位数的数字
6、求数1,2,3…,10n -2,10n -1的所有数码之和
7、求最小的自然数,当它的最后一个数码排列到第一位时,它的值增加到原来的五倍
8、已知a是一个1988位的自然数且可被9整除,a的各位数字相加和为b,b的各位数字相加和为c,c的各位数字相加和为d,求d
9、求适合等式
中的数码x,y,z
10、设x=0.1234567…999中的数字依次写下整数1到999而得到的,那么小数点右边第1983位数字是什么
11、设x与y是两个有两位数码的自然数,且x<y,乘积xy是一个有四位数码的自然数.首位数是2,如果把这个首位数2去掉,剩下的数正好是x+y,例如x=30,y=70.除此之外还有一组数具有如上性质,试求出这两个数
12、试求满足下列条件的六位整数
,。
这里a,b,c,d,e,f表示不同的数码,且a,e≠0
13、求满足
=(a+b+c)3的所有三位数。
14、已知某三位整数是5的倍数,其各位数字之和是20,个位数字与百位数字的和是3的倍数,求此整数。
15、求使nn有k个数字,kk有n个数字的所有自然数n,k
16、证明:如果n是正奇数,那么数22n(22n+1-1)在十进制中的最后两位数是28。
初中数学(初二)竞赛讲义(知识点难点梳理、重点题型分类举一反三)(家教、补习、竞赛专用)
![初中数学(初二)竞赛讲义(知识点难点梳理、重点题型分类举一反三)(家教、补习、竞赛专用)](https://img.taocdn.com/s3/m/9c71f4122af90242a895e5bb.png)
初二数学竞赛讲义重难点有效突破知识点梳理及重点题型举一反三练习专题01 整式的乘除阅读与思考指数运算律是整式乘除的基础,有以下5个公式:,,,,,.学习指数运算律应注意:1.运算律成立的条件;2.运算律中字母的意义:既可以表示一个数,也可以表示一个单项式或者多项式;3.运算律的正向运用、逆向运用、综合运用.多项式除以多项式是整式除法的延拓与发展,方法与多位数除以多位数的演算方法相似,基本步骤是:1.将被除式和除式按照某字母的降幂排列,如有缺项,要留空位;2.确定商式,竖式演算式,同类项上下对齐;3.演算到余式为零或余式的次数小于除式的次数为止.例题与求解【例1】(1)若为不等式的解,则的最小正整数的值为.(“华罗庚杯”香港中学竞赛试题)(2)已知,那么.(“华杯赛”试题)(3)把展开后得,则.(“祖冲之杯”邀请赛试题)(4)若则.(创新杯训练试题)解题思路:对于(1),从幂的乘方逆用入手;对于(2),目前无法求值,可考虑高次多项式用低次多项式表示;对于(3),它是一个恒等式,即在允许取值范围内取任何一个值代入计算,故可考虑赋值法;对于(4),可考虑比较系数法.【例2】已知,,则等于()A.2 B.1 C.D.(“希望杯”邀请赛试题)解题思路:为指数,我们无法求出的值,而,所以只需求出的值或它们的关系,于是自然想到指数运算律.【例3】设都是正整数,并且,求的值.(江苏省竞赛试题)解题思路:设,这样可用的式子表示,可用的式子表示,通过减少字母个数降低问题的难度.【例4】已知多项式,求的值.解题思路:等号左右两边的式子是恒等的,它们的对应系数对应相等,从而可考虑用比较系数法.【例5】是否存在常数使得能被整除?如果存在,求出的值,否则请说明理由.解题思路:由条件可推知商式是一个二次三项式(含待定系数),根据“被除式=除式×商式”,运用待定系数法求出的值,所谓是否存在,其实就是关于待定系数的方程组是否有解.【例6】已知多项式能被整除,求的值.(北京市竞赛试题)解题思路:本题主要考查了待定系数法在因式分解中的应用.本题关键是能够通过分析得出当和时,原多项式的值均为0,从而求出的值.当然本题也有其他解法.能力训练A级1.(1).(福州市中考试题)(2)若,则.(广东省竞赛试题)2.若,则.3.满足的的最小正整数为.(武汉市选拔赛试题)4.都是正数,且,则中,最大的一个是.(“英才杯”竞赛试题)5.探索规律:,个位数是3;,个位数是9;,个位数是7;,个位数是1;,个位数是3;,个位数是9;…那么的个位数字是,的个位数字是.(长沙市中考试题)6.已知,则的大小关系是()A.B.C.D.7.已知,那么从小到大的顺序是()A.B.C.D.(北京市“迎春杯”竞赛试题)8.若,其中为整数,则与的数量关系为()A.B.C.D.(江苏省竞赛试题)9.已知则的关系是()A.B.C.D.(河北省竞赛试题)10.化简得()A.B.C.D.11.已知,试求的值.12.已知.试确定的值.13.已知除以,其余数较被除所得的余数少2,求的值.(香港中学竞赛试题)B级1.已知则= .2.(1)计算:= .(第16届“希望杯”邀请竞赛试题)(2)如果,那么.(青少年数学周“宗沪杯”竞赛试题)3.(1)与的大小关系是(填“>”“<”“=”).(2)与的大小关系是:(填“>”“<”“=”).4.如果则= .(“希望杯”邀请赛试题)5.已知,则.(“五羊杯”竞赛试题)6.已知均为不等于1的正数,且则的值为()A.3 B.2 C.1 D.(“CASIO杯”武汉市竞赛试题)7.若,则的值是()A.1 B.0 C.—1 D.28.如果有两个因式和,则()A.7 B.8 C.15 D.21(奥赛培训试题)9.已知均为正数,又,,则与的大小关系是()A.B.C.D.关系不确定10.满足的整数有()个A.1 B.2 C.3 D.411.设满足求的值.12.若为整数,且,,求的值.(美国犹他州竞赛试题)13.已知为有理数,且多项式能够被整除.(1)求的值;(2)求的值; (3)若为整数,且.试比较的大小.(四川省竞赛试题)专题01 整式的乘除例1(1)(n 2)100>(63)100,n 2>216,n 的最小值为15.(2)原式=x 2(x 2+x )+x (x 2 +x )-2(x 2+x ) +2005= x 2+x -2+2005=2004 (3)令x =1时,a 12+a 11+a 10+…+a 2+a 1+a 0=1, ① 令x =-1时,a 12 –a 11+a l 0-…+n 2-a l +a 0 =729 ② 由①+②得:2(a 12+a l 0+a 8+…+a 2 +a 0)=730. ∴a 12 +a 10 +a 8 +a 6+a 4 +a 2+a 0 =365.(4)所有式子的值为x 3项的系数,故其值为7.例2 B 提示:25xy =2 000y, ①80x y=2 000x , ② ①×②,得:(25×80)x y =2000x +y,得:x + y =xy .例3 设a =m 4,b =m 5,c =n 2,d =n 3,由c -a =19得,n 2-m 4=19,即(n +m 2) (n -m 2)=19,因19是质数,n +m 2,n -m 2是自然数,且n +m 2>n -m 2,得=12=19,解得n =10,m =3,所以d -b =103-35=757例4 -87 提示:由题意知:2x 2+3xy -2y 2-x +8y -6=2x 2+3x y -2y 2+(2m +n )x +(2n -m )y +m n .∴mn =-62n -m =8,解得n =3m =-2,∴-13+1=-87倒5提示:假设存在满足题设条件的p ,q 值,设(x 4+p x 2+q )=(x 2+2x +5)(x 2+mx +n ),即x 4+p x 2+q =x 4+(m +2)x 3+(5+n +2m )x 2+(2n +5m )x +5n ,得5n =q 2n +5m =0,解得q =25p =6, 故存在常数p ,q 且p =6,q =25,使得x 4+p x 2+q 能被x 2+2x +5整除.例6解法1 ∵x 2+x -2=(x +2) (x -1),∴2x 4-3x 3+ax 2+7x +b 能被(x +2)(x -1)整除,设商是A .则2x 4-3x 3+a x 2+7x +b =A (x +2)(x -l ),则x =-2和x =1时,右边都等于0,所以左边也等于0.当x =-2时,2x 4-3x 3+a x 2+7x +b =32+24+4a -14+b =4a +b +42=0, ①当x =1时, 2x 4-3x 3+a x 2+7x +b =2-3+a +7+b =a +b +6=0. ② ①-②,得3a +36=0,∴ a =-12, ∴ b =-6-a =6. ∴b a =6-12=-2解法2 列竖式演算,根据整除的意义解∵2x 4-3x 3+a x 2+7x +b 能被x 2+x -2整除,∴=0-12-a =0,即b =6a =-12,∴b a =-2A 级1.(1) -5 (2)53 2.8 3.7 4.6 5.7 9 6.A 7.D 提示:a =(25)11,b -(34)11,c =(53)11,d =(62)11 8.A 9.B 10.C 11.4800 12.a =4.b =4,c =113. 提示:令x 3 +k x 2+3=(x +3) (x 2+a x +6)+r 1,x 3+kx 2+3=( x +1) (x 2+cx +d )+r 2,令x =-3,得r 1=9k -24.令x =-1,得r 2=k +2,由9k -24+2=k +2, 得k =3.B 级1. 1251892. (1)499 提示:原式=19987×20002000=19987×20003=499(2)123.(1) < 1516 <1615=264,3 313 >3213=265 >264.(2) > 提示:设32 000=x .4.4 5.512 提示:令x =±2. 6.C 提示:由条件得a =c -3 ,b =c 2 ,abc =c -3·c 2·c =1 7.C 8.D9.C 提示:设a 2+a 3+…a 1996=x ,则M =(a 1+x )(x +a 1997)=a 1x +x 2+a 1a 1997+a 1 997x .N =(a 1+x +a 1 997)x =a l x +x 2+a 1997x .M =N =a 1a 1997>0. 10.D11.由a x2+by2=7,得(ax2+b y2)(x+y)=7(x+y),即ax3-a x2y+b x y2+by3=7(x+y),(a x3+by3)-xy(ax+by)-7(x+y).∴16+3xy= 7(x+y).①由a x3+by3=16,得(ax3+by3)(x+y) =16(x+y),即ax4 +a x3 y+b x y3+by4 =16(x+y),(a x4+by4)+xy(a+b)=16(x+y).∴42+7xy=16(x+y).②由①②可得,x+y=-14,xy=-38.由a+b=42,得(a+b)(x+y)=42×(-14),(a+b)+xy(a+b)=-588,+16×(-38)=-588.故=20.12.两边同乘以8得+++=165.∵x>y>z>w且为整数,∴x+3>y+3>z+3>w+3,且为整数.∵165是奇数,∴w+3=0,∴w=-3.∴++=164.∴++=41,∴z+1=0,∴z=-1.∴+=40.两边都除以8得:+=5.∴y-2=0,∴y=2.∴=4.∴x-2=2,∴x=4.∴==1.13.(1)∵(x-1)(x+4)=+3x-4,令x-1=0,得x=1;令x+4=0,得x=-4.当x=1时,得1+a+b+c=0;①当x=-4时,得-64+16a-4b+c=0.②②-①,得15a-5b=65,即3a-b=13.③①+③,得4a+c=12.(2)③-①,得2a-2b-c=14.(3)∵c≥a>1,4a+c=12,a,b,c为整数,∴1<a≤,则a=2,c=4.又a+b+c=-1,∴b=-7,.∴c>a>b.专题02 乘法公式阅读与思考乘法公式是多项式相乘得出的既有特殊性、又有实用性的具体结论,在整式的乘除、数值计算、代数式的化简求值、代数式的证明等方面有广泛的应用,学习乘法公式应注意:1.熟悉每个公式的结构特征;2.正用即根据待求式的结构特征,模仿公式进行直接的简单的套用;3.逆用即将公式反过来逆向使用;4.变用即能将公式变换形式使用;5.活用即根据待求式的结构特征,探索规律,创造条件连续综合运用公式.例题与求解【例1】1,2,3,…,98共98个自然数中,能够表示成两个整数的平方差的个数是.(全国初中数字联赛试题)解题思路:因,而的奇偶性相同,故能表示成两个整数的平方差的数,要么为奇数,要么能被4整除.【例2】(1)已知满足等式,则的大小关系是( ) 14.B.C.D.(山西省太原市竞赛试题)(2)已知满足,则的值等于()A.2 B.3 C.4 D.5(河北省竞赛试题)解题思路:对于(1),作差比较的大小,解题的关键是逆用完全平方公式,揭示式子的非负性;对于(2),由条件等式联想到完全平方式,解题的切入点是整体考虑.【例3】计算下列各题:(1);(天津市竞赛试题)(2);(“希望杯”邀请赛试题)(3).解题思路:若按部就班运算,显然较繁,能否用乘法公式简化计算过程,关键是对待求式恰当变形,使之符合乘法公式的结构特征.【例4】设,求的值.(西安市竞赛试题)解题思路:由常用公式不能直接求出的结构,必须把表示相关多项式的运算形式,而这些多项式的值由常用公式易求出其结果.【例5】观察:(1)请写出一个具有普遍性的结论,并给出证明;(2)根据(1),计算的结果(用一个最简式子表示).(黄冈市竞赛试题)解题思路:从特殊情况入手,观察找规律.【例6】设满足求:(1)的值;(2)的值.(江苏省竞赛试题)解题思路:本题可运用公式解答,要牢记乘法公式,并灵活运用.能力训练A级1.已知是一个多项式的平方,则.(广东省中考试题)2.数能被30以内的两位偶数整除的是.3.已知那么.(天津市竞赛试题)4.若则.5.已知满足则的值为.(河北省竞赛试题)6.若满足则等于.7.等于()A.B.C.D.8.若,则的值是()A.正数B.负数C.非负数D.可正可负9.若则的值是()A.4 B.19922 C.21992 D.41992(“希望杯”邀请赛试题)10.某校举行春季运动会时,由若干名同学组成一个8列的长方形队列.如果原队列中增加120人,就能组成一个正方形队列;如果原队列中减少120人,也能组成一个正方形队列.问原长方形队列有多少名同学?(“CASIO”杯全国初中数学竞赛试题)11.设,证明:是37的倍数.(“希望杯”邀请赛试题)12.观察下面各式的规律:写出第2003行和第行的式子,并证明你的结论.B级1.展开式中的系数,当1,2,3…时可以写成“杨辉三角”的形式(如下图),借助“杨辉三角”求出的值为.(《学习报》公开赛试题)2.如图,立方体的每一个面上都有一个自然数,已知相对的两个面上的两数之和都相等,如果13,9,3的对面的数分别为,则的值为.(天津市竞赛试题)3.已知满足等式则.4.一个正整数,若分别加上100与168,则可得两到完全平方数,这个正整数为.(全国初中数学联赛试题)5.已知,则多项式的值为()A.0 B.1 C.2 D.36.把2009表示成两个整数的平方差的形式,则不同的表示法有()A.16种B.14种C.12种D.10种(北京市竞赛试题)7.若正整数满足,则这样的正整数对的个数是()A.1 B.2 C.3 D.4(山东省竞赛试题)8.已知,则的值是()A.3 B.9 C.27 D.81(“希望杯”邀请赛试题)9.满足等式的整数对是否存在?若存在,求出的值;若不存在,说明理由.10.数码不同的两位数,将其数码顺序交换后,得到一个新的两位数,这两个两位数的平方差是完全平方数,求所有这样的两位数.(天津市竞赛试题)11.若,且,求证:.12.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”,如因此4,12,20这三个数都是神秘数.(1)28和2012这两个数是神秘数吗?为什么?(2)设两个连续偶数为和(其中取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正值)是神秘数吗?为什么?(浙江省中考试题)专题02 乘法公式例1 73 提示:满足条件的整数是奇数或是4的倍数.例2 (1)B x-y=(+4a+a)+(-8b+16)=+≥0,x≥y.(2)B 3个等式相加得:++=0,a=3,b=-1,c=1.a+b +c=3-1+1=3.例3 (1)(2)4 (3)-5050例4 提示:由a+b=1,+=2得ab=-,利用+=(+)(a+b)-ab(+)可分别求得+=,+=,+=,+=,+=.例5 (1)设n为自然数,则n(n+1)(n+2)(n+3)+1=(2)由①得,2000×2001×2002×2003+1=.例6(1)设-②,得ab+b c+a c=,∵-3ab c=(a+b+c)(-ab-b c-a c),∴ab c=()-(a+b+c)(-ab-b c-a c)=×3-×1×(2+)=.(2)将②式两边平方,得∴=4-2=4-2=.A级1.0或6 2.26,28 3.2 4.40 5.34 6.0 7.D 8.A 9.C10.原有136或904名学生.设m,n均为正整数,且m>n,①-②得(m+n)(m-n)=240=.,都是8的倍数,则m,n能被4整除,m+n,m-n均能被4整除.得或,∴或8x=-120=904或8x=-120=136.11.因为a=+-2=(-1)+(-1)=999 999 999+37×(+38+1),而999 999 999=9×111 111 111=9×3×37 037 037=27×37×1 001 001=37×(27×1 001 001).所以37|999 999 999,且37|37×(+38+1),因此a是37的倍数.12.第2003行式子为:=.第n行式子为:=.证明略B级1.1.0942.76 提示:由13+a=9+b=3+c得a-b=-4,b-c=-6,c-a=103.13 4.156 5.D6.C 提示:(x+y)(x-y)=2009=7×7×41有6个正因数,分别是1,7,41,49,287和2009,因此对应的方程组为:故(x,y)共有12组不同的表示.7.B 8.C9.提示:不存在符合条件的整数对(m,n),因为1954不能被4整除.10.设所求两位数为,由已知得=(k为整数),得而得或解得或,即所求两位数为65,5611. 设, 则由得③②③, 得, 即或分别与联立解得或12. (1), 故28和2012都是神秘数(2)为4的倍数(3)神秘数是4的倍数,但一定不是8的倍数. ,故两个连续奇数的平方差不是神秘数专题3 和差化积----因式分解的方法(1)阅读与思考提公因式、公式法、十字相乘法、分组分解法是因式分解的基本方法,通常根据多项式的项数来选择分解的方法,有公因式的先提公因式,分解必须进行到每一个因式都不能再分解为止.一些复杂的因式分解问题经常用到以下重要方法:1.换元法:对一些数、式结构比较复杂的多项式,可把多项式中的某些部分看成一个整体,用一个新字母代替,从而可达到化繁为简的目的.从换元的形式看,换元时有常值代换、式的代换;从引元的个数看,换元时有一元代换、二元代换等.2.拆、添项法:拆项即把代数式中的某项拆成两项的和或差,添项即把代数式添上两个符号相反的项,因式分解中进行拆项与添项的目的是相同的,即经过拆项或添项后,多项式能恰当分组,从而可以运用分组分解法分解.例题与求解【例l】分解因式___________.(浙江省中考题)解题思路:把看成一个整体,用一个新字母代换,从而简化式子的结构.【例2】观察下列因式分解的过程:(1);原式=;(2).原式=.第(1)题分组后能直接提公因式,第(2)题分组后能直接运用公式.仿照上述分解因式的方法,把下列各式分解因式:(1);(西宁市中考试题)(2).(临沂市中考试题)解题思路:通过分组,使每一组分组因式后,整体能再分解,恰当分组是关键,经历“实验--失败--再试验--再失败--直至成功”的过程.【例3】分解因式(1);(重庆市竞赛题)(2);(“缙云杯”邀请赛试题)(3).(“五羊杯”竞赛试题)解题思路:(1)式中系数较大,直接分解有困难,不妨把数字用字母来表示;(2)式中、反复出现,可用两个新字母代替,突出式子的特点;(3)式中前两项与后一项有密切联系.【例4】把多项式因式分解后,正确的结果是().A. B.C. D.(“希望杯”邀请赛试题)解题思路:直接分组分解困难,可考虑先将常数项拆成几个数的代数和,比如-3=-4+1.【例5】分解因式:(1);(扬州市竞赛题)(2);(请给出多种解法)(“祖冲之杯”邀请赛试题)(3).解题思路:按次数添上相应的项或按系数拆项法分解因式的基本策略.【例6】分解因式:.(河南省竞赛试题)解题思路:拆哪一项?怎样拆?可有不同的解法.能力训练A 级1.分解因式:(1)=___________________________.(泰安市中考试题)(2)=__________________________.(威海市中考试题)2.分解因式:(1)=_________________________;(2)=_____________________________.3.分解因式:=____________________________.4.多项式与多项式的公因式是____________________.5.在1~100之间若存在整数,使能分解为两个整系数一次式的乘积,这样的有_______个.6.将多项式分解因式的积,结果是().A. B.C. D.7.下列各式分解因式后,可表示为一次因式乘积的是().A. B.C. D.(“希望杯”邀请赛试题)8.把分解因式,其中一个因式是().A. B. C. D.9.多项式有因式().A. B.C. D.(“五羊杯”竞赛试题)10.已知二次三项式可分解成两个整系数的一次因式的积,那么().A.一定是奇数 B.一定是偶数C.可为奇数也可为偶数 D.一定是负数11.分解因式:(1);(2);(3);(“祖冲之杯”邀请赛试题)(4);(重庆市竞赛试题)(5);(6).12.先化简,在求值:,其中,.B 级1.分解因式:=_______________.(重庆市竞赛试题)2.分解因式:=_____________.(“五羊杯”竞赛试题)3.分解因式:=_________________________.(“希望杯”邀请赛试题)4.分解因式:=______________________.(“五羊杯”竞赛试题)5.将因式分解得().A. B.C. D.(陕西省竞赛试题)6.已知是△ABC三边的长,且满足,则此三角形是().A.等腰三角形B.等边三角形C.直角三角形D.不能确定7.的因式是().A. B. C. D. E.(美国犹他州竞赛试题)8.分解因式:(1);(湖北省黄冈市竞赛试题)(2);(江苏省竞赛试题)(3);(陕西省中考试题)(4);(“祖冲之杯”邀请赛试题)(5);(“五羊杯”竞赛试题)(6).(太原市竞赛试题)9.已知乘法公式:利用或者不利用上述公式,分解因式:.(“祖冲之杯”邀请赛试题)10.分解因式:(1);(2);(3).11.对方程,求出至少一组正整数解.(莫斯科市竞赛试题)12.已知在△ABC中,,求证:.(天津市竞赛试题)专题03 和差化积-------因式分解的方法(1)例1.例2. (1) 原式(2) 原式例3.(1)(2)(3)例4. D例5.(1)提示: 原式(2) 提示: 原式(3) 提示: 原式例6. 解法1原式解法2 原式A级1. (1)(2)2. (1)(2)3.4.5. 96. D7. A8. D9. A10. A11. (1)提示: 令(2)(3) \(4) 提示: 原式(5) 提示: 原式(6)12. 原式当原式B 组1. (1)(2)3.5. D6. B7. A 提示: 原式8. (1)(2) 提示: 令(3)(4) 提示: 原式(5)(6)9. 由公式有10. (1)(2)(3)11. 有或解得或12.是三角形三边长,由条件只有,故专题04 和差化积----因式分解的方法(2)阅读与思考因式分解还经常用到以下两种方法1.主元法所谓主元法,即在解多变元问题时,选择其中某个变元为主要元素,视其他变元为常量,将原式按降幂排列重新整理成关于这个字母的多项式,使问题获解的一种方法.2.待定系数法即对所给的数学问题,根据已知条件和要求,先设出一个或几个待定的字母系数,把所求问题用式子表示,然后再利用已知条件,确定或消去所设系数,使问题获解的一种方法,用待定系数法解题的一般步骤是:(1)在已知问题的预定结论时,先假设一个等式,其中含有待定的系数;(2)利用恒等式对应项系数相等的性质,列出含有待定系数的方程组;(3)解方程组,求出待定系数,再代入所设问题的结构中去,得出需求问题的解.例题与求解【例l】因式分解后的结果是(). A. B.C. D.(上海市竞赛题)解题思路:原式是一个复杂的三元二次多项式,分解有一定困难,把原式整理成关于某个字母的多项式并按降幂排列,改变原式结构,寻找解题突破口.【例2】分解因式:(1);(“希望杯”邀请赛试题)(2).(天津市竞赛题)解题思路:两个多项式的共同特点是:字母多、次数高,给分解带来一定的困难,不妨考虑用主元法分解.【例3】分解因式.(“希望杯”邀请赛试题)解题思路:因的最高次数低于的最高次数,故将原式整理成字母的二次三项式.【例4】为何值时,多项式有一个因式是(“五羊杯”竞赛试题)解题思路:由于原式本身含有待定系数,因此不能先分解,再求值,只能从待定系数法入手.【例5】把多项式写成一个多项式的完全平方式.(江西省景德镇市竞赛题)解题思路:原多项式的最高次项是,因此二次三项式的一般形式为,求出即可.【例6】如果多项式能分解成两个一次因式,的乘积(为整数),则的值应为多少?(江苏省竞赛试题)解题思路:由待定系数法得到关于的方程组,通过消元、分解因式解不定方程,求出的值.能力训练A 级1.分解因式:=___________________________.(“希望杯”邀请赛试题)2.分解因式:=_______________________(河南省竞赛试题)3.分解因式:=____________________________.(重庆市竞赛试题)4.多项式的最小值为____________________.(江苏省竞赛试题)5.把多项式分解因式的结果是()A. B.C. D.6.已知能分解成两个整系数的一次因式的乘积,则符合条件的整数的个数是().A.3 个B.4 个C.5 个D.6个7.若被除后余3,则的值为().A.2 B.4 C.9 D.10(“CASIO杯”选拔赛试题)8.若,,则的值是().A. B. C. D.0(大连市“育英杯”竞赛试题)9.分解因式:(1);(吉林省竞赛试题)(2);(昆明市竞赛试题)(3);(天津市竞赛试题)(4);(四川省联赛试题)(5)(天津市竞赛试题)10.如果能够分割成两个多项式和的乘积(为整数),那么应为多少?(兰州市竞赛试题)15.已知代数式能分解为关于的一次式乘积,求的值.(浙江省竞赛试题)B 级1.若有一个因式是,则=_______________.(“希望杯”邀请赛试题)2.设可分解为一次与二次因式的乘积,则=_____________.(“五羊杯”竞赛试题)3.已知是的一个因式,则=________________________.(“祖冲之杯”邀请赛试题)4.多项式的一个因式是,则的值为__________.(北京市竞赛试题)5.若有两个因式和,则=().A.8 B.7 C.15 D.21 E.22(美国犹他州竞赛试题)6.多项式的最小值为().A.4 B.5 C.16 D.25(“五羊杯”竞赛试题)7.若(为实数),则M的值一定是().A.正数B.负数C.零D.整数(“CASIO杯”全国初中数学竞赛试题)8.设满足,则=()A.(2,2)或(-2,-2)B.(2,2)或(2,-2)C.(2,-2)或(-2,2)D.(-2,-2)或(-2,2)(“希望杯”邀请赛试题)9.为何值时,多项式能分解成两个一次因式的积?(天津市竞赛试题)10.证明恒等式:.(北京市竞赛试题)11.已知整数,使等式对任意的均成立,求的值.(山东省竞赛试题)12.证明:对任何整数,下列的值都不会等于33.(莫斯科市奥林匹克试题)专题04 和差化积-------因式分解的方法(2)例1. A 提示: 将原式重新整理成关于的二次三项式例2. (1) 提示: 原式(2) 提示: 原式例3. 原式例 4. 提示: 可设原式展开比较对应项系数得解得k=12.例5原式=.例6设x2-(a+5)x+5a-1=(x+b)(x+c)=x2+(b+c)x+bc.∴①×5+2得bc+5(b+c)=-26,bc+5(b+c)+25=-1,(b+5)(c+5)=-1.∴或∴或故a=5.A级1.(3a+2b-c)(3a-2b+c)2.(x+3y)(x+2y+1)3.(x+y+1)(x-y+3)4.-185.C6.D7.D8.D9.(1)(2a+b)(a-b+c);(2)(a+c-2b)2;(3)(x-2)(x2-x+a);(4)(x-2y+3)(2x-3y-4);(5)(x+1)(y+1)(x-1)(y-1).10.提示:由题意得①×4+②,得(b+4)(c+4)=-1,推得或故a=4.11.∵x2-3xy-4y=(x+y)(x- 4y),∴可设原式=(x+y+m)(x-4y+n),展开比较对应项系数得b=-6或9.B级1.k=-52.-2提示:原式=x(x2+3x-k)-2y(x+2),令x=-2.3.5提示:令原式=(x-y+4)·A,取一组x,y的值代入上式.4.-35.C提示:x=-1,x=-2是方程x3+ax2+bx+8=0的解.6.C提示:原式=(x-2y)2+(2x+3)2+167.A提示:原式=2(x-2y)2+(x-2)2+(y+3)2≥0,且这三个数不能同时为零,M >0.8.C9.k=-3 提示:因x2+3x+2=(x+1)(x+2),故可令原式=(x+my+1)·(x十ny+2),展开比较对应项系数求出k.10.提示:左边=(a2+b2)2-2a2b2+(a2+b2+2ab)2=(a2+b2)2-2a2b2+(a2+b2)2+4ab(a2+b2)+4a2b2=2(a2+b2)+4ab(a2+b2)+2a2b2=2(a2+b2+ab)2=右边.11.将原等式展开x2+(a+b+c)x+ab-l0c=x2-10x-11.∴①×10+②得ab+10a+10b=-111.∴(a+10)(b+10)=-11.∴或或或∴或或或代入①得c=0或20.12.原式=(x5+3x4y)-(5x3y+15x2y3)+(4xy4+12y5)=x4(x+3y)-5x2y2(x+3y)+4y4(x+3y)=(x+3y)(x4-5x2y2+4y2)=(x+3y)(x2-4y2)=(x+3y)(x+y)(x-y)(x+2y)(x-2y).当y=0时,原式=x5≠33;当y≠0时,x+3y,x-y,x-2y,x+2y,x+y互不相同,而33不可能分解为4个以上不同因数的积,所以,当x取任意整数,y取不为0的任意整数,原式≠33.专题05 和差化积——因式分解的应用阅读与思考:因式分解是代数变形的有力工具,在以后的学习中,因式分解是学习分式、一元二次方程等知识的基础,其应用主要体现在以下几个方面:1.复杂的数值计算;2.代数式的化简与求值;3.简单的不定方程(组);4.代数等式的证明等.有些多项式分解因式后的结果在解题中经常用到,我们应熟悉这些结果:1. ;2. ;3. ;4.;5. .例题与求解【例1】已知,,那么的值为___________ .(全国初中数学联赛试题)解题思路:对已知等式通过因式分解变形,寻求a,b之间的关系,代入关系求值.【例2】a,b,c是正整数,a>b,且,则等于( ).A. -1 B.-1或-7 C.1 D.1或7(江苏省竞赛试题)解题思路:运用因式分解,从变形条件等式入手,在字母允许的范围内,把一个代数式变换成另一个与它恒等的代数式称代数式的恒等变形,它是研究代数式、方程和函数的重要工具,换元、待定系数、配方、因式分解又是恒等变形的有力工具.求代数式的值的基本方法有;(1)代入字母的值求值;(2)代入字母间的关系求值;(3)整体代入求值.【例3】计算:(1) (“希望杯”邀请赛试题)(2)(江苏省竞赛试题)解题思路:直接计算,则必然繁难,对于(1),不妨用字母表示数,通过对分子、分母分解因式来探求解题思路;对于(2),可以先研究的规律.【例4】求下列方程的整数解.(1); (上海市竞赛试题)(2). (四川省竞赛试题)解题思路:不定方程、方程组没有固定的解法,需具体问题具体分析,观察方程、方程组的特点,利用整数解这个特殊条件,从分解因式入手.解不定方程的常用方法有:(1)穷举法; (2)配方法; (3)分解法; (4)分离参数法.用这些方程解题时,都要灵活地运用质数合数、奇数偶数、整除等与整数相关的知识.【例5】已知,,求下列各式的值:(1) ; (2) ; (3).解题思路:先分解因式再代入求值.【例6】一个自然数恰等于另一个自然数的立方,则称自然数为完全立方数,如27=33,27就是一个完全立方数.若=19951993×199519953-19951994×199519923,求证:是一个完全立方数.(北京市竞赛试题)解题思路:用字母表示数,将分解为完全立方式的形式即可.能力训练A 级1. 如图,有三种卡片,其中边长为的正方形卡片1张,边长分别为,的长方形卡片6张,边长为的正方形卡片9张,用这16张卡片拼成一个正方形,则这个正方形的边长为 ________.(烟台市初中考试题)2.已知,则的值为__________.(江苏省竞赛试题)3.方程的整数解是__________.(“希望杯”邀请赛试题)4. 如果是完全平方式,那么的值为__________.(海南省竞赛试题)5. 已知(),则的值是( ).A.2, B.2 C. D.6.当,的值为( ).A. -1 B.0 C.2 D.17.已知,,则M与N的大小关系是( ).A. M<N B.M>N C.M=N D.不能确定(“希望杯”邀请赛试题)8.为某一自然数,代入代数式中计算其值时,四个同学算出如下四个结果,其中正确的结果只能是( ).A. 388944B.388945C.388954D.388948(五城市联赛试题)9.计算:(1) (北京市竞赛试题)(2) (安徽省竞赛试题)10. 一个自然数恰好等于另一个自然数的平方,则称自然数为完全平方数,如64=82,64就是一个完全平方数,若=19982+19982×19992+19992,求证:是一个完全平方数.(北京市竞赛试题)16.已知四个实数,,,,且,,若四个关系式,,,同时成立.(1)求的值;(2)分别求,,,的值.(湖州市竞赛试题)B 级1.已知是正整数,且是质数,那么____________ .(“希望杯”邀请赛试题)2.已知三个质数的乘积等于这三个质数的和的5倍,则=________ .(“希望杯”邀请赛试题)3.已知正数,,满足,则=_________ . (北京市竞赛试题)4.在日常生活中如取款、上网等都需要密码,有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式,因式分解的结果是,若取=9,=9时,则各个因式的值是:,于是就可以把“0181 62”作为一个六位数的密码,对于多项式,取=10,=10时,用上述方法产生的密码是:__________.(写出一个即可).(浙江省中考试题)5.已知,,是一个三角形的三边,则的值( ).A.恒正 B.恒负 C.可正可负 D.非负(太原市竞赛试题)6.若是自然数,设,则( ).A. 一定是完全平方数 B.存在有限个,使是完全平方数C. 一定不是完全平方数 D.存在无限多个,使是完全平方数7.方程的正整数解有( )组.A.3 B.2 C.1 D.0(“五羊杯”竞赛试题)8.方程的整数解有( )组.A.2 B.4 C.6 D.8(”希望杯”邀请赛试题)9.设N=695+5×694+10×693+10×692+5×69+1.试问有多少个正整数是N的因数?(美国中学生数学竞赛试题)10.当我们看到下面这个数学算式时,大概会觉得算题的人用错了运算法则吧,因为我们知道.但是,如果你动手计算一下,就会发现上式并没有错,不仅如此,我们还可以写出任意多个这种算式:,,,,…你能发现以上等式的规律吗?11.按下面规则扩充新数:已有,两数,可按规则扩充一个新数,而以,,三个数中任取两数,按规则又可扩充一个新数,…每扩充一个新数叫做一次操作. 现有数1和4,求:(1) 按上述规则操作三次得到扩充的最大新数;(2) 能否通过上述规则扩充得到新数1999,并说明理由.(重庆市竞赛试题)12.设,,为正整数.被整除所得的商分别为,.(1)若,互质,证明与互质;(2)当,互质时.求的值;( 3)若,的最大公约数为5,求的值.(江苏省竞赛试题)。
八年级数学竞赛辅导培训讲义设计
![八年级数学竞赛辅导培训讲义设计](https://img.taocdn.com/s3/m/ac66e68eaa00b52acfc7caf6.png)
培训讲义(数学)第一讲 计算技巧例1、规定运算yx Axy y x 54+=*,且121=*,求32*的值. 解:易见125142121=⨯+⨯⨯⨯=*A ,解得7=A , ∴y x xy y x 547+=* ∴23191352432732=⨯+⨯⨯⨯=* 例2、求=S ⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++99989997992991434241323121ΛΛ的值. 解: 将括号内各项反序排列,则有⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++=99199299979998414243313221ΛΛS 两式相加,得99983212+++++=ΛS 4950299)991(=⨯+= 试一试:计算:⎪⎭⎫ ⎝⎛+++++⎪⎭⎫ ⎝⎛++++602524232601413121ΛΛ+ 6059605859586035343+⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛+++ΛΛ (答案885) 例3、计算:1091981871761651541431321211⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯ 解:因为 2111211-=⨯, 3121321-=⨯, 4131431-=⨯, 可见,原式109101110191413131212111=-=-++-+-+-=Λ 这种方法叫分项相消法.一般地n n n n 111)1(1--=-试一试: ∴计算: 4213012011216121----- ∴计算:200019981531421311⨯++⨯+⨯+⨯Λ 答案∴71,∴79960005993001 例4、计算:20003222221+++++Λ解:设20003222221+++++=ΛS ,两边乘2得2001200032222222+++++=ΛS ,两式相减,得122001-=S例5、计算:=S 10210164834221+++++Λ 解:在原式两边乘以21得,111021029163824121+++++=ΛS ,与原式相减得 11102102116181412121-+++++=ΛS , 设 10/21161814121+++++=ΛS , 则 1110/2121161814121+++++=ΛS ,∴11/212121-=S ,10/211-=S ,111021021121--=S 10112612121-=-= ∴8232-=S 2562531= 试一试:∴计算:2005327777++++Λ∴计算:111032222221-++-+-Λ (答案: ∴6772006-,∴1365-.)第二讲 绝对值例1、化简:1213-++x x解:当31-<x 时,原式x x x 5)12()13(-=--+-= 当2131<≤-x 时,原式2)12()13(+=--+=x x x 当21≥x 时,原式x x x 5)12()13(=-++= 试一试:化简x x ---212思考练习1、数a 、b 、c 在数轴上的位置如图所示,化简:b a c b a --++2、若2=a ,5=b ,且0>ab ,求=-b a ?答案: 1、a c 2-. 2、3.例2、(1) 求21++-x x 的最小值 解:1-x 表示数轴上一点x 与1之间的距离,2+x 表示数轴上一点x 与2-之间的距离.求21++-x x 的最小值,就是在数轴上找一点x ,使x 到-2与1两点的距离之和最小.从图可知,x 可取-2与1当中的任一点,其和的最小值是3,即21++-x x 的最小值是3.(2) 求321-+-+-x x x 的最小值解:本题实际上就是在数轴上找一点x ,使得该点到1、2、3的距离之和最小,从图可知,当x 与2重合时,距离之和最小,这个最小值是2.思考练习:∴求4321-+-+-+-x x x x 的最小值.∴求54321-+-+-+-+-x x x x x 的最小值. (答案: ∴4 ∴6)例3、含绝对值的一元一次方程∴解方程413=+x ∴解方程3112=--x ∴解方程x x -=-515解:∴∴413±=+x ,∴由413=+x ,得1=x ,由413-=+x ,得35-=x . ∴1=x 35-=x 是原方程的解 ∴∴3112±=--x ,∴412=-x ,或212-=-x (舍去) 即412=-x ,得412±=-x ,由412=-x ,得25=x , 由412-=-x ,得23-=x . ∴25=x 、23-=x 是原方程的解. ∴)5(15x x -±=-, 由x x -=-515,得1=x ;由)5(15x x --=-, 得1-=x ,∴1,1-==x x 是原方程的解.思考练习: 解下列方程1、232=-x2、413=+x3、3121-=-x x 4、x x -=-515 5、 x x x +=--+113 6、3112=--x答案;1、21,25==x x ; 2、1、1=x ,35-=x ; 3、4=x 4、1±=x ; 5、(用零点分段法法讨论去掉绝对值) 3,1,5=-=-=x x x , 6、25=x ,23-=x ;第三讲 数的大小比较例1 设a 、b 、c 的平均数为M, a 、b 的平均数为N ,N 、C 的平均数为P,若c b a >>. 讨论M 与P 的大小关系. 解:122423c b a c b a c b a P M -+=++-++=-(c b a >>) ∴0122122=-+>-+c c c c b a , 故0>-P M ,即P M >. 例2 已知d c b a ,,,是四个不相等的正数,其中a 最大,d 最小,且满足条件d c b a =,试比较d a +与c b +的大小关系. 解:设k dc b a ==,则bk a =,dk c =,∴a 最大,d 最小,且d c b a ,,,都为正数, ∴k >1,b >d ,)1)(()()(--=--+=+-+k d b dk b d bk c b d a >0,∴d a +>c b +.思考练习1、已知1=ab ,b a m +++=1111, bb a a n +++=11, 试讨论m 、n 的大小关系. 2、已知c b a ,,都是实数,并且a >b >c ,给出四个式子:“∴ab >bc ;∴b a +>c b +;∴b a ->c b -;∴c a >cb .试判断哪个是正确的. 3、553=a ,444=b ,335=c ,比较c b a ,,的大小. 4、若b a ,是正数且满足)111)(111(12345b a -+=,比较a 与b 的大小关系.5、已知12-=a ,622-=b ,26-=c ,比较a 、b 、c 的大小.6、已知0<a <b <1,且1=+b a ,比较a ,b ,22b a +,21 的大小 答案提示 1、∴0)1)(1(221111=++-=+-++-=-b a ab b b a a n m , ∴n m =. 2、∴ c a c b b a -=+-+)()(>0, ∴b a +>c b +.3、11115243)3(==a ,11114256)4(==b ,11113125)5(==c ,∴c <a <b4、∴0,0>>b a ,由)111)(111(12345b a -+=,得11124ab b a +=->0,b a > 5、∴3>22, ∴2133216--+=--=-b a >21223--+=21)12(2--+=0又b a a c -=--=-216>0, ∴ b <a <c.6、∴a <b ,∴2)(b a ->0,∴22b a +>ab 2,不等式两边同加上22b a +,得)(222b a +>1)(2=+b a ,∴22b a +>21;又∴0<a <b ,∴2a <ab ,而 1=+b a ,∴2)(b ab b a b b +=+=>22b a +, ∴a <21<22b a +<b第四讲 奇偶分析基本原理奇数±奇数=偶数;偶数±偶数=偶数;奇数±偶数=奇数.奇数×奇数=奇数;偶数×偶数=偶数;奇数×偶数=偶数.b a ,为整数,若b a ±为偶数,则b a ,奇偶性相同;b a ,为整数,若b a ±为奇数,则b a ,奇偶性相异.例1 若q p ,为质数,且2975=+q p ,求22q p +的值.解:若q p ,都为奇质数,则q p 75+是偶数,若q p ,都为偶质数2,则q p 75+≠29,所以q p ,中必有一个为偶质数2,另一个为奇质数,若2=p ,则q 不是整数,故只有2=q ,此时3=p ,22q p +=13. 例2 若19962-a 是整数,求整数a 的最小值. 解:m a =-19962(m 是正整数),则221996m a =-,199622=-m a , ∴1996))((=-+m a m a ,∴m a +与m a -有相同的奇偶性,而1996是偶数,∴m a +与m a -同为偶数,又499221996⨯⨯=,499是质数,∴⎩⎨⎧=-=+2998m a m a 解得 500=a ,∴整数a 的最小值是500. 例3 若正整数y x ,满足方程199722=+y x ,求y x +的值. 解:因为199722=+y x 为奇数, 所以y x ,为一奇一偶,不妨设x 为奇数,y 为偶数,又因为22y x +的个位数字是7, 所以2x 的个位数字必为1,2y 的个位数字必为6. 从而x 的个位数字是1或9,y 的个位数字是4或6.又2x <1997,故x <45. 因此x 的可能值是1, 9, 21, 29,41.经检验, 仅当34,29==y x 有时,使1997342922=+, 所以633429=+=+y x .思考练习:1、如果质数q p ,满足关系式3153=+q p ,则=),(q p _______.2、王、李两人卖了m 只猪,每头卖价又恰是m 元钱,两人分钱方法是,先由王拿10元,再由李拿10元,如此轮流,拿到最后剩下不足10元,轮到李拿,为平均分配,王应补回李多少元钱?3、在21,22,23,…,295这95个数中,十位数字为奇数的数共有多少个?答案提示:1、p 3和q 5中恰有一个偶数,故q p ,中恰有一个为2,∴(2,5),(7,2).2、令b a m +=10,则222)5(210)10(b b a a b a m ++⨯=+=,因王先拿10元,而李最后一次取钱不足10元,所以2m 中有奇数个10元,而)5(210b a a +⨯中含有偶数个10元,故2b 中必会有奇数个10元,因b <10,所以2b 只可能是1、4、9、16、25、36、49、64、81,而这9个数中只有16和36会有奇数个10元,因此2b =16或36,这两个数的个位数都是6,这就是说,李最后所拿的钱是6元,由此可知,王比李多拿了4元钱,王应补回李2元钱.3、在21,22,23,……,210中,十位数字是奇数的只有366,16422==, 而一个两位数22220100)10(b ab a b a ++=+,2)10(b a +与2b 的十位数字的奇偶性相同,b 只能取4、6两个数,∴在21,22,23,......,290这90个数中,十位数字为奇数的数共有1892=⨯个,在291, (2)95中,十位数字为奇数的数有1个,总共有19个.第五讲 整数的讨论例1 当a 取遍0到5的所有实数时,求满足)83(3-=a a b 的整数b 的个数.解: ∴916)34(3822--=-=a a a b ,又50≤≤a , ∴b 的最小值是916-, 又当0=a 时,0=b ,当5=a 时,3211=b , ∴3211916≤≤-b ,故b 取到的整数是-1, 0, 1, 2, …, 11,共13个.例2 若两个数的平方和为637,最大公约数与最小公倍数之和为49,求这两个数. 解:∴两个数的平方和为637,∴这两个数不可能是1,49,∴7749⨯=∴所求的两数的最大公约数是7,最小公倍数是42, 设两数为a ,b ,则m a 7=,n b 7=,(m <n ,m 、n 是自然数,(m ,n )=1)由[]b a b a ab ,),(=得,42749⨯=mn ,∴6=mn ,∴m <n ,(m ,n )=1,∴m =2,n =3,∴14=a ,21=b ,经检验,637211422=+,∴所求的两数是14,21.例3 某校在向“希望工程”捐款活动中,甲班的m 个男生和11个女生的捐款总数与乙班9个男生和n 个女生的捐款总数相等,都是145119+++n m mn 元,已知每人的捐款数相同,且都是整数元。
全国初中数学竞赛辅导(初二分册) - 副本
![全国初中数学竞赛辅导(初二分册) - 副本](https://img.taocdn.com/s3/m/57348af481c758f5f71f6705.png)
初二数学竞赛班讲义第一讲因式分解(一) (1)第二讲因式分解(二) (10)第三讲实数的若干性质和应用 (17)第四讲分式的化简与求值 (26)第五讲恒等式的证明 (34)第六讲代数式的求值 (44)第七讲根式及其运算 (52)第八讲非负数 (63)第九讲一元二次方程 (73)第十讲三角形的全等及其应用 (81)第十一讲勾股定理与应用 (90)第十二讲平行四边形 (101)第十三讲梯形 (108)第十四讲中位线及其应用 (116)第十五讲相似三角形(一) (124)第十六讲相似三角形(二) (132)第十八讲归纳与发现 (153)第十九讲特殊化与一般化 (162)第二十讲类比与联想 (171)第二十一讲分类与讨论 (180)第二十二讲面积问题与面积方法 (188)第二十三讲几何不等式 (197)第二十六讲含参数的一元二次方程的整数根问题 (222)第二十七讲列方程解应用问题中的量与等量 (230)第二十八讲怎样把实际问题化成数学问题(一) (239)第二十九讲生活中的数学(一) (247)第三十讲生活中的数学(二) (254)复习题 (260)自测题 (268)自测题一 (268)自测题二 (270)自测题三 (271)自测题四 (273)自测题五 (274)复习题解答 (276)自测题解答 (304)自测题一 (304)自测题二 (309)自测题三 (314)自测题四 (321)自测题五 (327)第一讲因式分解(一)多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.解 (1)原式=-2x n-1y n(x4n-2x2n y2+y4)=-2x n-1y n[(x2n)2-2x2n y2+(y2)2]=-2x n-1y n(x2n-y2)2=-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2=(a-b)2+2c(a-b)+c2=(a-b+c)2.本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)=(a-b+c)2(4)原式=(a7-a5b2)+(a2b5-b7)=a5(a2-b2)+b5(a2-b2)=(a2-b2)(a5+b5)=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)例2 分解因式:a3+b3+c3-3abc.本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3的正确性,现将此公式变形为a3+b3=(a+b)3-3ab(a+b).这个式也是一个常用的公式,本题就借助于它来推导.解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a3+b3+c3-3abc显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc ≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.如果令x=a3≥0,y=b3≥0,z=c3≥0,则有等号成立的充要条件是x=y=z.这也是一个常用的结论.例3 分解因式:x15+x14+x13+…+x2+x+1.分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.解因为x16-1=(x-1)(x15+x14+x13+…x2+x+1),所以说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式:x3-9x+8.分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8).解法2 将一次项-9x拆成-x-8x.原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3 将三次项x3拆成9x3-8x3.原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).解法4 添加两项-x2+x2.原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8).说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例5 分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.解 (1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1).(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=[(x+1)2+(x-1)2]2-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)[b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a2-ab+1)(b2+ab+1).说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例6 分解因式:(x2+x+1)(x2+x+2)-12.分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y 的二次三项式的因式分解问题了.解设x2+x=y,则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.例7 分解因式:(x2+3x+2)(4x2+8x+3)-90.分析先将两个括号内的多项式分解因式,然后再重新组合.解原式=(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90=(2x2+5x+3)(2x2+5x+2)-90.令y=2x2+5x+2,则原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1).说明对多项式适当的恒等变形是我们找到新元(y)的基础.例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.解设x2+4x+8=y,则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.例9分解因式:6x4+7x3-36x2-7x+6.解法1 原式=6(x4+1)+7x(x2-1)-36x2=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x2=6[(x2-1)2+2x2]+7x(x2-1)-36x2=6(x2-1)2+7x(x2-1)-24x2=[2(x2-1)-3x][3(x2-1)+8x]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).说明本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.解法2原式=x2[6(t2+2)+7t-36]=x2(6t2+7t-24)=x2(2t-3)(3t+8)=x2[2(x-1/x)-3][3(x-1/x)+8]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).例10 分解因式:(x2+xy+y2)-4xy(x2+y2).分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2=(x2-xy+y2)2.练习一1.分解因式:(2)x10+x5-2;(4)(x5+x4+x3+x2+x+1)2-x5.2.分解因式:(1)x3+3x2-4;(2)x4-11x2y2+y2;(3)x3+9x2+26x+24;(4)x4-12x+323.3.分解因式:(1)(2x2-3x+1)2-22x2+33x-1;(2)x4+7x3+14x2+7x+1;(3)(x+y)3+2xy(1-x-y)-1;(4)(x+3)(x2-1)(x+5)-20.第二讲因式分解(二)1.双十字相乘法分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解所以原式=[x+(2y-3)][2x+(-11y+1)]=(x+2y-3)(2x-11y+1).上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.这就是所谓的双十字相乘法.用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.例1 分解因式:(1)x2-3xy-10y2+x+9y-2;(2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;(4)6x2-7xy-3y2-xz+7yz-2z2.解 (1)原式=(x-5y+2)(x+2y-1).(2)原式=(x+y+1)(x-y+4).(3)原式中缺x2项,可把这一项的系数看成0来分解.原式=(y+1)(x+y-2).(4)原式=(2x-3y+z)(3x+y-2z).说明 (4)中有三个字母,解法仍与前面的类似.2.求根法我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x 的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a0的约数,q是a n的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为a n的约数.我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例2 分解因式:x3-4x2+6x-4.分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有f(2)=23-4×22+6×2-4=0,即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.解法1 用分组分解法,使每组都有因式(x-2).原式=(x3-2x2)-(2x2-4x)+(2x-4)=x2(x-2)-2x(x-2)+2(x-2)=(x-2)(x2-2x+2).解法2 用多项式除法,将原式除以(x-2),所以原式=(x-2)(x2-2x+2).说明在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.例3 分解因式:9x4-3x3+7x2-3x-2.分析因为9的约数有±1,±3,±9;-2的约数有±1,±为:所以,原式有因式9x2-3x-2.解 9x4-3x3+7x2-3x-2=9x4-3x3-2x2+9x2-3x-2=x2(9x3-3x-2)+9x2-3x-2=(9x2-3x-2)(x2+1)=(3x+1)(3x-2)(x2+1)说明若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x2-3x-2,这样可以简化分解过程.总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了.3.待定系数法待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用.在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.例4 分解因式:x2+3xy+2y2+4x+5y+3.分析由于(x2+3xy+2y2)=(x+2y)(x+y),若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决.解设x2+3xy+2y2+4x+5y+3=(x+2y+m)(x+y+n)=x2+3xy+2y2+(m+n)x+(m+2n)y+mn,比较两边对应项的系数,则有解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1).说明本题也可用双十字相乘法,请同学们自己解一下.例5 分解因式:x4-2x3-27x2-44x+7.分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.解设原式=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,所以有由bd=7,先考虑b=1,d=7有所以原式=(x2-7x+1)(x2+5x+7).说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.练习二1.用双十字相乘法分解因式:(1)x2-8xy+15y2+2x-4y-3;(2)x2-xy+2x+y-3;(3)3x2-11xy+6y2-xz-4yz-2z2.2.用求根法分解因式:(1)x3+x2-10x-6;(2)x4+3x3-3x2-12x-4;(3)4x4+4x3-9x2-x+2.3.用待定系数法分解因式:(1)2x2+3xy-9y2+14x-3y+20;(2)x4+5x3+15x-9.第三讲实数的若干性质和应用实数是高等数学特别是微积分的重要基础.在初中代数中没有系统地介绍实数理论,是因为它涉及到极限的概念.这一概念对中学生而言,有一定难度.但是,如果中学数学里没有实数的概念及其简单的运算知识,中学数学也将无法继续学习下去了.例如,即使是一元二次方程,只有有理数的知识也是远远不够用的.因此,适当学习一些有关实数的基础知识,以及运用这些知识解决有关问题的基本方法,不仅是为高等数学的学习打基础,而且也是初等数学学习所不可缺少的.本讲主要介绍实数的一些基本知识及其应用.用于解决许多问题,例如,不难证明:任何两个有理数的和、差、积、商还是有理数,或者说,有理数对加、减、乘、除(零不能做除数)是封闭的.性质1 任何一个有理数都能写成有限小数(整数可以看作小数点后面为零的小数)或循环小数的形式,反之亦然.例1分析要说明一个数是有理数,其关键要看它能否写成两个整数比的形式.证设两边同乘以100得②-①得99x=261.54-2.61=258.93,无限不循环小数称为无理数.有理数对四则运算是封闭的,而无理是说,无理数对四则运算是不封闭的,但它有如下性质.性质2 设a为有理数,b为无理数,则(1)a+b,a-b是无理数;有理数和无理数统称为实数,即在实数集内,没有最小的实数,也没有最大的实数.任意两个实数,可以比较大小.全体实数和数轴上的所有点是一一对应的.在实数集内进行加、减、乘、除(除数不为零)运算,其结果仍是实数(即实数对四则运算的封闭性).任一实数都可以开奇次方,其结果仍是实数;只有当被开方数为非负数时,才能开偶次方,其结果仍是实数.例2分析证所以分析要证明一个实数为无限不循环小数是一件极难办到的事.由于有理数与无理数共同组成了实数集,且二者是矛盾的两个对立面,所以,判定一个实数是无理数时,常常采用反证法.证用反证法.所以p一定是偶数.设p=2m(m是自然数),代入①得4m2=2q2,q2=2m2,例4 若a1+b1a=a2+b2a(其中a1,a2,b1,b2为有理数,a为无理数),则a1=a2,b1=b2,反之,亦成立.分析设法将等式变形,利用有理数不能等于无理数来证明.证将原式变形为(b1-b2)a=a2-a1.若b1≠b2,则反之,显然成立.说明本例的结论是一个常用的重要运算性质.是无理数,并说明理由.整理得由例4知a=Ab,1=A,说明本例并未给出确定结论,需要解题者自己发现正确的结有理数作为立足点,以其作为推理的基础.例6 已知a,b是两个任意有理数,且a<b,求证:a与b之间存在着无穷多个有理数(即有理数集具有稠密性).分析只要构造出符合条件的有理数,题目即可被证明.证因为a<b,所以2a<a+b<2b,所以说明构造具有某种性质的一个数,或一个式子,以达到解题和证明的目的,是经常运用的一种数学建模的思想方法.例7 已知a,b是两个任意有理数,且a<b,问是否存在无理数α,使得a<α<b成立?即由①,②有存在无理数α,使得a<α<b成立.b4+12b3+37b2+6b-20的值.分析因为无理数是无限不循环小数,所以不可能把一个无理数的小数部分一位一位确定下来,这样涉及无理数小数部分的计算题,往往是先估计它的整数部分(这是容易确定的),然后再寻求其小数部分的表示方法.14=9+6b+b2,所以b2+6b=5.b4+12b3+37b2+6b-20=(b4+2·6b3+36b2)+(b2+6b)-20=(b2+6b)2+(b2+6b)-20 =52+5-20=10.例9 求满足条件的自然数a,x,y.解将原式两边平方得由①式变形为两边平方得例10 设a n是12+22+32+…+n2的个位数字,n=1,2,3,…,求证:0.a1a2a3…a n…是有理数.分析有理数的另一个定义是循环小数,即凡有理数都是循环小数,反之循环小数必为有理数.所以,要证0.a1a2a3…a n…是有理数,只要证它为循环小数.因此本题我们从寻找它的循环节入手.证计算a n的前若干个值,寻找规律:1,5,4,0,5,1,0,4,5,5,6,0,9,5,0,6,5,9,0,0,1,5,4,0,5,1,0,4,…发现:a20=0,a21=a1,a22=a2,a23=a3,…,于是猜想:a k+20=a k,若此式成立,说明0.a1a2…a n…是由20个数字组成循环节的循环小数,即下面证明a k+20=a k.令f(n)=12+22+…+n2,当f(n+20)-f(n)是10的倍数时,表明f(n+20)与f(n)有相同的个位数,而f(n+20)-f(n)=(n+1)2+(n+2)2+…+(n+20)2=10(2n2+42·n)+(12+22+…+202).由前面计算的若干值可知:12+22+…+202是10的倍数,故a k+20=a k成立,所以0.a1a2…a n…是一个有理数.练习三1.下列各数中哪些是有理数,哪些是无理数?为什么?5.设α,β为有理数,γ为无理数,若α+βγ=0,求证:α=β=0.第四讲分式的化简与求值分式的有关概念和性质与分数相类似,例如,分式的分母的值不能是零,即分式只有在分母不等于零时才有意义;也像分数一样,分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,这一性质是分式运算中通分和约分的理论根据.在分式运算中,主要是通过约分和通分来化简分式,从而对分式进行求值.除此之外,还要根据分式的具体特征灵活变形,以使问题得到迅速准确的解答.本讲主要介绍分式的化简与求值.例1 化简分式:分析直接通分计算较繁,先把每个假分式化成整式与真分式之和的形式,再化简将简便得多.=[(2a+1)-(a-3)-(3a+2)+(2a-2)]说明本题的关键是正确地将假分式写成整式与真分式之和的形式.例2 求分式当a=2时的值.分析与解先化简再求值.直接通分较复杂,注意到平方差公式:a2-b2=(a+b)(a-b),可将分式分步通分,每一步只通分左边两项.例3 若abc=1,求分析本题可将分式通分后,再进行化简求值,但较复杂.下面介绍几种简单的解法.解法1 因为abc=1,所以a,b,c都不为零.解法2 因为abc=1,所以a≠0,b≠0,c≠0.例4 化简分式:分析与解三个分式一齐通分运算量大,可先将每个分式的分母分解因式,然后再化简.说明互消掉的一对相反数,这种化简的方法叫“拆项相消”法,它是分式化简中常用的技巧.例5 化简计算(式中a,b,c两两不相等):似的,对于这个分式,显然分母可以分解因式为(a-b)(a-c),而分子又恰好凑成(a-b)+(a-c),因此有下面的解法.解说明本例也是采取“拆项相消”法,所不同的是利用例6 已知:x+y+z=3a(a≠0,且x,y,z不全相等),求分析本题字母多,分式复杂.若把条件写成(x-a)+(y-a)+(z-a)=0,那么题目只与x-a,y-a,z-a有关,为简化计算,可用换元法求解.解令x-a=u,y-a=v,z-a=w,则分式变为u2+v2+w2+2(uv+vw+wu)=0.由于x,y,z不全相等,所以u,v,w不全为零,所以u2+v2+w2≠0,从而有说明从本例中可以看出,换元法可以减少字母个数,使运算过程简化.例7 化简分式:适当变形,化简分式后再计算求值.(x-4)2=3,即x2-8x+13=0.原式分子=(x4-8x3+13x2)+(2x3-16x2+26x)+(x2-8x+13)+10=x2(x2-8x+13)+2x(x2-8x+13)+(x2-8x+13)+10=10,原式分母=(x2-8x+13)+2=2,说明本例的解法采用的是整体代入的方法,这是代入消元法的一种特殊类型,应用得当会使问题的求解过程大大简化.解法1 利用比例的性质解决分式问题.(1)若a+b+c≠0,由等比定理有所以a+b-c=c,a-b+c=b,-a+b+c=a,于是有(2)若a+b+c=0,则a+b=-c,b+c=-a,c+a=-b,于是有说明比例有一系列重要的性质,在解决分式问题时,灵活巧妙地使用,便于问题的求解.解法2 设参数法.令则a+b=(k+1)c,①a+c=(k+1)b,②b+c=(k+1)a.③①+②+③有2(a+b+c)=(k+1)(a+b+c),所以 (a+b+c)(k-1)=0,故有k=1或 a+b+c=0.当k=1时,当a+b+c=0时,说明引进一个参数k表示以连比形式出现的已知条件,可使已知条件便于使用.练习四1.化简分式:2.计算:3.已知:(y-z)2+(z-x)2+(x-y)2=(x+y-2z)2+(y+z-2x)2+(z+x-2y)2,的值.第五讲恒等式的证明代数式的恒等变形是初中代数的重要内容,它涉及的基础知识较多,主要有整式、分式与根式的基本概念及运算法则,因式分解的知识与技能技巧等等,因此代数式的恒等变形是学好初中代数必备的基本功之一.本讲主要介绍恒等式的证明.首先复习一下基本知识,然后进行例题分析.两个代数式,如果对于字母在允许范围内的一切取值,它们的值都相等,则称这两个代数式恒等.把一个代数式变换成另一个与它恒等的代数式叫作代数式的恒等变形.恒等式的证明,就是通过恒等变形证明等号两边的代数式相等.证明恒等式,没有统一的方法,需要根据具体问题,采用不同的变形技巧,使证明过程尽量简捷.一般可以把恒等式的证明分为两类:一类是无附加条件的恒等式证明;另一类是有附加条件的恒等式的证明.对于后者,同学们要善于利用附加条件,使证明简化.下面结合例题介绍恒等式证明中的一些常用方法与技巧.1.由繁到简和相向趋进恒等式证明最基本的思路是“由繁到简”(即由等式较繁的一边向另一边推导)和“相向趋进”(即将等式两边同时转化为同一形式).例1 已知x+y+z=xyz,证明:x(1-y2)(1-z2)+y(1-x2)(1-z2)+z(1-x2)(1-y2)=4xyz.分析将左边展开,利用条件x+y+z=xyz,将等式左边化简成右边.证因为x+y+z=xyz,所以左边=x(1-z2-y2-y2z2)+y(1-z2-x2+x2z2)+(1-y2-x2+x2y2)=(x+y+z)-xz2-xy2+xy2z2-yz2+yx2+yx2z2-zy2-zx2+zx2y2=xyz-xy(y+x)-xz(x+z)-yz(y+z)+xyz(xy+yz+zx)=xyz-xy(xyz-z)-xz(xyz-y)-yz(xyz-x)+xyz(xy+yz+zx)=xyz+xyz+xyz+xyz=4xyz=右边.说明本例的证明思路就是“由繁到简”.例2 已知1989x2=1991y2=1993z2,x>0,y>0,z>0,且证令1989x2=1991y2=1993z2=k(k>0),则又因为所以所以说明本例的证明思路是“相向趋进”,在证明方法上,通过设参数k,使左右两边同时变形为同一形式,从而使等式成立.2.比较法a=b(比商法).这也是证明恒等式的重要思路之一.例3 求证:分析用比差法证明左-右=0.本例中,这个式子具有如下特征:如果取出它的第一项,把其中的字母轮换,即以b代a,c代b,a代c,则可得出第二项;若对第二项的字母实行上述轮换,则可得出第三项;对第三项的字母实行上述轮换,可得出第一项.具有这种特性的式子叫作轮换式.利用这种特性,可使轮换式的运算简化.证因为所以所以说明本例若采用通分化简的方法将很繁.像这种把一个分式分解成几个部分分式和的形式,是分式恒等变形中的常用技巧.全不为零.证明:(1+p)(1+q)(1+r)=(1-p)(1-q)(1-r).同理所以所以(1+p)(1+q)(1+r)=(1-p)(1-q)(1-r).说明本例采用的是比商法.3.分析法与综合法根据推理过程的方向不同,恒等式的证明方法又可分为分析法与综合法.分析法是从要求证的结论出发,寻求在什么情况下结论是正确的,这样一步一步逆向推导,寻求结论成立的条件,一旦条件成立就可断言结论正确,即所谓“执果索因”.而综合法正好相反,它是“由因导果”,即从已知条件出发顺向推理,得到所求结论.证要证a2+b2+c2=(a+b-c)2,只要证a2+b2+c2=a2+b2+c2+2ab-2ac-2bc,只要证ab=ac+bc,只要证c(a+b)=ab,只要证这最后的等式正好是题设,而以上推理每一步都可逆,故所求证的等式成立.说明本题采用的方法是典型的分析法.例6 已知a4+b4+c4+d4=4abcd,且a,b,c,d都是正数,求证:a=b=c=d.证由已知可得a4+b4+c4+d4-4abcd=0,(a2-b2)2+(c2-d2)2+2a2b2+2c2d2-4abcd=0,所以(a2-b2)2+(c2-d2)2+2(ab-cd)2=0.因为(a2-b2)2≥0,(c2-d2)2≥0,(ab-cd)2≥0,所以a2-b2=c2-d2=ab-cd=0,所以(a+b)(a-b)=(c+d)(c-d)=0.又因为a,b,c,d都为正数,所以a+b≠0,c+d≠0,所以a=b,c=d.所以ab-cd=a2-c2=(a+c)(a-c)=0,所以a=c.故a=b=c=d成立.说明本题采用的方法是综合法.4.其他证明方法与技巧求证:8a+9b+5c=0.a+b=k(a-b),b+c=2k(b-c),(c+a)=3k(c-a).所以6(a+b)=6k(a-b),3(b+c)=6k(b-c),2(c+a)=6k(c-a).以上三式相加,得6(a+b)+3(b+c)+2(c+a)=6k(a-b+b-c+c-a),即8a+9b+5c=0.说明本题证明中用到了“遇连比设为k”的设参数法,前面的例2用的也是类似方法.这种设参数法也是恒等式证明中的常用技巧.例8 已知a+b+c=0,求证2(a4+b4+c4)=(a2+b2+c2)2.分析与证明用比差法,注意利用a+b+c=0的条件.左-右=2(a4+b4+c4)-(a2+b2+c2)2=a4+b4+c4-2a2b2-2b2c2-2c2a2=(a2-b2-c2)2-4b2c2=(a2-b2-c2+2bc)(a2-b2-c2-2bc)=[a2-(b-c)2][a2-(b+c)2]=(a-b+c)(a+b-c)(a-b-c)(a+b+c)=0.所以等式成立.说明本题证明过程中主要是进行因式分解.分析本题的两个已知条件中,包含字母a,x,y和z,而在求证的结论中,却只包含a,x和z,因此可以从消去y着手,得到如下证法.证由已知说明本题利用的是“消元”法,它是证明条件等式的常用方法.例10 证明:(y+z-2x)3+(z+x-2y)3+(x+y-2z)3=3(y+z-2x)(z+x-2y)(x+y-2z).分析与证明此题看起来很复杂,但仔细观察,可以使用换元法.令y+z-2x=a,①z+x-2y=b,②x+y-2z=c,③则要证的等式变为a3+b3+c3=3abc.联想到乘法公式:a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca),所以将①,②,③相加有a+b+c=y+z-2x+z+x-2y+x+y-2z=0,所以a3+b3+c3-3abc=0,所以(y+z-2x)3+(z+x-2y)3+(x+y-2z)3=3(y+z-2x)(z+x-2y)(x+y-2z).说明由本例可以看出,换元法也可以在恒等式证明中发挥效力.例11 设x,y,z为互不相等的非零实数,且求证:x2y2z2=1.分析本题x,y,z具有轮换对称的特点,我们不妨先看二元的所以x2y2=1.三元与二元的结构类似.证由已知有①×②×③得x2y2z2=1.说明这种欲进先退的解题策略经常用于探索解决问题的思路中.总之,从上面的例题中可以看出,恒等式证明的关键是代数式的变形技能.同学们要在明确变形目的的基础上,深刻体会例题中的常用变形技能与方法,这对以后的数学学习非常重要.练习五1.已知(c-a)2-4(a-b)(b-c)=0,求证:2b=a+c.2.证明:(x+y+z)3xyz-(yz+zx+xy)3=xyz(x3+y3+z3)-(y3z3+z3x3+x3y3).3.求证:5.证明:6.已知x2-yz=y2-xz=z2-xy,求证:x=y=z或x+y+z=0.7.已知an-bm≠0,a≠0,ax2+bx+c=0,mx2+nx+p=0,求证:(cm-ap)2=(bp-cn)(an-bm).第六讲代数式的求值代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、约分、根式的性质等等,经过恒等变形,把代数式中隐含的条件显现出来,化简,进而求值.因此,求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍.1.利用因式分解方法求值因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用.分析 x的值是通过一个一元二次方程给出的,若解出x后,再求值,将会很麻烦.我们可以先将所求的代数式变形,看一看能否利用已知条件.解已知条件可变形为3x2+3x-1=0,所以6x4+15x3+10x2=(6x4+6x3-2x2)+(9x3+9x2-3x)+(3x2+3x-1)+1=(3x2+3x-1)(2z2+3x+1)+1=0+1=1.说明在求代数式的值时,若已知的是一个或几个代数式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入,会使问题得到简捷的解答.例2 已知a,b,c为实数,且满足下式:。
初中数学竞赛讲义 第一章 整数
![初中数学竞赛讲义 第一章 整数](https://img.taocdn.com/s3/m/5a22041ea300a6c30c229f49.png)
第一章 整数一、自然数的十进制表示数的进位制很多,常用的是十进位制,简单地说,就是用十个不同的数字符号(0,1,2,3,4,5,6,7,8,9)和由低向高位“满十进一”的位制原则,就可以写出一切自然数来.对于一切十进位制的自然数,都可以用其各位上单位的和的形式来表示,如:510910*********3+⨯+⨯+⨯=,对于任意自然数N ,都可以表示为:01221110101010a a a a a N n n nn +⨯+⨯++⨯+⨯=-- 的形式,这里0121,,,,,a a a a a n n -各表示0到9这十个数字中的任意一个,但0≠n a . 有时还把该自然数N 表示成0121a a a a a n n -(0≠n a ),在上面加一横,意在避免与0121,,,,,a a a a a n n -的乘积发生混淆.例1.一个六位数的最高位是1,若把1移作个位数,其余各数的大小和顺序都不变,则所得的新六位数恰好是原数的3倍,求原六位数.例2.设n 为正整数,计算 99999个n × 99999个n +199999个n例3.试问,是否存在整数ab 和cd ,使得abcd cd ab =⋅?二、奇数与偶数一个整数,不是奇数就是偶数.概念:偶数:能被2整除的整数叫做偶数;奇数:不能被2整除的整数就叫做奇数.我们常用n2表示偶数,用12+n或12-n表示奇数(n为整数).奇数偶数的常用性质:(1)奇数±奇数=偶数,奇数±偶数=奇数,偶数±偶数=偶数奇数×奇数=奇数奇数×偶数=偶数,偶数×偶数=偶数(2)奇数个奇数相加,其和为奇数;偶数个奇数相加,其和为偶数;任意多个偶数相加,和总为偶数;(3)任意多个奇数相乘,积为奇数;任意个偶数相乘,积为偶数.推论:奇数的正整数次幂是奇数,偶数的正整数次幂是偶数,(4)若干个整数的积为奇数,则每个整数都为奇数;若干个整数的积为偶数,则其中至少有一个是偶数;(5)两个连续整数,必有一个是奇数,一个是偶数;两个连续整数的和是奇数,积是偶数. (6)若a是整数,则a,a-,a具有相同的奇偶性;(7)若a,b是整数,则babaabbaba-+--+,,,,具有相同的奇偶性.例4.在2010个自然数1,2,3,…,2010的每一个数前面任意添加“+”号或“-”号,然后将这2010个整数相加,请你判断,最后的结果是奇数还是偶数?例5.已知cba,,中有两个奇数,一个偶数,试判断()()()321+++cba的奇偶性.例6.计算:()223521+-例7.已知y x ,均为一位正整数,且满足y x y x 9292=⋅,求y x ,的值.例8.已知自然数y x ,满足606341993=+y x ,求xy 的值.例9.某次九年级数学竞赛共有20道题,规定答对一题得5分,不答得1分,答错扣1分. 求证:不论多少人参赛,全体学生的得分总分一定是偶数.三、整数的整除(1)定义:设a ,b 是整数,0≠b ,如果有整数p ,使得bp a =,那么称a 能被b 整除,或称b 整除a ,记作a b .又称b 为a 的约数,a 为b 的倍数.如果a 不是b 的倍数,则称整数b 不整除a ,或称a 不能被b 整除.(2)整除的常用性质: ① 若b a ,c b ,则c a .② k 是任意整数,若a b ,则ka b . ③ 若b a ,c a ,则()c b a ±. ④ 若ab m ,()1,=a m ,则b m .⑤若mb,则[]ma,ma,.b⑥若mb,且()1a,mab.a,则m,=b(3)整数整除的常用判定方法:①若整数M的个位数是偶数,则M2.②若整数M的个位数是0或5,则M5.③若整数M的各位数字之和是3的倍数,则M3;若整数M的各位数字之和是9的倍数,则M9.4;④若整数M的末两位数是4的倍数,则M若整数M的末两位数是25的倍数,则M25.⑤若整数M的末三位数是8的倍数,则M8;若整数M的末三位数是125的倍数,则M125.11.⑥若整数M的奇位上数字之和与偶位上的数字之和的差是11的倍数,则M例10.在一个两位数的两个数字中间插入一个数字后,这个两位数就变成了一个三位数,且该三位数是原来两位数的9倍,则这样的两位数有多少个?例11.若78N=是一个能被17整除的四位数,求x.2x例12.从1到2000这2000个数中,有多少个数既不能被4整除,又不能被6整除?例13.五位数xy 538能被3,7,11整除,求22y x -的值.例14.已知整数45613ab 能被198整除,求a 与b 的值.四、质数与合数(没有说明的情况下,只在正整数范围内讨论)如果一个大于1的正整数只能被1和其本身整除,就把这个数叫做质数(也叫素数),如果还能被1和本身以外的数整除,就称其为合数.(负数的绝对值是质数的话,这个负数也是质数,在后面的章节中,如果没有特殊说明,只在正整数范围内考虑质数合数) 特别注意的是:1即不是质数也不是合数.五、质因数的分解我们经常把一个大于1的整数分解为若干个质数的连乘积形式,这就是所谓的分解质因数,乘积中的每一个质数,都叫做这个整数的质因数.关于质因数分解有以下定理:算数基本定理 任意一个大于1的整数N 都可以分解为质因数的乘积.如果不考虑这些质因数的次序,那么这种分解是唯一的.通常可以表示成以下形式:n n p p p N ααα 2121=()*在上式中,n p p p ,,,21 都是质数且互不相同,n ααα,,,21 都是正整数.这种分解式称为 正整数N 的标准分解式.例如540的标准分解式是53254022⨯⨯=.推论1(约数个数定理) 如果对于大于1的整数N ,其标准分解式如()*式所示, 那么N 共有正约数()()()11121+++n ααα 个,这些约数包括1和N 本身.推论2 如果对于大于1的整数N ,其标准分解式如()*式所示,那么N 是一个完全平方数的充要条件是n ααα,,,21 都是偶数,即N 的正约数个数是奇数.由此可以得到 质数的如下整除性质:(1)p 是质数,b a ,都是整数,如果ab p ,则a p 或b p ,特别地2a p 时,a p ; (2)n p p p ,,,21 是不同的质数,a 是整数,如果a p 1,a p 2,a p n , ,则a p p p n 21.例15.已知质数q p ,满足3153=+q p ,求13+q p 的值.例16.3个质数之积是这3个质数之和的17倍,求这3个质数.例17.已知p 是质数,36+p 也是质数,求4811-p 的值.例18.写出30个连续的自然数,使得个个都是合数.例19.360能被多少个不同的正整数整除.例20.写出在100以内的具有10个正约数的所有正整数.例21.求392的标准分解式,并求其全部正约数的和.例22.已知三位数abc是一个质数,如果将这个三位数重复写一遍,就得到一个六位数abcabc,问这个六位数一共有多少个不同的正约数.六、公约数与公倍数(一般情况下,只在正整数范围内讨论)(1)公约数与最大公约数整数a和b都有的约数,叫做a和b的公约数,a和b的最大公约数可以表示为()ba,,若()1a,则称a和b互质.b,=(2)公倍数和最小公倍数如果一个数既是a 的倍数又是b 的倍数,那么就称其为a 和b 的公倍数,a 和b 的最小公倍数记作[]b a ,定理1:若a ,b 是正整数,则()[]b a b a ab ,,=定理2:若a ,b 是正整数,则()()b a b b a ,,=+;()()b a b b a ,,=-例23.已知b a ,两正整数的最大公约数是6,最小公倍数是36,求b a ,这两个数.例24.正整数n m ,的最大公约数大于1,且满足3713=+n m ,求mn 的值.七、完全平方数如果N 是整数,且M N =2,则称整数M 为完全平方数(简称平方数),平方数M 有 以下常用性质:(1) 若M 是整数,则平方数2M 与()21+M 之间不存在其他平方数,即两个连续平方数之间任何一个数都不是平方数;(2) 平方数M 的末尾数只能是0,1,4,5,6,9,而不能是2,3,7,8; (3) 偶数的平方必是4的倍数,而奇数的平方必是8的倍数加1;(4) 平方数的末尾数是奇数时,其十位数必为偶数,平方数的末尾是6时,其十位数必为奇数;(5) 两个平方数的乘积还是平方数,一个平方数与一个非平方数的乘积肯定不是平方数; (6) 任何平方数除以3,余数不可能是2;除以4,余数不可能是2,3;除以5,余数不可能是2,3;除以8,余数不可能是2,3,5,6,7;除以9,余数不可能是2,3,5,6,8.例25.若N 是一个完全平方数,则它后面的一个完全平方数是_______________.例26.求自然数n ,使得n n S n 542+=为完全平方数.例27.直角三角形两条斜边长b a ,均为正整数,且a 为质数,若斜边场也是整数,求证 ()12++b a 是完全平方数.八、带余除法设整数a 除以整数b ()0≠b ,所得的商和余数分别为q 和r ()b r <≤0,则有r bq a +=, 即:被除数=除数×商+余数.(1)整数n m ,除以d 所得余数相同()n m d -⇔.(2)用任意连续n ()0>n 个整数除以n ,所得的余数中,0,1,…,1-n 各出现一次.九、末位数rk a+4与r a 有相同的末位数.其中a 为整数,k 为非负整数,r 为1、2、3、4中的任意一个.(注意:不要取0=r )例28.今有自然数带余除法算式8 C B A =÷,如果2178=++C B A ,求A 的值.例29.若一个正整数a 被2,3,4,5,6,7,8,9这八个自然数除,所得的余数都为1,求a 的最小值.例30.20032003的个位数是多少?习题一1、某校九年级(1)班同学做一个数学实验:在黑板上写上1,2,3,…,40这40个数,第一个同学上来擦去其中任意两个数,然后写上他们的和或者差,第二个同学、第三个同学及以后每位同学都按此规则操作,直到黑板上只有一个数为止,问:最后一个数是奇数还是偶数,为什么?2、已知z y x ,,为正整数,且z y ,均为质数,并满足zyxyz x 111,=+=,求x 的值.3、有()3≥n n 位同学围成一圈,求证:相邻两人是一男一女的对数必是偶数.4、设有101个自然数,记为101321,,,,a a a a ,已知10132110132a a a a x ++++= 为 偶数,判断10199531a a a a a y +++++= 是奇数还是偶数,说明理由.5、设y x ,为两个不同的正整数,并且5211=+yx,求y x +的值.6、设k a a a a ,,,,321 是k 个互不相等的正整数,且1995321=++++k a a a a ,求k 的最大值.7、已知正整数a 恰有12个正约数(包括1和a ),求符合要求的a 的最小值.8、将1,2,3,…,37排成一行:3721,,,a a a ,1,3721==a a ,并使k a a a +++ 21能被1+k a 整除(36,,2,1 =k ).求(1)37a ;(2)3a .9、一个三位数,等于它的各位数字之和的12倍,试写出所有这样的三位数.10、求方程10047=+y x 的非负整数解.11、已知q p 、都是质数,1是以x 为未知数的方程9752=+q px 的根,则410140++q p 的值是多少?12、正方体的每个面上都写着一个自然数,并且相对的两个面所写的两数之和相等, 若10的对面写的是质数a ,12的对面写的是质数b ,15的对面写的是质数c , 那么ac bc ab c b a ---++222的值是多少?13、已知两个连续奇数的平方差是2000,则这两个连续奇数可以是多少?14、今天是星期日,若明天算第一天,则第333201121+++ 天是星期几?15、z y x ,,为互不相等的自然数,且135032=z xy ,则z y x ++的最大值是多少?16、[]x 表示不超过x 的最大整数,如[]32.3=,已知正整数n 小于2002,且263nn n =⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡,则这样的n 有多少个?。
初二数学竞赛辅导共30讲
![初二数学竞赛辅导共30讲](https://img.taocdn.com/s3/m/95a32494050876323112126b.png)
第一讲:因式分解(一) (1)第二讲:因式分解(二) (4)第三讲实数的若干性质和应用 (7)第四讲分式的化简与求值 (10)第五讲恒等式的证明 (13)第六讲代数式的求值 (16)第七讲根式及其运算 (18)第八讲非负数 (22)第九讲一元二次方程 (26)第十讲三角形的全等及其应用 (29)第十一讲勾股定理与应用 (33)第十二讲平行四边形 (36)第十三讲梯形 (39)第十四讲中位线及其应用 (42)第十五讲相似三角形(一) (45)第十六讲相似三角形(二) .............................................. 48 第十七讲* 集合与简易逻辑. (51)第十八讲归纳与发现 (56)第十九讲特殊化与一般化 (59)第二十讲类比与联想 (63)第二十一讲分类与讨论 (67)第二十二讲面积问题与面积方法 (70)第二十三讲几何不等式 (73)第二十四讲* 整数的整除性 (77)第二十五讲* 同余式 (80)第二十六讲含参数的一元二次方程的整数根问题 (83)第二十七讲列方程解应用问题中的量 (86)第二十八讲怎样把实际问题化成数学问题 (90)第二十九讲生活中的数学(三) ——镜子中的世界 (94)第三十讲生活中的数学(四)──买鱼的学问 (99)第一讲:因式分解(一)多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n 为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n 为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n 为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.解 (1)原式=-2x n-1y n(x4n-2x2ny2+y4)=-2x n-1y n[(x2n)2-2x2ny2+(y2)2]=-2x n-1y n(x2n-y2)2=-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2=(a-b)2+2c(a-b)+c2=(a-b+c)2.本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)=(a-b+c)2(4)原式=(a7-a5b2)+(a2b5-b7)=a5(a2-b2)+b5(a2-b2)=(a2-b2)(a5+b5)=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)例2 分解因式:a3+b3+c3-3abc.本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3的正确性,现将此公式变形为a3+b3=(a+b)3-3ab(a+b).这个式也是一个常用的公式,本题就借助于它来推导.解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a3+b3+c3-3abc显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c >0时,则a3+b3+c3-3abc≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.如果令x=a3≥0,y=b3≥0,z=c3≥0,则有等号成立的充要条件是x=y=z.这也是一个常用的结论.例3 分解因式:x15+x14+x13+…+x2+x+1.分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.解因为x16-1=(x-1)(x15+x14+x13+…x2+x+1),所以说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式:x3-9x+8.分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8).解法2 将一次项-9x拆成-x-8x.原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3 将三次项x3拆成9x3-8x3.原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).解法4 添加两项-x2+x2.原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8).说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例5 分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.解 (1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1).(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=[(x+1)2+(x-1)2]2-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)[b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a2-ab+1)(b2+ab+1).说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例6 分解因式:(x2+x+1)(x2+x+2)-12.分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.解设x2+x=y,则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.例7 分解因式:(x2+3x+2)(4x2+8x+3)-90.分析先将两个括号内的多项式分解因式,然后再重新组合.解原式=(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90=(2x2+5x+3)(2x2+5x+2)-90.令y=2x2+5x+2,则原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1).说明对多项式适当的恒等变形是我们找到新元(y)的基础.例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.解设x2+4x+8=y,则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.例9分解因式:6x4+7x3-36x2-7x+6.解法1 原式=6(x4+1)+7x(x2-1)-36x2=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x2=6[(x2-1)2+2x2]+7x(x2-1)-36x2=6(x2-1)2+7x(x2-1)-24x2=[2(x2-1)-3x][3(x2-1)+8x]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).说明本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.解法2原式=x2[6(t2+2)+7t-36]=x2(6t2+7t-24)=x2(2t-3)(3t+8)=x2[2(x-1/x)-3][3(x-1/x)+8]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).例10 分解因式:(x2+xy+y2)-4xy(x2+y2).分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2=(x2-xy+y2)2.第二讲:因式分解(二)1.双十字相乘法分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即:-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解所以,原式=[x+(2y-3)][2x+(-11y+1)] =(x+2y-3)(2x-11y+1).上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.这就是所谓的双十字相乘法.用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.例1 分解因式:(1)x2-3xy-10y2+x+9y-2;(2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;(4)6x2-7xy-3y2-xz+7yz-2z2.解(1)原式=(x-5y+2)(x+2y-1).(2)原式=(x+y+1)(x-y+4).(3)原式中缺x2项,可把这一项的系数看成0来分解.原式=(y+1)(x+y-2).(4)原式=(2x-3y+z)(3x+y-2z).说明 (4)中有三个字母,解法仍与前面的类似.2.求根法我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a0的约数,q是a n的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为a n 的约数.我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例2 分解因式:x3-4x2+6x-4.分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有f(2)=23-4×22+6×2-4=0,即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.解法1 用分组分解法,使每组都有因式(x-2). 原式=(x 3-2x 2)-(2x 2-4x)+(2x-4) =x 2(x-2)-2x(x-2)+2(x-2) =(x-2)(x 2-2x+2).解法2 用多项式除法,将原式除以(x-2),所以原式=(x-2)(x 2-2x+2).说明 在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.例3 分解因式:9x 4-3x 3+7x 2-3x-2.分析 因为9的约数有±1,±3,±9;-2的约数有±1,±为:所以,原式有因式9x 2-3x-2. 解 9x 4-3x 3+7x 2-3x-2 =9x 4-3x 3-2x 2+9x 2-3x-2 =x 2(9x 3-3x-2)+9x 2-3x-2 =(9x 2-3x-2)(x 2+1) =(3x+1)(3x-2)(x 2+1)说明 若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x 2-3x-2,这样可以简化分解过程. 总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了. 3.待定系数法待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用. 在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法. 例4 分解因式:x 2+3xy+2y 2+4x+5y+3. 分析 由于(x 2+3xy+2y 2)=(x+2y)(x+y),若原式可以分解因式,那么它的两个一次项一定是x+2y+m 和x +y +n 的形式,应用待定系数法即可求出m 和n ,使问题得到解决. 解 设x 2+3xy+2y 2+4x+5y+3 =(x+2y+m)(x+y+n)=x 2+3xy+2y 2+(m+n)x+(m+2n)y+mn , 比较两边对应项的系数,则有解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1).说明 本题也可用双十字相乘法,请同学们自己解一下.例5 分解因式:x 4-2x 3-27x 2-44x+7.分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.解设原式=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,所以有由bd=7,先考虑b=1,d=7有所以原式=(x2-7x+1)(x2+5x+7).说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.第三讲实数的若干性质和应用实数是高等数学特别是微积分的重要基础.在初中代数中没有系统地介绍实数理论,是因为它涉及到极限的概念.这一概念对中学生而言,有一定难度.但是,如果中学数学里没有实数的概念及其简单的运算知识,中学数学也将无法继续学习下去了.例如,即使是一元二次方程,只有有理数的知识也是远远不够用的.因此,适当学习一些有关实数的基础知识,以及运用这些知识解决有关问题的基本方法,不仅是为高等数学的学习打基础,而且也是初等数学学习所不可缺少的.本讲主要介绍实数的一些基本知识及其应用.用于解决许多问题,例如,不难证明:任何两个有理数的和、差、积、商还是有理数,或者说,有理数对加、减、乘、除(零不能做除数)是封闭的.性质1 任何一个有理数都能写成有限小数(整数可以看作小数点后面为零的小数)或循环小数的形式,反之亦然.例1分析要说明一个数是有理数,其关键要看它能否写成两个整数比的形式.证设两边同乘以100得②-①得99x=261.54-2.61=258.93,无限不循环小数称为无理数.有理数对四则运算是封闭的,而无理是说,无理数对四则运算是不封闭的,但它有如下性质.性质2 设a为有理数,b为无理数,则(1)a+b,a-b是无理数;有理数和无理数统称为实数,即在实数集内,没有最小的实数,也没有最大的实数.任意两个实数,可以比较大小.全体实数和数轴上的所有点是一一对应的.在实数集内进行加、减、乘、除(除数不为零)运算,其结果仍是实数(即实数对四则运算的封闭性).任一实数都可以开奇次方,其结果仍是实数;只有当被开方数为非负数时,才能开偶次方,其结果仍是实数.例2分析证所以分析要证明一个实数为无限不循环小数是一件极难办到的事.由于有理数与无理数共同组成了实数集,且二者是矛盾的两个对立面,所以,判定一个实数是无理数时,常常采用反证法.证用反证法.所以p一定是偶数.设p=2m(m是自然数),代入①得4m2=2q2,q2=2m2,例4 若a1+b1a=a2+b2a(其中a1,a2,b1,b2为有理数,a为无理数),则a1=a2,b1=b2,反之,亦成立.分析设法将等式变形,利用有理数不能等于无理数来证明.证将原式变形为(b1-b2)a=a2-a1.若b1≠b2,则反之,显然成立.说明本例的结论是一个常用的重要运算性质.是无理数,并说明理由.整理得:由例4知a=Ab,1=A,说明本例并未给出确定结论,需要解题者自己发现正确的结有理数作为立足点,以其作为推理的基础.例6 已知a,b是两个任意有理数,且a<b,求证:a与b之间存在着无穷多个有理数(即有理数集具有稠密性).分析只要构造出符合条件的有理数,题目即可被证明.证因为a<b,所以2a<a+b<2b,所以说明构造具有某种性质的一个数,或一个式子,以达到解题和证明的目的,是经常运用的一种数学建模的思想方法.例7 已知a,b是两个任意有理数,且a<b,问是否存在无理数α,使得a<α<b成立?即由①,②有存在无理数α,使得a<α<b成立.b4+12b3+37b2+6b-20的值.分析因为无理数是无限不循环小数,所以不可能把一个无理数的小数部分一位一位确定下来,这样涉及无理数小数部分的计算题,往往是先估计它的整数部分(这是容易确定的),然后再寻求其小数部分的表示方法.14=9+6b+b2,所以b2+6b=5.b4+12b3+37b2+6b-20=(b4+2·6b3+36b2)+(b2+6b)-20=(b2+6b)2+(b2+6b)-20=52+5-20=10.例9 求满足条件的自然数a,x,y.解将原式两边平方得由①式变形为两边平方得例10 设a n是12+22+32+…+n2的个位数字,n=1,2,3,…,求证:0.a1a2a3…a n…是有理数.分析有理数的另一个定义是循环小数,即凡有理数都是循环小数,反之循环小数必为有理数.所以,要证0.a1a2a3…a n…是有理数,只要证它为循环小数.因此本题我们从寻找它的循环节入手.证计算a n的前若干个值,寻找规律:1,5,4,0,5,1,0,4,5,5,6,0,9,5,0,6,5,9,0,0,1,5,4,0,5,1,0,4,…发现:a20=0,a21=a1,a22=a2,a23=a3,…,于是猜想:a k+20=a k,若此式成立,说明0.a1a2…a n…是由20个数字组成循环节的循环小数,即下面证明a k+20=a k.令f(n)=12+22+…+n2,当f(n+20)-f(n)是10的倍数时,表明f(n+20)与f(n)有相同的个位数,而f(n+20)-f(n)=(n+1)2+(n+2)2+…+(n+20)2=10(2n2+42·n)+(12+22+…+202).由前面计算的若干值可知:12+22+…+202是10的倍数,故a k+20=a k成立,所以0.a1a2…a n…是一个有理数.第四讲分式的化简与求值分式的有关概念和性质与分数相类似,例如,分式的分母的值不能是零,即分式只有在分母不等于零时才有意义;也像分数一样,分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,这一性质是分式运算中通分和约分的理论根据.在分式运算中,主要是通过约分和通分来化简分式,从而对分式进行求值.除此之外,还要根据分式的具体特征灵活变形,以使问题得到迅速准确的解答.本讲主要介绍分式的化简与求值.例1 化简分式:分析直接通分计算较繁,先把每个假分式化成整式与真分式之和的形式,再化简将简便得多.=[(2a+1)-(a-3)-(3a+2)+(2a-2)]说明本题的关键是正确地将假分式写成整式与真分式之和的形式.例2 求分式当a=2时的值.分析与解先化简再求值.直接通分较复杂,注意到平方差公式:a2-b2=(a+b)(a-b),可将分式分步通分,每一步只通分左边两项.例3 若abc=1,求分析本题可将分式通分后,再进行化简求值,但较复杂.下面介绍几种简单的解法.解法1 因为abc=1,所以a,b,c都不为零.解法2 因为abc=1,所以a≠0,b≠0,c≠0.例4 化简分式:分析与解三个分式一齐通分运算量大,可先将每个分式的分母分解因式,然后再化简.说明互消掉的一对相反数,这种化简的方法叫“拆项相消”法,它是分式化简中常用的技巧.例5 化简计算(式中a,b,c两两不相等):似的,对于这个分式,显然分母可以分解因式为(a-b)(a-c),而分子又恰好凑成(a-b)+(a-c),因此有下面的解法.解说明本例也是采取“拆项相消”法,所不同的是利用例6 已知:x+y+z=3a(a≠0,且x,y,z不全相等),求分析本题字母多,分式复杂.若把条件写成(x-a)+(y-a)+(z-a)=0,那么题目只与x-a,y-a,z-a 有关,为简化计算,可用换元法求解.解令x-a=u,y-a=v,z-a=w,则分式变为u2+v2+w2+2(uv+vw+wu)=0.由于x,y,z不全相等,所以u,v,w不全为零,所以u2+v2+w2≠0,从而有说明从本例中可以看出,换元法可以减少字母个数,使运算过程简化.例7 化简分式:适当变形,化简分式后再计算求值.(x-4)2=3,即x2-8x+13=0.原式分子=(x4-8x3+13x2)+(2x3-16x2+26x)+(x2-8x+13)+10=x2(x2-8x+13)+2x(x2-8x+13)+(x2-8x+13)+10=10,原式分母=(x2-8x+13)+2=2,说明本例的解法采用的是整体代入的方法,这是代入消元法的一种特殊类型,应用得当会使问题的求解过程大大简化.解法1 利用比例的性质解决分式问题.(1)若a+b+c≠0,由等比定理有所以a+b-c=c,a-b+c=b,-a+b+c=a,于是有(2)若a+b+c=0,则a+b=-c,b+c=-a,c+a=-b,于是有说明比例有一系列重要的性质,在解决分式问题时,灵活巧妙地使用,便于问题的求解.解法2 设参数法.令则a+b=(k+1)c,①a+c=(k+1)b,②b+c=(k+1)a.③①+②+③有2(a+b+c)=(k+1)(a+b+c),所以 (a+b+c)(k-1)=0,故有k=1或 a+b+c=0.当k=1时,当a+b+c=0时,说明引进一个参数k表示以连比形式出现的已知条件,可使已知条件便于使用.第五讲恒等式的证明代数式的恒等变形是初中代数的重要内容,它涉及的基础知识较多,主要有整式、分式与根式的基本概念及运算法则,因式分解的知识与技能技巧等等,因此代数式的恒等变形是学好初中代数必备的基本功之一.本讲主要介绍恒等式的证明.首先复习一下基本知识,然后进行例题分析.两个代数式,如果对于字母在允许范围内的一切取值,它们的值都相等,则称这两个代数式恒等.把一个代数式变换成另一个与它恒等的代数式叫作代数式的恒等变形.恒等式的证明,就是通过恒等变形证明等号两边的代数式相等.证明恒等式,没有统一的方法,需要根据具体问题,采用不同的变形技巧,使证明过程尽量简捷.一般可以把恒等式的证明分为两类:一类是无附加条件的恒等式证明;另一类是有附加条件的恒等式的证明.对于后者,同学们要善于利用附加条件,使证明简化.下面结合例题介绍恒等式证明中的一些常用方法与技巧.1.由繁到简和相向趋进恒等式证明最基本的思路是“由繁到简”(即由等式较繁的一边向另一边推导)和“相向趋进”(即将等式两边同时转化为同一形式).例1 已知x+y+z=xyz,证明:x(1-y2)(1-z2)+y(1-x2)(1-z2)+z(1-x2)(1-y2)=4xyz.分析将左边展开,利用条件x+y+z=xyz,将等式左边化简成右边.证因为x+y+z=xyz,所以左边=x(1-z2-y2-y2z2)+y(1-z2-x2+x2z2)+(1-y2-x2+x2y2) =(x+y+z)-xz2-xy2+xy2z2-yz2+yx2+yx2z2-zy2-zx2+zx2y2=xyz-xy(y+x)-xz(x+z)-yz(y+z)+xyz(xy+yz+zx)=xyz-xy(xyz-z)-xz(xyz-y)-yz(xyz-x)+xyz(xy+yz+zx) =xyz+xyz+xyz+xyz=4xyz=右边.说明本例的证明思路就是“由繁到简”.例2 已知1989x2=1991y2=1993z2,x>0,y>0,z>0,且证令1989x2=1991y2=1993z2=k(k>0),则又因为所以所以说明本例的证明思路是“相向趋进”,在证明方法上,通过设参数k,使左右两边同时变形为同一形式,从而使等式成立.2.比较法a=b(比商法).这也是证明恒等式的重要思路之一.例3 求证:分析用比差法证明左-右=0.本例中,这个式子具有如下特征:如果取出它的第一项,把其中的字母轮换,即以b代a,c代b,a代c,则可得出第二项;若对第二项的字母实行上述轮换,则可得出第三项;对第三项的字母实行上述轮换,可得出第一项.具有这种特性的式子叫作轮换式.利用这种特性,可使轮换式的运算简化.证因为所以所以说明本例若采用通分化简的方法将很繁.像这种把一个分式分解成几个部分分式和的形式,是分式恒等变形中的常用技巧.全不为零.证明:(1+p)(1+q)(1+r)=(1-p)(1-q)(1-r).同理所以所以(1+p)(1+q)(1+r)=(1-p)(1-q)(1-r).说明本例采用的是比商法.3.分析法与综合法根据推理过程的方向不同,恒等式的证明方法又可分为分析法与综合法.分析法是从要求证的结论出发,寻求在什么情况下结论是正确的,这样一步一步逆向推导,寻求结论成立的条件,一旦条件成立就可断言结论正确,即所谓“执果索因”.而综合法正好相反,它是“由因导果”,即从已知条件出发顺向推理,得到所求结论.证要证 a2+b2+c2=(a+b-c)2,只要证a2+b2+c2=a2+b2+c2+2ab-2ac-2bc,只要证 ab=ac+bc,只要证 c(a+b)=ab,只要证这最后的等式正好是题设,而以上推理每一步都可逆,故所求证的等式成立.说明本题采用的方法是典型的分析法.例6 已知a4+b4+c4+d4=4abcd,且a,b,c,d都是正数,求证:a=b=c=d.证由已知可得a4+b4+c4+d4-4abcd=0,(a2-b2)2+(c2-d2)2+2a2b2+2c2d2-4abcd=0,所以(a2-b2)2+(c2-d2)2+2(ab-cd)2=0.因为(a2-b2)2≥0,(c2-d2)2≥0,(ab-cd)2≥0,所以a2-b2=c2-d2=ab-cd=0,所以 (a+b)(a-b)=(c+d)(c-d)=0.又因为a,b,c,d都为正数,所以a+b≠0,c+d≠0,所以a=b,c=d.所以ab-cd=a2-c2=(a+c)(a-c)=0,所以a=c.故a=b=c=d成立.说明本题采用的方法是综合法.4.其他证明方法与技巧求证:8a+9b+5c=0.a+b=k(a-b),b+c=2k(b-c),(c+a)=3k(c-a).所以6(a+b)=6k(a-b),3(b+c)=6k(b-c),2(c+a)=6k(c-a).以上三式相加,得6(a+b)+3(b+c)+2(c+a)=6k(a-b+b-c+c-a),即 8a+9b+5c=0.说明本题证明中用到了“遇连比设为k”的设参数法,前面的例2用的也是类似方法.这种设参数法也是恒等式证明中的常用技巧.例8 已知a+b+c=0,求证2(a4+b4+c4)=(a2+b2+c2)2.分析与证明用比差法,注意利用a+b+c=0的条件.左-右=2(a4+b4+c4)-(a2+b2+c2)2=a4+b4+c4-2a2b2-2b2c2-2c2a2=(a2-b2-c2)2-4b2c2=(a2-b2-c2+2bc)(a2-b2-c2-2bc)=[a2-(b-c)2][a2-(b+c)2]=(a-b+c)(a+b-c)(a-b-c)(a+b+c)=0.所以等式成立.说明本题证明过程中主要是进行因式分解.分析本题的两个已知条件中,包含字母a,x,y 和z,而在求证的结论中,却只包含a,x和z,因此可以从消去y着手,得到如下证法.证由已知说明本题利用的是“消元”法,它是证明条件等式的常用方法.例10 证明:(y+z-2x)3+(z+x-2y)3+(x+y-2z)3=3(y+z-2x)(z+x-2y)(x+y-2z).分析与证明此题看起来很复杂,但仔细观察,可以使用换元法.令y+z-2x=a,①z+x-2y=b,②x+y-2z=c,③则要证的等式变为a3+b3+c3=3abc.联想到乘法公式:a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca),所以将①,②,③相加有a+b+c=y+z-2x+z+x-2y+x+y-2z=0,所以 a3+b3+c3-3abc=0,所以(y+z-2x)3+(z+x-2y)3+(x+y-2z)3=3(y+z-2x)(z+x-2y)(x+y-2z).说明由本例可以看出,换元法也可以在恒等式证明中发挥效力.例11 设x,y,z为互不相等的非零实数,且求证:x 2y 2z 2=1.分析 本题x ,y ,z 具有轮换对称的特点,我们不妨先看二元的所以x 2y 2=1.三元与二元的结构类似. 证 由已知有①×②×③得x 2y 2z 2=1.说明 这种欲进先退的解题策略经常用于探索解决问题的思路中.总之,从上面的例题中可以看出,恒等式证明的关键是代数式的变形技能.同学们要在明确变形目的的基础上,深刻体会例题中的常用变形技能与方法,这对以后的数学学习非常重要.第六讲 代数式的求值代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、约分、根式的性质等等,经过恒等变形,把代数式中隐含的条件显现出来,化简,进而求值.因此,求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍.1.利用因式分解方法求值因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用.分析 x 的值是通过一个一元二次方程给出的,若解出x 后,再求值,将会很麻烦.我们可以先将所求的代数式变形,看一看能否利用已知条件. 解 已知条件可变形为3x 2+3x -1=0,所以 6x 4+15x 3+10x 2=(6x 4+6x 3-2x 2)+(9x 3+9x 2-3x)+(3x 2+3x -1)+1 =(3x 2+3x -1)(2z 2+3x+1)+1 =0+1=1.说明 在求代数式的值时,若已知的是一个或几个代数式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入,会使问题得到简捷的解答. 例2 已知a ,b ,c 为实数,且满足下式: a 2+b 2+c 2=1,①求a+b+c 的值.解 将②式因式分解变形如下即所以a+b+c=0或bc+ac+ab=0. 若bc+ac+ab=0,则(a+b+c)2=a 2+b 2+c 2+2(bc+ac+ab)=a 2+b 2+c 2=1,所以 a+b+c=±1.所以a+b+c 的值为0,1,-1. 说明 本题也可以用如下方法对②式变形:。
八年级数学数学竞赛培训讲义
![八年级数学数学竞赛培训讲义](https://img.taocdn.com/s3/m/8bc0451b43323968011c9264.png)
目录本内容适合八年级学生竞赛拔高使用。
注重中考与竞赛的有机结合,重点落实在与中考中难以上题,奥赛方面的基础知识和基本技能培训和提高。
本内容难度适中,讲练结合,由浅入深,讲解与练习同步,重在提高学生的数学分析能力与解题能力。
另外在本次培训中,内容的编排大多大于80分钟的容量,因此在实际教学过程中可以根据学生的具体状况由任课教师适当的调整顺序和选择内容。
由于《相似三角形》与其他知识的衔接较多,因此本讲义补充了初三的《相似三角形》,可根据实际情况进行必要的讲解。
注:有(*) 标注的为选做内容。
本次培训具体计划如下,以供参考:第一讲分式的运算第二讲分式的化简求值第三讲分式方程及其应用第四讲二次根式的运算第五讲二次根式的化简求值第六讲相似三角形(基础篇)第七讲相似三角形(提高篇)第八讲平行四边形(基础篇)第九讲平行四边形(提高篇)第十讲梯形、中位线及其应用第十一讲结业考试(未装订在内,另发)第十二讲试卷讲评第一讲:分式的运算【知识梳理】一、分式的意义 形如BA (B A 、为整式),其中B 中含有字母的式子叫分式。
当分子为零且分母不为零时,分式的值为零,而当分母为零时,分式没有意义。
二、分式的性质(1)分式的基本性质:MB M A M B M A B A ÷÷=⨯⨯=(其中M 是不为零的整式)。
(2)分式的符号法则:分子、分母与分式本身的符号,改变其中的任何两个,分式的值不变。
(3)倒数的性质:1、()()011011>=⋅≠=⋅a aa a a a ,; 2、若11=⋅a a ,则11=⎪⎭⎫ ⎝⎛⋅n n a a (0≠a ,n 是整数); 3、()021>≥+a aa 。
三、分式的运算分式的运算法则有:bdbc ad d c b a c b a c b c a ±=±±=±,; n nn ba b a bc ad d c b a bd ac d c b a =⎪⎭⎫ ⎝⎛=÷=⋅,,(n 是正整数)。
初二数学竞赛专讲
![初二数学竞赛专讲](https://img.taocdn.com/s3/m/5a14c835ba68a98271fe910ef12d2af90342a879.png)
初二数学竞赛专讲初二数学竞赛专讲一、引言:数学竞赛的重要性和意义数学竞赛是培养学生数学能力和思维能力的有效途径之一。
通过参加数学竞赛,学生能够接触到更广阔的数学领域,拓展了他们的数学视野,激发了他们对数学的兴趣和热爱。
同时,数学竞赛也能够锻炼学生的逻辑思维、推理能力和问题解决能力,培养他们的创新精神和团队合作能力。
二、竞赛策略和方法1. 准备工作在参加数学竞赛之前,学生需要做好充分的准备工作。
首先,他们要熟悉并掌握各个竞赛题型的特点和解题方法,例如选择题、填空题、解答题等。
其次,学生要广泛阅读数学竞赛相关的教材、习题集和复习资料,加强对数学知识的理解和应用。
最后,学生要进行模拟考试和练习,熟悉竞赛的考试要求和时间限制,提高自己的应试能力和临场发挥。
2. 解题技巧在解题过程中,学生需要掌握一些解题技巧,以提高解题效率和准确性。
首先,学生要善于观察和分析题目,理解题目的意思和要求。
其次,学生要善于运用数学方法和定理,将复杂的问题转化为简单的问题。
此外,学生要注重推理和证明过程,写清楚解题思路和步骤,确保答案的正确性。
最后,学生还需要注意时间的掌握,合理分配时间,不浪费时间在难题上,避免错失较易解答的题目。
3. 队伍配备在参加数学竞赛时,学生可以选择组队参赛。
队伍的配备非常重要,每个队员都应有良好的数学基础和解题能力。
在队伍中,队员之间要建立良好的合作关系,相互学习、讨论和提高。
此外,队长要充分发挥自己的领导力和组织能力,合理分配任务,确保整个队伍的配合和效率。
三、竞赛中常见的数学题型和解题方法在数学竞赛中,根据题型的不同,解题方法也会有所不同。
下面列举了一些常见的数学题型和解题方法。
1. 选择题选择题是数学竞赛中最常见的题型之一。
解答选择题时,学生应注意每个选项的含义和条件,运用数学知识和方法进行分析和判断,选取正确的答案。
此外,学生要注意排除明显错误的选项,不要被干扰和迷惑。
2. 填空题填空题是要求学生填写一个或多个答案的题目。
八年级数学全等三角形综合培优竞赛讲义(38页)
![八年级数学全等三角形综合培优竞赛讲义(38页)](https://img.taocdn.com/s3/m/2b4dffd0910ef12d2af9e7fb.png)
全等三角形培优竞赛讲义(一)知识点全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等. 寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键. 全等三角形的判定方法:(1) 边角边定理(SAS ):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA ):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS ):三边对应相等的两个三角形全等.(4) 角角边定理(AAS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL ):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线. 拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.例题精讲板块一、截长补短【例1】 已知ABC ∆中,60A ∠=,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.4321FDOE CB A【解析】BE CD BC +=, 理由是:在BC 上截取BF BE =,连结OF , 利用SAS 证得BEO ∆≌BFO ∆,∴12∠=∠,∵60A ∠=︒,∴1901202BOC A ∠=+∠=,∴120DOE ∠=,∴180A DOE ∠+∠=,∴180AEO ADO ∠+∠=,∴13180∠+∠=, ∵24180∠+∠=,∴12∠=∠,∴34∠=∠,利用AAS 证得CDO ∆≌CFO ∆,∴CD CF =,∴BC BF CF BE CD =+=+.【例2】 如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=︒,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系?GNEB M A D【解析】 猜测DM MN =.过点M 作MG BD ∥交AD 于点G ,AG AM =,∴GD MB =又∵120ADM DMA +∠=∠,120DMA NMB +=∠∠ ∴ADM NMB =∠∠,而120DGM MBN ==∠∠, ∴DGM MBN ∆∆≌,∴DM MN =.【变式拓展训练】如图,点M 为正方形ABCD 的边AB 上任意一点,MN DM ⊥且与ABC∠外角的平分线交于点N ,MD 与MN 有怎样的数量关系?NCDEB M A【解析】 猜测DM MN =.在AD 上截取AG AM =,∴DG MB =,∴45AGM =∠∴135DGM MBN ==︒∠∠,∴ADM NMB =∠∠, ∴DGM MBN ∆∆≌,∴DM MN =.【例3】 已知:如图,ABCD 是正方形,∠FAD =∠FAE . 求证:BE +DF =AE .M F EDCB A【解析】 延长CB 至M ,使得BM =DF ,连接AM .∵AB =AD ,AD ⊥CD ,AB ⊥BM ,BM =DF ∴△ABM ≌△ADF∴∠AFD =∠AMB ,∠DAF =∠BAM ∵AB ∥CD∴∠AFD =∠BAF =∠EAF +∠BAE =∠BAE +∠BAM =∠EAM ∴∠AMB =∠EAM∴AE =EM =BE +BM =BE +DF .【例4】 以ABC ∆的AB 、AC 为边向三角形外作等边ABD ∆、ACE ∆,连结CD 、BE 相交于点O .求证:OA 平分DOE ∠. 【解析】 因为ABD ∆、ACE ∆是等边三角形,所以AB AD =,AE AC =,CAE ∠=60BAD ∠=,则BAE DAC ∠=∠,所以BAE DAC ∆∆≌,则有ABE ADC ∠=∠,AEB ACD ∠=∠,BE DC =.在DC 上截取DF BO =,连结AF ,容易证得ADF ABO ∆∆≌,ACF AEO ∆∆≌. 进而由AF AO =.得AFO AOF ∠=∠;由AOE AFO ∠=∠可得AOF ∠=AOE ∠,即OA 平分DOE ∠.【例5】 如图所示,ABC ∆是边长为1的正三角形,BDC ∆是顶角为120︒的等腰三角形,以D 为顶点作一个60︒的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.EABC DM N【解析】 如图所示,延长AC 到E 使CE BM =.在BDM ∆与CDE ∆中,因为BD CD =,90MBD ECD ∠=∠=,BM CE =, 所以BDM CDE ∆∆≌,故MD ED =.因为120BDC ∠=,60MDN ∠=,所以60BDM NDC ∠+∠=. 又因为BDM CDE ∠=∠,所以60MDN EDN ∠=∠=.在MND ∆与END ∆中,DN DN =,60MDN EDN ∠=∠=,D M D E =, 所以MND END ∆∆≌,则NE MN =,所以AMN ∆的周长为2.【例6】 五边形ABCDE 中,AB =AE ,BC +DE =CD ,∠ABC +∠AED =180°,求证:AD 平分∠CDEABDEFC【解析】 延长DE 至F ,使得EF =BC ,连接AC .∵∠ABC +∠AED =180°,∠AEF +∠AED =180° ∴∠ABC =∠AEF ∵AB =AE ,BC =EF ∴△ABC ≌△AEF ∴EF =BC ,AC =AF∵BC +DE =CD ∴CD =DE +EF =DF ∴△ADC ≌△ADF ∴∠ADC =∠ADF 即AD 平分∠CDE .板块二、全等与角度【例7】如图,在ABC ∆中,60BAC ∠=︒,AD 是BAC ∠的平分线,且AC AB BD =+,求ABC ∠的度数.【解析】 如图所示,延长AB 至E 使BE BD =,连接ED 、EC .由AC AB BD =+知AE AC =,而60BAC ∠=,则AEC ∆为等边三角形.注意到EAD CAD ∠=∠,AD AD =,AE AC =, 故AED ACD ∆∆≌.从而有DE DC =,DEC DCE ∠=∠,故2BED BDE DCE DEC DEC ∠=∠=∠+∠=∠.所以20DEC DCE ∠=∠=,602080ABC BEC BCE ∠=∠+∠=+=.【另解】在AC 上取点E ,使得AE AB =,则由题意可知CE BD =.在ABD ∆和AED ∆中,AB AE =,BAD EAD ∠=∠,AD AD =,则ABD AED ∆∆≌,从而BD DE =,进而有DE CE =,ECD EDC ∠=∠,AED ECD EDC ∠=∠+∠=2ECD ∠. 注意到ABD AED ∠=∠,则:1318012022ABC ACB ABC ABC ABC BAC ∠+∠=∠+∠=∠=-∠=,故80ABC ∠=︒.【点评】由已知条件可以想到将折线ABD “拉直”成AE ,利用角平分线AD 可以构造全等三角形.同样地,将AC 拆分成两段,之后再利用三角形全等亦可,此思路也是十分自然的.需要说明的是,无论采取哪种方法,都体现出关于角平分线“对称”的思想.上述方法我们分别称之为“补短法”和“截长法”,它们是证明等量关系时优先考 虑的方法.【例8】在等腰ABC ∆中,AB AC =,顶角20A ∠=︒,在边AB 上取点D ,使AD BC =,求BDC ∠.【解析】 以AC 为边向ABC ∆外作正ACE ∆,连接DE .在ABC ∆和EAD ∆中,AD BC =,AB EA =,2060EAD BAC CAE ∠=∠+∠=+= 80ABC =∠,E D CB AED CB AD CBADCB AED CBA则ABC EAD ∆∆≌.由此可得ED EA EC ==,所以EDC ∆是等腰三角形. 由于20AED BAC ∠=∠=,则602040CED AEC AED ∠=∠-∠=-=,从而70DCE ∠=,706010DCA DCE ACE ∠=∠-∠=-=, 则201030BDC DAC DCA ∠=∠+∠=+=.【另解1】以AD 为边在ABC ∆外作等边三角形ADE ∆,连接EC .在ACB ∆和CAE ∆中,6020CAE ACB ︒︒∠=+=∠,AE AD CB ==,AC CA =, 因此ACB CAE ∆∆≌,从而CAB ACE ∠=∠,CE AB AC ==.在CAD ∆和CED ∆中,AD ED =,CE CA =,CD CD =, 故CAD CED ∆∆≌, 从而ACD ECD ∠=∠,2CAB ACE ACD ∠=∠=∠, 故10ACD ︒∠=,因此30BDC ︒∠=. 【另解2】如图所示,以BC 为边向ABC ∆内部作等边BCN ∆,连接NA 、ND .在CDA ∆和ANC ∆中,CN BC AD ==,20CAD ∠=, ACN ACB BCN ∠=∠-∠=806020-=, 故CAD ACN ∠=∠,而AC CA =,进而有CDA ANC ∆∆≌. 则10ACD CAN ∠=∠=,故30BDC DAC DCA ∠=∠+∠=. 【点评】上述三种解法均是向三边作正三角形,然后再由三角形全等得到边长、角度之间的关系.【例9】如图所示,在ABC ∆中,AC BC =,20C ∠=︒,又M 在AC 上,N 在BC 上,且满足50BAN ∠=︒,60ABM ∠=︒,求NMB ∠.【解析】 过M 作AB 的平行线交BC 于K ,连接KA 交MB 于P .连接PN ,易知APB ∆、M KP ∆均为正三角形.因为50BAN ∠=︒,AC BC =,20C ∠=︒,所以50ANB ∠=︒,BN AB BP ==,80BPN BNP ∠=∠=︒,则40PKN ∠=︒,180608040KPN ∠=︒-︒-︒=︒, 故PN KN =.从而MPN MKN ∆∆≌.进而有PMN KMN ∠=∠,1302NMB KMP ∠=∠=︒.【另解】如图所示,在AC 上取点D ,使得20ABD ∠=︒,由20C ∠=︒、AC BC =可知80BAC ∠=︒. 而20ABD ∠=︒,故80ADB ∠=︒,BA BD =. 在ABN ∆中,50BAN ︒∠=,80ABN ∠=︒,故50ANB ∠=︒,从而BA BN =,进而可得BN BD =.E DCBA N DC B APA BCM NK NMCBA D NMCBA而802060DBN ABC ABD ∠=∠-∠=︒-︒=︒, 所以BDN ∆为等边三角形.在ABM ∆中,180180806040AMB ABM BAM ∠=︒-∠-∠=︒-︒-︒=︒, 804040DBM ADB AMB ∠=∠-∠=︒-︒=︒,故DM B DBM ∠=∠,从而D M D B =.我们已经得到DM DN DB ==,故D 是BMN ∆的外心,从而1302NMB NDB ∠=∠=︒.【点评】本题是一道平面几何名题,加拿大滑铁卢大学的几何大师Ross Honsberger 将其喻为“平面几何中的一颗明珠”.本题的大多数解法不是纯几何的,即使利用三角函数也不是那么容易.【例10】在四边形ABCD 中,已知AB AC =,60ABD ︒∠=,76ADB ︒∠=,28BDC ︒∠=,求DBC ∠的度数.【解析】 如图所示,延长BD 至E ,使DE DC =,由已知可得:180********ADE ADB ︒︒︒︒∠=-∠=-=, 7628104ADC ADB BDC ︒︒︒∠=∠+∠=+=,故ADE ADC ∠=∠.又因为AD AD =,DE DC =,故ADE ADC ∆∆≌,因此AE AC =,E ACD ∠=∠,EAD CAD ∠=∠.又因为AB AC =, 故AE AB =,ABC ACB ∠=∠. 而已知60ABD ︒∠=,所以ABE ∆为等边三角形. 于是60ACD E EAB ∠=∠=∠=︒,故18016CAD ADC ACD ∠=︒-∠-∠=︒, 则28CAB EAB CAD EAD ∠=∠-∠-∠=︒,从而1(180)762ABC CAB ∠=︒-∠=︒,所以16DBC ABC ABD ∠=∠-∠=︒.【例11】 如图所示,在四边形ABCD 中,12DAC ︒∠=,36CAB ︒∠=,48ABD ︒∠=,24DBC ︒∠=,求ACD ∠的度数.【解析】 仔细观察,发现已知角的度数都是12︒的倍数,这使我们想到构造60︒角,从而利用正三角形.在四边形ABCD 外取一点P ,使12PAD ︒∠=且AP AC =,连接PB 、PD . 在ADP ∆和ADC ∆中,12PAD CAD ︒∠=∠=,AP AC =,AD AD =,故ADP ADC ∆∆≌. 从而APD ACD ∠=∠.CDB A DC BA EC D B A PDC在ABC ∆中,36CAB ∠=︒,72ABC ∠=︒, 故72ACB ︒∠=,AC AB =, 从而AP AB =.而12123660PAB PAD DAC CAB ∠=∠+∠+∠=︒+︒+︒=︒, 故PAB ∆是正三角形,60APB ︒∠=,PA PB =.在DAB ∆中,123648DAB DAC CAB DBA ︒︒︒∠=∠+∠=+==∠, 故DA DB =.在PD A ∆和PDB ∆中,PA PB =,PD PD =,DA DB =, 故PDA PDB ∆∆≌,从而1302APD BPD APB ︒∠=∠=∠=,则30ACD ︒∠=.【例12】 在正ABC ∆内取一点D ,使DA DB =, 在ABC ∆外取一点E ,使DBE DBC ∠=∠,且BE BA =,求BED ∠.【解析】 如图所示,连接DC .因为AD BD =,AC BC =,CD CD =,则ADC BDC ∆∆≌, 故30BCD ∠=.而DBE DBC ∠=∠,BE AB BC ==,BD BD =, 因此BDE BDC ∆∆≌,故30BED BCD ∠=∠=.【例13】 如图所示,在ABC ∆中,44BAC BCA ︒∠=∠=,M 为ABC ∆内一点,使得30MCA ︒∠=,16MAC ︒∠=,求BMC ∠的度数.D E CB AD E CB A OM B MCAB【解析】 在ABC ∆中,由44BAC BCA ︒∠=∠=可得AB AC =,92ABC ︒∠=.如图所示,作BD AC ⊥于D 点,延长CM 交BD 于O 点,连接OA , 则有30OAC MCA ︒∠=∠=,443014BAO BAC OAC ︒︒︒∠=∠-∠=-=, 301614OAM OAC MAC ︒︒︒∠=∠-∠=-=, 所以BAO MAO ∠=∠.又因为90903060AOD OAD COD ︒︒︒︒∠=-∠=-==∠, 所以120AOM AOB ∠=︒=∠.120BOM ∠=︒ 而AO AO =,因此ABO AMO ∆∆≌, 故OB OM =.由于120BOM ︒∠=,则180302BOMOMB OBM ︒-∠∠=∠==︒,故180150BMC OMB ︒︒∠=-∠=.全等三角形培优竞赛讲义(二)【知识点精读】1. 全等三角形的定义:能够完全重合的两个三角形叫全等三角形;两个全等三角形中,互相重合的顶点叫做对应顶点。
初中数学竞赛辅导讲义1
![初中数学竞赛辅导讲义1](https://img.taocdn.com/s3/m/3283b3d46394dd88d0d233d4b14e852458fb39de.png)
初中数学竞赛辅导讲义1初中数学竞赛是培养学生数学能力的一种重要途径,也是考验学生数学素质和思维能力的有效方法。
竞赛的题目一般会有一定的难度,需要学生具备较高的数学知识和思维能力。
为此,我们推出这份初中数学竞赛辅导讲义1,旨在为广大学生提供一些在数学竞赛中常用的数学方法和技巧。
一、数的分解1.1 质因数分解对于一个正整数,我们可以将其分解为若干个质数的乘积的形式,这种分解方式称为质因数分解。
质数是指只能被1和它本身整除的正整数,常见的质数有2、3、5、7等。
在竞赛中,质因数分解是一个非常常见的题型。
例如,对于数字28,它可以表示为2×2×7的形式,因此28的质因数分解式是28=2×2×7。
1.2 分解因式在数学竞赛中,分解因式也是一种很常见的题型。
分解因式即将一个多项式拆分成多个因数的乘积,许多数学问题可以用分解因式的方式解决。
例如,求解一个一次方程或二次方程就需要先进行分解因式。
例如,对于多项式x2+3x+2,我们可以将其拆分成(x+2)×(x+1)的形式,因此x2+3x+2的因式分解式是(x+2)×(x+1)。
二、方程的解法2.1 一元一次方程的求解在数学竞赛中,一元一次方程的求解是一个很基础的知识点。
一元一次方程是指只有一个未知数且未知数的最高次幂为1的方程。
例如,解方程2x+3=7,我们可以将其转化为2x=4,再将其化简为x=2,因此方程的解为x=2。
2.2 二元一次方程的求解在数学竞赛中,二元一次方程也是一种常见的题型。
二元一次方程指的是含有两个未知数且未知数的最高次幂为1的方程。
例如,解方程2x+3y=7,x-y=1,我们可以利用消元法或其他方法来求解未知数的值。
三、几何基础知识3.1 圆的相关知识在数学竞赛中,圆的相关知识也是一个非常重要的内容。
圆是平面上一组点构成的集合,其中任意两点之间的距离相等,这个距离被称为圆的直径。
初二竞赛班数学辅导讲义
![初二竞赛班数学辅导讲义](https://img.taocdn.com/s3/m/d7f8792f76c66137ee06192e.png)
初二竞赛班讲义一次函数与反比例函数一、直角坐标系与点的坐标1.有公共原点,并且互相垂直的两条数轴构成直角坐标系.如图:x 轴也叫横轴,y 轴也叫纵轴.2.如图,P 点垂直对着x 轴上的数a 叫做P 点的横坐标,P 点垂直对着y 轴上的数b 叫做P 点的纵坐标,P 点的坐标记为:(a,b).注意:横坐标必须写在前面.3.x 轴上的点,_____坐标都是0;y 轴上的点,_____坐标都是0.练习11.如图,A 、B 、C 、D 四点的坐标分别是________、_________、________、_______; A 点在笫____象限,B 点在笫____象限;A 点和_____点关于原点对称.2.在图中描出下列各点:E(3,2)、F(3,-2)、G(-3,-2)、H(-3,2)、M(2,0)、N(0,-3);E 点和H 点关于____轴对称.3.已知点P(a,b).①若a>0且b<0,则点P 在笫____象限;②若a<0且b>0,则点P 在第_____象限.③若a=0,则点P 在_____轴上.二、函数1.例子:汽车每小时行驶60千米,那么路程s(千米)与时间t(小时)的关系为s=60t,s 随着t 的变化而变化,我们把t 叫做自变量,s 叫做t 的函数.自变量t 的取值范围是________.2.已知ΔABC 的两边为4cm 和5cm,那么它的周长y(cm)与笫三边x(cm)之间的函数关系式y=______________,自变量x 的取值范围是____<x<____.3.甲、乙两地的路程是100千米,汽车以每小时50千米的速度从甲地开往乙地,设x 小时后余下的路程为y 千米,则y 与x 之间的函数关系式为y=____________,x 的取值范围是-________.4.下列函数:y=-3x+2,y=226x -,自变量x 的取值范围分别是:_____________、___________、________________、____________________.三、一次函数的图象和性质1.y=kx+b(k 和b 是常数,且k ≠0)这样的函数叫做一次函数.当b=0时,y=kx 又叫做正比例函数.例1 已知y 是x 的一次函数,并且x=2时,y=1;x=-1,时y=5,求这个一次函数的解析式.练习2 1.当m=____时,函数y=3x+m-2是正比例函数.2.当m=______时,函数y=(m+1)x 丨m 丨+7是一次函数.3.已知y+2与x-1成正比例,且x=2时y=-5,求x=5时y的值.例2用描点法画一次函数y=x+2和y=-3x的图象.性质1 一次函数y=kx+b的图象是经过点(0,b)的一条_____线.正比例函数y=kx的图象是经过_____点的一条直线.练习3 在右图中,用两点法(描两个点)画一次函数y=-2x+3和y=-2x-2的图象.性质2 在一次函数y=kx+b中:①当k>0时,y随x的增大而______.(直线从左向右______).②当k<0时,y随x的增大而_______.(直线从左向右_________).的练习31.函数y=-3x+6的图象是经过点A(0,____)和B(_____,0)的一条直线,y随x的增大而________.2.已知函数y=(a-3)x+7的值随x的增大而增大,则a的取值范围是_________.3.已知直线y=kx+14经过点p(5,4),则k的值为______,y随x的增大而________.[提示:点在函数图象上点的坐标满足函数解析式]4.若直线y=kx+b经过一、三、四象限,则k_____0,b_____.[提示:当b>0时,直线与y轴的交点在原点上方;当b<0时,直线与y轴的交点在原点下方] 例3 如图,直线y=x+2与x轴交于C点,与直线y=2x相交于A点,求ΔAOC的面积例4在直角坐标系中,A、B两点的坐标分别是(-2,1)和(1,5),点P在x轴上,且点P到A、B两点的距离之和最小,求点P的坐标.练习4 1.求直线y=2x+6与两坐标轴围成的三角形的面积.2.已知两点A(1,2)、B(-1,4).问直线AB是否经过点C(3,-1)?为什么?3.求直线y=3x+5与y=2x的交点坐标,并求这个交点到原点的距离.4.甲、乙两地相距24千米,若每小时走4千米.①求剩余路程y(千米)与行走时间x(小时)之间的函数关系式.②求自变量x的取值范围.③画出函数的图象.四、定义 函数y = k x(常数k ≠____)叫做反比例函数.(即 y = kx -1 是反比例函数) 例5 已知122)2(-++=m m x m m y ,当m 为何值时:(1)y 是x 的正比例函数? (2)y 是x 的反比例函数?例6 已知y=y 1-y 2,y 1与x 成反比例,y 2与(x-2)成正比例,并且当x=1时,y=4;当x=-1时,y=4. 求x=2时y 的值.练习51.已知y=(n-1)x m是反比例函数,则n ≠______,且m=______;2.已知y 与x 成反比例,并且x=4时,y=3,则y 与x 之间的函数关系式为___________.3.已知反比例函数y=k x的图象经过点(-2,3),则k=______. 4.若函数y=6x的图象经过点P(a,b),则ab=___. 5.已知反比例函数y=k x的图象经过点(-2,6)和(4,m),则k=______,m=______. 6.若y=y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,并且当x=1时,y=4;当x=2时,y=5.求x=4时y 的值.7.先填写下表,再用描点法画函数y=(x ≠0)的图象.五、性质: 反比例函数y=k x的图象叫做双曲线. ①当k>0时,双曲线在一、三象限内,从左向右下降,y 随x 的增大而______.(如图1)(注意:x>0时,图象在y 轴右侧的笫一象限内; x<0时,图象在___________笫______象限内) ②当k<0时,双曲线在二、四象限内,从左向右_____, y 随x 的增大而______.(如图2) 例7 己知关于x 的方程x 2-4x+2t=0有两个实数根两个根的倒数之和为s.求s 与t 之间的函数关系式及t 的取值范围.例8 已知反比例函数y=m x与一次函数y=kx+b 的图象的一个交点为A(-2,-1),并且在x=3时,这两个函数的值相等,求这两个函数的解析式.例9.如图,点A 是双曲线y=12x上任意一点,延长AO 交双曲线另一支于B,求Rt ΔACB 的面积.例10. A 市有化肥200吨,B 市有化肥300吨.现要把化肥运往C 、D 两农村.已知从A 市运往C 、D 两地的运费分别为20元/吨与25元/吨,从B市运往C、D两地的运费分别为15元/吨和23元/吨.现已知C地需要220吨,D 地需要280吨.设总的运费为y(元),从A市运往C地x(吨).(1)求y与x的函数关系式,并求自变量x的取值范围. (2)怎样调运,总运费最少?练习61.当x>0时,函数y=-6x的图象在笫_____象限,y随x的增大而______.2.若反比例函数y=3mx-中,y随x的增大而减小,则m的取值范围是_________,它的图象在笫_________象限.4.如果反比例函数y=mx2m+3m-6的图象在二、四象限内,那么m的值为_____.5.若反比例函数y=1bx+的图象在一、三象限内,则b的取值范围是_________.6.如图,点A是双曲线y=12x上任意一点,AB⊥x轴于B,则RtΔABO的面积为________.7.若点P(y1,y2)在双曲线y=kx上,且y1和y2是方程y2-4y-2=0的两点,则k=____.8.若点A(-2,y1)、B(-1,y2)在反比例函数y=3x的图象上,则y1与y2的大小关系是______.9.如图,RtΔAOB的顶点A是直线y=x+m与双曲线y=mx在笫一象限的交点,且SΔAOB=3.(1)求m的值.(2)求ΔACB的面积.10.某厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品,共50件.已知生产一件A种产品,需用甲种原料9千克,乙种原料3千克,可获利润700元;生产一件B种产品,需用甲种原料4千克,乙种原料10千克,可获利润1200元.(1)按要求安排A、B两种产品的生产件数,有哪几种方案?请你给设计出来.(2)设生产A、B两种产品获总利润为y(元),其中生产A种产品x件,求y与x之间的函数关系式,并利用函数的性质说明:(1)中哪种生产方案获总利润最大?最大利润是多少元?。
初二数学竞赛讲义一
![初二数学竞赛讲义一](https://img.taocdn.com/s3/m/b5579667de80d4d8d15a4f69.png)
初二数学竞赛讲义一初二数学竞赛讲义一分式1. 分式有意义的应用例1. 若ab a b +--=10,试判断1111a b -+,是否有意义。
2. 结合换元法、配方法、拆项法、因式分解等方法简化分式运算。
例2. 解方程:11765556222-++=-+-+x x x x x x3. 在代数求值中的应用例3已知a a 269-+与||b -1互为相反数,求代数式()42222222222a b a b ab a b a ab b a b abb a -++-÷+-++的值。
4 在数学、物理、化学等学科的学习中,都会遇到有关公式的推导,公式的变形等问题。
而公式的变形实质上就是解含有字母系数的方程。
例4. 已知x y y =+-2332,试用含x 的代数式表示y ,并证明()()323213x y --=。
5、中考原题: 例5.已知M x y xy y x yx y x y 222222-=--+-+,则M =__________。
例6.已知x x 2320--=,那么代数式()x x x --+-11132的值是_________。
5、题型展示:例7. 当x 取何值时,式子||x x x -++2322有意义?当x 取什么数时,该式子值为零?例8. 求x m n x mn x m n x mn x m x n 222222---+--⋅--()()的值,其中x m n ===-2312。
例9.32148521761543103--+--=--+--x x x x x x x x例10.已知51=+x x , 求1539222++--x x x 的值。
【实战模拟】1. 当x 取何值时,分式2111x x+-有意义?4. 解方程:x x x x x x xx ++-++=++-++214365876.已知43602700x y z x y z xyz --=+-=≠,,,求x y zx y z +--+2的值。
八年级(下)数学竞赛班辅导讲义.docx
![八年级(下)数学竞赛班辅导讲义.docx](https://img.taocdn.com/s3/m/d6ba0b9d482fb4daa48d4b9b.png)
八年级(下)数学竞赛班辅导资料(1)原班级:姓名:等腰三角形的性质( 1)【一】等腰三角形有哪些性?(1)等腰三角形两底角 ____________;(2)等腰三角形具有“三合一”的性;“三”指_____________________________________.(3)称性:等腰三角形是 ______ 称形 .A 【二】例精例 1(1)等腰三角形两个内角的度数之比1:2 ,个等腰三角形底角的度数_______________;45 或 72( 2)等腰△ ABC的三 a、 b、 c 均整数,且足 a bc b ca 24 ,的三角形共有 ___________个 . 3个例 2如,若AB=AC,BG=BH,AK=KG,∠ BAC的度数 ________________.BCHK36G例 3(2012?淮安)理解如 1,△ ABC中,沿∠ BAC的平分AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分A1B2折叠,剪掉重复部分;⋯;将余下部分沿∠B n A n C 的平分A n B n+1折叠,点B n与点 C 重合,无折叠多少次,只要最后一次恰好重合,∠BAC是△ ABC的好角.小展示了确定∠BAC是△ ABC的好角的两种情形.情形一:如2,沿等腰三角形ABC角∠ BAC的平分 AB1折叠,点 B 与点 C 重合;情形二:如3,沿∠ BAC的平分AB1折叠,剪掉重复部分;将余下部分沿∠ B1A1C的平分A1B2折叠,此点B1与点 C重合.探究(1)△ ABC中,∠ B=2∠ C,两次折叠,∠BAC是不是△ ABC的好角? ________(填“是”或“不是”).(2)小三次折叠了∠ BAC是△ ABC的好角,探究∠ B 与∠ C(不妨∠ B>∠ C)之的等量关系.根据以上内容猜想:若 n 次折叠∠ BAC是△ ABC的好角,∠ B 与∠ C(不妨∠ B>∠ C)之的等量关系_____________________ .(3)小找到一个三角形,三个角分 15°、 60°、 105°, 60°和 105°的两个角都是此三角形的好角.你完成,如果一个三角形的最小角是 4°,求出三角形另外两个角的度数,使三角形的三个角均是此三角形的好角.分析:( 1)在小丽展示的情形二中,如图3,根据根据三角形的外角定理、折叠的性质推知∠B=2∠ C;( 2)根据折叠的性质、根据三角形的外角定理知∠A1A2B2=∠ C+∠ A2B2C=2∠C;根据四边形的外角定理知∠BAC+2∠ B- 2C=180°①,根据三角形 ABC的内角和定理知∠BAC+∠ B+∠C=180°②,由①②可以求得∠B=3∠C;利用数学归纳法,根据小丽展示的三种情形得出结论:∠B=n∠ C;(3)利用( 2)的结论知∠ B=n∠ C,∠ BAC是△ ABC的好角,∠ C=n∠ A,∠ ABC是△ ABC的好角,∠ A=n∠ B,∠ BCA是△ ABC的好角;然后三角形内角和定理可以求得另外两个角的度数可以是4、 172; 8、 168; 16、160; 44、 132;88°、 88°.解答:解:(1)△ ABC中,∠ B=2∠ C,经过两次折叠,∠BAC是△ ABC的好角;理由如下:小丽展示的情形二中,如图3,∵沿∠ BAC的平分线AB1折叠,∴∠ B=∠ AA1B1;又∵将余下部分沿∠B1A1C 的平分线 A1B2折叠,此时点B1与点 C 重合,∴∠ A1B1C=∠ C;∵∠ AA1B1=∠ C+∠ A1B1C(外角定理),∴∠ B=2∠ C,∠ BAC是△ ABC的好角.故答案是:是;( 2)∠ B=3∠ C;如图所示,在△ ABC中,沿∠ BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线 A1B2折叠,剪掉重复部分,将余下部分沿∠B2A2C 的平分线 A2B3折叠,点 B2与点 C 重合,则∠ BAC是△ ABC的好角.证明如下:∵根据折叠的性质知,∠B=∠AA1B1,∠ C=∠ A2B2C,∠ A1B1C=∠A1A2B2,∴根据三角形的外角定理知,∠A1A2B2=∠ C+∠A2B2C=2∠ C;∵根据四边形的外角定理知,∠BAC+∠ B+∠ AA1B1- ∠A1 B1C=∠ BAC+2∠ B-2 ∠C=180°,根据三角形 ABC的内角和定理知,∠ BAC+∠ B+∠C=180°,∴∠ B=3∠ C;由小丽展示的情形一知,当∠B=∠ C 时,∠ BAC是△ ABC的好角;由小丽展示的情形二知,当∠B=2∠ C 时,∠ BAC是△ ABC的好角;由小丽展示的情形三知,当∠B=3∠ C 时,∠ BAC是△ ABC的好角;故若经过 n 次折叠∠ BAC是△ ABC的好角,则∠ B 与∠ C(不妨设∠ B>∠ C)之间的等量关系为∠B=n∠ C;( 3)由( 2)知设∠ A=4°,∵∠ C 是好角,∴∠ B=4n°;∵∠ A 是好角,∴∠ C=m∠B=4mn°,其中m、 n 为正整数得4+4n+4mn=180∴如果一个三角形的最小角是4°,三角形另外两个角的度数是4、172;8、168;16、160;44、132;88°、88°.点评:本题考查了翻折变换(折叠问题).解答此题时,充分利用了三角形内角和定理、三角形外角定理以及折叠的性质.难度较大.【三】练一练1.等腰三角形一腰上的高与另一腰的角36 ,等腰三角形的底角的度数___________.63 或272.如, AA、 BB 分是EAB、 DBC 的平分,若 AA BB AB,BAC 的度数_____.EA C B'B DA 'E, 且 AE=1BD.求:3.如,在△ ABC中,AC=BC,ACB 90,D 是 AC上一点,AE BD 交的延于BD是ABC的角平分 .2AED4. 某数学趣小开展了一次活,程如下:C B ∠ BAC=θ(0 °<θ< 90° ) .把小棒依次放在两射之,并使小棒两端分落在射AB, AC上.活一:如甲所示,从点A1开始,依次向右放小棒,使小棒与小棒在端点互相垂直,A1A2第 1 根小棒.数学思考:(1)小棒能无限下去?答:______. ( 填“能”或“不能” )(2)11223AA=A A =A A =1.① θ =______度;②若小棒A2n-1 A2n的度a n(n 正整数,如 A1A2=a1,A3A4=a2,⋯)求出此a2,a3的,并直接写出a n( 用含 n 的式子表示 ) .活二:如乙所示,从点A1开始,用等的小棒依次向右放,其中A1A2第 1 根小棒,且A1A2=AA1.数学思考:(3)若已放了 3 根小棒,θ1=______,θ2=______,θ3=______; ( 用含θ的式子表示 )(4)若只能放 4 根小棒,求θ的范.解:( 1)∵根据已知条件∠BAC=θ( 0°<θ< 90°)小棒两端能分落在两射上,(2)①∵ A1A2 =A2A3, A1A2⊥ A2A3,∴∠ A2A1A3=45°,∴∠ AA2A1+∠θ=45°,∵∠ AA2A1=∠ θ,∴∠ θ=22.5 °;②∵ AA=A A=AA=1,AA⊥AA∴AA=, AA=1+,112231223133又∵ A A ⊥A A ,A A ∥AA ,同理; A A ∥A A ,∴∠ A=∠AAA =∠AAA =∠AAA ,∴ AA=A A ,AA=A A 23341234345621436533455623433335235352356522+1)2∴ a =A A =AA=1+, a =AA+AA =a +A A ,∵ A A = a ,∴ a =A A =AA=a + a =(∴ a n=(+1) n-1;(3)∵ A1A2=AA1,∴∠ A1AA2=∠ AA2A1=θ,∴∠ A2A1A3=θ1=θ+θ,∴θ1=2θ同理可得:θ2 =3θ,θ3=4θ;(4)如图:∵A4A3=A4A5,∴∠ A4A3A5=∠ A4A5A3=4θ °,∵根据三角形内角和定理和等腰三角形的性质,当∠ A5A4B 是钝角或直角时,不能继续摆放小棒了,∴当∠ A4A3A5是锐角,∠ A5A4B=5θ是钝角或直角时,只能摆放 4 根小棒,∴ 5θ ≥ 90°, 4θ<90°,即,∴18°≤ θ< 22.5 °.( 1)能;(2)①∠θ =22.5 °;② a =(n-1;( 3) 2θ;3θ; 4θ;+1)n(4) 18°≤ θ< 22.5 °.本题主要考查了相似三角形的判定和性质,在解题时要注意根据题意找出规律并与相似三角形的性质相结合八年级(下)数学竞赛班辅导资料(2)原班级:姓名:等腰三角形的性质( 2)一、例题讲解:如图,已知内角度数的三个三角形,请用直尺和圆规作一条直线,把△ABC分割成两个等腰三角形.C C90°84°24°A 24°A B B36°C104°72°52°BBA C二、练一练1.如图,点 O 是等边△ ABC 内一点.将△ BOC 绕点 C 按顺时针方向旋转60°得△ ADC ,连接 OD .已知∠ AOB=110 °.(1)求证:△ COD 是等边三角形;(2)当α=150°时,试判断△ AOD 的形状,并说明理由;(3)探究:当α为多少度时,△ AOD 是等腰三角形.解:( 1)证明:∵ CO=CD ,∠ OCD=60 °,∴△ COD 是等边三角形;(3 分)(2)解:当α=150°,即∠ BOC=150 °时,△ AOD 是直角三角形.( 5 分)∵△ BOC≌△ ADC ,∴∠ ADC= ∠BOC=150 °,又∵△ COD 是等边三角形,∴∠ODC=60 °,∴∠ ADO=90 °,即△ AOD 是直角三角形;( 7 分)(3)解:①要使 AO=AD ,需∠ AOD= ∠ ADO .∵∠ AOD=360 °﹣∠ AOB ﹣∠ COD ﹣α=360 °﹣ 110°﹣ 60°﹣α=190°﹣α,∠ ADO= α﹣ 60°,∴190°﹣α=α﹣ 60°,∴ α=125°;②要使 OA=OD ,需∠ OAD= ∠ ADO .∵∠ AOD=190 °﹣α,∠ ADO= α﹣ 60°,∴∠ OAD=180 °﹣(∠ AOD+ ∠ADO )=50 °,∴α﹣ 60°=50 °,∴ α=110°;③要使 OD=AD ,需∠ OAD= ∠ AOD .∵190°﹣α=50 °,∴α=140 °.综上所述:当α的度数为125°,或 110°,或 140°时,△ AOD 是等腰三角形.(12 分)点评:本题以“空间与图形”中的核心知识(如等边三角形的性质、全等三角形的性质与证明、直角三角形的判定、多边形内角和等)为载体,内容由浅入深,层层递进.试题中几何演绎推理的难度适宜,蕴含着丰富的思想方法(如运动变化、数形结合、分类讨论、方程思想等),能较好地考查学生的推理、探究及解决问题的能力2.( 2014?宁波)课本的作业题中有这样一道题:把一张顶角为36°的等腰三角形纸片剪两刀,分成 3 张小纸片,使每张小纸片都是等腰三角形,你能办到吗?请画示意图说明剪法.我们有多少种剪法,图 1 是其中的一种方法:定义:如果两条线段将一个三角形分成 3 个等腰三角形,我们把这两条线段叫做这个三角形的三分线.( 1)请你在图 2 中用两种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(若两种方法分得的三角形成 3 对全等三角形,则视为同一种)( 2)△ ABC 中,∠B=30 °,AD 和 DE 是△ ABC 的三分线,点 D 在 BC 边上,点 E 在 AC 边上,且 AD=BD ,DE=CE ,设∠ C=x °,试画出示意图,并求出 x 所有可能的值;(3)如图 3,△ ABC 中, AC=2 , BC=3 ,∠ C=2 ∠B ,请画出△ ABC 的三分线,并求出三分线的长.考点:相似形综合题;图形的剪拼分析:( 1) 45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形,则易得一种情况.第二种情形可以考虑题例中给出的方法,试着同样以一底角作为新等腰三角形的底角,则另一底脚被分为45°和 22.5°,再以 22.5°分别作为等腰三角形的底角或顶角,易得其中作为底角时所得的三个三角形恰都为等腰三角形.即又一三分线作法.( 2)用量角器,直尺标准作30°角,而后确定一边为BA ,一边为 BC,根据题意可以先固定BA 的长,而后可确定 D 点,再标准作图实验﹣﹣分别考虑 AD 为等腰三角形的腰或者底边,兼顾 AEC 在同一直线上,易得 2 种三角形 ABC .根据图形易得 x 的值.(3)因为∠ C=2∠ B ,作∠ C 的角平分线,则可得第一个等腰三角形.而后借用圆规,以边长画弧,根据交点,寻找是否存在三分线,易得如图 4 图形为三分线.则可根据外角等于内角之和及腰相等等情况列出等量关系,求解方程可知各线的长.解答:解:( 1)如图 2 作图,(2)如图 3 ①、②作△ ABC .①当 AD=AE 时,∵2x+x=30+30 ,∴ x=20 .②当 AD=DE 时,∵30+30+2x+x=180 ,∴ x=40 .( 3)如图 4, CD、 AE 就是所求的三分线.设∠ B=a,则∠ DCB= ∠ DCA= ∠ EAC=a ,∠ ADE= ∠ AED=2a ,此时△ AEC ∽△ BDC ,△ ACD ∽△ ABC ,设 AE=AD=x ,BD=CD=y ,∵△ AEC ∽△ BDC ,∴ x: y=2: 3,∵△ ACD ∽△ ABC ,∴ 2:x= ( x+y ): 2,x : y 2 :3,即三分线长分别是和.所以联立得方程组,解得2 : x( x y) :2点评:本题考查了学生学习的理解能力及动手创新能力,知识方面重点考查三角形内角、外角间的关系及等腰三角形知识,是一道很锻炼学生能力的题目.八年级(下)数学竞赛班辅导资料(3)原班级:姓名:等腰三角形的判定( 1)一、知识要点1.等腰三角形的判定方法:(1)两 _____相等的三角形是等腰三角形.简称__________________ ;( 2)两 _____相等的三角形是等腰三角形.简称______________________ .2.解题技巧:构造等腰三角形,进而利用等腰三角形的性质为解题服务,常用方法有:( 1)“角平分线+平行线”构造等腰三角形;(2)“角平分线+垂线”构造等腰三角形;( 3)用“垂直平分线”构造等腰三角形;(4)用“三角形中角的 2 倍关系”构造等腰三角形.3.等腰三角形中长作的辅助线:(1)底边上的高;(2)底边上的中线;(3)顶角的平分线.二、例题精讲例 1 在△ ABC中 AB=AC ,∠ BAC=80°, O为△ ABC内一点,且∠ OBC=10°,∠ OCA=20° .求∠ BAO的度数.A70°OB C例 2 如图,在△ ABC中, AB=7, AC=11,点 M是 BC的中点, AD是∠ BAC的平分线, MF∥ AD,求 FC的长 .A9FB D M C三、练一练1.如图,已知 Rt △ ABC中,∠ C=90°,∠ BAC=30°,在直线 BC或 AC上取一点 P,使得△ PAB是等腰三角形,则符合条件的P 点有()C AA.2个B.4个C.6个D.8个2. 如图,△ ABC中, AD平分∠ BAC,AB+BD=AC,求B : C 的值. 2:1A B CB D C2. 如图,在△ ABC 中,BAC BCA44 ,M为△ABC内一点,使得MCA 30 , MAC 16 .求BMC 的度数.(北京市竞赛题)150°BMA C八年级(下)数学竞赛班辅导资料(4)原班级:姓名:等腰三角形的判定( 2)一、例题精讲两个全等的含 30°, 60°角的三角板 ADE 和三角板 ABC 如图所示放置, E, A ,C 三点在一条直线上,连接 BD ,取 BD 的中点 M ,连接 ME , MC .试判断△ EMC 的形状,并说明理由.解:△ EMC 是等腰直角三角形.理由如下:连接MA .∵∠ EAD=30 °,∠ BAC=60 °,∴∠ DAB=90 °,∵△ EDA ≌△ CAB ,∴ DA=AB , ED=AC ,∴△ DAB 是等腰直角三角形.又∵M 为 BD 的中点,∴∠MDA= ∠ MBA=45 °, AM ⊥ BD (三线合一),1AM=BD=MD ,(直角三角形斜边上的中线等于斜边的一半)∴∠EDM= ∠ MAC=105 °,2在△ MDE 和△ CAM 中, ED=AC ,∠ MDE= ∠ CAM ,MD=AM ,∴△ MDE ≌△ MAC .∴∠ DME= ∠ AMC ,ME=MC ,又∵∠ DMA=90 °,∴∠ EMC= ∠ EMA+ ∠ AMC= ∠ EMA+ ∠ DME= ∠DMA=90 °.∴△ MEC 是等腰直角三角形.二、练一练1.如图 (1), Rt△ABC 中,∠ ACB=-90 °, CD ⊥AB ,垂足为 D. AF 平分∠ CAB ,交 CD 于点 E,交 CB 于点F(1)求证: CE=CF.(2)将图( 1)中的△ AD E 沿 AB 向右平移到△ A’D ’E’的位置,使点 E’落在 BC 边上,其它条件不变,如图( 2)所示.试猜想: BE'与 CF 有怎样的数量关系 ?请证明你的结论.( 1)证明:略( 2)解:相等证明:如图,过点 E 作 EG⊥ AC 于 G.又∵AF 平分∠ CAB , ED⊥ AB ,∴ ED=EG .由平移的性质可知:D’E’=DE ,∴ D’E’=GE .∵∠ ACB=90 °.∴∠ ACD+ ∠DCB=90 °[来源:Z|xx|]∵CD⊥AB 于 D.∴∠ B+ ∠ DCB=90 °.∴ ∠ ACD= ∠ B在 Rt△ CEG 与 Rt△ BE’D’中,∵∠ GCE= ∠ B ,∠ CGE= ∠BD ’E’, CE=D ’E’∴△ C EG≌△BE ’D’∴ CE=BE ’由( 1)可知 CE=CF, (其它证法可参照给分 ).2.如图,已知△BAD 和△ BCE 均为等腰直角三角形,∠BAD= ∠ BCE=90 °,点 M 为 DE 的中点,过点E 与 AD 平行的直线交射线AM 于点 N.( 1)当 A , B, C 三点在同一直线上时(如图1),求证: M 为 AN 的中点;( 2)将图 1 中的△ BCE 绕点 B 旋转,当 A ,B , E 三点在同一直线上时(如图 2),求证:△ ACN 为等腰直角三角形;(3)将图 1 中△ BCE 绕点 B 旋转到图 3 位置时,( 2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.DMA B图 3C(1 )证明:如图1,∵EN∥ AD ,∴∠ MAD= ∠MNE ,∠ ADM= ∠NEM .∵点 M 为 DE 的中点,∴ DM=EM .在△ ADM 和△ NEM 中,∴.∴△ ADM ≌△ NEM .∴ AM=MN .∴ M 为 AN 的中点.( 2)证明:如图2,∵△ BAD 和△ BCE 均为等腰直角三角形,∴AB=AD , CB=CE ,∠ CBE= ∠ CEB=45 °.∵AD ∥ NE,∴∠ DAE+ ∠ NEA=180 °.∵∠ DAE=90 °,∴∠ NEA=90 °.∴∠ NEC=135 °.∵A , B, E 三点在同一直线上,∴∠ ABC=180 °﹣∠ CBE=135 °.∴∠ ABC= ∠ NEC .∵△ ADM ≌△ NEM (已证),∴ AD=NE .∵ AD=AB ,∴ AB=NE .在△ ABC 和△ NEC 中,∴△ ABC ≌△ NEC .∴ AC=NC ,∠ ACB= ∠ NCE.∴∠ ACN= ∠ BCE=90 °.∴△ ACN 为等腰直角三角形.( 3)△ ACN 仍为等腰直角三角形.证明:如图3,此时 A 、 B、 N 三点在同一条直线上.∵AD ∥ EN,∠ DAB=90 °,∴∠ ENA= ∠ DAN=90 °.∵∠ BCE=90 °,∴∠ CBN+ ∠ CEN=360 °﹣ 90°﹣ 90°=180 °.∵ A 、 B、 N 三点在同一条直线上,∴∠ABC+ ∠ CBN=180 °.∴∠ ABC= ∠ NEC .∵△ ADM ≌△ NEM (已证),∴ AD=NE .∵AD=AB ,∴ AB=NE .在△ ABC 和△ NEC 中,N E∴△ ABC ≌△ NEC .∴ AC=NC ,∠ ACB= ∠ NCE.∴∠ ACN= ∠ BCE=90 °.八年级(下)数学竞赛班辅导资料(5)原班级:姓名:等边三角形( 1)一、知识要点1.等边三角形的性质:( 1)三边相等,三角相等,每个角等于60°;( 2)每条边上的高线、中线、所对角的平分线互相重合.简称“” ;( 3)等边三角形内任意一点到三边距离和是一个定值,等于一边上的高.2.判定等边三角形的基本方法:( 1)从边入手,证明三边相等;(2)从角入手,证明三角相等或证明两个角都为60°;(3)从边角入手,有一个角为 60°的等腰三角形是等边三角形.二、例题精讲如图,△ ABC 中,∠ B=60 °,延长 BC 到 D,延长 BA 到 E,使 AE=BD ,连 CE、DE,若 CE=DE .求证:△ ABC 是等边三角形.EAB C D三、练一练1.如图,一个六边形的每个角都是120°,连续四边的长依次是 2.7, 3,5,2,则该六边形的周长是____. 20.72.如图, P 是等边△ ABC 内部一点,∠ APB 、∠ BPC 、∠ CPA的大小之比是 5:6:7,则以 PA、PB、PC 为边的三角形的三个角的大小之比(从小到大)是______________.2:3:4A5232.7PB C3.(2013?北京)在△ ABC 中, AB=AC ,∠ BAC= α( 0°<α<60°),将线段 BC 绕点 B 逆时针旋转 60°得到线段 BD.(1)如图 1,直接写出∠ ABD 的大小(用含α的式子表示);(2)如图 2,∠ BCE=150 °,∠ ABE=60 °,判断△ABE 的形状并加以证明;(3)在( 2)的条件下,连接 DE,若∠ DEC=45 °,求α的值.解:( 1)∵ AB=AC ,∠ A= α,∴∠ ABC= ∠ ACB=(180°﹣∠ A)=90°﹣α,∵∠ ABD= ∠ ABC ﹣∠ DBC ,∠ DBC=60 °,即∠ ABD=30 °﹣α;( 2)△ ABE 是等边三角形,证明:连接AD , CD ,ED,∵∠ ABE=60 °,∴∠ ABD=60 °﹣∠ DBE= ∠ EBC=30 °﹣α,且△BCD为等边三角形,在△ ABD 与△ ACD 中∴△ ABD≌△ ACD,∴∠ BAD=∠ CAD=∠ BAC=α,∵∠ BCE=150 °,∴∠ BEC=180 °﹣( 30°﹣α)﹣150°=α=∠ BAD,在△ABD 和△EBC 中∴△ ABD ≌△ EBC,∴ AB=BE ,∴△ ABE 是等边三角形;(3)∵∠ BCD=60 °,∠ BCE=150 °,∴∠ DCE=150 °﹣ 60°=90 °,∵∠ DEC=45 °,∴△ DEC 为等腰直角三角形,∴DC=CE=BC ,∵∠ BCE=150 °,∴∠ EBC=(180°﹣150°)=15°,∵∠ EBC=30 °﹣α=15°,∴ α=30°.4.【探究发现】如图 1,△ ABC 是等边三角形,∠ AEF=60 °, EF 交等边三角形外角平分线 CF 所在的直线于点F,当点 E 是 BC 的中点时,有 AE=EF 成立;【数学思考】某数学兴趣小组在探究AE 、EF 的关系时,运用“从特殊到一般”的数学思想,通过验证得出如下结论:当点 E 是直线 BC 上( B ,C 除外)任意一点时(其它条件不变),结论AE=EF仍然成立.假如你是该兴趣小组中的一员,请你从“点 E 是线段 BC 上的任意一点”;“点E时线段BC延长线上的任意一点”;“点 E 时线段 BC 反向延长线上的任意一点”三种情况中,任选一种情况,在图 2 中画出图形,并证明 AE=EF .解答:证明:如图一,在 B 上截取 AG ,使 AG=EC ,连接 EG,∵△ ABC 是等边三角形,∴AB=BC ,∠ B=∠ ACB=60 °.∵ AG=EC ,∴ BG=BE ,∴△ BEG 是等边三角形,∠BGE=60 °,∴∠ AGE=120 °.∵ FC 是外角的平分线,∠ECF=120 °=∠ AGE .∵∠ AEC 是△ ABE 的外角,∴∠AEC= ∠ B+ ∠GAE=60 °+∠GAE .∵∠ AEC= ∠ AEF+ ∠ FEC=60 °+∠ FEC,∴∠ GAE= ∠FEC.在△AGE 和△ECF 中,∴△ AGE ≌△ ECF( ASA ),∴ AE=EF ;八年级(下)数学竞赛班辅导资料(6)原班级:姓名:等边三角形( 2)1.背景:某外学小在一次学研中,得到如下两个命:①如 1,在正三角形 ABC中,M、N分是 AC、AB 上的点, BM与 CN相交于点 O,若∠ BON=60°, BM=CN.②如 2,在正方形 ABCD中, M、N 分是 CD、AD上的点, BM与 CN相交于点 O,若∠ BON=90°, BM=CN.然后运用比的思想提出了如下的命:③如 3,在正五形 ABCDE中, M、N 分是 CD、 DE上的点, BM与 CN相交于点 O,若∠ BON=108°,BM=CN.任要求:(1)你从①、②、③三个命中一个行明;(2)你完成下面的探索:①如 4,在正 n( n≥ 3)形 ABCDEF⋯中, M、N分是 CD、DE上的点, BM与 CN相交于点 O,当∠ BON 等于多少度,BM=CN成立?(不要求明)②如 5,在五形ABCDE中, M、 N 分是 DE、 AE上的点, BM与 CN相交于点 O,当∠ BON=108° ,BM=CN是否成立?若成立,予明;若不成立,明理由.解:( 1)命①明:在 1 中,∵∠ BON=60°,∴∠ CBM+∠ BCN=60°,∵∠ BCN+∠ACN=60°,∴∠ CBM=∠ ACN,又∵ BC=CA,∠ BCM=∠ CAN=60°,∴△ BCM≌△ CAN,∴ BM=CN,命②,明:在 2 中,∵∠ BON=90°,∴∠ CBM+∠ BCN=90°,∵∠ BCN+∠DCN=90°,∴∠ CBM=∠ DCN,又∵ BC=CD,∠ BCM=∠ CDN=90°,∴△ BCM≌△ CDN,∴ BM=CN,命③ 明:在 3 中,∵∠ BON=108°,∴∠ CBM+∠BCN=108°,∵∠ BCN+∠DCN=108°,∴∠ CBM=∠ DCN,又∵ BC=CD,∠ BCM=∠ CDN=108°,∴△ BCM≌△ CDN,∴ BM=CN;( 2)①当∠ BON=,BM=CN成立,② BM=CN成立,明:如5, BD、CE,在△ BCD和△ CDE中,∵ BC=CD,∠ BCD=∠ CDE=108°,CD=DE,∴△ BCD≌△ CDE,∴ BD=CE,∠ BDC=∠ CED,∠ DBC=∠ ECD,∵∠ OBC+∠ OCB=108°,∠ OCB+∠ OCD=108°,∴∠ MBC=∠ NCD,又∵∠ DBC=∠ ECD=36°,∴∠ DBM=∠ ECN,∴△ BDM≌△ ECN。
初中数学(初二)竞赛讲义(知识点难点梳理、重点题型分类举一反三)(家教、补习、竞赛专用)
![初中数学(初二)竞赛讲义(知识点难点梳理、重点题型分类举一反三)(家教、补习、竞赛专用)](https://img.taocdn.com/s3/m/9c71f4122af90242a895e5bb.png)
初二数学竞赛讲义重难点有效突破知识点梳理及重点题型举一反三练习专题01 整式的乘除阅读与思考指数运算律是整式乘除的基础,有以下5个公式:,,,,,.学习指数运算律应注意:1.运算律成立的条件;2.运算律中字母的意义:既可以表示一个数,也可以表示一个单项式或者多项式;3.运算律的正向运用、逆向运用、综合运用.多项式除以多项式是整式除法的延拓与发展,方法与多位数除以多位数的演算方法相似,基本步骤是:1.将被除式和除式按照某字母的降幂排列,如有缺项,要留空位;2.确定商式,竖式演算式,同类项上下对齐;3.演算到余式为零或余式的次数小于除式的次数为止.例题与求解【例1】(1)若为不等式的解,则的最小正整数的值为.(“华罗庚杯”香港中学竞赛试题)(2)已知,那么.(“华杯赛”试题)(3)把展开后得,则.(“祖冲之杯”邀请赛试题)(4)若则.(创新杯训练试题)解题思路:对于(1),从幂的乘方逆用入手;对于(2),目前无法求值,可考虑高次多项式用低次多项式表示;对于(3),它是一个恒等式,即在允许取值范围内取任何一个值代入计算,故可考虑赋值法;对于(4),可考虑比较系数法.【例2】已知,,则等于()A.2 B.1 C.D.(“希望杯”邀请赛试题)解题思路:为指数,我们无法求出的值,而,所以只需求出的值或它们的关系,于是自然想到指数运算律.【例3】设都是正整数,并且,求的值.(江苏省竞赛试题)解题思路:设,这样可用的式子表示,可用的式子表示,通过减少字母个数降低问题的难度.【例4】已知多项式,求的值.解题思路:等号左右两边的式子是恒等的,它们的对应系数对应相等,从而可考虑用比较系数法.【例5】是否存在常数使得能被整除?如果存在,求出的值,否则请说明理由.解题思路:由条件可推知商式是一个二次三项式(含待定系数),根据“被除式=除式×商式”,运用待定系数法求出的值,所谓是否存在,其实就是关于待定系数的方程组是否有解.【例6】已知多项式能被整除,求的值.(北京市竞赛试题)解题思路:本题主要考查了待定系数法在因式分解中的应用.本题关键是能够通过分析得出当和时,原多项式的值均为0,从而求出的值.当然本题也有其他解法.能力训练A级1.(1).(福州市中考试题)(2)若,则.(广东省竞赛试题)2.若,则.3.满足的的最小正整数为.(武汉市选拔赛试题)4.都是正数,且,则中,最大的一个是.(“英才杯”竞赛试题)5.探索规律:,个位数是3;,个位数是9;,个位数是7;,个位数是1;,个位数是3;,个位数是9;…那么的个位数字是,的个位数字是.(长沙市中考试题)6.已知,则的大小关系是()A.B.C.D.7.已知,那么从小到大的顺序是()A.B.C.D.(北京市“迎春杯”竞赛试题)8.若,其中为整数,则与的数量关系为()A.B.C.D.(江苏省竞赛试题)9.已知则的关系是()A.B.C.D.(河北省竞赛试题)10.化简得()A.B.C.D.11.已知,试求的值.12.已知.试确定的值.13.已知除以,其余数较被除所得的余数少2,求的值.(香港中学竞赛试题)B级1.已知则= .2.(1)计算:= .(第16届“希望杯”邀请竞赛试题)(2)如果,那么.(青少年数学周“宗沪杯”竞赛试题)3.(1)与的大小关系是(填“>”“<”“=”).(2)与的大小关系是:(填“>”“<”“=”).4.如果则= .(“希望杯”邀请赛试题)5.已知,则.(“五羊杯”竞赛试题)6.已知均为不等于1的正数,且则的值为()A.3 B.2 C.1 D.(“CASIO杯”武汉市竞赛试题)7.若,则的值是()A.1 B.0 C.—1 D.28.如果有两个因式和,则()A.7 B.8 C.15 D.21(奥赛培训试题)9.已知均为正数,又,,则与的大小关系是()A.B.C.D.关系不确定10.满足的整数有()个A.1 B.2 C.3 D.411.设满足求的值.12.若为整数,且,,求的值.(美国犹他州竞赛试题)13.已知为有理数,且多项式能够被整除.(1)求的值;(2)求的值; (3)若为整数,且.试比较的大小.(四川省竞赛试题)专题01 整式的乘除例1(1)(n 2)100>(63)100,n 2>216,n 的最小值为15.(2)原式=x 2(x 2+x )+x (x 2 +x )-2(x 2+x ) +2005= x 2+x -2+2005=2004 (3)令x =1时,a 12+a 11+a 10+…+a 2+a 1+a 0=1, ① 令x =-1时,a 12 –a 11+a l 0-…+n 2-a l +a 0 =729 ② 由①+②得:2(a 12+a l 0+a 8+…+a 2 +a 0)=730. ∴a 12 +a 10 +a 8 +a 6+a 4 +a 2+a 0 =365.(4)所有式子的值为x 3项的系数,故其值为7.例2 B 提示:25xy =2 000y, ①80x y=2 000x , ② ①×②,得:(25×80)x y =2000x +y,得:x + y =xy .例3 设a =m 4,b =m 5,c =n 2,d =n 3,由c -a =19得,n 2-m 4=19,即(n +m 2) (n -m 2)=19,因19是质数,n +m 2,n -m 2是自然数,且n +m 2>n -m 2,得=12=19,解得n =10,m =3,所以d -b =103-35=757例4 -87 提示:由题意知:2x 2+3xy -2y 2-x +8y -6=2x 2+3x y -2y 2+(2m +n )x +(2n -m )y +m n .∴mn =-62n -m =8,解得n =3m =-2,∴-13+1=-87倒5提示:假设存在满足题设条件的p ,q 值,设(x 4+p x 2+q )=(x 2+2x +5)(x 2+mx +n ),即x 4+p x 2+q =x 4+(m +2)x 3+(5+n +2m )x 2+(2n +5m )x +5n ,得5n =q 2n +5m =0,解得q =25p =6, 故存在常数p ,q 且p =6,q =25,使得x 4+p x 2+q 能被x 2+2x +5整除.例6解法1 ∵x 2+x -2=(x +2) (x -1),∴2x 4-3x 3+ax 2+7x +b 能被(x +2)(x -1)整除,设商是A .则2x 4-3x 3+a x 2+7x +b =A (x +2)(x -l ),则x =-2和x =1时,右边都等于0,所以左边也等于0.当x =-2时,2x 4-3x 3+a x 2+7x +b =32+24+4a -14+b =4a +b +42=0, ①当x =1时, 2x 4-3x 3+a x 2+7x +b =2-3+a +7+b =a +b +6=0. ② ①-②,得3a +36=0,∴ a =-12, ∴ b =-6-a =6. ∴b a =6-12=-2解法2 列竖式演算,根据整除的意义解∵2x 4-3x 3+a x 2+7x +b 能被x 2+x -2整除,∴=0-12-a =0,即b =6a =-12,∴b a =-2A 级1.(1) -5 (2)53 2.8 3.7 4.6 5.7 9 6.A 7.D 提示:a =(25)11,b -(34)11,c =(53)11,d =(62)11 8.A 9.B 10.C 11.4800 12.a =4.b =4,c =113. 提示:令x 3 +k x 2+3=(x +3) (x 2+a x +6)+r 1,x 3+kx 2+3=( x +1) (x 2+cx +d )+r 2,令x =-3,得r 1=9k -24.令x =-1,得r 2=k +2,由9k -24+2=k +2, 得k =3.B 级1. 1251892. (1)499 提示:原式=19987×20002000=19987×20003=499(2)123.(1) < 1516 <1615=264,3 313 >3213=265 >264.(2) > 提示:设32 000=x .4.4 5.512 提示:令x =±2. 6.C 提示:由条件得a =c -3 ,b =c 2 ,abc =c -3·c 2·c =1 7.C 8.D9.C 提示:设a 2+a 3+…a 1996=x ,则M =(a 1+x )(x +a 1997)=a 1x +x 2+a 1a 1997+a 1 997x .N =(a 1+x +a 1 997)x =a l x +x 2+a 1997x .M =N =a 1a 1997>0. 10.D11.由a x2+by2=7,得(ax2+b y2)(x+y)=7(x+y),即ax3-a x2y+b x y2+by3=7(x+y),(a x3+by3)-xy(ax+by)-7(x+y).∴16+3xy= 7(x+y).①由a x3+by3=16,得(ax3+by3)(x+y) =16(x+y),即ax4 +a x3 y+b x y3+by4 =16(x+y),(a x4+by4)+xy(a+b)=16(x+y).∴42+7xy=16(x+y).②由①②可得,x+y=-14,xy=-38.由a+b=42,得(a+b)(x+y)=42×(-14),(a+b)+xy(a+b)=-588,+16×(-38)=-588.故=20.12.两边同乘以8得+++=165.∵x>y>z>w且为整数,∴x+3>y+3>z+3>w+3,且为整数.∵165是奇数,∴w+3=0,∴w=-3.∴++=164.∴++=41,∴z+1=0,∴z=-1.∴+=40.两边都除以8得:+=5.∴y-2=0,∴y=2.∴=4.∴x-2=2,∴x=4.∴==1.13.(1)∵(x-1)(x+4)=+3x-4,令x-1=0,得x=1;令x+4=0,得x=-4.当x=1时,得1+a+b+c=0;①当x=-4时,得-64+16a-4b+c=0.②②-①,得15a-5b=65,即3a-b=13.③①+③,得4a+c=12.(2)③-①,得2a-2b-c=14.(3)∵c≥a>1,4a+c=12,a,b,c为整数,∴1<a≤,则a=2,c=4.又a+b+c=-1,∴b=-7,.∴c>a>b.专题02 乘法公式阅读与思考乘法公式是多项式相乘得出的既有特殊性、又有实用性的具体结论,在整式的乘除、数值计算、代数式的化简求值、代数式的证明等方面有广泛的应用,学习乘法公式应注意:1.熟悉每个公式的结构特征;2.正用即根据待求式的结构特征,模仿公式进行直接的简单的套用;3.逆用即将公式反过来逆向使用;4.变用即能将公式变换形式使用;5.活用即根据待求式的结构特征,探索规律,创造条件连续综合运用公式.例题与求解【例1】1,2,3,…,98共98个自然数中,能够表示成两个整数的平方差的个数是.(全国初中数字联赛试题)解题思路:因,而的奇偶性相同,故能表示成两个整数的平方差的数,要么为奇数,要么能被4整除.【例2】(1)已知满足等式,则的大小关系是( ) 14.B.C.D.(山西省太原市竞赛试题)(2)已知满足,则的值等于()A.2 B.3 C.4 D.5(河北省竞赛试题)解题思路:对于(1),作差比较的大小,解题的关键是逆用完全平方公式,揭示式子的非负性;对于(2),由条件等式联想到完全平方式,解题的切入点是整体考虑.【例3】计算下列各题:(1);(天津市竞赛试题)(2);(“希望杯”邀请赛试题)(3).解题思路:若按部就班运算,显然较繁,能否用乘法公式简化计算过程,关键是对待求式恰当变形,使之符合乘法公式的结构特征.【例4】设,求的值.(西安市竞赛试题)解题思路:由常用公式不能直接求出的结构,必须把表示相关多项式的运算形式,而这些多项式的值由常用公式易求出其结果.【例5】观察:(1)请写出一个具有普遍性的结论,并给出证明;(2)根据(1),计算的结果(用一个最简式子表示).(黄冈市竞赛试题)解题思路:从特殊情况入手,观察找规律.【例6】设满足求:(1)的值;(2)的值.(江苏省竞赛试题)解题思路:本题可运用公式解答,要牢记乘法公式,并灵活运用.能力训练A级1.已知是一个多项式的平方,则.(广东省中考试题)2.数能被30以内的两位偶数整除的是.3.已知那么.(天津市竞赛试题)4.若则.5.已知满足则的值为.(河北省竞赛试题)6.若满足则等于.7.等于()A.B.C.D.8.若,则的值是()A.正数B.负数C.非负数D.可正可负9.若则的值是()A.4 B.19922 C.21992 D.41992(“希望杯”邀请赛试题)10.某校举行春季运动会时,由若干名同学组成一个8列的长方形队列.如果原队列中增加120人,就能组成一个正方形队列;如果原队列中减少120人,也能组成一个正方形队列.问原长方形队列有多少名同学?(“CASIO”杯全国初中数学竞赛试题)11.设,证明:是37的倍数.(“希望杯”邀请赛试题)12.观察下面各式的规律:写出第2003行和第行的式子,并证明你的结论.B级1.展开式中的系数,当1,2,3…时可以写成“杨辉三角”的形式(如下图),借助“杨辉三角”求出的值为.(《学习报》公开赛试题)2.如图,立方体的每一个面上都有一个自然数,已知相对的两个面上的两数之和都相等,如果13,9,3的对面的数分别为,则的值为.(天津市竞赛试题)3.已知满足等式则.4.一个正整数,若分别加上100与168,则可得两到完全平方数,这个正整数为.(全国初中数学联赛试题)5.已知,则多项式的值为()A.0 B.1 C.2 D.36.把2009表示成两个整数的平方差的形式,则不同的表示法有()A.16种B.14种C.12种D.10种(北京市竞赛试题)7.若正整数满足,则这样的正整数对的个数是()A.1 B.2 C.3 D.4(山东省竞赛试题)8.已知,则的值是()A.3 B.9 C.27 D.81(“希望杯”邀请赛试题)9.满足等式的整数对是否存在?若存在,求出的值;若不存在,说明理由.10.数码不同的两位数,将其数码顺序交换后,得到一个新的两位数,这两个两位数的平方差是完全平方数,求所有这样的两位数.(天津市竞赛试题)11.若,且,求证:.12.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”,如因此4,12,20这三个数都是神秘数.(1)28和2012这两个数是神秘数吗?为什么?(2)设两个连续偶数为和(其中取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正值)是神秘数吗?为什么?(浙江省中考试题)专题02 乘法公式例1 73 提示:满足条件的整数是奇数或是4的倍数.例2 (1)B x-y=(+4a+a)+(-8b+16)=+≥0,x≥y.(2)B 3个等式相加得:++=0,a=3,b=-1,c=1.a+b +c=3-1+1=3.例3 (1)(2)4 (3)-5050例4 提示:由a+b=1,+=2得ab=-,利用+=(+)(a+b)-ab(+)可分别求得+=,+=,+=,+=,+=.例5 (1)设n为自然数,则n(n+1)(n+2)(n+3)+1=(2)由①得,2000×2001×2002×2003+1=.例6(1)设-②,得ab+b c+a c=,∵-3ab c=(a+b+c)(-ab-b c-a c),∴ab c=()-(a+b+c)(-ab-b c-a c)=×3-×1×(2+)=.(2)将②式两边平方,得∴=4-2=4-2=.A级1.0或6 2.26,28 3.2 4.40 5.34 6.0 7.D 8.A 9.C10.原有136或904名学生.设m,n均为正整数,且m>n,①-②得(m+n)(m-n)=240=.,都是8的倍数,则m,n能被4整除,m+n,m-n均能被4整除.得或,∴或8x=-120=904或8x=-120=136.11.因为a=+-2=(-1)+(-1)=999 999 999+37×(+38+1),而999 999 999=9×111 111 111=9×3×37 037 037=27×37×1 001 001=37×(27×1 001 001).所以37|999 999 999,且37|37×(+38+1),因此a是37的倍数.12.第2003行式子为:=.第n行式子为:=.证明略B级1.1.0942.76 提示:由13+a=9+b=3+c得a-b=-4,b-c=-6,c-a=103.13 4.156 5.D6.C 提示:(x+y)(x-y)=2009=7×7×41有6个正因数,分别是1,7,41,49,287和2009,因此对应的方程组为:故(x,y)共有12组不同的表示.7.B 8.C9.提示:不存在符合条件的整数对(m,n),因为1954不能被4整除.10.设所求两位数为,由已知得=(k为整数),得而得或解得或,即所求两位数为65,5611. 设, 则由得③②③, 得, 即或分别与联立解得或12. (1), 故28和2012都是神秘数(2)为4的倍数(3)神秘数是4的倍数,但一定不是8的倍数. ,故两个连续奇数的平方差不是神秘数专题3 和差化积----因式分解的方法(1)阅读与思考提公因式、公式法、十字相乘法、分组分解法是因式分解的基本方法,通常根据多项式的项数来选择分解的方法,有公因式的先提公因式,分解必须进行到每一个因式都不能再分解为止.一些复杂的因式分解问题经常用到以下重要方法:1.换元法:对一些数、式结构比较复杂的多项式,可把多项式中的某些部分看成一个整体,用一个新字母代替,从而可达到化繁为简的目的.从换元的形式看,换元时有常值代换、式的代换;从引元的个数看,换元时有一元代换、二元代换等.2.拆、添项法:拆项即把代数式中的某项拆成两项的和或差,添项即把代数式添上两个符号相反的项,因式分解中进行拆项与添项的目的是相同的,即经过拆项或添项后,多项式能恰当分组,从而可以运用分组分解法分解.例题与求解【例l】分解因式___________.(浙江省中考题)解题思路:把看成一个整体,用一个新字母代换,从而简化式子的结构.【例2】观察下列因式分解的过程:(1);原式=;(2).原式=.第(1)题分组后能直接提公因式,第(2)题分组后能直接运用公式.仿照上述分解因式的方法,把下列各式分解因式:(1);(西宁市中考试题)(2).(临沂市中考试题)解题思路:通过分组,使每一组分组因式后,整体能再分解,恰当分组是关键,经历“实验--失败--再试验--再失败--直至成功”的过程.【例3】分解因式(1);(重庆市竞赛题)(2);(“缙云杯”邀请赛试题)(3).(“五羊杯”竞赛试题)解题思路:(1)式中系数较大,直接分解有困难,不妨把数字用字母来表示;(2)式中、反复出现,可用两个新字母代替,突出式子的特点;(3)式中前两项与后一项有密切联系.【例4】把多项式因式分解后,正确的结果是().A. B.C. D.(“希望杯”邀请赛试题)解题思路:直接分组分解困难,可考虑先将常数项拆成几个数的代数和,比如-3=-4+1.【例5】分解因式:(1);(扬州市竞赛题)(2);(请给出多种解法)(“祖冲之杯”邀请赛试题)(3).解题思路:按次数添上相应的项或按系数拆项法分解因式的基本策略.【例6】分解因式:.(河南省竞赛试题)解题思路:拆哪一项?怎样拆?可有不同的解法.能力训练A 级1.分解因式:(1)=___________________________.(泰安市中考试题)(2)=__________________________.(威海市中考试题)2.分解因式:(1)=_________________________;(2)=_____________________________.3.分解因式:=____________________________.4.多项式与多项式的公因式是____________________.5.在1~100之间若存在整数,使能分解为两个整系数一次式的乘积,这样的有_______个.6.将多项式分解因式的积,结果是().A. B.C. D.7.下列各式分解因式后,可表示为一次因式乘积的是().A. B.C. D.(“希望杯”邀请赛试题)8.把分解因式,其中一个因式是().A. B. C. D.9.多项式有因式().A. B.C. D.(“五羊杯”竞赛试题)10.已知二次三项式可分解成两个整系数的一次因式的积,那么().A.一定是奇数 B.一定是偶数C.可为奇数也可为偶数 D.一定是负数11.分解因式:(1);(2);(3);(“祖冲之杯”邀请赛试题)(4);(重庆市竞赛试题)(5);(6).12.先化简,在求值:,其中,.B 级1.分解因式:=_______________.(重庆市竞赛试题)2.分解因式:=_____________.(“五羊杯”竞赛试题)3.分解因式:=_________________________.(“希望杯”邀请赛试题)4.分解因式:=______________________.(“五羊杯”竞赛试题)5.将因式分解得().A. B.C. D.(陕西省竞赛试题)6.已知是△ABC三边的长,且满足,则此三角形是().A.等腰三角形B.等边三角形C.直角三角形D.不能确定7.的因式是().A. B. C. D. E.(美国犹他州竞赛试题)8.分解因式:(1);(湖北省黄冈市竞赛试题)(2);(江苏省竞赛试题)(3);(陕西省中考试题)(4);(“祖冲之杯”邀请赛试题)(5);(“五羊杯”竞赛试题)(6).(太原市竞赛试题)9.已知乘法公式:利用或者不利用上述公式,分解因式:.(“祖冲之杯”邀请赛试题)10.分解因式:(1);(2);(3).11.对方程,求出至少一组正整数解.(莫斯科市竞赛试题)12.已知在△ABC中,,求证:.(天津市竞赛试题)专题03 和差化积-------因式分解的方法(1)例1.例2. (1) 原式(2) 原式例3.(1)(2)(3)例4. D例5.(1)提示: 原式(2) 提示: 原式(3) 提示: 原式例6. 解法1原式解法2 原式A级1. (1)(2)2. (1)(2)3.4.5. 96. D7. A8. D9. A10. A11. (1)提示: 令(2)(3) \(4) 提示: 原式(5) 提示: 原式(6)12. 原式当原式B 组1. (1)(2)3.5. D6. B7. A 提示: 原式8. (1)(2) 提示: 令(3)(4) 提示: 原式(5)(6)9. 由公式有10. (1)(2)(3)11. 有或解得或12.是三角形三边长,由条件只有,故专题04 和差化积----因式分解的方法(2)阅读与思考因式分解还经常用到以下两种方法1.主元法所谓主元法,即在解多变元问题时,选择其中某个变元为主要元素,视其他变元为常量,将原式按降幂排列重新整理成关于这个字母的多项式,使问题获解的一种方法.2.待定系数法即对所给的数学问题,根据已知条件和要求,先设出一个或几个待定的字母系数,把所求问题用式子表示,然后再利用已知条件,确定或消去所设系数,使问题获解的一种方法,用待定系数法解题的一般步骤是:(1)在已知问题的预定结论时,先假设一个等式,其中含有待定的系数;(2)利用恒等式对应项系数相等的性质,列出含有待定系数的方程组;(3)解方程组,求出待定系数,再代入所设问题的结构中去,得出需求问题的解.例题与求解【例l】因式分解后的结果是(). A. B.C. D.(上海市竞赛题)解题思路:原式是一个复杂的三元二次多项式,分解有一定困难,把原式整理成关于某个字母的多项式并按降幂排列,改变原式结构,寻找解题突破口.【例2】分解因式:(1);(“希望杯”邀请赛试题)(2).(天津市竞赛题)解题思路:两个多项式的共同特点是:字母多、次数高,给分解带来一定的困难,不妨考虑用主元法分解.【例3】分解因式.(“希望杯”邀请赛试题)解题思路:因的最高次数低于的最高次数,故将原式整理成字母的二次三项式.【例4】为何值时,多项式有一个因式是(“五羊杯”竞赛试题)解题思路:由于原式本身含有待定系数,因此不能先分解,再求值,只能从待定系数法入手.【例5】把多项式写成一个多项式的完全平方式.(江西省景德镇市竞赛题)解题思路:原多项式的最高次项是,因此二次三项式的一般形式为,求出即可.【例6】如果多项式能分解成两个一次因式,的乘积(为整数),则的值应为多少?(江苏省竞赛试题)解题思路:由待定系数法得到关于的方程组,通过消元、分解因式解不定方程,求出的值.能力训练A 级1.分解因式:=___________________________.(“希望杯”邀请赛试题)2.分解因式:=_______________________(河南省竞赛试题)3.分解因式:=____________________________.(重庆市竞赛试题)4.多项式的最小值为____________________.(江苏省竞赛试题)5.把多项式分解因式的结果是()A. B.C. D.6.已知能分解成两个整系数的一次因式的乘积,则符合条件的整数的个数是().A.3 个B.4 个C.5 个D.6个7.若被除后余3,则的值为().A.2 B.4 C.9 D.10(“CASIO杯”选拔赛试题)8.若,,则的值是().A. B. C. D.0(大连市“育英杯”竞赛试题)9.分解因式:(1);(吉林省竞赛试题)(2);(昆明市竞赛试题)(3);(天津市竞赛试题)(4);(四川省联赛试题)(5)(天津市竞赛试题)10.如果能够分割成两个多项式和的乘积(为整数),那么应为多少?(兰州市竞赛试题)15.已知代数式能分解为关于的一次式乘积,求的值.(浙江省竞赛试题)B 级1.若有一个因式是,则=_______________.(“希望杯”邀请赛试题)2.设可分解为一次与二次因式的乘积,则=_____________.(“五羊杯”竞赛试题)3.已知是的一个因式,则=________________________.(“祖冲之杯”邀请赛试题)4.多项式的一个因式是,则的值为__________.(北京市竞赛试题)5.若有两个因式和,则=().A.8 B.7 C.15 D.21 E.22(美国犹他州竞赛试题)6.多项式的最小值为().A.4 B.5 C.16 D.25(“五羊杯”竞赛试题)7.若(为实数),则M的值一定是().A.正数B.负数C.零D.整数(“CASIO杯”全国初中数学竞赛试题)8.设满足,则=()A.(2,2)或(-2,-2)B.(2,2)或(2,-2)C.(2,-2)或(-2,2)D.(-2,-2)或(-2,2)(“希望杯”邀请赛试题)9.为何值时,多项式能分解成两个一次因式的积?(天津市竞赛试题)10.证明恒等式:.(北京市竞赛试题)11.已知整数,使等式对任意的均成立,求的值.(山东省竞赛试题)12.证明:对任何整数,下列的值都不会等于33.(莫斯科市奥林匹克试题)专题04 和差化积-------因式分解的方法(2)例1. A 提示: 将原式重新整理成关于的二次三项式例2. (1) 提示: 原式(2) 提示: 原式例3. 原式例 4. 提示: 可设原式展开比较对应项系数得解得k=12.例5原式=.例6设x2-(a+5)x+5a-1=(x+b)(x+c)=x2+(b+c)x+bc.∴①×5+2得bc+5(b+c)=-26,bc+5(b+c)+25=-1,(b+5)(c+5)=-1.∴或∴或故a=5.A级1.(3a+2b-c)(3a-2b+c)2.(x+3y)(x+2y+1)3.(x+y+1)(x-y+3)4.-185.C6.D7.D8.D9.(1)(2a+b)(a-b+c);(2)(a+c-2b)2;(3)(x-2)(x2-x+a);(4)(x-2y+3)(2x-3y-4);(5)(x+1)(y+1)(x-1)(y-1).10.提示:由题意得①×4+②,得(b+4)(c+4)=-1,推得或故a=4.11.∵x2-3xy-4y=(x+y)(x- 4y),∴可设原式=(x+y+m)(x-4y+n),展开比较对应项系数得b=-6或9.B级1.k=-52.-2提示:原式=x(x2+3x-k)-2y(x+2),令x=-2.3.5提示:令原式=(x-y+4)·A,取一组x,y的值代入上式.4.-35.C提示:x=-1,x=-2是方程x3+ax2+bx+8=0的解.6.C提示:原式=(x-2y)2+(2x+3)2+167.A提示:原式=2(x-2y)2+(x-2)2+(y+3)2≥0,且这三个数不能同时为零,M >0.8.C9.k=-3 提示:因x2+3x+2=(x+1)(x+2),故可令原式=(x+my+1)·(x十ny+2),展开比较对应项系数求出k.10.提示:左边=(a2+b2)2-2a2b2+(a2+b2+2ab)2=(a2+b2)2-2a2b2+(a2+b2)2+4ab(a2+b2)+4a2b2=2(a2+b2)+4ab(a2+b2)+2a2b2=2(a2+b2+ab)2=右边.11.将原等式展开x2+(a+b+c)x+ab-l0c=x2-10x-11.∴①×10+②得ab+10a+10b=-111.∴(a+10)(b+10)=-11.∴或或或∴或或或代入①得c=0或20.12.原式=(x5+3x4y)-(5x3y+15x2y3)+(4xy4+12y5)=x4(x+3y)-5x2y2(x+3y)+4y4(x+3y)=(x+3y)(x4-5x2y2+4y2)=(x+3y)(x2-4y2)=(x+3y)(x+y)(x-y)(x+2y)(x-2y).当y=0时,原式=x5≠33;当y≠0时,x+3y,x-y,x-2y,x+2y,x+y互不相同,而33不可能分解为4个以上不同因数的积,所以,当x取任意整数,y取不为0的任意整数,原式≠33.专题05 和差化积——因式分解的应用阅读与思考:因式分解是代数变形的有力工具,在以后的学习中,因式分解是学习分式、一元二次方程等知识的基础,其应用主要体现在以下几个方面:1.复杂的数值计算;2.代数式的化简与求值;3.简单的不定方程(组);4.代数等式的证明等.有些多项式分解因式后的结果在解题中经常用到,我们应熟悉这些结果:1. ;2. ;3. ;4.;5. .例题与求解【例1】已知,,那么的值为___________ .(全国初中数学联赛试题)解题思路:对已知等式通过因式分解变形,寻求a,b之间的关系,代入关系求值.【例2】a,b,c是正整数,a>b,且,则等于( ).A. -1 B.-1或-7 C.1 D.1或7(江苏省竞赛试题)解题思路:运用因式分解,从变形条件等式入手,在字母允许的范围内,把一个代数式变换成另一个与它恒等的代数式称代数式的恒等变形,它是研究代数式、方程和函数的重要工具,换元、待定系数、配方、因式分解又是恒等变形的有力工具.求代数式的值的基本方法有;(1)代入字母的值求值;(2)代入字母间的关系求值;(3)整体代入求值.【例3】计算:(1) (“希望杯”邀请赛试题)(2)(江苏省竞赛试题)解题思路:直接计算,则必然繁难,对于(1),不妨用字母表示数,通过对分子、分母分解因式来探求解题思路;对于(2),可以先研究的规律.【例4】求下列方程的整数解.(1); (上海市竞赛试题)(2). (四川省竞赛试题)解题思路:不定方程、方程组没有固定的解法,需具体问题具体分析,观察方程、方程组的特点,利用整数解这个特殊条件,从分解因式入手.解不定方程的常用方法有:(1)穷举法; (2)配方法; (3)分解法; (4)分离参数法.用这些方程解题时,都要灵活地运用质数合数、奇数偶数、整除等与整数相关的知识.【例5】已知,,求下列各式的值:(1) ; (2) ; (3).解题思路:先分解因式再代入求值.【例6】一个自然数恰等于另一个自然数的立方,则称自然数为完全立方数,如27=33,27就是一个完全立方数.若=19951993×199519953-19951994×199519923,求证:是一个完全立方数.(北京市竞赛试题)解题思路:用字母表示数,将分解为完全立方式的形式即可.能力训练A 级1. 如图,有三种卡片,其中边长为的正方形卡片1张,边长分别为,的长方形卡片6张,边长为的正方形卡片9张,用这16张卡片拼成一个正方形,则这个正方形的边长为 ________.(烟台市初中考试题)2.已知,则的值为__________.(江苏省竞赛试题)3.方程的整数解是__________.(“希望杯”邀请赛试题)4. 如果是完全平方式,那么的值为__________.(海南省竞赛试题)5. 已知(),则的值是( ).A.2, B.2 C. D.6.当,的值为( ).A. -1 B.0 C.2 D.17.已知,,则M与N的大小关系是( ).A. M<N B.M>N C.M=N D.不能确定(“希望杯”邀请赛试题)8.为某一自然数,代入代数式中计算其值时,四个同学算出如下四个结果,其中正确的结果只能是( ).A. 388944B.388945C.388954D.388948(五城市联赛试题)9.计算:(1) (北京市竞赛试题)(2) (安徽省竞赛试题)10. 一个自然数恰好等于另一个自然数的平方,则称自然数为完全平方数,如64=82,64就是一个完全平方数,若=19982+19982×19992+19992,求证:是一个完全平方数.(北京市竞赛试题)16.已知四个实数,,,,且,,若四个关系式,,,同时成立.(1)求的值;(2)分别求,,,的值.(湖州市竞赛试题)B 级1.已知是正整数,且是质数,那么____________ .(“希望杯”邀请赛试题)2.已知三个质数的乘积等于这三个质数的和的5倍,则=________ .(“希望杯”邀请赛试题)3.已知正数,,满足,则=_________ . (北京市竞赛试题)4.在日常生活中如取款、上网等都需要密码,有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式,因式分解的结果是,若取=9,=9时,则各个因式的值是:,于是就可以把“0181 62”作为一个六位数的密码,对于多项式,取=10,=10时,用上述方法产生的密码是:__________.(写出一个即可).(浙江省中考试题)5.已知,,是一个三角形的三边,则的值( ).A.恒正 B.恒负 C.可正可负 D.非负(太原市竞赛试题)6.若是自然数,设,则( ).A. 一定是完全平方数 B.存在有限个,使是完全平方数C. 一定不是完全平方数 D.存在无限多个,使是完全平方数7.方程的正整数解有( )组.A.3 B.2 C.1 D.0(“五羊杯”竞赛试题)8.方程的整数解有( )组.A.2 B.4 C.6 D.8(”希望杯”邀请赛试题)9.设N=695+5×694+10×693+10×692+5×69+1.试问有多少个正整数是N的因数?(美国中学生数学竞赛试题)10.当我们看到下面这个数学算式时,大概会觉得算题的人用错了运算法则吧,因为我们知道.但是,如果你动手计算一下,就会发现上式并没有错,不仅如此,我们还可以写出任意多个这种算式:,,,,…你能发现以上等式的规律吗?11.按下面规则扩充新数:已有,两数,可按规则扩充一个新数,而以,,三个数中任取两数,按规则又可扩充一个新数,…每扩充一个新数叫做一次操作. 现有数1和4,求:(1) 按上述规则操作三次得到扩充的最大新数;(2) 能否通过上述规则扩充得到新数1999,并说明理由.(重庆市竞赛试题)12.设,,为正整数.被整除所得的商分别为,.(1)若,互质,证明与互质;(2)当,互质时.求的值;( 3)若,的最大公约数为5,求的值.(江苏省竞赛试题)。
初二数学竞赛辅导课程1
![初二数学竞赛辅导课程1](https://img.taocdn.com/s3/m/f8aad994d0d233d4b14e695f.png)
初二数学竞赛辅导课程1.货车和轿车分别从甲、乙两地同时出发,沿同一公路相向而行.轿车出发2.4h 后休息,直至与货车相遇后,以原速度继续行驶设货车出发x h 后,货车、轿车分别到达离甲地1y km 和2y km 的地方,图中的线段OA 、折线BCDE 分别表示1y 、2y 与x 之间的函数关系。
(1)求点D 的坐标,并解释点D 的实际意义,(2)求线段DE 所在直线的函数表达式,(3)当货车出发多少h 时,两车相距200km 。
2. 在平而直角坐标系中,A (0,2),B (4,0),C (4,3);(1)求△ABC 的面积?(2)如果在第二象限内有一点P (a ,1),试用含“a ”的式子表示四边形ABOP 的面积?(3)在(2)的条件下,是否存在点P ,使得四边形ABOP 的面积与AABC 的面积相等?若存在,求出点P 的坐标;若不存在,请说明理由。
3.如图所示,四边形OABC 是矩形,点A 、C 的坐标分别为(3,0),(0,1),点D 是线段BC 上的动点(与端点B 、C 不重合),过点D 作直线y=﹣0.5 x+b 交折线OAB 于点E ;记△ODE 的面积为S ,求S与b 的函数关系式;4.已知如图,直线1L :y=﹣0.5x+4与x 轴、y 轴分别交于点A 、点B ,另一直线2L :y=kx+b (k≠0)经过点C (4,0),且把△AOB 分成两部分.(1)若1L ∥2L ,求过点C 的直线的解析式.(2)若△AOB 被直线2L 分成的两部分面积相等,求过点C 的直线的解析式。
5.如图,在平面直角坐标系xOy 中,矩形ABCD 的AB 边在x 轴上,且AB=3,AD=2, 经过点C 的直线y=x-2与x 轴、y 轴分别交于点E 、F.(1)求矩形ABCD 的顶点A 、B 、C 、D 的坐标;(2)求证:△OEF ≌△BEC ;(3)P 为直线y=x-2上一点,若S △POE =5,求点P 的坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.解方程:
6.已知 ,求 原题:
例5.已知 ,则M=__________。
例6.已知 ,那么代数式 的值是_________。
5、题型展示:
例7.当x取何值时,式子 有意义?当x取什么数时,该式子值为零?
例8.求 的值,其中 。
例9.
例10.已知 , 求 的值。
【实战模拟】
初二数学竞赛讲义一
分式
1.分式有意义的应用
例1.若 ,试判断 是否有意义。
。
2.结合换元法、配方法、拆项法、因式分解等方法简化分式运算。
例2.解方程:
3.在代数求值中的应用
例3已知 与 互为相反数,求代数式
的值。
4在数学、物理、化学等学科的学习中,都会遇到有关公式的推导,公式的变形等问题。而公式的变形实质上就是解含有字母系数的方程。