数理统计之假设检验

合集下载

概率论与数理统计课件:假设检验

概率论与数理统计课件:假设检验

假设检验
首页 返回 退出
五、假设检验的两类错误
由于样本具有随机性,因此,当我们利用样本判断时, 可能会犯两类错误:
所作决策
真实情况
(未知)
样本未落入拒绝域 样本落入拒绝域
接受H0
拒绝H0
H0为真
正确
第一类错误
H0不真
第二类错误
正确
第一类(弃真): 第二类(取伪):
假设检验
P{拒绝H0|H0为真}= , P{接受H0|H0不真}= .
(α=0.05)
解:正态总体X~N(μ,σ2),已知σ=2
要检验的假设为
H0 : 40, H1 : 40
选择检验统计量
Z X 0 ~ N (0,1) / n
假设检验
首页 返回 退出
解:正态总体X~N(μ,σ2),已知σ=2
要检验的假设为
H0 : 40, H1 : 40
选择检验统计量
由样本数据计算,得 x 100.104 计算统计量Z的观测值,得
Z 100.104 100 0.658 1.96 0.5 / 10
没有落入 拒绝域
结论:不拒绝原假设,认为内径的值符合设计要求.
假设检验
首页 返回 退出
要检验的假设为
H0 : 100, H1 : 100
(2)未知σ2 ,选择检验统计量
没有落入 拒绝域
结论:不拒绝原假设,认为内径的值符合设计要求.
假设检验
首页 返回 退出
例2 某厂生产的固体燃料推进器的燃烧率服从正态分 布X~N(40,22),现在采用技术研发部设计的新方法 生产了一批推进器,随机测试25只,测得燃烧率的 样本均值为 x 41.25 ,假设在新方法下σ=2,问用 新方法生产的推进器的燃烧率是否有显著的提高?

概率论与数理统计(8)假设检验

概率论与数理统计(8)假设检验

概率论与数理统计(8)假设检验第八章假设检验第一节假设检验问题第二节正态总体均值的假设检验第三节正态总体方差的检验第四节大样本检验法第五节 p值检验法第六节假设检验的两类错误第七节非参数假设检验第一节假设检验问题前一章我们讨论了统计推断中的参数估计问题,本章将讨论另一类统计推断问题——假设检验.在参数估计中我们按照参数的点估计方法建立了参数的估计公式,并利用样本值确定了一个估计值,认为参数真值。

由于参数是未知的,只是一个假设(假说,假想),它可能是真,也可能是假,是真是假有待于用样本进行验证(检验).下面我们先对几个问题进行分析,给出假设检验的有关概念,然后总结给出检验假设的思想和方法.一、统计假设某大米加工厂用自动包装机将大米装袋,每袋的标准重量规定为10kg,每天开工时,需要先检验一下包装机工作是否正常. 根据以往的经验知道,自动包装机装袋重量X服从正态分布N( ).某日开工后,抽取了8袋,如何根据这8袋的重量判断“自动包装机工作是正常的”这个命题是否成立?请看以下几个问题:问题1引号内的命题可能是真,也可能是假,只有通过验证才能确定.如果根据抽样结果判断它是真,则我们接受这个命题,否则就拒绝接受它,此时实际上我们接受了“机器工作不正常”这样一个命题.若用H0表示“”,用H1表示其对立面,即“”,则问题等价于检验H0:是否成立,若H0不成立,则H1:成立.一架天平标定的误差方差为10-4(g2),重量为的物体用它称得的重量X服从N( ).某人怀疑天平的精度,拿一物体称n次,得n 个数据,由这些数据(样本)如何判断“这架天平的精度是10-4(g2)”这个命题是否成立?问题2记H0: =10-4,H1: ,则问题等价于检验H0成立,还是H1成立.某种电子元件的使用寿命X服从参数为的指数分布,现从一批元件中任取n个,测得其寿命值(样本),如何判定“元件的平均寿命不小于5000小时”这个命题是否成立?记问题3则问题等价于检验H0成立,还是H1成立.某种疾病,不用药时其康复率为,现发明一种新药(无不良反应),为此抽查n位病人用新药的治疗效果,设其中有s人康复,根据这些信息,能否断定“该新药有效”?记问题4则问题等价于检验H0成立,还是H1成立.自1965年1月1日至1971年2月9日共2231天中,全世界记录到震级4级及以上的地震共计162次,问相继两次地震间隔的天数X是否服从指数分布?问题5记服从指数分布,不服从指数分布.则问题也等价于检验H0成立,还是H1成立.在很多实际问题中,我们常常需要对关于总体的分布形式或分布中的未知参数的某个陈述或命题进行判断,数理统计学中将这些有待验证的陈述或命题称为统计假设,简称假设.如上述各问题中的H0和H1都是假设.利用样本对假设的真假进行判断称为假设检验。

概率论与数理统计-假设检验

概率论与数理统计-假设检验

14

取伪的概率较大.
15
/2
0.12 0.1
0.08 0.06 0.04 0.02
/2 H0 真
60 62.5 65 67.5 70 72.5 75
0.12 0.1
0.08 0.06 0.04 0.02
H0 不真
67.5 70 72.5 75 77.5 80 82.5
16
现增大样本容量,取n = 64, = 66,则
41
两个正态总体
设 X ~ N ( 1 1 2 ), Y ~ N ( 2 2 2 )
两样本 X , Y 相互独立, 样本 (X1, X2 ,…, Xn ), ( Y1, Y2 ,…, Ym ) 样本值 ( x1, x2 ,…, xn ), ( y1, y2 ,…, ym )
显著性水平
42
(1) 关于均值差 1 – 2 的检验
原假设 备择假设 检验统计量及其在
H0
H1
H0为真时的分布拒绝域 Nhomakorabea1 – 2 = 1 – 2
1 – 2 1 – 2 <
1 – 2 1 – 2 > ( 12,22 已知)
43
原假设 备择假设 检验统计量及其在
H0
H1
H0为真时的分布
1 – 2 = 1 – 2
拒绝域
1 – 2 1 – 2 <
1 – 2 1 – 2 >
12, 22未知
12
=
2 2
其中
44
(2)
关于方差比
2 1
/
2 2
的检验
原假设 备择假设 检验统计量及其在
H0
H1
H0为真时的分布

高等数理统计假设检验

高等数理统计假设检验

1概率分布
2似然比 率密度族
与 是不同的;
(x) p(x;2) p(x;1)
是1 T 2x的单调函数;则称概
p(x;)c()exp{Q()T(x关)}h(于x)Tx具有单调似然比
MLRmontone likeli hood ratio
如单数指数型分布族
(T ( x))
1
r
0
T ( x) c T ( x) c
上两个不同的
概率测度;关于某个 有限的测度 E0(;X)有
H0:0, H 1:1
设原假设和备择假设分别为:
(x) 0 1
p(x;1)kp(x;0) p(x;1)kp(x;0)

1对给定的水平 使得
存在一个检验函数
(x)
p( x;1 ) p(x;0 )
(x) 01
(x)k (x)k
及 (常x )数k;
所以在很多情况下;对于一个复合假设的检验 问题;UMPT不存在 所以必须找出构造检验法 不管是简单假设还是复合假设的一般方法
人们提出了似然比检验方法
似然比检验
设X=X1; X2; …; Xn 的分布密度函数是px;θ;对于 简单假设:
(x) 0 1
p(x;1)kp(x;0) p(x;1)kp(x;0)
由常识得知;如果这个实验是随机的;则不大可 能出出太多的1或0的游程
P(R r)
原假设成立时;算出 或 n,mnr 以做检验了
的值;也就可 P(Rc1)及P(Rc2)
在m或n不大时;可直接计算得出
ZR2m/(1r) N(0,1 ) 4rm/(1r)3
而当样本很大时;即 下
时;在零假设 2m n z 2m n z
定义似然检验比函数

数理统计:假设检验

数理统计:假设检验
12
二 假设检验的思路、步骤和术语
由长期实践可知,标准差较稳定,设 15, 则 X ~ N (, 152 ), 其中未知.
1. 提出两个对立假设
H0 : 0 500
H1 : 0
原假设或零假设
备择假设
利用已知样本作出判断:是接受假设H0(拒绝假 设H1), 还是拒绝假设H0(接受假设H1). 如果作出的判 断是接受H0, 则认为 0 500 , 即认为机器工作是 正常的, 否则, 认为是不正常的.
13
2. 选择适当的统计量,称为检验统计量,
原则是 1°其中含着总体X的均值 好的估计 X ,
2° H0为真时,检验统计量分布确定。
因为 X是 的无偏估计量,
检验统计量
若 H0 为真, 则| x 0 | 不应太大,
当H0为真时, X ~ N (0 , 2 n),
Z X 0 ~ N (0,1), / n
P{拒绝H0 H0为真} (按“=”具体计算)
以假当真: 当μ≠500时,X 取值落在500附近的可能也存 在,此时将接受H0,认为μ=500,于是犯了取伪错误,称 为第二类错误,犯第Ⅱ类错误的概率
P{接受H0 H0不真}
23
两类错误的关系
以下述检验为例:X~N(, 2), 已知, 未知
率不超过 ,而犯第ⅠI类错误的概率无法控制。
25
【注】假设检验的结果与显著性水平α的大小有关: α越小越不易拒绝H0. 就引例而言:
当α=0.05时,则 临界值z /2 z0.025 1.96,
z x 0 2.2 1.96, 落入拒绝域 / n
于是拒绝 H0, 认为包装机工作不正常.
在实例中若取定 0.05,则 k z / 2 z0.025 1.96,

数理统计之分布的假设检验

数理统计之分布的假设检验
案例背景:介绍案例的背景和目的 数据来源:说明数据的来源和收集方法 检验方法:详细介绍单样本正态性检验的方法和步骤 结果分析:对检验结果进行详细的分析和解释 结论与建议:根据分析结果提出相应的结论和建议
双样本正态性检验案例
案例背景:介绍双样本正态性检验的 背景和意义
案例数据:展示双样本正态性检验的 具体数据
疾病预防:通过 对某地区人群的 统计数据进行分 析,预测该地区 未来可能出现的 疾病流行趋势, 从而采取相应的 预防措施。
药物研发:通过 假设检验方法, 对某种新药的疗 效进行评估,以 确定该药物是否 具有潜在的治疗 价值。
在工程领域的应用
质量管理和控 制:假设检验 用于确定生产 过程是否稳定, 以及产品是否 符合规格要求。
多样本正态性检 验的目的:检验 多个样本是否符 合正态分布
多样本正态性检 验的方法:采用 KolmogorovSmirnov检验、 Shapiro-Wilk 检验等方法
多样本正态性检 验的步骤:对每 个样本分别进行 正态性检验,然 后采用适当的统 计方法对多个样 本进行综合分析
多样本正态性检 验的意义:为后 续的统计分析提 供合理的前提假 设,保证分析结 果的准确性自具有相同分布的总体的假设检验方法 假设:两个样本分别来自具有相同均值和标准差的正态分布总体 检验方法:计算两个样本的均值和标准差,然后进行t检验或z检验 结果解释:如果p值小于显著性水平,则拒绝原假设,认为两个样本不具有相同的分布
多样本正态性检验
分布假设检验对于提高统计推断的准确性和可靠性具有重要意义。
分布假设检验的步骤
提出假设 构造检验统计量 确定临界值 做出决策
03 分布的假设检验方法
单样本正态性检验
定义:对一个样本是否符合正态分布进行检验的方法

《概率论与数理统计》第七章假设检验.

《概率论与数理统计》第七章假设检验.

《概率论与数理统计》第七章假设检验.第七章假设检验学习⽬标知识⽬标:理解假设检验的基本概念⼩概率原理;掌握假设检验的⽅法和步骤。

能⼒⽬标:能够作正态总体均值、⽐例的假设检验和两个正态总体的均值、⽐例之差的假设检验。

参数估计和假设检验是统计推断的两种形式,它们都是利⽤样本对总体进⾏某种推断,然⽽推断的⾓度不同。

参数估计是通过样本统计量来推断总体未知参数的取值范围,以及作出结论的可靠程度,总体参数在估计前是未知的。

⽽在假设检验中,则是预先对总体参数的取值提出⼀个假设,然后利⽤样本数据检验这个假设是否成⽴,如果成⽴,我们就接受这个假设,如果不成⽴就拒绝原假设。

当然由于样本的随机性,这种推断只能具有⼀定的可靠性。

本章介绍假设检验的基本概念,以及假设检验的⼀般步骤,然后重点介绍常⽤的参数检验⽅法。

由于篇幅的限制,⾮参数假设检验在这⾥就不作介绍了。

第⼀节假设检验的⼀般问题关键词:参数假设;检验统计量;接受域与拒绝域;假设检验的两类错误⼀、假设检验的基本概念(⼀)原假设和备择假设为了对假设检验的基本概念有⼀个直观的认识,不妨先看下⾯的例⼦。

例7.1 某⼚⽣产⼀种⽇光灯管,其寿命X 服从正态分布)200 ,(2µN ,从过去的⽣产经验看,灯管的平均寿命为1550=µ⼩时,。

现在采⽤新⼯艺后,在所⽣产的新灯管中抽取25只,测其平均寿命为1650⼩时。

问采⽤新⼯艺后,灯管的寿命是否有显著提⾼?这是⼀个均值的检验问题。

灯管的寿命有没有显著变化呢?这有两种可能:⼀种是没有什么变化。

即新⼯艺对均值没有影响,采⽤新⼯艺后,X 仍然服从)200 ,1550(2N 。

另⼀种情况可能是,新⼯艺的确使均值发⽣了显著性变化。

这样,1650=X 和15500=µ之间的差异就只能认为是采⽤新⼯艺的关系。

究竟是哪种情况与实际情况相符合,这需要作检验。

假如给定显著性⽔平05.0=α。

在上⾯的例⼦中,我们可以把涉及到的两种情况⽤统计假设的形式表⽰出来。

概率论和数理统计假设检验

概率论和数理统计假设检验

05
非参数假设检验
Wilcoxon秩和检验
总结词
用于检验两个独立样本是否来自同一 分布,特别是当样本量较小或总体分 布未知时。
详细描述
Wilcoxon秩和检验通过将每个样本的 观测值替换为其在所有观测值中的秩, 然后比较两组的秩和来进行检验。如 果两个样本来自同一分布,则它们的 秩和应该接近相等。
THANKS
感谢观看
确定检验水准
根据研究目的和样本量等因素,确定检验 水准,如α和β。
计算统计量
根据数据和选择的统计方法,计算出相应 的统计量。
选择合适的统计方法
根据数据类型和假设,选择合适的统计方 法进行检验。
单侧与双侧检验
单侧检验
只考虑一个方向的假设检验,如只考虑增加或只考虑减少。
双侧检验
同时考虑两个方向的假设检验,即同时考虑增加和减少。
检验效能
检验效能是指假设检验能够正确拒绝一个错误假设的能力。在给定样本大小的情况下,提高检验效能 可以提高假设检验的准确性。
假设检验的误用与避免
误用
假设检验的误用通常包括不恰当的假设、错 误的解读、过度推断等。这些错误可能导致 错误的结论,影响科学研究的可靠性和有效 性。
避免方法
为了避免假设检验的误用,研究者应确保假 设合理、解读准确,并避免过度推断。同时, 应采用多种方法进行验证,以提高研究的可 靠性和准确性。
方差齐性检验
01
方差齐性检验
用于检验两组数据或多个组数据的方差是否具有齐性。常 见的方差齐性检验方法包括Bartlett检验、Levene检验等 。
02
总结词
方差齐性检验是假设检验中的重要步骤,它有助于判断不 同组数据之间是否存在显著差异。

概率论与数理统计第八章假设检验

概率论与数理统计第八章假设检验
当总体分布函数完全未知或只知其形式、但 不知其参数的情况,为推断总体的性质,提出 某些关于总体的假设。
为判断所作的假设是否正确, 从总体中抽取 样本, 根据样本的取值, 按一定的原则进行检 验, 然后, 作出接受或拒绝所作假设的决定.
整理课件
2
我们主要讨论的假设检验的内容有
参数检验 总体均值、均值差的检验 总体方差、方差比的检验
H0: Θ0 vs H1: Θ1,
根据样本,构造一个检验统计量T 和检验法则: 若与T的取值有关的一个小概率事件W发生,则 否定H0,否则接受H0,而且要求
P(W|H0)
此时称W为拒绝域,整为理课检件 验水平。
11
例 3. 某厂生产的螺钉,按标准强度为68克/mm2,
而实际生产的螺钉强度 X 服从 N ( ,3.6 2 ). 若 E ( X ) = = 68, 则认为这批螺钉符合要求,否
7
所以我们否定H0, 认为隧道南的路面发生交 通事故的概率比隧道北大.
做出以上结论也有可能犯错误。这是因为 当隧道南北的路面发生交通事故的概率相同, 而3起交通事故又都出现在隧道南时, 我们才犯 错误。这一概率正是P=0.043.
于是, 我们判断正确的概率是1-0.043=95.7%
整理课件
8
假设检验中的基本概念和检验思想 (1) 根据问题的背景, 提出原假设
再作一个备择假设
H1: p> 0.35. 在本问题中,如果判定H0不对,就应当承认H1.
检验: 三起交通事故的发生是相互独立的, 他们
之间没有联系.
如果H0为真, 则每一起事故发生在隧道南的 概率都是0.35, 于是这三起交通事故都发生在隧
道南的概率是
P= 0.353 ≈ 0.043.

《概率论与数理统计》第八章1假设检验的基本概念

《概率论与数理统计》第八章1假设检验的基本概念
单侧检验 H0 : 0 1000, H1 : 1000
2. 从某批矿砂中,抽取10样本,检验这批砂矿的含 铁量是否为3%?
双侧检验 H0 : 0 3%, H1 : 3%
3.某学校学生英语平均分65分, 先抽取某个班的平均 分,看该成绩是否显著高于全校整体水平?
单侧检验 H0 : 0 65, H1 : 65
0.497 0.506 0.518 0.524 0.498 0.511 0.520 0.515 0.512, 问机器是否正常?
分析 以 和 分别表示这一天袋装糖的净重
总体X 的均值和标准差,
由长期实践表明标准差比较稳定, 我们就设
0.015,于是 X ~ N(, 0.0152 ),这里 未知. 问题 问题是根据样本值判断 0.5 还是 0.5 .

以,原假
设H
不正确
0

对于这两种解释,哪种解释比较合理呢?
我们需要判断以上两种假设谁对谁错,并给出判断的理由
以上例子属于参数检验(parametric test) 的问题,(如针对总体均值,总体方差等参数的假 设检验)。
另外还有非参数检验(Nonparametric test) 的问题,如关于总体服从某种分布(如正态分布, 泊松分布)的假设检验。
4. 拒绝域与临界点
拒绝域W1: 拒绝原假设 H0 的所有样本值 (x1, x2, ···, xn)所组成的集合.
W1 W1 :拒绝原假设H0的检验统计量的取值范围.
临界点(值):拒绝域的边界点(值) (相应于检验统计量的值).
如: 在前面例4中,拒绝域 {u :| u | u / 2 }.
5. 双边备择假设与双边假设检验
之 下 做 出 的.
2. 检验统计量

数理统计中的参数估计与置信区间估计及假设检验与拟合优度检验

数理统计中的参数估计与置信区间估计及假设检验与拟合优度检验

数理统计中的参数估计与置信区间估计及假设检验与拟合优度检验数理统计是一门研究如何利用数据对未知参数进行估计和进行推断的学科。

本文将介绍数理统计中的参数估计与置信区间估计,以及假设检验与拟合优度检验的基本概念和相关方法。

一、参数估计与置信区间估计在数理统计中,参数是描述总体特征的量,例如总体均值、总体方差等。

参数估计就是利用样本统计量对总体参数进行估计。

常用的参数估计方法有最大似然估计和矩估计。

最大似然估计是一种常用的参数估计方法,其基本思想是选择参数值使得观测到的样本出现的概率最大化。

假设总体服从某个分布,最大似然估计通过优化似然函数来估计参数。

最大似然估计具有良好的性质,例如渐近正态性和无偏性等。

矩估计是另一种常用的参数估计方法,其基本思想是利用样本矩与总体矩的对应关系来估计参数。

例如,样本均值可以用来估计总体均值,样本矩可以通过总体矩的方法进行计算得到。

矩估计具有较好的渐近正态性和无偏性。

参数估计的结果往往带有一定的不确定性,为了评估估计结果的准确性,常使用置信区间估计。

置信区间估计是指通过样本数据得到的区间,该区间包含了未知参数的真值的概率。

常见的置信区间估计方法有正态分布的置信区间估计和大样本下的置信区间估计。

二、假设检验在数理统计中,假设检验是一种推断方法,用于检验总体参数的假设是否成立。

假设检验的基本思想是通过样本数据来判断假设是否得到支持。

常用的假设检验方法有正态总体均值的假设检验、正态总体方差的假设检验和两样本均值的假设检验等。

假设检验包括建立原假设和备择假设,选择适当的检验统计量,并设定显著性水平,进行统计推断。

结果的判断依据是计算得到的检验统计量是否落在拒绝域内。

如果检验统计量落在拒绝域内,拒绝原假设,否则接受原假设。

假设检验的结果可以提供统计学上的证据,用于决策和推断。

三、拟合优度检验拟合优度检验是一种用于检验总体数据是否符合某个特定分布的方法。

在数理统计中,拟合优度检验常用于检验样本数据与给定的分布是否相符。

假设检验

假设检验

假设检验假设检验(Hypothesis Testing)是数理统计学中根据一定假设条件由样本推断总体的一种方法。

具体作法是:根据问题的需要对所研究的总体作某种假设,记作H0;选取合适的统计量,这个统计量的选取要使得在假设H0成立时,其分布为已知;由实测的样本,计算出统计量的值,并根据预先给定的显著性水平进行检验,作出拒绝或接受假设H0的判断。

常用的假设检验方法有u—检验法、t检验法、χ2检验法(卡方检验)、F—检验法,秩和检验等。

中文名假设检验外文名 hypothesis test提出者 K.Pearson 提出时间 20世纪初1、简介假设检验又称统计假设检验(注:显著性检验只是假设检验中最常用的一种方法),是一种基本的统计推断形式,也是数理统计学的一个重要的分支,用来判断样本与样本,样本与总体的差异是由抽样误差引起还是本质差别造成的统计推断方法。

其基本原理是先对总体的特征作出某种假设,然后通过抽样研究的统计推理,对此假设应该被拒绝还是接受作出推断。

[1]2、基本思想假设检验的基本思想是小概率反证法思想。

小概率思想是指小概率事件(P<0.01或P<0.05)在一次试验中基本上不会发生。

反证法思想是先提出假设(检验假设H0),再用适当的统计方法确定假设成立的可能性大小,如可能性小,则认为假设不成立,若可能性大,则还不能认为假设成立。

[2] 假设是否正确,要用从总体中抽出的样本进行检验,与此有关的理论和方法,构成假设检验的内容。

设A是关于总体分布的一项命题,所有使命题A成立的总体分布构成一个集合h0,称为原假设(常简称假设)。

使命题A不成立的所有总体分布构成另一个集合h1,称为备择假设。

如果h0可以通过有限个实参数来描述,则称为参数假设,否则称为非参数假设(见非参数统计)。

如果h0(或h1)只包含一个分布,则称原假设(或备择假设)为简单假设,否则为复合假设。

对一个假设h0进行检验,就是要制定一个规则,使得有了样本以后,根据这规则可以决定是接受它(承认命题A正确),还是拒绝它(否认命题A正确)。

概率论与数理统计第八章假设检验

概率论与数理统计第八章假设检验

对于(a)小概率P{X 0 u }
u是所选取合适的统计量 U 的分位点
1
单侧检验
P{ X 0 u } x 0 u为拒绝区域
其含义是依这样本x所推断的

概率

件H
发生
0



绝H
0
u
拒绝

1
u 拒绝
对于(b)小概率P{X 0 u } (密度函数为对称时)
由 经 验 知 0.015公 斤 , 为 了 检 验 某 天 机器 工 作 是 否 正 常 , 抽 取其 所
包 装 的9袋 称 得 重 量 分 别 为0:.497,0.506,0.518,0.524,0.488,0.511,0.510,0.515,0.519; 问这天机器正常否?
现在另一天任然抽取9袋得样本均值x 0.511公斤,推断这天机器是否工作正常?
小 概 率 事 件 是: 样 本 均 值X与 所 假 设 的 期 望0相 差 X 0
不 能 太 大, 若 相 差 太 大 则 拒 绝H0
小概率事件P{ X 0 u }
u

2








量U
2


2



1
P{ X 0 u } x 0 u 为拒绝区域 2
较大、较小是一个相对的概念,合理的界限在何 处?应由什么原则来确定?
问题是:如何给出这个量的界限? 这里用到人们在实践中普遍采用的一个原则:
小概率事件在一次试验 中基本上不会发生(若发 生了则认为假设是错 )
在假设检验中,称这个小概率为显著性水平,用 表示.

东华大学《概率论与数理统计》课件 第七章 假设检验

东华大学《概率论与数理统计》课件 第七章 假设检验

1. 2为已知, 关于的检验(U 检验 )
在上节中讨论过正态总体 N ( , 2 ) 当 2为已知时, 关于 = 0的检验问题 :
假设检验 H0 : = 0 , H1 : 0 ;
我们引入统计量U
=
− 0 0
,则U服从N(0,1)
n
对于给定的检验水平 (0 1)
由标准正态分布分位数定义知,
~
N (0,1),
由标准正态分布分位点的定义得 k = u1− / 2 ,
当 x − 0 / n
u1− / 2时, 拒绝H0 ,
x − 0 / n
u1− / 2时,
接受H0.
假设检验过程如下:
在实例中若取定 = 0.05, 则 k = u1− / 2 = u0.975 = 1.96, 又已知 n = 9, = 0.015, 由样本算得 x = 0.511, 即有 x − 0 = 2.2 1.96,
临界点为 − u1− / 2及u1− / 2.
3. 两类错误及记号
假设检验是根据样本的信息并依据小概率原
理,作出接受还是拒绝H0的判断。由于样本具有 随机性,因而假设检验所作出的结论有可能是错
误的. 这种错误有两类:
(1) 当原假设H0为真, 观察值却落入拒绝域, 而 作出了拒绝H0的判断, 称做第一类错误, 又叫弃
设 1,2, ,n 为来自总体 的样本,
因为 2 未知, 不能利用 − 0 来确定拒绝域. / n
因为 Sn*2 是 2 的无偏估计, 故用 Sn* 来取代 ,
即采用 T = − 0 来作为检验统计量.
Sn* / n
当H0为真时,
− 0 ~ t(n −1),
Sn* / n
由t分布分位数的定义知

数理统计之假设检验

数理统计之假设检验

数理统计之假设检验概述假设检验是数理统计学中的一个重要方法,用于根据样本数据对总体参数的假设进行推断。

通过对样本数据进行分析,判断总体参数是否符合我们所假设的条件。

本文将从假设检验的基本概念、假设检验的步骤和常见的假设检验方法进行介绍。

假设检验的基本概念假设检验分为原假设和备择假设。

原假设是对总体参数进行的假设,常用符号H0表示。

备择假设是对原假设的否定,常用符号H1或Ha表示。

在进行假设检验时,我们首先设立一个原假设,然后通过对样本数据的分析,对原假设进行推翻或接受。

假设检验的步骤假设检验的步骤一般包括以下几个步骤:1.建立假设:确定原假设H0和备择假设H1。

2.选择显著性水平:显著性水平(α)是在进行假设检验时拒绝原假设的临界点,常用的显著性水平有0.05和0.01。

3.选择检验统计量:根据研究问题和数据类型选择适当的检验统计量。

4.计算检验统计量的值:根据样本数据计算检验统计量的值。

5.做出决策:根据检验统计量的值和显著性水平,判断是否拒绝原假设或接受备择假设。

6.得出结论:根据决策结果得出对总体参数的推断结论。

常见的假设检验方法单总体均值检验单总体均值检验用于检验总体均值是否符合某个给定的值。

假设我们要检验一个药物的剂量对病人的平均生存时间是否有影响,我们可以采用单总体均值检验方法。

双总体均值检验双总体均值检验用于检验两个总体均值是否相等。

假设我们想知道男性和女性的平均身高是否有差异,我们可以使用双总体均值检验方法。

单总体比例检验单总体比例检验用于检验总体比例是否符合某个给定的比例。

假设我们想知道某品牌产品的整体满意度是否达到90%,我们可以采用单总体比例检验方法。

双总体比例检验双总体比例检验用于检验两个总体比例是否相等。

假设我们想知道男性和女性购买某款产品的比例是否相等,我们可以使用双总体比例检验方法。

卡方检验卡方检验用于检验两个或多个分类变量之间的关联性。

假设我们想知道吸烟与患某种疾病是否有关系,我们可以使用卡方检验方法。

数理统计学中的假设检验

数理统计学中的假设检验

数理统计学中的假设检验数理统计学是现代统计学中非常重要的部分,它主要研究如何通过数据来理解自然界的规律。

其中假设检验是其核心内容之一。

什么是假设检验?为什么它如此重要?下面让我们来仔细探讨。

一、假设检验的概念假设检验是指对一个已知的数据样本进行分析,并根据样本推断总体参数的过程。

具体地说,它涉及到两个假设:原假设和备择假设。

原假设指的是我们要检验的假设,一般是由问题的提出者提出;备择假设指的是与原假设相关的另外一种假设。

我们需要对这两个假设进行比较,判断样本的表现是否支持原假设。

如果不支持,那么我们就可以把原假设拒绝,并接受备择假设。

二、假设检验的应用假设检验在各个领域均有广泛的应用,例如医学、金融、政治等。

下面就以医学为例,来说明假设检验的应用。

例如,某个新药对特定疾病的治疗效果进行评估。

原假设是新药的治疗效果和传统药物相同,而备择假设是新药的治疗效果更好。

研究人员会在一定的样本规模内进行临床试验,然后根据试验结果进行假设检验。

如果结果表明新药的治疗效果显著超过传统药物,那么我们就可以拒绝原假设,接受备择假设。

在这个过程中,我们需要考虑到检验结果的可靠性,因此必须计算出显著性水平和P值。

三、假设检验的步骤通常来说,假设检验的步骤可以归纳为以下几步:1. 建立原假设和备择假设原假设通常是问题的提出者对研究对象的一种猜测或假设,而备择假设则是一个相关的假设,通常是对原假设的否定或拓展。

2. 设定显著性水平显著性水平是用于衡量研究结果是否达到了预期的水平。

通常,显著性水平被设定在0.05或0.01水平,也就是说,只有当P值小于0.05时,结果才会被认为是显著的。

3. 计算检验统计量检验统计量是指用来判断样本和原假设之间的差异程度的数值。

通常来说,检验统计量可以从样本中计算出来。

4. 计算P值P值是指在原假设成立的情况下,观察到的样本比当前样本更极端的概率。

通常,我们会根据检验统计量计算P值,并与显著性水平进行比较。

数理统计14:什么是假设检验,拟合优度检验(1),经验分布函数

数理统计14:什么是假设检验,拟合优度检验(1),经验分布函数

数理统计14:什么是假设检验,拟合优度检验(1),经验分布函数在之前的内容中,我们完成了参数估计的步骤,今天起我们将进⼊假设检验部分,这部分内容可参照《数理统计学教程》(陈希孺、倪国熙)。

由于本系列为我独⾃完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢!⽬录Part 1:什么是假设检验假设检验是⼀种统计推断⽅法,⽤来判断样本与样本、样本与总体的差异是由抽样误差引起还是本质差别造成的。

其步骤,其实就是提出⼀个假设,然后⽤抽样作为证据,判断这个假设是正确的或是错误的,这⾥判断的依据就称为该假设的⼀个检验。

假设检验在数理统计中有重要的⽤途,⽐如:橙⼦的平均重量是80⽄,这就是⼀个假设。

我们怎么才能知道它是对的还是错的?这需要我们对橙⼦总体进⾏抽样,然后对样本进⾏⼀定的处理,⽐如计算总体均值的区间估计,如果区间估计不包含80⽄,就认为原假设不成⽴,便拒绝原假设。

当然,由于样本具有随机性,因此我们只是对该假设进⾏检验⽽不是证明,也就是说不论假设检验的结果是接受假设还是拒绝假设,都不能认为假设本⾝是正确的或是错误的。

同时,假设的检验也不是唯⼀确定的,对任何假设都可以有⽆数种⽅案进⾏检验,⽐如上⾯的例⼦,95%的区间估计是⼀种检验,99%的区间估计也可以作为检验,90%的当然也可以,只要事先确定了即可。

总之,要将实⽤问题转化为统计假设检验问题处理,⼀般需要经历以下⼏个步骤:明确所要处理的问题,将其转化为⼆元问题,只能⽤“是”和“否”来回答。

设计适当的检验,规定假设的拒绝域,即拒绝假设时样本X 会落⼊的区域范围(当然也可以是统计量会落⼊的范围,这两个意思是⼀致的)。

抽取样本X 进⾏观测,计算需要的统计量的值。

根据样本的具体值作出接受假设或者否定假设的决定。

以下是假设检验问题的⼀些常⽤概念:零假设即原假设,指的是进⾏统计检验时预先建⽴的假设,⼀般是希望证明其错误的假设,⽤字母H 0表⽰。

这种区分⽅式⽐较⽞乎。

数理统计之假设检验

数理统计之假设检验
小概率事件在一次试验中几乎不会发生。
带概率性质的反证法 u 通常的反证法设定一个假设以后,如果出现的 事实与之矛盾,(即如果这个假设是正确的话,出现 一个概率等于0的事件)则绝对地否定假设.
u 带概率性质的反证法的逻辑是:
如果假设H0是正确的话,一次试验出现一个 概率很小的事件,则以很大的把握否定假设H0.
(3)拒绝域为
u
x 0 n
z
(4)取 , 查表确定临界值 k z z0.05 1.65
(5)计算
u x 0
2250
2000
5
1.65
n 250 25
则拒绝 H0 ,即认为这些产品较以往有显著提高.
2. 2未知时,的检验
未知
2,可用样本方差 S 2
1n n 1 k1 ( X k

H
为真时,
0
U
X 0 n
~
N(0,1)
衡量 u x 0 的大小 n
设一临界值 k>0,若
u x 0 k n
就认为有较大偏差;
则认为
H
不真,拒绝
0
H
0

u x 0 k
n
则接受 H0
显著性检验: P{拒绝H0| H0为真}
P
X
0
k
,
n
U X 0 ~ N(0,1) n
(6) t t , 则拒绝 H0 ,接受 H1;反之,接受 H0.
左边检验
(1)H0 : 0; H1 : 0
(2)选取统计量:T X 0
Sn
(3)拒绝域为
t
x 0
sn
t (n 1)
(4)取 , 查表确定临界值 k t (n 1)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

罐装可乐的容量按标准应在 350毫升和360毫升之间.
生产流水线上罐装可 乐不断地封装,然后装箱 外运. 怎么知道这批罐装 可乐的容量是否合格呢?
把每一罐都打开倒入量杯, 看看容量是否合于标准.
这样做显然 不行!
通常的办法是进行抽样检查.
每隔一定时间,抽查若干罐 . 如每隔1小时, 抽查5罐,得5个容量的值X1,…,X5,根 据这些值来判断生产是否正常.
在 =0.1时, 问这两台机床是否有同样
的精度?
解:设两台自动机床的方差分别为
2 1
,
2 2
,
在 =0.1下检验假设:
H0
:
2 1
2 2
H1
:
2 1
2 2
取统计量
F
S12 S22
~
F (9,7)
其中 S12, S22为两样本的样本方差
否定域为 W: F F1 2 (9,7) 或 F F 2 (9,7)
n
{U u0.01} 是
一小概率事件
否定域为 W : U u0.01 =2.33
解:提出假设: H0 : 21 H1 : 21
取统计量 U X 21 ~ N (0,1)
n
否定域为 W : U u0.01 =2.33
代入 =1.2, n=30,并由样本值计算得统计
量U的实测值
U=2.51>2.33
著性水平,用 表示.
的选择要根据实际情况而定。
常取 0.1, 0.01, 0.05.
现在回到我们前面罐装可乐的例中:
在提出原假设H0后,如何作出接受和拒绝 H0的结论呢?
罐装可乐的容量按标准应在350毫 升和360毫升之间. 一批可乐出厂前应 进行抽样检查,现抽查了n罐,测得容
量为X1,X2,…,Xn,问这一批可乐的容量
不否定H0并不是肯定H0一定对,而 只是说差异还不够显著,还没有达到足 以否定H0的程度 .
所以假设检验又叫
“显著性检验”
如果显著性水平 取得很小,则拒绝
域也会比较小.
其产生的后果是: H0难于被拒绝.
如果在 很小的情况
下H0仍被拒绝了,则说 明实际情况很可能与之 有显著差异.
基于这个理由,人们常把 0.05 时拒绝 H0称为是显著的,而把在 0.01 时拒绝 H0称为是高度显著的.
否定域为 W: F F1 2 (9,7) 或 F F 2 (9,7) 由样本值可计算得F的实测值为: F=1.51 查表得 F 2 (9,7) F0.05(9,7) 3.68
F1 2 (9,7) F0.95(9,7) 1/ F0.05(7,9)
1/ 3.29 0.304
由于 0.304<1.51<3.68, 故接受H0 .
要同时降低两类错误的概率, ,或 者要在 不变的条件下降低 ,需要增
加样本容量.
假设检验和区间估计的关系
请看演示 假设检验和区间估计
单、双侧检验 前面一例的检验,拒绝域取在两侧, 称为双侧检验. 想了解单双侧检验的区别,请看演示.
单双侧检验
下面看一个单侧检验的例子.
例3 某织物强力指标X的均值 0 =21公斤. 改
第二步: 取一检验统计量,在H0成立下 求出它的分布
能衡量差异 大小且分布
已知
t X 32.5 ~ t(5) S6
第三步:
对给定的显著性水平 =0.01,查表确
定临界值 t 2 (5) t0.005(5) 4.0322 ,使
P{| t | t 2 (5)}
即“| t | t 2 (5)”是一个小概率事件 .
总体N (, 2 )的样本,当生产比较稳定时,
2是一个常数. 现在要检验的假设是:
H0: 0( 0 = 355)
它的对立假设是:
H1: 0
在实际工作中, 往往把不轻易 否定的命题作
为原假设.
称H0为原假设(或零假设,解消假设);
称H1为备选假设(或对立假设).
那么,如何判断原假设H0 是否成立呢?
如发现不正常,就应停产,找出原因, 排除故障,然后再生产;如没有问题,就 继续按规定时间再抽样,以此监督生产, 保证质量.
很明显,不能由5罐容量的数据,在把 握不大的情况下就判断生产 不正常,因为 停产的损失是很大的.
当然也不能总认为正常,有了问题不能 及时发现,这也要造成损失.
如何处理这两者的关系,假设检验面 对的就是这种矛盾.
带概率性质的反证法
不妨称为概率反证法.
它不同于一般的反证法
一般的反证法要求在原假设成立的条件下
导出的结论是绝对成立的,如果事实与之矛盾,
则完全绝对地否定原假设.
概率反证法的逻辑是:如果小概率事件
在一次试验中居然发生,我们就以很大的把
握否定原假设.
请 看
红楼梦中的掷骰子
在假设检验中,我们称这个小概率为显
这种差异称作 “系统误差”
问题是,根据所观察到的差异,如何 判断它究竟是由于偶然性在起作用,还是 生产确实不正常? 即差异是“抽样误差”还是“系统误差” 所引起的?
这里需要给出一个量的界限 .
问题是:如何给出这个量的界限? 这里用到人们在实践中普遍采用的一个原则:
小概率事件在一次试验 中基本上不会发生 .
得否定域
小概率事件在一次
W: |t |>4.0322 试验中基本上不会
发生 .
得否定域 W: |t |>4.0322 第四步:
将样本值代入算出统计量 t 的实测值,
| t |=2.997<4.0322 故不能拒绝H0 .
没有落入 拒绝域
这并不意味着H0一定对,只是差异 还不够显著, 不足以否定H0 .
问题归结为对差异作定量的分析,以确定 其性质.
差异可能是由抽样的随机性引起的,称为
“抽样误差”或 随机误差 这种误差反映偶然、非本质的因素所引起 的随机波动.
然而,这种随机性的波动是有一定限 度的,如果差异超过了这个限度,则我们 就不能用抽样的随机性来解释了. 必须认为这个差异反映了事物的本质差别, 即反映了生产已不正常.
假设检验会不会犯错误呢? 由于作出结论的依据是下述
小概率原理
不是一定不发生
小概率事件在一次试验中基本上 不会发生 .
如果H0成立,但统计量的实测值落 入否定域,从而作出否定H0的结论,那 就犯了“以真为假”的错误 .
如果H0不成立,但统计量的 实测值未落入否定域,从而没有
作出否定H0的结论,即接受了错 误的H0,那就犯了“以假为真” 的错误 .
一般说来,按照检验所用的统计量, 分为
U 检验 t 检验 2 检验 F 检验
用正态分布 用 t 分布 用 2 分布 用 F分布
在大样本的条件下,若能求得检验统计量的 极限分布,依据它去决定临界值C.
按照原假设或对立假设的提法,分为 双侧检验,它的舍弃域取在两侧; 单侧检验,它的舍弃域取在左侧或右侧 .
罐装可乐的容量按标准应在 350毫升和360毫升之间.
现在我们就来讨论这个问题.
在正常生产条件下,由于种种随机因素 的影响,每罐可乐的容量应在355毫升上下 波动. 这些因素中没有哪一个占有特殊重要 的地位. 因此,根据中心极限定理,假定每 罐容量服从正态分布是合理的.
这样,我们可以认为X1,…,X5是取自正态
请看下表
假设检验的两类错误 实际情况
决定
H0为真
H0不真
拒绝H0 第一类错误 正确
接受H0 正确
第二类错误
犯两类错误的概率:
P{拒绝H0|H0为真}= ,
P{接受H0|H0不真}= . 显著性水平 为犯第一类错误的概率.
请看演示 两类错误的概率的关系
两类错误是互相关联的, 当样本容 量固定时,一类错误概率的减少导致另 一类错误概率的增加.
在本讲中,我们将讨论不同于参数估计
的另一类重要的统计推断问题. 这就是根据 样本的信息检验关于总体的某个假设是否
正确. 这类问题称作假设检验问题 .
参数假设检验
假设检验 非参数假设检验
总体分布已知, 检验关于未知参数
的某个假设
总体分布未知时的 假设检验问题
这一讲我们讨论对参数的假设检验 . 让我们先看一个例子.
32.56, 29.66, 31.64, 30.00, 31.87, 31.03
问这批产品是否合格?
分析:这批产品(螺钉长度)
的全体组成问题的总体X.
现在要检验E(X)是否为32.5.

已知 X~N (, 2 ), 2 未知.
第一步: 提出原假设和备择假设
H0 : 32.5 H1 : 32.5
落入否定域
故拒绝原假设H0 .
例4 为比较两台自动机床的精度,分别取容 量为10和8的两个样本,测量某个指标的尺 寸(假定服从正态分布),得到下列结果:
车床甲:1.08, 1.10, 1.12, 1.14, 1.15, 1.25, 1.36, 1.38,1.40,1.42
车床乙:1.11, 1.12, 1.18, 1.22, 1.33, 1.35, 1.36, 1.38
这时可能犯第二类错误.
想知道如何计算犯第二类错误的概率, 再请看演示
两类错误的概率的关系
关于特性曲线的内容.
其它情况可参看书上表 (p252),否定域 请自己写出.
注意:我们讨论的是正态总体均值和 方差的假设检验,或样本容量较大,可用 正态近似的情形.
下面我们对本讲内容作简单小结.
提出 假设
总 结
若想了解“检验的p值”这部分内容,请 看教案“第31讲续”.

踏实,奋斗,坚持,专业,努力成就 未来。2 0.12.82 0.12.8 Tuesday , December 08, 2020
相关文档
最新文档