高二数学期中考试试题及答案.doc
2024-2025学年湖北省“金太阳联考”高二(上)期中考试数学试题(含答案)

2024-2025学年湖北省“金太阳联考”高二(上)期中考试数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.(8+i)(1−i)=( )A. 7−9iB. 9−9iC. 7−7iD. 9−7i2.已知角α的终边不在坐标轴上,且2sin 2α=sin α,则cos 2α=( )A. −78B. 78C. −78或1D. −15163.一艘轮船北偏西65∘方向上有一灯塔,此时二者之间的距离为16海里,该轮船以20海里/时的速度沿南偏西55∘的方向直线航行,行驶半小时后,轮船与灯塔之间的距离为( )A. 18海里B. 16海里C. 14海里D. 12海里4.已知某圆台的上、下底面半径分别为2和5,母线长为5,则该圆台的体积为( )A. 63πB. 39πC. 52πD. 42π5.设函数f(x)={ax−2,x⩽1ln x,x >1.若f(x)在R 上单调递增,则a 的取值范围为( )A. (0,+∞)B. (0,2]C. (−∞,2]D. (0,3]6.已知点P(2,1),Q(1,0),H 在直线x−y +1=0上,则|HP|+|HQ|的最小值为( )A. 2 3B. 11C. 10D. 37.金秋十月,某校举行运动会,甲、乙两名同学均从跳高、跳远、100米跑和200米跑这四个项目中选择两个项目参加.设事件A =“甲、乙两人所选项目恰有一个相同”,事件B =“甲、乙两人所选项目完全不同”,事件C =“甲、乙两人所选项目完全相同”,事件D =“甲、乙两人均未选择100米跑项目”,则( )A. A 与C 是对立事件B. C 与D 相互独立C. A 与D 相互独立D. B 与D 不互斥8.已知A(2,0),B(10,0),若直线tx−4y +2=0上存在点P ,使得PA ⋅PB =0,则t 的取值范围为( )A. [−3,215]B. [−215.3]C. (−∞,−215]∪[3,+∞) D. (−∞,−7]∪[95,+∞)二、多选题:本题共3小题,共18分。
2023-2024学年四川省成都市高二下册期中考试数学(理)试题(含解析)

2023-2024学年四川省成都市高二下册期中考试数学(理)试题一、单选题(本大题共12小题,共60.0分.在每小题列出的选项中,选出符合题目的一项)1.已知集合{}{}220,0,1A xx x B =-≤=∣,则A B ⋂=()A.[]0,1B.{}0,1 C.[]0,2D.{}0,1,22.复数3i1iz +=+在复平面内表示的点的坐标为()A.()2,1- B.()1,1- C.()1,2 D.()2,23.函数()3,0ln ,0x e x f x x x +⎧≤=⎨>⎩,则()1f f ⎡⎤-=⎣⎦()A.-1B.0C.ln2D.24.在极坐标系中,圆2cos ρθ=-的圆心的极坐标是()A.1,2π⎛⎫ ⎪⎝⎭B.1,2π⎛⎫- ⎪⎝⎭ C.()1,0 D.()1,π5.下列函数中,在定义域内既是奇函数又是增函数的是()A.()323f x x x=+ B.()5tan f x x=C.()8f x x=-D.()f x x =+6.执行如图所示的程序框图,输出的结果是()A.13B.14C.15D.177.树立劳动观念对人的健康成长至关重要,某实践小组共有4名男生,2名女生,现从中选出4人参加校园植树活动,其中至少有一名女生的选法共有()A.8种B.14种C.12种D.9种8.收集一只棉铃虫的产卵数y 与温度x 的几组数据后发现两个变量有相关关系,按不同的曲线来拟合y 与x 之间的回归方程,并算出了对应的决定系数2如下表:则这组数据模型的回归方程的最好选择应是()A.ˆ19.8463.7yx =- B.0.273.84ˆx ye -=C.2ˆ0.367202yx =- D.ˆy =9.若443243210(1)x a x a x a x a x a -=++++,则4321a a a a -+-=()A.-1B.1C.15D.1610.函数2ln x x y x=的图象大致是()A. B.C.D.11.函数()3224f x x x x =--+,当[]3,3x ∈-时,有()214f x m m -恒成立,则实数m 的取值范围是()A.()3,11- B.()3,11 C.[]2,7D.[]3,1112.已知函数()22(1)sin 1x xf x x ++=+,其导函数记为()f x ',则()()()()2022202220222022f f f f ++--'-'=()A.-3B.3C.2D.-2二、填空题(本大题共4小题,共20.0分)13.复数()i 12i z =+的共轭复数为__________.14.10(1)x -的展开式的第6项系数是__________.15.已知甲,乙,丙三个人中,只有一个人会中国象棋.甲说:“我会”;乙说:“我不会”;丙说:“甲不会”.如果这三句话只有一句是真的,那么甲,乙,丙三个人中会中国象棋的是__________.16.已知,a b 为实数,不等式ln ax b x +≥恒成立,则ba的最小值为__________.三、解答题(本大题共6小题,共70.0分.解答应写出文字说明,证明过程或演算步骤)17.(本小题10.0分)在平面直角坐标系xOy 中,曲线22:1C x y +=所对应的图形经过伸缩变换2x x y =⎧⎪⎨=⎪'⎩'得到图形C '.(1)写出曲线C '的平面直角坐标方程;(2)点P 在曲线C '上,求点P到直线60l y +-=的距离的最小值及此时点P 的坐标.18.(本小题12.0分)已知函数()322f x x ax bx a =+++在1x =-处取得极大值1.(1)求,a b 的值;(2)当[]1,1x ∈-时,求()f x 的最大值.19.(本小题12.0分)随着2022年北京冬季奥运会的如火如茶地进行.2022年北京冬季奥运会吉祥物“冰墩墩”受到人们的青睐,现某特许商品专卖店每天均进货一次,卖一个吉祥物“冰墩墩”可获利50元,若供大于求,则每天剩余的吉祥物“冰墩墩”需交保管费10元/个;若供不应求,则可从其他商店调剂供应,此时调剂的每一个吉祥物“冰墩墩”该店仅获利20元.该店调查上届冬季奥运会吉祥物每天(共计20天)的需求量(单位:个),统计数据得到下表:每天需求量162163164165166频数24653以上述20天吉祥物的需求量的频率作为各需求量发生的概率.记X 表示每天吉祥物“冰墩墩”的需求量.(1)求X 的分布列;(2)若该店某一天购进164个吉祥物“冰墩墩”,则当天的平均利润为多少元.20.(本小题12.0分)光伏发电是利用太阳能电池及相关设备将太阳光能直接转化为电能.近几年在国内出台的光伏发电补贴政策的引导下,某地光伏发电装机量急剧上涨,如下表:年份2011年2012年2013年2014年2015年2016年2017年2018年年份代码x12345678新增光伏装机量y 兆瓦0.40.8 1.6 3.1 5.17.19.712.2某位同学分别用两种模型:①2ˆybx a =+,②ˆy dx c =+进行拟合,得到相应的回归方程并进行残差分析,残差图如下(注:残差等于ˆi i y y-)经过计算得()()()()()888211172.8,42,686.8iiii i i i i x x y y x x t ty y ===--=-=--=∑∑∑,()8213570ii tt =-=∑,其中8211,8i ii i t x t t ===∑.(1)根据残差图,比较模型①,②的拟合效果,应该选择哪个模型?并简要说明理由.(2)根据(1)的判断结果及表中数据建立y 关于x 的回归方程,并预测该地区2020年新增光伏装机量是多少.(在计算回归系数时精确到0.01)附:回归直线的斜率和截距的最小二乘估计公式分别为.()()()121ˆˆˆ,niii ni i x x y y bay bx x x ==---==--∑∑21.(本小题12.0分)已知函数()11x f x eax a -=-+-.(1)讨论函数()f x 的单调性;(2)①若()0f x ≥恒成立,求实数a 的取值集合;②证明.()ln 20xe x -+>22.(本小题10.0分)在极坐标系中,点P 的极坐标是()1,π,曲线C 的极坐标方程为22cos 80ρρθ--=,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,斜率为-1的直线l 经过点P .(1)写出直线l 的参数方程和曲线C 的直角坐标方程;(2)若直线l 和曲线C 相交于两点,A B ,求PA PB PBPA+的值.答案和解析1.【正确答案】B解:集合{}{}{}22002,0,1A xx x x x B =-≤=≤≤=∣∣,则{}0,1A B ⋂=.2.【正确答案】A解.()()()()223i 1i 3i 33i i i 42i 2i 1i 1i 1i 1i 2z +-+-+--=====-++--则复数3i1iz +=+在复平面内表示的点的坐标为()2,1-.3.【正确答案】D解:根据题意,函数()3,0,ln ,0,x e x f x x x +⎧≤=⎨>⎩,则()210f e -=>,则()21ln 2ln 2f f e e ⎡⎤-===⎣⎦,4.【正确答案】D解:圆2cos ρθ=-即22cos ρρθ=-,即2220x y x ++=,即22(1)1x y ++=,表示以()1,0-为圆心,半径等于1的圆.而点()1,0-的极坐标为()1,π,5.【正确答案】A解:函数()323f x x x =+是奇函数,且在定义域内是增函数,A 正确;函数()5tan f x x =在定义域内不具有单调性,B 错误;函数()8f x x=-在定义域内不具有单调性,C 错误;函数()f x x =+[)0,∞+,不具有奇偶性,D 错误;综上,应选A .6.【正确答案】C解:模拟程序的运行,可得1a =执行循环体,3a =不满足条件10a >,执行循环体,7a =不满足条件10a >,执行循环体,15a =满足条件10a >,退出循环,输出a 的值为15.故选.C 7.【正确答案】B【分析】采用采用间接法,任意选有4615C =种,都是男生有1种,进而可得结果.【详解】任意选有4615C =种,都是男生有1种,则至少有一名女生有14种.故本题选B .8.【正确答案】B由决定系数2R 来刻画回归效果,2R 的值越大越接近1,说明模型的拟合效果最好.故选.B 9.【正确答案】C【分析】利用赋值法结合条件即得.【详解】因为443243210(1)x a x a x a x a x a -=++++,令0x =得,01a =,令1x =-得,443210(2)16a a a a a -+-+=-=,所以,432116115a a a a -+-=-=.故选:C.10.【正确答案】D解:当0x >时,ln ,1ln y x x y x ==+',即10x e <<时,函数y 单调递减,当1x e>,函数y 单调递增,又因为函数y 为偶函数,故排除ABC ,故选.D 11.【正确答案】D解:因为()3224f x x x x =--+,所以()2344f x x x =--+',令()0f x '=得23x =或2x =-,可知函数()f x 在[)3,2--上单调递减,在22,3⎛⎫- ⎪⎝⎭上单调递增,在2,33⎛⎤ ⎥⎝⎦上单调递减,而()()()24033,28,,333327f f f f ⎛⎫-=--=-==-⎪⎝⎭,所以函数()f x 在[]3,3-上的最小值为-33,因为当[]3,3x ∈-时,()214f x m m ≥-恒成立,只需2min 14()m m f x -≤,即21433m m -≤-,即214330m m -+≤,解得311m ≤≤.故选D .12.【正确答案】C【分析】利用求导法则求出()f x ',即可知道()()f x f x '='-,再利用()()2f x f x +-=,即可求解.【详解】由已知得()()2222(1)sin (1)sin 11x x x xf x x x -+----==++,则()()2222(1)sin (1)sin 211x x x xf x f x x x ++--+-=+=++,()()()()222221cos 12(1)sin 1x x x x x x f x x'⎡⎤⎡⎤+++-++⎣⎦⎣⎦=+()()()2222cos 12sin 1x x x xx ++-=+则()()()()2222cos 12sin 1x x x xf x x++--=+',即()()f x f x '='-,则()()()()2022202220222022f f f f ++-''--()()()()20222022202220222f f f f =+-+'-'-=,故选:C.13.【正确答案】2i --解:复数()i 12i 2i z =+=-+,其共轭复数为2i --.14.【正确答案】-252【分析】应用二项式定理写出第6项系数.【详解】由101011010C (1)(1)C rrr r r rr T xx --+=-=-,所以,第6项为5r =,则5555610(1)252T C x x =-=-,故第6项系数是-252.故-25215.【正确答案】乙解:假设甲会,那么甲、乙说的都是真话,与题意不符,所以甲不会;假设乙会,那么甲、乙说的都是假话,丙说的真话,符合题意;假设丙会,那么乙、丙说的都是真话,与题意不符,所以丙不会.综上可得:会中国象棋的是乙,16.【正确答案】-1【分析】先由ln ax b x +≥恒成立得出ln 1b a ≥--,进而ln 1b a a a--≥,构造函数()ln 1(0)a g a a a--=>求解.【详解】设()ln (0)f x x ax b x =-->,则不等式ln ax b x +≥恒成立等价于max ()0f x ≤成立,显然当0a ≤时不符合题意.当0a >时,()11(0)ax f x a x x x-=-=>',∴当10x a <<时,()0f x >,当1x a >时,()0f x '<,则()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ∞⎛⎫+⎪⎝⎭上单调递减,max 1()ln 1f x f a b a ⎛⎫∴==--- ⎪⎝⎭.由max ()0f x ≤得ln 1ln 1,b a b a a a --≥--∴≥.令()ln 1(0)a g a a a --=>,则()2ln ag a a=',当01a <<时,()()0,g a g a '<在()0,1上单调递减,当1a >时,()()0,g a g a '>在()1,∞+上单调递增,()min ()11g a g ∴==-,1ba ∴≥-,则min1b a ⎛⎫=- ⎪⎝⎭,此时1,1a b ==-.故-1.17.【正确答案】解:(1)由2x x y =⎧⎪⎨=⎪'⎩'得到2x x y ⎧=⎪⎪⎨'⎪=⎪⎩,代入到221x y +=中,得22()()143x y +=.即22143x y +=为曲线C '的直角坐标方程;(2)设()2cos P θθ,则点P到直线60l y +-=的距离为d ==其中255tan 2sin 55ϕϕϕ⎛=== ⎝⎭,当()sin 1θϕ+=时,即()22k k Z πθϕπ+=+∈,于是()sin sin 2cos 25k k Z πθπϕϕ⎛⎫=+-==∈ ⎪⎝⎭,同理25cos sin 5θϕ==,此时6152d =,即距离最小值为6152,此时点4515,55P ⎛ ⎝⎭.18.【正确答案】解:(1)已知函数()322f x x ax bx a =+++在1x =-处取得极大值1,()234f x x ax b =+'+ ,且函数()f x 在1x =-处有极值1,()()13401120f a b f a b a ⎧-=-+=⎪∴⎨-=-+-+='⎪⎩,解得1;1a b =⎧⎨=⎩又当1a b ==时,()()21341313f x x x x x ⎛⎫=++=++ ⎪⎝⎭',()f x ∴在(),1∞--和1,3∞⎛⎫-+ ⎪⎝⎭上单调递增,在11,3⎛⎫-- ⎪⎝⎭单调递减,故()f x 在1x =-处取得极大值,满足题意;综上,1a b ==;(2)当1,1a b ==时,()3221f x x x x =+++,则()()21341313f x x x x x ⎛⎫=++=++ ⎪⎝⎭',当x 变化时,()f x '与()f x 的变化情况如下表:x -111,3⎛⎫-- ⎪⎝⎭13-1,13⎛⎫- ⎪⎝⎭1()f x '-0+()f x 1单调递减极小值2327单调递增5所以[]1,1x ∈-时,()f x 的最大值为5.19.【正确答案】解:(1)X 可取162,163,164,165,166,()()()214163162,163,16420102052010P X P X P X =========,()()513165,16620420P X P X =====,所以分布列为:X162163164165166P 1101531014320(2)设Y 表示每天的利润,当162X =时,162502108080Y =⨯-⨯=,当163X =时,16350108140Y =⨯-=,当164X =时,164508200Y =⨯=,当165X =时,16450208220Y =⨯+=,当166X =时,164502208240Y =⨯+⨯=,所以平均利润为1131380808140820082208240818710510420⨯+⨯+⨯+⨯+⨯=(元).20.【正确答案】解:(1)选择模型①,理由如下:根据残差图可以看出,模型①残差对应点分布在以横轴为对称轴,宽度小于1的水平带状区域内,模型①的各项残差的绝对值要远远小于模型②的各项残差的绝对值,所以模型①的拟合效果相对较好.(2)由(1)知,y 关于x 的回归方程为2ˆˆˆy bx a =+,令2t x =,则ˆˆˆy bt a =+.由所给数据可得8111(1491625364964)25.588i i t t ===⨯+++++++=∑,8111(0.40.8 1.6 3.1 5.17.19.712.2)588i i y y ===⨯+++++++=∑,则()()()81821686.8ˆ0.193570i i i i i t t y y b t t ==--==≈-∑∑,ˆˆ50.1925.50.16ay bt =-≈-⨯≈.所以y 关于x 的回归方程为2ˆ0.190.16yx =+.预测该地区2020年新增光伏装机量为2ˆ0.19100.1619.16y=⨯+=(兆瓦).21.【正确答案】解:(1)因为()11x f x e ax a -=-+-,所以()1x f x e a -=-',①当0a ≤时,()0f x '>,函数()f x 在区间R 上单调递增;②当0a >时,令()0,ln 1f x x a >>+',令()0,ln 1f x x a <<+',所以()f x 在(),ln 1a ∞-+上单调递减,在()ln 1,a ∞++上单调递增.(2)①由(1)可得当0a ≤,函数()f x 在区间R 上单调递增,又()0110f e a a =-+-=,所以1x <,则()0f x <,与条件矛盾,当0a >时,()f x 在(),ln 1a ∞-+上单调递减,在()ln 1,a ∞++上单调递增,所以()()ln 1f x f a ≥+,由已知()ln 10f a +≥,所以aln 10a a --≥,设()ln 1g x x x x =--,则()1ln 1ln g x x x =--=-',所以当()0,1x ∈时,()0g x '>,函数()ln 1g x x x x =--单调递增,()1,x ∞∈+时,()0g x '<,函数()ln 1g x x x x =--单调递减,又()11ln110g =--=,所以不等式ln 10a a a --≥的解集为{}1.②证明:设()()1ln 2h x x x =+-+,则()11122x h x x x +=-=++',当()2,1x ∈--时,()0h x '<,函数()()1ln 2h x x x =+-+单调递减,()1,x ∞∈-+时,()0g x '>,函数()()1ln 2h x x x =+-+单调递增,又()10ln10h -=-=,所以()1ln 20x x +-+≥,当且仅当1x =-时取等号,由(1)1x e x ≥+,当且仅当0x =时取等号,所以()ln 20xe x -+>.22.【正确答案】解:(1)点P 的直角坐标是()1,0-,直线l 的倾斜角是34π,∴直线l 的参数方程为21222x t y t ⎧=--⎪⎪⎨⎪=⎪⎩,(t 为参数),由直角坐标与极坐标互化公式得曲线C 的直角坐标方程为22(1)9x y -+=.(2)将1222x t y t ⎧=--⎪⎪⎨⎪=⎪⎩代入22(1)9x y -+=,得250t +-=,设,A B 对应参数分别为12,t t,则12125t t t t +==-,根据直线参数方程t 的几何意义得:()()2222221212121212||2251855PA PB t t t t PAPBt t PB PA PA PB t t t t ++--⨯-++=====⋅⋅⋅-.。
2023-2024学年北京通州区高二(上)期中数学试题和答案

2023北京通州高二(上)期中数 学本试卷共4页,共150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,请将答题卡交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 直线20x y -+=的倾斜角为( )A.π4B.π3C.2π3D.3π42. 已知()2,3,1A --,()6,5,3B -,则AB =( )A. B. C. D. 123. 已知()2,3,1a =-,()1,3,0b =,()0,0,1c = ,则()a b c ⋅+ 等于( )A. -4B. -6C. -7D. -84. 已知圆1C :222880x y x y +++-=,圆2C :()()222210x y -+-=,则圆1C 与圆2C 的位置关系是( )A. 外离B. 外切C. 相交D. 内含5. 设直线1l :240ax y +-=,2l :()120x a y +++=.则“1a =”是“12l l //”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件 D. 既不充分也不必要条件6. 已知ABCD 为矩形,4,1,AB AD ==点P 在线段CD 上,且满足AP BP ⊥,则满足条件的点P 有( )A. 0个B. 1个C. 2个D. 4个7. 如图,四面体ABCD 中,AB a=,AC b = ,AD c = ,M 为BD 的中点,N 为CM 的中点,则AN =( )A. 111444a b c ++B. 111442a b c ++C. 111222a b c ++ D. 111424a b c ++ 8. 在棱长为1的正四面体(四个面都是正三角形)ABCD 中,M ,N 分别为BC ,AD 的中点,则AM 和CN 夹角的余弦值为( )A.23C.13D. 23-9. 如图,在平行六面体1111ABCD A B C D -中,4AB AD ==,1AA =,60BAD ∠=︒,1145DAA BAA ∠=∠=︒,AC 与BD 相交于点O .则1OA 的长为( )B. 2C. D. 10. 过直线1y x =-上一点P 作圆()2252x y -+=的两条切线1l ,2l ,切点分别为A ,B ,当直线1l ,2l 关于1y x =-对称时,线段PA 的长为( )A. 4B. D. 2第二部分(非选择题 共110分)二、填空题共5小题,每小题5分,共25分.11. 已知直线经过点A(0,4)和点B(1,2),则直线AB 的斜率为_____________.12. 在正三棱柱111ABC A B C -中,12AB AA ==,则直线1AA 到平面11BB C C 的距离为_______13. 在空间直角坐标系Oxyz 中,已知()2,0,0AB = ,()0,2,0AC = ,()0,0,2AD = .则CD 与CB的夹角的余弦值为___________;CD 在CB的投影向量a = ___________.14. 若直线y x b =+与曲线y =恰有一个公共点,则实数b 的一个可能取值是_________.15. 在棱长为1的正方体1111ABCD A B C D -中,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈.给出下列四个结论:①所有满足条件的点P 组成的区域面积为1;②当1μ=时,三棱锥1P A BC -的体积为定值;③当1λ=时,点P 到1A B 距离的最小值为1;④当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P .则所有正确结论的序号为__________.三、解答题共6小题,共85分.解答应写出文字说明、演算步骤或证明过程.16. 已知直线1:280l x y +-=,直线2:20l x y -+=,设直线1l 与2l 的交点为A ,点P 的坐标为()2,0.(1)求点A 的坐标;(2)求经过点P 且与直线1l 平行的直线方程;(3)求以AP 为直径的圆的方程.17. 已知直线10x y -+=,圆22:420C x y x y m +--+=.(1)若直线与圆相交,求实数m 的取值范围;(2)在(1)的条件下,设直线与圆交于A ,B 两点.(i )求线段AB 的垂直平分线的方程;(ii )若AB =m 的值.18. 如图,在五面体ABCDEF 中,平面ABCD 为正方形,平面ABFE 平面CDEF EF =,AD ED ⊥.注:如果选择多个条件分别解答,按第一个解答计分.(1)求证://CD 平面ABFE ;(2)若1EF ED ==,2CD EF =,再从条件①、条件②这两个条件中选择一个作为已知,求平面ADE 与平面BCF 夹角的大小.条件①:CD EA ⊥;条件②:CF =.19. 如图,在正方体1111ABCD A B C D -中,,,,E F G H 分别是棱AB ,11B C ,11C D ,1D D 的中点.(1)求证:,,,E F G H 四点共面;(2)求1B D 与平面EFGH 所成角的正弦值;(3)求点1B 到平面EFGH 的距离.20. 已知四边形ABCD 为正方形,O 为AC ,BD 的交点,现将三角形BCD 沿BD 折起到PBD 位置,使得PA AB =,得到三棱锥P ABD -.(1)求证:平面PBD ⊥平面ABD ;(2)棱PB 上是否存在点G ,使平面ADG 与平面ABD ?若存在,求PG GB;若不存在,说明理由.21. 长度为6的线段PQ ,设线段中点为G ,线段PQ 的两个端点P 和Q 分别在x 轴和y 轴上滑动.(1)求点G 的轨迹方程;(2)设点G 的轨迹与x 轴交点分别为A ,B (A 点在左),与y 轴交点分别为C ,D (C 点在上),设H 为第一象限内点G 的轨迹上的动点,直线HB 与直线AD 交于点M ,直线CH 与直线=3y -交于点N .试判断直线MN 与BD 的位置关系,并证明你的结论.参考答案第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 【答案】A【分析】根据解析式可得直线斜率为1k =,再由倾斜角与斜率之间的关系可得π4θ=.【详解】设直线的倾斜角为θ,将直线20x y -+=化为斜截式可得2y x =+,即直线斜率为1k =;所以tan 1k θ==,又[)0,πθ∈,所以π4θ=.故选:A 2. 【答案】D【分析】由空间向量模长的坐标表示代入计算即可求得结果.【详解】由()2,3,1A --,()6,5,3B -可得()8,8,4AB =-,所以12AB == .故选:D 3. 【答案】B【分析】根据空间向量的坐标运算法则进行运算即可.【详解】因为()2,3,1a =- ,()1,3,0b =,()0,0,1c = ,所以(1,3,1)b c +=,则()21(3)3116a b c ⋅+=⨯+-⨯+⨯=-,故选:B 4. 【答案】C【分析】依题意将圆的一般方程化为标准方程求出两圆圆心和半径,比较圆心距与两半径之差、之和的关系即可得出结论.【详解】根据题意将1C 化为标准方程可得()()221425x y +++=,即圆心()11,4C --,半径15r =;由()()222210x y -+-=可知圆心()22,2C ,半径2r =;此时圆心距为12C C ==,121255r r r r +=+-=-;显然1212122r r C C r r -+<<,即两圆相交.故选:C 5. 【答案】C【分析】求出12l l //时a 的值,即可判定.【详解】因为直线1l :240ax y +-=,2l :()120x a y +++=,故12l l //时,有(1)20a a +-=,解得1a =,或者2a =-,当1a =时,1l :240x y +-=,2l :220x y ++=,12l l //;当2a =-时,1l :2240x y -+-=,即20x y -+=,2l :20x y -+=,则两直线重合,故12l l //时,1a =,则“1a =”是“12l l //”的充要条件,故选:C.6. 【答案】C【分析】以A 为原点,AB 为x 轴,AD 为y 轴,建立如图所示的平面直角坐标系,设出P 点坐标,算出,AP BP 坐标,由AP BP ⊥得到0AP BP =,构建方程求解即可.【详解】以A 为原点,AB 为x 轴,AD 为y 轴,建立如图所示的平面直角坐标系,可得()()0,0,4,0A B ,因为点P 在线段CD 上,所以可设()(),1,04P t t ≤≤,所以()(),1,4,1AP t BP t ==-,又AP BP ⊥,所以0AP BP =,可得4t =()410t t -+=,解得;2t =±,即满足条件的点P 有2个.故选:C.7. 【答案】D【分析】利用空间向量的线性运算,以,,a b c 为基底表示出向量AN即可.【详解】由题可知AN AM MN +=,由M 为BD 的中点,N 为CM 的中点可得()12AM MN AB AD NC +=++,即()()()111222AN AB AD NC AB AD NA AC a c NA b ++=+++=+=++,即()12AN a c NA b =+++ ,所以()122AN a c b =++,即111424AN a b c =++ .故选:D 8. 【答案】A【分析】根据正四面体性质取BN 的中点为P ,即可知AMP ∠即为异面直线AM 和CN 的夹角的平面角,计算出各边长利用余弦定理即可求得结果.【详解】连接BN ,取BN 的中点为P ,连接,AP MP ,如下图所示:由正四面体的棱长为1可得AM CN BN ===又,M P 分别是,BC BN 的中点,所以//MP CN,且12MP CN ==所以AMP ∠即为异面直线AM 和CN 的夹角的平面角,又易知BN AN ⊥,且12PN BN ==AP ===因此337241616cos 3AMP +-∠==,即AM 和CN 夹角的余弦值为23.故选:A 9. 【答案】B【分析】把111122OA AA AB AD =--两边平方并展开,根据向量数量积的定义计算即可.【详解】因为1111122OA AA AO AA AB AD =-=--,所以221111||22OA AA AB AD =-- 22111111442AA AB AD AA AB AA AD AB AD=++-⋅-⋅+⋅11844444422=++--⨯⨯⨯4=,则12OA =,即1OA 的长为2,故选:B.10. 【答案】C【分析】根据题意画出图形,观察图形可知圆心与点P 的连线垂直于直线1y x =-,利用这一关系即可求得切线段的长.【详解】如图所示,圆心(5,0)C ,连接CP ,因为直线1l ,2l 关于直线1y x =-对称,所以CP 垂直于直线1y x =-,故CP而||AC =,则PA ==,故选:C.第二部分(非选择题 共110分)二、填空题共5小题,每小题5分,共25分.11. 【答案】2-【详解】由两点间斜率计算公式可得42201k -==--,故答案为2-.12. 【分析】先作出直线1AA 上的点到平面11BB C C 的垂线段,然后利用勾股定理求出垂线段的长度即可.【详解】在正三棱柱111ABC A B C -中,在底面ABC 内作AD BC ⊥,因为平面11BB C C ⊥底面ABC ,平面11BB C C 底面ABC BC =,所以AD ⊥平面11BB C C ,因为11AA CC ∥,1AA ⊄平面11BB C C ,1CC ⊂平面11BB C C ,所以1AA ∥平面11BB C C ,所以AD 即为直线1AA 到平面11BB C C 的距离,因为ABC 为等边三角形,且2AB =,所以直线1AA 到平面11BB C C 的距离为AD ==.13. 【答案】 ①. 12 ②. ()1,1,0-【分析】先根据空间向量的坐标运算求出CD 与CB的坐标,然后由向量夹角的运算公式和投影向量的计算公式即可求出结果.【详解】因为()2,0,0AB =,()0,2,0AC = ,()0,0,2AD = ,所以()0,2,2CD AD AC =-=- ,()2,2,0CB AB AC =-=-,所以1cos ,2CD CB CD CB CD CB 〈〉===,CD 在CB的投影向量为()cos ,1,1,0CB CD CD CB CB〈〉=-.故答案为:12;()1,1,0-.14. 【答案】1-(答案不唯一)【分析】画出图象,结合图象确定一个公共点时的位置,求出相应的b 的值,数形结合可得答案.【详解】曲线y =1的圆的上半部分,如图所示,有图可知,当直线y x b =+在2l 和3l 之间移动或与半圆相切,即处于1l 的位置时,直线与圆恰好有一个公共点,当直线y x b =+在3l 时,经过点(1,0),所以1b =-,当直线y x b =+在2l 时,经过点()1,0-,所以1b =,1=,所以b =,或者b =(舍),故b =或者11b -≤<.故答案为: 1.-15. 【答案】①②③【分析】对于①,根据条件得点P 在正方形11BCC B 内,即可判断;对于②,点P 在线段11B C 上,从而点P 到平面1A BC 的距离为定值,1A BC S △为定值,从而三棱锥1P A BC -的体积为定值;对于③,点P 在线段1CC 上,当点P 与C 重合时,BP 即为P 到1A B 距离的最小值为1,从而判断;对于④,由题点P 在线段EF 上,当1A B ⊥平面1AB P 时,可得1//AE AB ,与1AE AB A ⋂=矛盾,从而即可判断.【详解】如图所示,对于①,因为1BP BC BB λμ=+ ,[]0,1λ∈,[]0,1μ∈,所以点P 在正方形11BCC B 内(包括正方形),而正方形11BCC B 的面积为1,故①正确;对于②,1μ=时,1BP BC BB λ=+ ,所以1111,BP BB BC B P BC B C λλλ-=== ,故点P 在线段11B C 上,由题易得11//B C 平面1A BC ,所以11B C 上的点到平面1A BC 的距离都相等,又1112A BC S == 所以三棱锥1P A BC -的体积为定值,故②正确;对于③,1λ=时,1BP BC BB μ=+ ,所以111,BP BC BB CP BB CC μμμ-=== ,所以点P 在线段1CC 上,连接BP ,由题意可得,BC ⊥平面11ABB A ,1A B ⊂平面11ABB A ,1BC A B ⊥,当点P 与C 重合时,BP 即为P 到1A B 距离的最小值为1,故③正确;对于④,当12μ=时,112BP BC BB λ=+,取1BB 的中点E ,1CC 的中点F ,则点P 在线段EF 上,若1A B ⊥平面1AB P ,则AP ⊂平面1AB P ,必有1A B AP ⊥,因为PE ⊥平面11ABB A ,1A B ⊂平面11ABB A ,所以1PE A B ⊥,AP PE P ⋂=,所以1A B ⊥平面APE ,则有1A B AE ⊥,又11A B AB ⊥,所以1//AE AB ,与1AE AB A ⋂=矛盾,故不存在满足题意的点,④错误,故答案为:①②③.三、解答题共6小题,共85分.解答应写出文字说明、演算步骤或证明过程.16. 【答案】(1)()2,4(2)240x y +-=(3)()()22224x y -+-=【分析】(1)解两直线方程构成的方程组即可得解;(2)求出直线1l 的斜率,然后利用点斜式即可求出直线方程;(3)根据中点坐标公式求出圆心坐标,再利用两点距离公式求出半径,进而可得圆的方程.【小问1详解】由28020x y x y +-=⎧⎨-+=⎩解得24x y =⎧⎨=⎩,所以直线1l 与2l 的交点为()2,4A .【小问2详解】由1:280l x y +-=得直线1l 的斜率为2-,又点P 的坐标为()2,0,所以经过点P 且与直线1l 平行的直线方程为()22y x =--,即240x y +-=.【小问3详解】因为()2,4A ,()2,0P ,所以AP 的中点坐标为()2,2,22AP=,所以以AP 为直径的圆的方程为()()22224x y -+-=.17. 【答案】(1)(),3-∞(2)(i )30x y +-= (ii )52m =【分析】(1)由题意,根据圆心到直线的距离小于半径列式求解即可;(2)(i )由题意线段AB 的垂直平分线经过圆心,从而可直接求得直线方程;(ii )由弦长AB =.【小问1详解】由22420x y x y m +--+=得()()22215x y m -+-=-,所以当5m <时,22420x y x y m +--+=表示以()2,1为半径的圆,由于直线10x y -+=与圆相交,所以圆心到直线的距离d =<所以3m <,即实数m 的取值范围为(),3-∞.【小问2详解】(i)由题意,线段AB 的垂直平分线经过圆心()2,1,斜率为1-,所以线段AB 的垂直平分线的方程为()12y x -=--,即30x y +-=.(ii )由于圆心到直线的距离d ,AB =所以由AB ==解得52m =.18. 【答案】(1)证明见详解(2)选条件①π4;选条件②π4【分析】(1)根据条件知//AB CD ,利用线面平行的判定定理即可证明;(2)建立空间直接坐标系,求出两个平面的法向量,根据向量夹角的余弦值即可求出夹角的大小.【小问1详解】因为在五面体ABCDEF 中,平面ABCD 为正方形,所以//AB CD ,又CD ⊄平面ABFE ,AB ⊂平面ABFE ,故//CD 平面ABFE ;【小问2详解】若选条件①:根据已知条件可得:CD AD ⊥,因为CD EA ⊥,EA AD A ⋂=,EA ⊂平面ADE ,AD ⊂平面ADE ,所以CD ⊥平面ADE ,因为DE ⊂平面ADE ,所以CD DE ⊥,则以D 为坐标原点,分别以,,DA DC DE 所在直线为,,x y z 轴,建立空间直接坐标系如下图所示,因为1EF ED ==,22CD EF ==,所以(0,0,0),(2,0,0),(2,2,0),(0,2,0),(0,0,1),D A B C E则(2,0,0)BC =- ,由(1)知,//CD 平面ABFE ,CD ⊂平面CDEF ,又平面ABFE 平面CDEF EF =,所以//CD EF ,所以12EF CD =,所以(0,1,1),F 即(0,1,1)FC =- .因为CD ⊥平面ADE ,所以平面ADE 的法向量为(0,2,0)DC = ,设平面BCF 的法向量为(,,)n x y z = ,则200n BC x n FC y z ⎧⋅=-=⎪⎨⋅=-=⎪⎩ ,令1,y =则(0,1,1)n = ,设平面ADE 与平面BCF 夹角为θ,则cos n DC n DC θ⋅===,又π02θ≤≤,则π,4θ=即平面ADE 与平面BCF 夹角的大小为π.4若选条件②:由(1)知,//CD 平面ABFE ,CD ⊂平面CDEF ,又平面ABFE 平面CDEF EF =,所以//CD EF ,过点F 作//FG ED ,交CD 于点G ,则四边形EFGD 为平行四边形,又1EF ED ==,2CD EF =,则1,1FG ED CG CD DG ===-=,又因为CF =则222CF FG CG =+,故π2FGC ∠=,即CG FG ⊥,则CD DE ⊥,则以D 为坐标原点,分别以,,DA DC DE 所在直线为,,x y z 轴,建立空间直接坐标系如下图所示,因为1EF ED ==,22CD EF ==,所以(0,0,0),(2,0,0),(2,2,0),(0,2,0),(0,0,1),D A B C E则(2,0,0)BC =- ,又12EF CD =,所以(0,1,1),F 即(0,1,1)FC =- .因为CD ⊥平面ADE ,所以平面ADE 的法向量为(0,2,0)DC = ,设平面BCF 的法向量为(,,)n x y z = ,则200n BC x n FC y z ⎧⋅=-=⎪⎨⋅=-=⎪⎩ ,令1,y =则(0,1,1)n = ,设平面ADE 与平面BCF 夹角为θ,则cos n DC n DC θ⋅===,又π02θ≤≤,则π,4θ=即平面ADE 与平面BCF 夹角的大小为π.419. 【答案】(1)证明见详解(2)13(3【分析】(1)取1BB 的中点,M 连接,,EM FM HM ,先证,,,H M F G 四点共面,再证,,,H M G E 四点共面,又这两个平面重合,即可证明;(2)以D 为原点,建立空间直角坐标系,求得平面EFGH 的法向量,1DB 与法向量夹角的余弦值的绝对值即为所求;(3)利用点到平面距离的向量表示公式计算即可.【小问1详解】如图,取1BB 的中点,M 连接,,EM FM HM ,因为,,,E F G H 分别是棱AB ,11B C ,11C D ,1D D 的中点,易得11//HM B D ,11//GF B D ,所以//HM GF ,所以,,,H M F G 四点共面,又1111//,//,//EM AB HG DC AB DC ,所以//EM HG ,则,,,H M G E 四点共面,而过不共线的的三点,,H M G 的平面具有唯一性,则平面HMFG 与平面EMGH 重合,故,,,E F G H 四点共面.【小问2详解】以D 为原点,1,,DA DC DD 所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,设正方形的的边长为a则()()1,,,0,0,0,0,,0,222a aaB a a a D E a F a a G a ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,,,则1(,,),(,,0),(,0,)22a a DB a a a GF GE a a ===-,设(),,n x y z = 是平面EFGH 的法向量,则00022000aan GFx y x y x z n GE ax az ⎧⎧⋅=+=+=⎧⎪⎪⇒⇒⎨⎨⎨-=⋅=⎩⎪⎪⎩-=⎩,取1x =,则1, 1.y z =-=所以(1,1,1)n =- ,所以1B D 与平面EFGH所成角的正弦值为11111sin ,cos ,3n DB n DB n DB n DB ⋅====⋅ 【小问3详解】由(2)知平面EFGH 的法向量(1,1,1)n =- ,又()11,0,0FB =因为1m FB m ⋅==即1B 到平面EFGH20. 【答案】(1)证明见解析(2)存在满足题意的点G ,且1PGGB =【分析】(1)由平面与平面垂直的判定定理即可证明;(2)建立空间直角坐标系,求出平面ADG 与平面ABD 的法向量,然后根据求面面角的方法即可列式求解.【小问1详解】因为四边形ABCD 为正方形,所以OA OB OC OD ===,,OC OB OA OB ⊥⊥,所以折起后,OA OB OP OD ===,OP OB ⊥,由于折起前有222OA OB AB +=,且折起后PA AB =,所以折起后有222OA OP PA +=,即OP OA ⊥,又OP OB ⊥,OA OB O = ,,OA OB ⊂平面ABD ,所以OP ⊥平面ABD ,又OP ⊂平面PBD ,所以平面PBD ⊥平面ABD .【小问2详解】由(1)知OP OB ⊥,OP OA ⊥,OA OB ⊥,所以以O 为原点,以OA 为x 轴,以OB 为y 轴,以OP 为z 轴建立空间直角坐标系,设1OA =,则()1,0,0A ,()0,1,0B ,()0,1,0D -,()0,0,1P ,则()1,1,0AD =-- ,()0,1,1PB =- ,()1,0,1AP =- ,假设存在满足题意的点G ,设()()0,,01PG PB λλλλ==-≤< ,则()1,,1AG AP PG λλ=+=-- ,设平面ADG 的法向量为(),,n x y z = ,则·0·0AD n AG n ⎧=⎪⎨=⎪⎩ ,即()010x y x y z λλ--=⎧⎨-++-=⎩,令1x =,得1y =-,11z λλ+=-,即11,1,1n λλ+⎛⎫=- ⎪-⎝⎭ ,易知平面ABD 的一个法向量为()0,0,1m = ,因为平面ADG 与平面ABD,所以11cos ,n m n m n m λλ+-〈〉=== ,解得12λ=,所以在棱PB 上存在点G ,使平面ADG 与平面ABD,且G 为棱PB 的中点,所以1PG GB=.21. 【答案】(1)229x y +=;(2)//MN BD ,证明见解析.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半,得到OG 的长度,进而判断出G 的轨迹,得到轨迹方程;(2)写出,,,A B C D 四点的坐标,联立直线HB 与直线AD 的方程求出点M 的坐标,联立直线CH 与直线=3y -的方程求出N 的坐标,再利用坐标求出MN k 并与BD k 进行比较即可.【小问1详解】在Rt POQ 中,因为G 是线段PQ 的中点,所以1||||32OG PQ ==,所以G 的轨迹为以O 为圆心,以3为半径的圆,所以G 的轨迹方程为229x y +=.【小问2详解】//MN BD ,证明如下:依题意,下列各点坐标为(3,0),(3,0),(0,3),(0,3)A B C D --,直线AD 的方程为3y x =--.因为H 为第一象限内点G 的轨迹上的动点,故设0000(,)(03,03)H x y x y <<<<,且22009x y +=.设直线HB 的方程为00(3)3y y x x =--,00(3)33y y x x y x ⎧=-⎪-⎨⎪=--⎩ ,解得0000000339363y x x x y y y x y -+⎧=⎪+-⎪⎨-⎪=⎪+-⎩,即00000003396()33y x y M x y x y -+-+-+-,.试题21设直线CH 的方程为0033y y x x -=+,00333y y x x y -⎧=+⎪⎨⎪=-⎩ ,解得00633x x y y -⎧=⎪-⎨⎪=-⎩,即006(3)3x N y ---.所以000000000633339633MN y x y k y x x x y y -++-=-+++-- 0000000000(23)(3)(3)(3)2(3)y x y y y x y x x y -++--=-+-++-20000220000039392x y y x x y y x x --+=-+++200002200000391392(9)x y y x x y y x y --+==+--+-,又03130BD MN k k +===-,所以//MN BD.。
北京市2023-2024学年高二上学期期中数学试题含答案

北京市2023—2024学年第一学期期中阶段练习高二数学(答案在最后)2023.11班级____________姓名____________学号____________本试卷共3页,共150分.考试时长120分钟.考生务必将答案写在答题纸上,在试卷上作答无效.一、选择题:本大题共10道小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目的要求.把正确答案涂写在答题卡上相应的位置..................1.已知(1,3),(3,5)A B --,则直线AB 的斜率为()A.2 B.1C.12D.不存在【答案】A 【解析】【分析】由斜率公式,可求出直线AB 的斜率.【详解】由(1,3),(3,5)A B --,可得35213AB k --==--.故选:A.2.圆222430x y x y +-++=的圆心为().A.(1,2)-B.(1,2)- C.(2,4)- D.(2,4)-【答案】A 【解析】【分析】先将圆的一般方程化为标准方程,从而可求出其圆心坐标.【详解】由222430x y x y +-++=,得22(1)(2)2x y -++=,所以圆心为(1,2)-,故选:A3.一个椭圆的两个焦点分别是()13,0F -,()23,0F ,椭圆上的点P 到两焦点的距离之和等于8,则该椭圆的标准方程为()A.2216428x y += B.221167x y += C.221169x y += D.22143x y +=【答案】B 【解析】【分析】利用椭圆的定义求解即可.【详解】椭圆上的点P 到两焦点的距离之和等于8,故28,4a a ==,且()13,0F -,故2223,7c b a c ==-=,所以椭圆的标准方程为221167x y +=.故选:B4.任意的k ∈R ,直线13kx y k -+=恒过定点()A.()0,0 B.()0,1 C.()3,1 D.()2,1【答案】C 【解析】【分析】将直线方程整理成斜截式,即可得定点.【详解】因为13kx y k -+=,即()31y k x =-+,所以直线13kx y k -+=恒过定点()3,1.故选:C.5.已知圆221:1C x y +=与圆222:870C x y x +-+=,则圆1C 与圆2C 的位置关系是()A.相离B.相交C.内切D.外切【答案】D 【解析】【分析】求出两圆的圆心和半径,得到12124C C r r ==+,得到两圆外切.【详解】圆221:1C x y +=的圆心为()10,0C ,半径为11r =,圆()22222:87049C x y x x y +-+=⇒-+=,故圆心()24,0C ,半径为23r =,则12124C C r r ==+,所以圆1C 与圆2C 的位置关系是外切.故选:D6.过点1,22P ⎛⎫- ⎪⎝⎭的直线l 与圆2214x y +=有公共点,则直线l 的倾斜角取值范围是()A.π5π,26⎡⎤⎢⎥⎣⎦ B.2π,π3⎡⎫⎪⎢⎣⎭C.π22π,3⎡⎤⎢⎥⎣⎦D.5π,π6⎡⎫⎪⎢⎣⎭【答案】A 【解析】【分析】利用直线与圆的位置关系及倾斜角与斜率的关系计算即可.【详解】易知圆的半径为12,圆心为原点,当倾斜角为π2时,即直线l 方程为12x =-,此时直线l 与圆相切满足题意;当斜率存在时,不妨设直线l方程为122y k x ⎛⎫=++ ⎪⎝⎭,则圆心到其距离为12d =≤,解不等式得33k ≤-,所以直线l 的倾斜角取值范围为π5π,26⎡⎤⎢⎥⎣⎦故选:A7.“1a =-”是“直线1:430l ax y +-=与直线()2:320l x a y +-+=平行的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】求出当12l l //时实数的值,再利用集合的包含关系判断可得出结论.【详解】当12l l //时,()34a a -=,即2340a a --=,解得1a =-或4.当1a =-时,直线1l 的方程为430x y -+=,直线2l 的方程为420x y -+=,此时12l l //;当4a =时,直线1l 的方程为304x y +-=,直线2l 的方程为20x y ++=,此时12l l //.因为{}1-{}1,4-,因此,“1a =-”是“直线1:430l ax y +-=与直线()2:320l x a y +-+=平行”的充分不必要条件.故选:A.8.如图,在平行六面体1111ABCD A B C D -中,12AA AD AB ===,2BAD π∠=,113BAA A AD π∠=∠=,则11AB AD ⋅=()A.12B.8C.6D.4【答案】B 【解析】【分析】根据空间向量加法的运算性质,结合空间向量数量积的运算性质和定义进行求解即可.【详解】()()21111111AB AD AB AA AD AA AB AD AB AA AD AA AA ⋅=+⋅+=⋅+⋅+⋅+ 211110222228,22AB AD ⇒⋅=+⨯⨯+⨯⨯+= 故选:B9.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.这条直线被后人称为三角形的欧拉线,已知△ABC 的顶点()2,0A ,()1,2B ,且AC BC =,则△ABC 的欧拉线的方程为()A.240x y --=B.240x y +-=C.4210x y ++=D.2410x y -+=【答案】D 【解析】【分析】由题设条件求出AB 垂直平分线的方程,且△ABC 的外心、重心、垂心都在垂直平分线上,结合欧拉线的定义,即垂直平分线即为欧拉线.【详解】由题设,可得20212AB k -==--,且AB 中点为3(,1)2,∴AB 垂直平分线的斜率112AB k k =-=,故垂直平分线方程为131()12224x y x =-+=+,∵AC BC =,则△ABC 的外心、重心、垂心都在垂直平分线上,∴△ABC 的欧拉线的方程为2410x y -+=.故选:D10.曲线33:1C x y +=.给出下列结论:①曲线C 关于原点对称;②曲线C 上任意一点到原点的距离不小于1;③曲线C 只经过2个整点(即横、纵坐标均为整数的点).其中,所有正确结论的序号是A.①② B.②C.②③D.③【答案】C 【解析】【分析】将(),x y --代入,化简后可确定①的真假性.对x 分成0,0,01,1,1x x x x x <=<<=>等5种情况进行分类讨论,得出221x y +≥,由此判断曲线C 上任意一点到原点的距离不小于1.进而判断出②正确.对于③,首先求得曲线C 的两个整点()()0,1,1,0,然后证得其它点不是整点,由此判断出③正确.【详解】①,将(),x y --代入曲线33:1C x y +=,得331x y +=-,与原方程不相等,所以曲线C 不关于原点对称,故①错误.②,对于曲线33:1C x y +=,由于331y x =-,所以y =,所以对于任意一个x ,只有唯一确定的y和它对应.函数y =是单调递减函数.当0x =时,有唯一确定的1y =;当1x =时,有唯一确定的0y =.所以曲线C 过点()()0,1,1,0,这两点都在单位圆上,到原点的距离等于1.当0x <时,1y >,所以221x y +>>.当1x >时,0y <,所以221x y +>>.当01x <<时,01y <<,且()()()()223322221110x y x y x y x x y y -+=+-+=-+-<,所以221x y +>>.综上所述,曲线C 上任意一点到原点的距离不小于1,所以②正确.③,由②的分析可知,曲线C 过点()()0,1,1,0,这是两个整点.由331x y +=可得()331x y -=-,当0x ≠且1x ≠时,若x 为整数,31x -必定不是某个整数的三次方根,所以曲线C 只经过两个整点.故③正确.综上所述,正确的为②③.故选:C【点睛】本小题主要考查根据曲线方程研究曲线的性质,属于中档题.二、填空题:本大题共5小题,共25分.把答案填在答题纸中相应的横线上................11.已知空间()2,3,1a = ,()4,2,b x =- ,a b ⊥ ,则b =_____.【答案】【解析】【分析】根据空间向量的垂直,根据数量积的坐标表示,建立方程,结合模长公式,可得答案.【详解】由a b ⊥ ,且()2,3,1a = ,()4,2,b x =- ,则860a b x ⋅=-++=r r ,解得2x =,故b =r.故答案为:12.已知过点(0,2)的直线l 的方向向量为(1,6),点(,)A a b 在直线l 上,则满足条件的一组,a b 的值依次为__________.【答案】1;8【解析】【分析】根据方向向量设出直线l 的方程,再由点(0,2)求出其方程,从而得出62b a =+,即可得出答案.【详解】直线l 的方向向量为(1,6),可设直线l 的方程为60x y C -+=因为点(0,2)在直线l 上,所以2C =,即直线l 为620x y -+=所以620a b -+=,即62b a =+可取1a =,则8b =故答案为:1;813.在正方体ABCD A B C D -''''中,E 是C D ''的中点,则异面直线DE 与AC 所成角的余弦值为______.【答案】10【解析】【分析】利用正方体的特征构造平行线,利用勾股定理及余弦定理解三角形即可.【详解】如图所示,取A B ''的中点F ,易得//AF DE ,则FAC ∠或其补角为所求角,不妨设正方体棱长为2,则,3,AF FC FC AC '====,由余弦定理知:222cos 210AF AC FC FAC AF AC +-∠==⋅,则FAC ∠为锐角,即异面直线DE 与AC 所成角.故答案为:1010.14.将一张坐标纸对折,如果点()0,m 与点()()2,22m m -≠重合,则点()4,1-与点______重合.【答案】()1,2--【解析】【分析】先求线段AB 的中垂线方程,再根据点关于直线对称列式求解即可.【详解】已知点()0,A m 与点()2,2B m -,可知线段AB 的中点为1,122mm M ⎛⎫-+ ⎪⎝⎭,且212AB mk m -==--,则线段AB 的中垂线的斜率1k =,则线段AB 的中垂线方程为1122m m y x ⎛⎫⎛⎫-+=--⎪ ⎪⎝⎭⎝⎭,即20x y -+=,设点()4,1-关于直线20x y -+=的对称点为(),a b ,则114412022b a a b -⎧=-⎪⎪+⎨-+⎪-+=⎪⎩,解得12a b =-⎧⎨=-⎩,所以所求点为()1,2--.故答案为:()1,2--.15.给定两个不共线的空间向量a 与b,定义叉乘运算:a b ⨯ .规定:(i )a b ⨯ 为同时与a,b垂直的向量;(ii )a,b ,a b ⨯三个向量构成右手系(如图1);(iii )sin ,a b a b a b ⨯=.如图2,在长方体1111ABCD A B C D -中,2AB AD ==,14AA =.给出下列四个结论:①1AB AD AA ⨯= ;②AB AD AD AB ⨯=⨯;③()111AB AD AA AB AA AD AA +⨯=⨯+⨯ ;④()11111ABCD A B C D V AB AD CC -=⨯⋅.其中,正确结论的序号是______________.【答案】①③④【解析】【分析】由新定义逐一核对四个选项得答案.【详解】解: ||||||sin902214AB AD AB AD ⨯=︒=⨯⨯=,且1AA 分别与,AB AD 垂直,∴1AB AD AA ⨯= ,故①正确;由题意,1AB AD AA ⨯= ,1AD AB A A ⨯=,故②错误;AB AD AC +=,∴11|()|||41AB AD AA AC AA +⨯=⨯=⨯= 且1()AB AD AA +⨯ 与DB 共线同向, 1||2418AB AA ⨯=⨯⨯= ,1AB AA ⨯ 与DA 共线同向,1||2418AD AA ⨯=⨯⨯= ,1AD AA ⨯ 与DB共线同向,11||AB AA AD AA ∴⨯+⨯= 11AB AA AD AA ⨯+⨯ 与DB共线同向,故③正确;11()||||||sin90cos022416AB AD CC AB AD CC ⨯=⨯⨯︒⨯︒=⨯⨯=,故④成立.故答案为:①③④.三、解答题:本大题共6题,共85分.解答应写出文字说明、演算步骤或证明过程,并把答案...写在答题纸中相应位置上............16.在平面直角坐标系中,已知(3,9),(2,2),(5,3)A B C -,线段AC 的中点M ;(1)求过M 点和直线BC 平行的直线方程;(2)求BC 边的高线所在直线方程.【答案】(1)3170x y -+=(2)30x y +=【解析】【分析】(1)根据(3,9),(2,2),(5,3)A B C -,求得点M 的坐标,和直线直线BC 的斜率,写出直线方程;(2)根据13BC k =,得到BC 边的高线的斜率,写出直线方程;【小问1详解】解:因为(3,9),(2,2),(5,3)A B C -,所以()1,6M ,13BC k =,所以过M 点和直线BC 平行的直线方程为()1613y x -=-,即3170x y -+=;【小问2详解】因为13BC k =,所以BC 边的高线的斜率为-3,所以BC 边的高线所在直线方程()933y x -=-+,即30x y +=17.如图,在边长为2的正方体1111ABCD A B C D -中,E 为线段1BB 的中点.(1)求证:1//BC 平面1AED ;(2)求点1A 到平面1AED 的距离;(3)直线1AA 与平面1AED 所成角的正弦值.【答案】(1)证明见解析(2)43(3)23【解析】【分析】(1)证明出四边形11ABC D 为平行四边形,可得出11//BC AD ,利用线面平行的判定定理可证得结论成立;(2)以点A 为坐标原点,AD 、AB 、1AA 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可求得点1A 到平面1AED 的距离;(3)利用空间向量法可求得直线1AA 与平面1AED 所成角的正弦值.【小问1详解】证明:在正方体1111ABCD A B C D -中,11//AB C D 且11AB C D =,故四边形11ABC D 为平行四边形,则11//BC AD ,因为1BC ⊄平面1AED ,1AD ⊂平面1AED ,因此,1//BC 平面1AED .【小问2详解】解:以点A 为坐标原点,AD 、AB 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,0,0A 、()10,0,2A 、()0,2,1E 、()12,0,2D ,所以,()10,0,2AA = ,()12,0,2AD = ,()0,2,1AE = ,设平面1AED 的法向量为(),,n x y z = ,则122020n AD x z n AE y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩ ,取2z =-,可得()2,1,2n =- ,所以,点1A 到平面1AED 的距离为143AA n d n⋅== .【小问3详解】解:因为11142cos ,233AA n AA n AA n ⋅<>===⨯⋅ ,因此,直线1AA 与平面1AED 所成角的正弦值为23.18.已知圆C 的圆心在直线20x y -=上,且与x 轴相切于点()1,0.(1)求圆C 的方程;(2)若圆C 直线:0l x y m -+=交于A ,B 两点,____,求m 的值.从下列三个条件中任选一个补充在上面问题中并作答:条件①:圆C 被直线l 分成两段圆弧,其弧长比为2:1;条件②:2AB =;条件③:90ACB ∠=︒.【答案】(1)()()22124x y -+-=(2)答案见解析【解析】【分析】(1)利用几何关系求出圆心的坐标即可;(2)任选一个条件,利用选择的条件,求出圆心到直线的距离,然后列方程求解即可.【小问1详解】设圆心坐标为(),C a b ,半径为r .由圆C 的圆心在直线20x y -=上,知:2a b =.又 圆C 与x 轴相切于点()1,0,1a ∴=,2b =,则02r b =-=.∴圆C 圆心坐标为()1,2,则圆C 的方程为()()22124x y -+-=【小问2详解】如果选择条件①:120ACB ∠=°,而2CA CB ==,∴圆心C 到直线l 的距离1cos 60d CA =⨯= ,则1d ==,解得1m +或1+.如果选择条件②和③:AB =,而2CA CB ==,∴圆心C 到直线l 的距离d =,则d ==,解得1m =-或3.如果选择条件③:90ACB ∠=︒,而2CA CB ==,∴圆心C 到直线l 的距离cos 45d CA ⨯== ,则d ==,解得1m =-或3.19.如图,四棱锥P ABCD -中,AD ⊥平面ABP ,,90,2,3,BC AD PAB PA AB AD BC m ∠=︒==== ,E 是PB 的中点.(1)证明:AE ⊥平面PBC ;(2)若二面角C AE D --的余弦值是33,求m 的值;(3)若2m =,在线段A 上是否存在一点F ,使得PF CE ⊥.若存在,确定F 点的位置;若不存在,说明理由.【答案】(1)证明见解析(2)1(3)不存在,理由见解析【解析】【分析】(1)推导出⊥BC 平面PAB .,AE BC AE PB ⊥⊥.由此能证明AE ⊥平面PBC ;(2)建立空间直角坐标系A xyz -,利用向量法能求出m 的值;(3)设()()0,0,03F t t ≤≤,当2m =,()0,0,2C ,()()2,0,,1,1,2PF t CE ==-- ,由PF CE ⊥知,0PF CE ⋅= ,220,1t t --==-,这与03t ≤≤矛盾,从而在线段AD 上不存在点F ,使得PF CE ⊥.【小问1详解】证明:因为AD ⊥平面PAB ,BC AD ∥,所以⊥BC 平面PAB ,又因为AE ⊂平面PAB ,所以AE BC ⊥.在PAB 中,PA AB =,E 是PB 的中点,所以AE PB ⊥.又因为BC PB B = ,,BC PB ⊂平面PBC ,所以AE ⊥平面PBC .【小问2详解】因为AD ⊥平面PAB ,,AB PA ⊂平面PAB ,所以,AD AB AD PA ⊥⊥,又因为PA AB ⊥,所以如图建立空间直角坐标系A xyz -.则()()()()()()0,0,0,0,2,0,0,2,,1,1,0,2,0,0,0,0,3A B C m E P D ,则()0,2,AC m = ,()1,1,0AE = ,设平面AEC 的法向量为 =s s .则00AC n AE n ⎧⋅=⎪⎨⋅=⎪⎩ 即200y mz x y +=⎧⎨+=⎩,令1x =,则1y =-,2z m =,故21,1,n m ⎛⎫=- ⎪⎝⎭.因为AD ⊥平面PAB ,PB ⊂平面PAB ,所以AD PB ⊥,又AE PB ⊥,,,AD AE A AD AE ⋂=⊂平面AED ,所以PB ⊥平面AED .又因为()2,2,0PB =- ,所以取平面AED 的法向量为()2,2,0PB =-所以cos ,3n PB n PB n PB⋅== ,3=,解得21m =.又因为0m >,所以1m =;【小问3详解】结论:不存在.理由如下:证明:设()()0,0,03F t t ≤≤.当2m =时,()0,0,2C ,()()2,0,,1,1,2PF t CE =-=-- ,由PF CE ⊥知0PF CE ⋅= ,220,1t t --==-,这与03t ≤≤矛盾,所以在线段AD 上不存在点F ,使得PF CE ⊥.20.已知圆()22:1C x a y -+=与直线1y x --=交于M 、N 两点,点P 为线段MN 的中点,O 为坐标原点,直线OP 的斜率为13-.(1)求a 的值及MON △的面积;(2)若圆C 与x 轴交于,A B 两点,点Q 是圆C 上异于,A B 的任意一点,直线QA 、QB 分别交:4l x =-于,R S 两点.当点Q 变化时,以RS 为直径的圆是否过圆C 内的一定点,若过定点,请求出定点;若不过定点,请说明理由.【答案】(1)12,2MON a S =-=(2)()4-【解析】【分析】(1)先确定直线OP 的方程,联立直线方程求得P 点坐标,利用垂径定理及两直线垂直的斜率关系计算可得a ,再根据点到直线的距离公式、弦长公式计算求面积即可;(2)设QA 方程,含参表示QB 方程,求出,R S 坐标,从而求出以RS 为直径的圆的方程,利用待定系数法计算即可.【小问1详解】由题知:直线OP 方程为13y x =-,则由113y x y x =--⎧⎪⎨=-⎪⎩,得到3212x y ⎧=-⎪⎪⎨⎪=⎪⎩,即31,22P ⎛⎫- ⎪⎝⎭, 点P 为线段MN 的中点,MN PC ∴⊥,即1021132MN PC k k a -⋅=-⨯=-+,2a ∴=-,即圆心−2,0;C ∴到直线=1y x --距离为2d ==,MN ∴==,又O 到直线=1y x --的距离为22,MN 边上的高为22.11222MON S ∴=⨯= .【小问2详解】由上可知()()3,0,1,0A B --,不妨设直线QA 的方程为()3y k x =+,其中0k ≠,在直线QA 的方程中,令4x =-,可得()4,R k --,因为QA QB ⊥,则直线QB 的方程为()11y x k =-+,在直线QB 的方程中,令4x =-,可得3y k =,即点34,S k ⎛⎫- ⎪⎝⎭,则线段RS 的中点为234,2k F k ⎛⎫-- ⎪⎝⎭,半径平方为2232k k ⎛⎫+ ⎪⎝⎭,所以,以线段MN 为直径的圆的方程为()2222233422k k x y k k ⎛⎫⎛⎫-+++-= ⎪ ⎪⎝⎭⎝⎭,即()2223430k x y y k -++--=,由()2430031x y x ⎧+-=⎪=⎨⎪-<<-⎩,解得40x y ⎧=-+⎪⎨=⎪⎩,因此,当点Q 变化时,以RS 为直径的圆恒过圆C内的定点()4-+.21.已知{}1,2,,n S = ,A S ⊆,{}12,T t t S =⊆,记{}(),1,2i i A x x a t a A i ==+∈=,用X 表示有限集合X 的元素个数.(1)若4n =,12A A =∅ ,分别指出{}1,2,3A =和{}1,2,4A =时,集合T 的情况(直接写出结论);(2)若6n =,12A A =∅ ,求12A A ⋃的最大值;(3)若7n =,4A =,则对于任意的A ,是否都存在T ,使得12A A =∅ 说明理由.【答案】(1){}1,4(2)10(3)不一定存在,理由见解析【解析】【分析】(1)由已知得12t t a b -≠-,其中,a b A ∈,当{}1,2,3A =时,12t t ,相差3;由此可求得T ,当{}1,2,4A =时,同理可得;(2)若6n =,12A A =∅ ,{}123456S =,,,,,,当{}2,3,4,5,6A =时,则12t t ,相差5,所以{}1,6T =,A 中至多有5个元素,所以12,A A 也至多有5个元素,求出12,A A 得出结果;(3)举反例{}1,2,5,7A =和{}{}1,2,3,4,1,6A T ==,根据题意检验即可说明.【小问1详解】若12A A =∅ ,则12t t a b -≠-,其中,a b A ∈,否则12t a t b +=+,12A A ⋂≠∅,若4n =,当{}1,2,3A =时,211-=,312-=,所以121,2t t -≠,则1t ,2t 相差3,因为1,2,3,4S =,{}12,T t t S =⊆,所以{}1,4T =;当{}1,2,4A =时,211-=,422-=,413-=,所以121,2,3t t -≠,因为1,2,3,4S =,{}12,T t t S =⊆,所以T 不存在;【小问2详解】若6n =,12A A =∅ ,{}123456S =,,,,,,当A S =时,211-=,514-=,523-=,716-=,72=5-,752-=,所以A S ≠,121,2,3,4,5t t -≠,所以T 不存在;所以A 中至多有5个元素;当{}2,3,4,5,6A =时,321-=,422-=,523-=,624-=,所以121,2,3,4t t -≠,则1t ,2t 相差5,所以{}1,6T =;{}(),1,2i i A x x a t a A i ==+∈=,所以{}1345,6,7A =,,,{}28910,11,12A =,,,{}12345,6,7,8910,11,12A A = ,,,,.因为A 中至多有5个元素,所以1A ,2A 也至多有5个元素,所以12A A ⋃的最大值为10.【小问3详解】不一定存在,理由如下:例如{}1,2,5,7A =,则211-=514-=,523-=,716-=,72=5-,752-=,则1t ,2t 相差不可能1,2,3,4,5,6,这与{}{}12,1,2,3,4,5,6,7T t t =⊆矛盾,故不都存在T ;例如{}{}1,2,3,4,1,6A T ==,不妨令121,6t t ==,则{}{}122,3,4,5,7,8,9,10A A ==,满足12A A =∅ .【点睛】关键点点睛:对于新定义问题,要充分理解定义,并把定义进行转化为已知的知识点或结论,方便解题.。
2024-2025学年高二上学期期中模拟考试数学试题含解析

2024-2025学年高二数学上学期期中模拟卷(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:沪教版2020必修第三册第十~十一章。
5.难度系数:0.72。
一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.不重合的两个平面最多有条公共直线【答案】1【解析】根据平面的位置关系可知,不重合两平面平行或相交,当相交时,有且只有一条公共直线.故答案为:12.已知球的表面积是16π,则该球的体积为.3.空间中一个角∠A的两边和另一个角∠B的两边分别平行,若∠A=,则∠B=;【答案】【解析】如图,若角∠A 的两边和角∠B 的两边分别平行,且方向相同,则∠A 与∠B 相等此时70B A ∠=∠=︒;②当角∠A 的两边和角∠B 的两边分别平行,且一边方向相同另一边方向相反,则∠A 与∠B 互补,此时180110B A ∠=︒-∠=︒.故答案为70︒或110︒.4.如图,正三棱柱的底面边长为2,高为1,则直线1B C 与底面ABC 所成的角的大小为(结果用反三角函数值表示).5.在空间中,给出下面四个命题,其中真命题为.(填序号)①过平面α外的两点,有且只有一个平面与平面α垂直;②若平面β内有不共线三点到平面α的距离都相等,则αβ∥;③若直线l 与平面α内的任意一条直线垂直,则l α⊥;④两条异面直线在同一平面内的射影一定是两条相交直线.【答案】③【解析】①过平面α外两点可确定一条直线,当这条直线垂直于平面α时,有无数个平面垂直于平面α,故①错误;②若三点在平面α同侧,则αβ∥;若三点在平面α两侧,则α与β相交,故②错误;③直线l 与平面α内的任意一条直线垂直,则l 垂直于平面α内两条相交直线,由线面垂直的判定定理可得l α⊥,故③正确;④两条异面直线在同一个平面内的射影有可能是两条相交直线,也可能是两条平行直线,还可能是一个点和一条直线,故④错误;故答案为:③6.正四棱锥P -ABCD 的所有棱长均相等,E 是PC 的中点,那么异面直线BE 与P A 所成角的余弦值为.连接AC 交BD 于O 点,连接OE ,则OE 因为⊥PO 面ABCD ,所以PO DB ⊥,又因为所以直在角三角形EOB 中,设PA a =,则故答案为:33.7.如图,有一圆锥形粮堆,其轴截面是边长为6m 的正ABC V ,粮堆母线AC 的中点P 处有一老鼠正在偷吃粮食,此时小猫正在B 处,它要沿圆锥侧面到达P 处捕捉老鼠,则小猫所经过的最短路程是m .【答案】35【解析】解:由题意得:圆锥的底面周长是6π,则66180n ππ=,解得:180n ︒=可知圆锥侧面展开图的圆心角是180︒,如图所示:则圆锥的侧面展开图中:()3m AP =,6(m)AB =,90BAP ︒∠=所以在圆锥侧面展开图中:()223635m BP =+=故答案为:358.已知一球体刚好和圆台的上、下底面及侧面都相切,且圆台上底面的半径为2,下底面的半径为1,则该圆台的侧面积为.【答案】9π【解析】圆台的轴截面如下图示:截面中圆为内切球的最大圆,且2AF DF AG DH ====,1BE CE BG CH ====,所以3AB CD ==,而上下底面周长分别为4π、2π,故该圆台的侧面积为13(2π4π)9π2⨯⨯+=.故答案为:9π9.如图,已知三棱柱111ABC A B C -的体积为3,P ,Q ,R 分别为侧棱1AA ,1BB ,1CC 上的点,且1AP CR AA +=,则Q ACRP V -=.则111332Q ACRP V d S d -=⋅⋅=⋅⋅⋅设三棱柱111ABC A B C -的体积故答案为:1.10.已知大小为π6的二面角的一个面内有一点,它到二面角的棱的距离为6,则这个点到另一个面的距离为.11.正方形ABCD 中,E ,F 分别为线段AB ,BC 的中点,连接DE ,DF ,EF ,将ADE V ,CDF V ,BEF △分别沿DE ,DF ,EF 折起,使A ,B ,C 三点重合,得到三棱锥O DEF -,则该三棱锥外接球半径R 与内切球半径r 的比值为.【答案】26【解析】在正方形ABCD 中,,AD AE CD ⊥12.空间给定不共面的A,B,C,D四个点,其中任意两点间的距离都不相同,考虑具有如下性质的平面α:A,B,C,D中有三个点到的距离相同,另一个点到α的距离是前三个点到α的距离的2倍,这样的平面α的个数是___________个【答案】32【解析】首先取3个点相等,不相等的那个点由4种取法;然后分3分个点到平面α的距离相等,有以下两种可能性:(1)全同侧,这样的平面有2个;(2)不同侧,必然2个点在一侧,另一个点在一侧,1个点的取法有3种,并且平面过三角形两个点边上的中位线,考虑不相等的点与单侧点是否同侧有两种可能,每种情况下都唯一确定一个平面,故共有6个,⨯=个,所有这两种情况共有8个,综上满足条件的这样的平面共有4832故答案为:32二、选择题(本题共有4题,满分18分,第13-14题每题4分,第15-16题每题5分;每题有且只有一个正确选项)13.下列几何体中,多面体是()A.B.C.D.【答案】B【解析】A选项中的几何体是球,是旋转体;B选项中的几何体是三棱柱,是多面体;C 选项中的几何体是圆柱,旋转体;D 选项中的几何体是圆锥,是旋转体.故选B.14.已知两个平面α、β,在下列条件下,可以判定平面α与平面β平行的是().A .α、β都垂直于一个平面γB .平面α内有无数条直线与平面β平行C .l 、m 是α内两条直线,且l ∥β,m ∥βD .l 、m 是两条异面直线,且l ∥α,m ∥α,l ∥β,m ∥β【答案】D【解析】对于A ,如在正方体1111ABCD A B C D -中,平面11AAC C 和平面11AA B B 都与平面ABCD 垂直,但这两个平面不平行,所以A 错误,对于B ,如在正方体1111ABCD A B C D -中,平面11AAC C 和平面11AA B B ,平面11AAC C 中所有平行于交线1AA 的直线都与平面11AA B B 平行,但这两个平面不平行,所以B 错误,对于C ,如在正方体1111ABCD A B C D -中,平面11AAC C 和平面11AA B B ,,M N 分别为11,A B AB 的中点,则1,MN BB 在平面11AA B B 内,且都与平面11AAC C 平行,但这两个平面不平行,所以C 错误.对于D ,因为l 、m 是两条异面直线,所以将这两条直线平移到共面α时,一定在α内形成两条相交直线,由面面平行的判定定理可知,该结论正确.故选:D15.将3个1212⨯的正方形沿邻边的中点剪开分成两部分(如图1);将这6部分接于一个边长为六边形边上(如图2),若拼接后的图形是一个多面体的表面展开图,则该多面体的体积是()A .17282B .864C .576D .2【答案】B【解析】折成的多面体如图①所示,将其补形为正方体,如图②,所求多面体体积为正方体的一半,又依题易求得正方体的边长为12,故3112864,2V =⨯=故选:B.16.如图,在正方体1111ABCD A B C D -中,E 是棱BC 的中点,F 是侧面11BCC B 上的动点,且1A F ∥平面1AD E .设1A F 与平面11BCC B 所成的角为1,A F α与1AD 所成的角为β,那么下列结论正确的是()A .α的最小值为arctan2,β的最小值为arctan3B .α的最小值为arctan3,β的最大值为2πC .α的最小值大于arctan2,β的最小值大于arctan3D .α的最大值小于arctan3,β的最大值小于2π设正方体的棱长为2,因为MN GE ∥,且MN ⊄MN ∴∥平面1AEGD ;同理1A N ∥平面1AEGD ,且∴平面1A MN ∥平面AEGD ∵11A B ⊥面11BB C C ,所以又1AD MN ,所以1A F 与1AD 所成的角为111tan A B B Fα∴=;当F 为MN 中点时,此时当F 与M 或N 重合时,此时2tan 22α∴≤≤,arctan2对于β,当F 为MN 中点时,当F 与M 或N 重合时,β()221252A F ⎛⎫∴=-= ⎪ ⎪⎝⎭tan 3β∴=,tan 3β∴≥,arctan 3β≤≤又arctan3 1.4≈,arctan2故选:A.三、解答题(本大题共有5题,满分78分,第17-19题每题14分,第20、21题每题18分.)17.如图,长方体1111ABCD A B C D -中,1AB AD ==,12AA =,点P 为1DD 的中点.(1)求证:直线1BD //平面PAC ;(2)求异面直线1BD 与AP 所成角的大小.【解析】(1)设AC 和BD 交于点O ,则O 为BD 的中点,连接PO ,(1分)∵P 是1DD 的中点,∴1//PO BD ,(3分)又∵PO ⊂平面PAC ,1⊄BD 平面PAC ,∴直线1BD //平面PAC ;(6分)(2)由(1)知,1//PO BD ,∴APO ∠即为异面直线1BD 与AP 所成的角,(8分)∵PA PC =12AO AC ==且PO AO ⊥,∴1sin2AO APO AP ∠==.又(0,90]APO ∠∈︒︒,∴30APO ∠=︒故异面直线1BD 与AP 所成角的大小为30︒.(14分)18.如图,在圆柱中,底面直径AB 等于母线AD ,点E 在底面的圆周上,且AF D E ⊥,F 是垂足.(1)求证:AF DB ⊥;(2)若圆柱与三棱锥D ABE -的体积的比等于3π,求直线DE 与平面ABD 所成角的大小.【解析】(1)证明:根据圆柱性质,DA ⊥平面ABE ,因为EB ⊂平面ABE ,所以DA EB ⊥,又因为AB 是圆柱底面的直径,点E 在圆周上,所以AE EB ⊥,因为AE DA A ⋂=且,AE DA ⊂平面DAE ,所以EB ⊥平面DAE ,(2分)又因为AF ⊂平面DAE ,所以EB AF ⊥,因为AF D E ⊥,且EB DE E =I ,且,EB DE ⊂平面DEB ,所以AF ⊥平面DEB ,又因为DB ⊂平面DEB ,所以AF DB ⊥.(6分)(2)解:过点E 作EH AB ⊥,H 是垂足,连接DH ,根据圆柱性质,平面ABD ⊥平面ABE ,且平面ABD ⋂平面ABE AB =,且EH ⊂平面ABE ,所以EH ⊥平面ABD ,因为DH ⊂平面ABD ,所以DH 是ED 在平面ABD 上的射影,从而EDH ∠是DE 与平面ABD 所成的角,(8分)设圆柱的底面半径为R ,则2DA AB R ==,所以圆柱的体积为32πV R =,且21233D ABEABE R V AD S EH -=⋅=⋅ ,由:3πD ABE V V -=,可得EH R =,可知H 是圆柱底面的圆心,且AH R =,且DH =,在直角EDH 中,可得tan EH EDH DH ∠==EDH ∠=(14分)19.如图,将边长为2的正方形ABCD 沿对角线BD 折叠,使得平面ABD ⊥平面CBD ,AE ⊥平面ABD ,且2AE(1)求证:直线EC 与平面ABD 没有公共点;(2)求点C 到平面BED 的距离.【解析】(1)取BD 的中点F ,连接CF 、AF ,如图,依题意,在BCD △中,,BC CD BC CD =⊥,则CF BD ⊥,而平面ABD ⊥平面CBD ,平面ABD ⋂平面CBD BD =,CF ⊂平面CBD ,于是得CF ⊥平面ABD ,且2CF =因为AE ⊥平面ABD ,且2AE =//AE CF ,且AE CF =,从而得四边形AFCE 为平行四边形,//EC AF ,(4分)又AF ⊂平面ABD ,EC ⊂/平面ABD ,则//EC 平面ABD ,所以直线EC 与平面ABD 没有公共点;(6分)(2)因为CF ⊥平面ABD ,AF ⊂平面ABD ,所以CF AF ⊥,因为BD AF ⊥,BD CF F = ,,BD CF ⊂平面,CBD 所以AF ⊥平面,CBD 因为//,EC AF ,于是得EC ⊥平面CBD ,因为AE ⊥平面ABD ,,AB AD ⊂平面ABD ,所以,AE AB AE AD ⊥⊥,(8分)因为EC AF ==EB ED =,则等腰BED 底边BD 上的高2h ==,12BED S BD h =⋅= ,而2BCD S =,设点C 到平面BED 的距离为d ,由C BED E BCD V V --=得1133BED BCD S d S EC ⋅=⋅ ,即2=,解得1d =,所以点C 到平面BED 的距离为1(14分)20.如图所示,在四棱锥P ABCD -中,底面四边形ABCD 是菱形,底面,AC BD O PAC = △是边长为2的等边三角形,PB =PD ,AP =4AF(1)求证:PO ⊥底面ABCD (2)求直线CP 与OF 所成角的大小.(3)在线段PB 上是否存在点M ,使得//CM 平面BDF ?如果存在,求BMBP的值;如果不存在,请说明理由.【解析】(1)因为底面ABCD 是菱形,且AC BD O = ,所以O 为AC ,BD 中点,在PBD △中,PB =PD ,可得PO ⊥BD ,因为在PAC 中,PA =PC ,O 为AC ,BD 中点,所以PO ⊥AC ,(3分)又因为AC ⋂BD =O ,所以PO ⊥底面ABCD .(4分)(2)连接OF ,取AP 中点为E ,连接OE ,因为底面ABCD 是菱形,AC ⋂BD =O ,由O 为AC 中点,且E 为AP 中点,AP =4AF ,所以F 为AE 中点,所以CP //OE .,故∠EOF 为直线CP 与OF 所成的角,(8分)又由PAC 为等边三角形,且E 为中点,所以∠EOF =30o .(10分)(3)存在,13BM BP =,连接CE ,ME ,因为AP =4AF ,E 为AP 中点,所以13EF FP =,又因为13BM BP =,所以在PFB △中,EF BMFP BP =,即EM //BF ,(12分)因为EM ⊄平面BDF ,BF ⊂平面BDF ,所以EM //平面BDF ,由(2)知EC //OF ,因为EC ⊄平面BDF ,OF ⊂平面BDF ,所以EC //平面BDF ,因为EC ⋂EM =E ,所以平面EMC //平面BDF ,因为CM ⊂平面EMC ,所以CM //平面BDF .(18分)21.在棱长均为2的正三棱柱111ABC A B C -中,E 为11B C 的中点.过AE 的截面与棱111,BB AC 分别交于点F ,G.(1)若F 为1BB 的中点,试确定点G 的位置,并说明理由;(2)在(1)的条件下,求截面AGEF 与底面ABC 所成锐二面角的正切值;(3)设截面AFEG 的面积为0S ,AEG △面积为1S ,AEF △面积为2S ,当点F 在棱1BB 上变动时,求2012S S S 的取值范围.【解析】(1)在平面11BCC B 内延长1CC ,FE 相交于点P ,则P ∈平面AGEF ,又1P CC ∈⊂平面11ACC A ,则有平面AGEF 平面11ACC A AG =,P AG ∈,即A ,G ,P 三点共线.(2分)因为E 为11B C 的中点,F 为1BB 的中点,所以11112PC B F CC ==,所以113PC PC =,又因为1//GC AC ,所以1113GC PC AC PC ==,所以111112333GC AC A C ===,即点G 为棱11AC 上靠近点1C 的三等分点.(4分)(2)在平面11BCC B 内延长CB ,EF 相交于点Q ,连接AQ ,则平面AGEF 平面ABC AQ =,在平面11ACC A 内作GM AC ⊥于点M ,则GM ⊥平面ABC ,又AQ ⊂平面ABC ,所以G M AQ ⊥,在平面ABC 内作MN AQ ⊥于点N ,连接GN ,又,GM MN ⊂平面GMN ,GM MN M ⋂=,所以AQ ⊥平面GMN ,GN ⊂平面GMN ,所以AQ GN ⊥,所以GNM ∠为截面AGEF 与底面ABC 所成锐二面角的平面角.(6分)在AQC 中,作CH AQ ⊥于点H ,11BQ C E ==,2AC =,3CQ =,60AC B ∠= ,12222ABC S =⨯⨯⨯=△AQC S =由余弦定理2222cos 4967AQ AC CQ AC CQ ACQ =+-⋅⋅∠=+-=,则AQ122AQC S AQ CH ==⋅ ,可得3217CH =,所以237MN CH ==,又22G M AA ==,所以21tan 3GM GNM MN ∠==,故截面AGEF 与底面ABC (10分)(3)设1GC m =,则[]0,1m ∈,2PG mGA m=-.设PGE 的面积为S ,所以12S m S m=-,又因为21S S S =+,所以1222S m S -=,且1221,122S m S -⎡⎤=∈⎢⎥⎣⎦,故()22120121212212S S S S SS S S S S S +==++,令12S t S =,则1,12t ⎡⎤∈⎢⎥⎣⎦,(11分)设()112,12g t t t t ⎛⎫⎡⎤=++∈ ⎪⎢⎥⎣⎦⎝⎭,当12112t t ≤<≤时,()()()()121212121212111t t g t g t t t t t t t t t --=+--=-,120t t -<,120t t >,1210t t -<,则()()120g t g t ->,即()()12g t g t >,所以()12g t t t =++在1,12t ⎡⎤∈⎢⎥⎣⎦上单调递减,所以()()min 14g t g ==,()max 1922g t g ⎛⎫== ⎪,所以()94,2g t ⎡⎤∈⎢⎥,。
湖南省长沙市2024-2025学年高二上学期期中考试数学试题含答案

2024年下学期期中检测试题高二数学(答案在最后)时量:120分钟分值:150分一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知等差数列{}n a 满足6786a a a ++=,则7a 等于()A.1B.2C.4D.8【答案】B 【解析】【分析】利用等差数列的性质进行求解.【详解】 6787736,2a a a a a ++==∴=故选:B2.若圆224820x y x y m +-++=的半径为2,则实数m 的值为()A.-9B.-8C.9D.8【答案】D 【解析】【分析】由圆的一般方程配方得出其标准方程,由半径为2得出答案.【详解】由224820x y x y m +-++=,得22(2)(4)202x y m -++=-,所以2r ==,解得8m =.故选:D.3.若抛物线22(0)y px p =>的焦点与椭圆22195x y +=的一个焦点重合,则该抛物线的准线方程为()A.1x =-B.1x =C.2x =D.2x =-【答案】D 【解析】【分析】先求出椭圆的焦点坐标即是抛物线的焦点坐标,即可求出准线方程.【详解】∵椭圆22195x y +=的右焦点坐标为(2,0),∴抛物线的焦点坐标为(2,0),∴抛物线的准线方程为2x =-,故选:D.4.空气质量指数是评估空气质量状况的一组数字,空气质量指数划分为[)0,50、[)50,100、[)100,150、[)150,200、[)200,300和[]300,500六档,分别对应“优”、“良”、“轻度污染”、“中度污染”、“重度污染”和“严重污染”六个等级.如图是某市2月1日至14日连续14天的空气质量指数趋势图,则下面说法中正确的是().A.这14天中有5天空气质量为“中度污染”B.从2日到5日空气质量越来越好C.这14天中空气质量指数的中位数是214D.连续三天中空气质量指数方差最小是5日到7日【答案】B 【解析】【分析】根据折线图直接分析各选项.【详解】A 选项:这14天中空气质量为“中度污染”有4日,6日,9日,10日,共4天,A 选项错误;B 选项:从2日到5日空气质量指数逐渐降低,空气质量越来越好,B 选项正确;C 选项:这14天中空气质量指数的中位数是179214196.52+=,C 选项错误;D 选项:方差表示波动情况,根据折线图可知连续三天中波动最小的是9日到11日,所以方程最小的是9日到11日,D 选项错误;故选:B.5.已知双曲线C :22x a -22y b=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为A.220x -25y =1B.25x -220y =1C.280x -220y =1D.220x -280y =1【答案】A 【解析】【详解】由题意得,双曲线的焦距为10,即22225a b c +==,又双曲线的渐近线方程为by x a=0bx ay ⇒-=,点1(2)P ,在C 的渐近线上,所以2a b =,联立方程组可得,所以双曲线的方程为22=1205x y -.考点:双曲线的标准方程及简单的几何性质.6.定义22⨯行列式12142334a a a a a a a a =-,若函数22cos sin ()πcos 22x xf x x -=⎛⎫+ ⎪⎝⎭,则下列表述正确的是()A.()f x 的图象关于点(π,0)中心对称B.()f x 的图象关于直线π2x =对称C.()f x 在区间π,06⎡⎤-⎢⎥⎣⎦上单调递增 D.()f x 是最小正周期为π的奇函数【答案】C 【解析】【分析】由行列式运算的定义,结合三角恒等变换,求出()f x 解析式,AB 选项关于函数图象的对称性,代入检验即可判断;整体代入验证单调性判断选项C ;公式法求最小正周期,检验函数奇偶性判断选项D.【详解】由题中所给定义可知,22ππ()cos sin 2cos 222cos 223f x x x x x x x ⎛⎫⎛⎫=--+=+=- ⎪ ⎪⎝⎭⎝⎭,π(π)2cos103f ==≠,点(π,0)不是()f x 图象的对称中心,故A 错误;ππ2cos 1223f ⎛⎫=-=-≠± ⎪⎝⎭,直线π2x =不是()f x 图象的对称轴,故B 错误;π,06x ⎡⎤∈-⎢⎥⎣⎦时,π2ππ2,333x ⎡⎤⎢⎥-⎣-∈⎦-,2ππ,33⎡⎤--⎢⎥⎣⎦是余弦函数的单调递增区间,所以()f x 在区间π,06⎡⎤-⎢⎥⎣⎦上单调递增,故C 正确;()f x 的最小正周期2ππ2T ==,但(0)0f ≠,所以函数不是奇函数,故D 错误.故选:C7.已知ABC V 中,6AB =,4AC =,60BAC ∠=︒,D 为BC 的中点,则AD =()A.25B.19C.D.【答案】C 【解析】【分析】由题意可得:1()2AD AB AC =+,结合向量的数量积运算求模长.【详解】由题意可得:16,4,64122AB AC AB AC ==⋅=⨯⨯=uu u r uuu r uu u r uuu r ,因为D 为BC 的中点,则1()2AD AB AC =+,两边平方得,()22212194AD AB AC AB AC =++⋅=,即AD =uuu r .故选:C.8.已知椭圆:2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F 、2F ,P 是C 上一点,且2PF x ⊥轴,直线1PF 与椭圆C 的另一个交点为Q ,若11||4||PF F Q =,则椭圆C 的离心率为()A.255B.2C.155D.217【答案】D 【解析】【分析】由2PF x ⊥轴可得:22||b PF a=,不妨设点2(,)b P c a ,设0(Q x ,0)y ,由11||4||PF F Q =,解得0x 、0y ,代入椭圆方程化简即可求解.【详解】解:由2PF x ⊥轴可得:22||b PF a=,不妨设点2(,)b P c a ,设0(Q x ,0)y ,由11||4||PF F Q =,得032c x =-,204b y a =-,代入椭圆方程得:222291416c b a a+=,结合222a b c =+,化简上式可得:2237c a =,所以椭圆的离心率为7c e a ==,故选:D .二、多项选择题:本题共3小题,每小题6分,18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,部分选对得部分分,有选错的得0分.9.设i 为虚数单位,下列关于复数z 的命题正确的有()A.2025i 1=-B.若1z ,2z 互为共轭复数,则12=z z C.若1z =,则z 的轨迹是以原点为圆心,半径为1的圆D.若复数1(1)i =++-z m m 为纯虚数,则1m =-【答案】BCD 【解析】【分析】A 选项,利用复数的乘方运算得到A 正确;B 选项,设1i z a b =+,2i z a b =-,则12=z z ;C 选项,由复数的几何意义得到C 正确;D 选项,根据纯虚数的定义得到方程,求出1m =-.【详解】对于A :()()1012101220252i i i 1i i =⋅=-⋅=,A 错;对于B :令1i z a b =+,2i,,R z a b a b =-∈,1z =,2z =所以12=z z ,故B 正确;对于C :1z =,故z 的轨迹是以原点为圆心,半径为1的圆,C 正确;对于D :若复数1(1)i =++-z m m 为纯虚数,则10,10m m +=-≠,即1m =-,故D 正确.故选:BCD10.如图,正方体1111ABCD A B C D -的棱长为1,E 是棱CD 上的动点(含端点).则下列结论正确的是()A.三棱锥11A B D E -的体积为定值B.11EB AD ⊥C.存在某个点E ,使直线1A E 与平面ABCD 所成角为60o D.二面角11E A B A --的平面角的大小为π4【答案】BD 【解析】【分析】A.根据等体积法的等高等底即可判断;B.结合正方体的性质,由垂影必垂斜即可判断;C.结合正方体的性质即可判断;D.根据二面角的平面角定义即可判断.【详解】对于选项A :三棱锥11E AB D -的底面积为定值,高变化,体积不为定值,故选项A 不正确;对于选项B :1,B E 两点在平面11ADD A 上的射影分别为1,A D ,即直线1B E 在平面11ADD A 上的射影为1A D ,而11A D AD ⊥,根据三垂线定理可得11EB AD ⊥.故选项B 正确;对于选项C :因为1A A ⊥平面ABCD ,直线1A E 与平面ABCD 所成角为1AEA ∠,当点E 和点D 重合时,1A E 在平面ABCD 射影最小,这时直线1A E 与平面ABCD 所成角θ最大值为π4,故选项C 不正确;对于选项D :二面角11E A B A --即二面角11D A B A --,因为111DA A B ⊥,111AA A B ⊥,1DA ⊂平面11E AB ,1AA ⊂平面11AA B ,所以1DA A ∠即为二面角11E A B A --的平面角,在正方形11ADD A 中,1π4DA A ∠=,所以二面角11E A B A --的大小为π4,故选项D 正确.故选:BD.11.数学中的数形结合也可以组成世间万物的绚丽画面,一些优美的曲线是数学形象美、对称美、和谐美的产物,曲线()32222:16C x y x y +=为四叶玫瑰线,下列结论正确的有()A.方程()()32222160x y x y xy +=<,表示的曲线在第二和第四象限;B.曲线C 上任一点到坐标原点O 的距离都不超过2;C.曲线C 构成的四叶玫瑰线面积大于4π;D.曲线C 上有5个整点(横、纵坐标均为整数的点).【答案】AB 【解析】【分析】本题首先可以根据0xy <判断出A 正确,然后根据基本不等式将()3222216x y x y +=转化为224x y +≤,即可判断出B 正确,再然后根据曲线C 构成的面积小于以O 为圆心、2为半径的圆O 的面积判断出C 错误,最后根据曲线C 上任一点到坐标原点O 的距离都不超过2以及曲线C 的对称性即可判断出D 错误.【详解】A 项:因为0xy <,所以x 、y 异号,在第二和第四象限,故A 正确;B 项:因为222x y xy +≥,当且仅当x y =时等号成立,所以222x yxy ≤+,()()22232222222161642x y x y x y x y ⎛⎫++=≤=+ ⎪⎝⎭,即224x y +≤2£,故B 正确;C 项:以O 为圆心、2为半径的圆O 的面积为4π,显然曲线C 构成的四叶玫瑰线面积小于圆O 的面积,故C 错误;D 项:可以先讨论第一象限内的图像上是否有整点,因为曲线C 上任一点到坐标原点O 的距离都不超过2,所以可将()0,0、()2,0、()1,0、()1,1、()0,1、()0,2代入曲线C 的方程中,通过验证可知,仅有点()0,0在曲线C 上,故结合曲线C 的对称性可知,曲线C 仅经过整点()0,0,故D 错误,故选:AB.【点睛】本题是创新题,考查学生从题目中获取信息的能力,考查基本不等式的应用,考查数形结合思想,体现了综合性,是中档题.三、填空题:本题共4小题,每小题5分,共20分.12.圆22250x y x +--=与圆222440x y x y ++--=的交点为A ,B ,则公共弦AB 所在的直线的方程是________.【答案】4410x y -+=【解析】【分析】两圆相减得到公共弦所在的直线的方程.【详解】由题意可知圆22250x y x +--=与圆222440x y x y ++--=相交,两圆方程相减得,2222244441025x x y x y x x y y ++=--+--+--=-,故公共弦AB 所在的直线的方程是4410x y -+=.故答案为:4410x y -+=13.若数列{}n a 满足111n nd a a +-=(*n ∈N ,d 为常数),则称数列{}n a 为“调和数列”,已知正项数列1n b ⎧⎫⎨⎬⎩⎭为“调和数列”,且12202220220b b b +++= ,则12022b b 的最大值是________.【答案】100【解析】【分析】根据题设易知正项数列{}n b 为等差数列,公差为d ,应用等差数列前n 项和公式得1202220b b +=,应用基本不等式求12022b b 最大值.【详解】由题意,正项数列1n b ⎧⎫⎨⎬⎩⎭为“调和数列”,则1n n d b b +=-(d 为常数),所以正项数列{}n b 为等差数列,公差为d ,则()120221220222022202202b b b b b +++==⨯+ ,则1202220b b +=,则2212022120222010022b b b b +⎛⎫⎛⎫≤== ⎪ ⎪⎝⎭⎝⎭(当且仅当0122110b b ==时等号成立),所以12022b b 的最大值是100.故答案为:10014.如图,在四棱锥P ABCD -中,顶点P 在底面的投影O 恰为正方形ABCD 的中心且AB =,设点M ,N 分别为线段PD ,PO 上的动点,已知当AN MN +取得最小值时,动点M 恰为PD 的中点,则该四棱锥的外接球的表面积为____________.【答案】643π.【解析】【分析】根据题意有=B AN MN N MN BM ≥++,动点M 恰为PD 的中点即4BP BD ==,及可求出PO =,则可求出外接球的半径,方可求出其表面积.【详解】由题意知=B AN MN N MN BM ≥++当BM PD ⊥时BM 最小,因为M 为PD 的中点,故而为PD 的中点,即=4BP BD =,2BO =PO ∴=,设外接球的半径为r ,则22)4r r =+.解得433r =.故外接球的表面积为26443r ππ=.【点睛】本题考查锥体的外接球表面积,求出其外接球的半径,即可得出答案,属于中档题.四、解答题:本题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤.15.已知数列{}n a 是等差数列,n S 是{}n a 的前n 项和,84a =,1122S =-.(1)求数列{}n a 的通项公式;(2)求n S 的最小值.【答案】(1)320n a n =-(2)-57【解析】【分析】根据等差数列的通项公式和前n 项和公式列方程组求出117,3,a d =-⎧⎨=⎩即可得,(2)由通项公式可求得当6n ≤时,0n a <,从而可得当6n =时,n S 取到最小值,进而可求出其最小值【小问1详解】设数列 的公差为d ,则8111174115522a a d S a d =+=⎧⎨=+=-⎩,解得1173a d =-⎧⎨=⎩,所以1(1)320n a a n d n =+-=-.【小问2详解】令3200n a n =->,解得203n >,所以当6n ≤时,0n a <.故当6n =时,n S 取到最小值,为6161557S a d =+=-.16.已知公差不为零的等差数列{}n a 的前n 项和为n S ,若10110S =,且1a ,2a ,4a 成等比数列.(1)求数列{}n a 的通项公式;(2)若3n an n b a =+,求数列{}n b 的前n 项和.【答案】(1)2n a n=(2)199(1)8n n n +-++【解析】【分析】(1)设出公差,利用题意得到方程组,求出首项和公差,得到通项公式;(2)29nn b n =+,利用分组求和,结合等差数列和等比数列求和公式得到答案.【小问1详解】根据{}n a 为等差数列,设公差为0d ≠.10110S =,即11101045a d =+①,1a ,2a ,4a 成等比数列∴2214a a a =⋅,()()21113∴+=+a d a a d ②,由①②解得:122a d =⎧⎨=⎩,∴数列{}n a 的通项公式为2n a n =.【小问2详解】由232329n a n n n n b a n n =+=+=+,数列{}n b 的前n 项和()()122212999nn n T b b b n =++⋯+=⨯+++++++ ()1919(1)992(1)2198n n n n n n +-+-=⨯+=++-.17.在四棱锥P ABCD -中,底面ABCD 为直角梯形,AD BC ∥,AD AB ⊥,侧面PAB ⊥底面ABCD ,122PA PB AD BC ====,且E ,F 分别为PC ,CD 的中点,(1)证明://DE 平面PAB ;(2)若直线PF 与平面PAB 所成的角为60︒,求平面PAB 与平面PCD 所成锐二面角的余弦值.【答案】(1)证明见解析(2)55【解析】【分析】(1)取PB 中点M ,连接AM ,EM ,通过证明四边形ADEM 为平行四边形,即可证明结论;(2)由直线PF 与平面PAB 所成的角为60︒,可得,,,,GF PG AG BG AB ,建立以G 为原点的空间直角坐标系,利用向量方法可得答案.【小问1详解】取PB 中点M ,连接AM ,EM ,E 为PC 的中点,//ME BC ∴,12ME BC =,又AD //BC ,12AD BC =,//ME AD ∴,ME AD =,∴四边形ADEM 为平行四边形,//DE AM ∴,DE ⊄ 平面PAB ,AM ⊂平面PAB ,//DE ∴平面PAB ;【小问2详解】平面PAB ⊥平面ABCD ,平面PAB ⋂平面,ABCD AB BC =⊂平面ABCD ,,BC AB BC ⊥∴⊥平面PAB ,取AB 中点G ,连接FG ,则//,FG BC FG ∴⊥平面PAB ,()160,32GPF GF AD BC ∴∠=︒=+=,3tan60,PG PG∴︒=∴=2,1,2PA PB AG GB AB ==∴===,如图以G 为坐标原点,GB 为x 轴,GF 为y 轴,GP 为z轴建立空间直角坐标系,(()(),1,4,0,1,2,0P C D ∴-,(()1,4,,2,2,0PC CD ∴==-- ,设平面PCD 的一个法向量,()1,,n x y z = ,则1140220n PC x y n CD x y ⎧⋅=+-=⎪⎨⋅=--=⎪⎩ ,取1y =,则(1n =- ,平面PAB 的一个法向量可取()20,1,0n = ,设平面PAB 与平面PCD 所成锐二面角为θ,1212cos5n nn nθ⋅∴==,所以平面PAB与平面PCD 所成锐二面角的余弦值55.18.已知抛物线2:2(0)C x py p=>上一点(,6)P m到焦点F的距离为9.(1)求抛物线C的方程;(2)过点F且倾斜角为5π6的直线l与抛物线C交于A,B两点,点M为抛物线C准线上一点,且MA MB⊥,求MAB△的面积.(3)过点(2,0)Q的动直线l与抛物线相交于C,D两点,是否存在定点T,使得TC TD⋅为常数?若存在,求出点T的坐标及该常数;若不存在,说明理由.【答案】(1)212x y=(2)(3)存在定点191,93T⎛⎫⎪⎝⎭,TC TD⋅为常数37081.【解析】【分析】(1)利用抛物线的定义得02pPF y=+,计算出p得抛物线方程;(2)直线方程与抛物线方程联立方程组,求出,A B两点坐标,利用0MA MB⋅=求出M点坐标,求出M 点到直线l的距离和弦长AB,可求MAB△的面积;(3)设()00,T x y,()33,C x y,()44,D x y,过点Q的直线为(2)y k x=-,与抛物线方程联立方程组,利用韦达定理表示出TC TD⋅,求出算式的值与k无关的条件,可得TC TD⋅为定值的常数.【小问1详解】由拋物线的定义得02pPF y=+,解得692p+=,6p=.∴抛物线的方程为212x y=.【小问2详解】设()11,A x y,()22,B x y,由(1)知点(0,3)F,∴直线l的方程为0x +-=.由20,12,x x y ⎧+-=⎪⎨=⎪⎩可得21090y y -+=,则1210y y +=,129y y =,12121061622p p AB AF BF y y y y p ⎛⎫⎛⎫∴=+=+++=++=+= ⎪ ⎪⎝⎭⎝⎭,则不妨取11y =,29y =,则点A ,B的坐标分别为,(-.设点M 的坐标为(,3)t -,则,4)MA t =-uuu r,(,12)MB t =--uuu r ,则)()4120MA MB t t ⋅=--+⨯= ,解得t =-.即(3)M --,又点M 到直线l的距离d =d =,故MAB △的面积12S d AB =⋅=;【小问3详解】设()00,T x y ,()33,C x y ,()44,D x y ,过点Q 的直线为(2)y k x =-,2(2)12y k x x y =-⎧⎨=⎩联立消去y 得:212240x kx k -+=,0∆>时,3412x x k +=,3424x x k =,联立消去x 得:()22241240y k k y k +-+=,234124y y k k +=-,2344y y k =,()()()()30403040TC TD x x x x y y y y ⋅=--+-- ()()22340343403400x x x x x y y y y y x y =-++-+++()2222000024124124k x k k y k k x y =-⋅+--++()()2220000024124412x y k y k x y =-++-++要使()()2220000024124412x y k y k x y -++-++与k 无关,则00241240x y -+=且04120y -=,0199x ∴=,013y =,存在191,93T ⎛⎫ ⎪⎝⎭此时TC TD ⋅ 为定值37081.19.“工艺折纸”是一种把纸张折成各种不同形状物品的艺术活动,在我国源远流长,某些折纸活动蕴含丰富的数学内容,例如:用一张纸片,按如下步骤折纸:步骤1:在纸上画一个圆A ,并在圆外取一定点B ;步骤2:把纸片折叠,使得点B 折叠后与圆A 上某一点重合;步骤3:把纸片展开,并得到一条折痕;步骤4:不断重复步骤2和3,得到越来越多的折痕.你会发现,当折痕足够密时,这些折痕会呈现出一个双曲线的轮廓.若取一张足够大的纸,画一个半径为2的圆A ,并在圆外取一定点,4B AB =,按照上述方法折纸,点B 折叠后与圆A 上的点T 重合,折痕与直线TA 交于点,P P 的轨迹为曲线C .(1)以AB 所在直线为x 轴建立适当的坐标系,求C 的方程;(2)设AB 的中点为O ,若存在一个定圆O ,使得当C 的弦PQ 与圆O 相切时,C 上存在异于,P Q 的点,M N 使得//PM QN ,且直线,PM QN 均与圆O 相切.(i )求证:OP OQ ⊥;(ii )求四边形PQNM 面积的取值范围.【答案】(1)2213y x -=;(2)(i )证明见解析;(ii )[)6,+∞.【解析】【分析】(1)建立平面直角坐标系,根据双曲线定义可得双曲线方程;(2)假设存在符合条件的圆,依据条件,可得四边形PQNM 为菱形,设直线,OP OQ 的斜率分别为1,k k -,将直线,OP OQ 分别与双曲线方程联立求得||,||OP OQ ,通过计算O 到直线PQ 的距离可得定圆的方程.【小问1详解】以AB 所在直线为x 轴,以AB 的中点为坐标原点建立如图所示的平面直角坐标系.则()()2,0,2,0A B -.由折纸方法可知:PB PT =,所以2PB PA PT PA TA AB -=-==<.根据双曲线的定义,C 是以A ,B 为焦点,实轴长为2的双曲线,设其方程为()222210,0,x y a b a b-=>>则1,2a c ===,所以221,3a b ==.故C 的方程为2213y x -=.【小问2详解】(i )假设存在符合条件的圆O ,如图所示:由//PM QN 可得180MPQ NQP ∠+∠=︒,根据切线的性质可知,,MPO OPQ NQO OQP ∠=∠∠=∠,所以90OPQ OQP ∠+∠=︒,即OP OQ ⊥.(ii )分别作,P Q 关于原点O 的对称点,N M '',则,N M ''均在C 上,且四边形PQN M ''为菱形,所以,PM QN ''均与O 相切,所以M '与M 重合,N '与N 重合,所以四边形PQNM 为菱形.显然,直线,OP OQ 的斜率均存在且不为0.设直线,OP OQ 的斜率分别为1,k k-,则直线OP 的方程为y kx =,直线OQ 的方程为1=-y x k .设()()1122,,,P x y Q x y ,则由22,13y kx y x =⎧⎪⎨-=⎪⎩,得()2233k x -=,所以230k ->,且21233x k =-,所以203k <<,且1||OP ==.同理可得:213k >,且||OQ =所以四边形PQNM 的面积2||||S OP OQ =⋅=.设241,43t k t =+<<,故S ==.设1=u t ,则1344u <<,所以S =因为216163y u u =-+-在11,42⎛⎫ ⎪⎝⎭单调递增,在13,24⎛⎫ ⎪⎝⎭单调递减,所以(]0,1y ∈.所以[)6,S ∈+∞.所以四边形PQNM 的面积的取值范围是[)6,+∞.。
四川省成都市2023-2024学年高二上学期期中数学试题含解析

2023-2024学年度上期高2025届半期考试高二数学试卷(答案在最后)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷第1页至第2页,第Ⅱ卷第3页至第4页.注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色墨迹签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试卷上作答无效.5.考试结束后,只将答题卡收回.第Ⅰ卷(选择题,共60分)一.单选题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量()(),2,2,3,4,2a x b =-=-,若a b ⊥,则x 的值为()A.1B.4- C.4D.1-【答案】C 【解析】【分析】根据向量垂直的坐标运算即可求解.【详解】由()(),2,2,3,4,2a x b =-=- 得3840a b x ⋅=--= ,所以4x =,故选:C2.已知直线1:3410l x y --=与2:3430l x y -+=,则1l 与2l 之间的距离是()A.45B.35C.25 D.15【答案】A 【解析】【分析】直接由两平行线之间的距离公式计算即可.【详解】因为已知直线1:3410l x y --=与2:3430l x y -+=,而()()34430⨯---⨯=,所以12l l //,所以由两平行线之间的距离公式可得1l 与2l 之间的距离是45d ==.故选:A.3.已知圆()()221:219C x y -++=与圆()()222:134C x y ++-=,则圆1C 与圆2C 的位置关系为()A.相交B.外切C.内切D.内含【答案】B 【解析】【分析】根据两圆圆心距与半径的关系即可求解.【详解】()()221:219C x y -++=的圆心为()2,1,3r -=,()()222:134C x y ++-=的圆心为()1,3,2R -=,由于125C C ==,125C C r =+=R ,所以1C 与圆2C 外切,故选:B4.若直线()1:410l x a y +-+=与2:20l bx y +-=垂直,则a b +的值为()A.2 B.45C.23D.4【答案】D 【解析】【分析】根据直线垂直的条件求解.【详解】由题意40b a +-=,∴4a b +=.故选:D .5.已知事件,A B 相互独立,且()()0.3,0.7P A P B ==,则()P AB =()A.1 B.0.79C.0.7D.0.21【答案】D 【解析】【分析】由独立事件的概率乘法公式计算.【详解】由题意()()()0.30.70.21P AB P A P B ==⨯=,故选:D .6.如图,空间四边形OABC 中,,,OA a OB b OC c ===,点M 为BC 中点,点N 在侧棱OA 上,且2ON NA =,则MN =()A.121232a b c--+B.211322a b c-++C.211322a b c --D.111222a b c +-【答案】C 【解析】【分析】由图形中线段关系,应用向量加减、数乘的几何意义用,,OA a OB b OC c === 表示出MN.【详解】1221()2332MN MB BO ON CB OB OA OA OB OC OB=++=-+=+-- 211211322322OA OB OC a b c =--=--.故选:C7.已知椭圆方程为()222210x y a b a b +=>>,长轴为12A A ,过椭圆上一点M 向x 轴作垂线,垂足为P ,若212||13MP A P A P =⋅,则该椭圆的离心率为()A.3B.3C.13D.23【答案】B 【解析】【分析】根据题意,设()00,M xy ,表示出12,A P A P ,结合椭圆方程,代入计算,再由离心率公式,即可得到结果.【详解】设()00,M x y ,则2200221x y a b+=,()()()120,0,,0,,0A a A a P x -,则10A P x a =+,20A P x a =-,0MP y =所以222002201200||13a y y MP A P A x x a P x a+⋅=-==⋅-,且22x a <,所以22213y a x =-,即222003a x y -=,代入椭圆方程可得222002231a y y a b-+=,化简可得223a b =,则离心率为63e ===.故选:B8.现有一组数据不知道其具体个数,只知道该组数据平方后的数据的平均值是a ,该组数据扩大m 倍后的数据的平均值是b ,则原数据的方差、平方后的数据的方差、扩大m 倍后的数据的方差三个量中,能用,,a b m 表示的量的个数是()A.0 B.1C.2D.3【答案】C 【解析】【分析】设出原始数据,逐个计算求解即可.【详解】设该组数据为123,,n x x x x ⋅⋅⋅,则12nx x x x n++⋅⋅⋅+=.所以22212n x x x a n++⋅⋅⋅+=,12n mx mx mx mx b n ++⋅⋅⋅+==,所以b x m =.原数据的方差()()()()2222221212221212n n n x x x x x x x x x x x x x s xnn n-+-+⋅⋅⋅+-++⋅⋅⋅+++⋅⋅⋅+==-+2222222b b a x x a x a a m m ⎛⎫=-+=-=-=- ⎪⎝⎭,可以用,,a b m 表示.扩大m 倍后的数据的方差:()()()()()()2222221212222n n mx mx mx mx mx mx x x x x x x s m nn ⎡⎤-+-+⋅⋅⋅+--+-+⋅⋅⋅+-==⎢⎥⎢⎥⎣⎦22222212b m s m a m a b m ⎛⎫==-=- ⎪⎝⎭,可以用,,a b m 表示.平方后的数据的方差:()()()()2222222224441212221232n n n x a x a x aa x x x x x x s a nn n-+-+⋅⋅⋅+-++⋅⋅⋅+++⋅⋅⋅+==-+44444422212122n n x x x x x x a a a n n++⋅⋅⋅+++⋅⋅⋅+=-+=-.不能用,,a b m 表示.故选:C.二.多选题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,至少有两个是符合题目要求的,全选对得5分,部分选对得2分,有错选得0分.9.我校举行党史知识竞赛,对全校参赛的1000名学生的得分情况进行了统计,把得分数据按照[)[)[)[)[]50,60,60,70,70,80,80,90,90,100分成5组,绘制了如图所示的频率分布直方图.根据图中信息,下列说法正确的是()A.图中的x 值为0.020B.这组数据的极差为50C.得分在80分及以上的人数为400D.这组数据的众数的估计值为82【答案】AC 【解析】【分析】根据频率值和为1即可判断A ;根据由频率分布直方图无法求出这组数据得极差,即可判断B ;求出得分在80分及以上的频率,再乘以总人数,即可判断C ;根据频率分布直方图中众数即可判断D .【详解】解:()100.0050.0350.0300.0101x ⨯++++=,解得0.020x =,故A 正确;因为由频率分布直方图无法求出这组数据得极差,故B 错误;得分在80分及以上的频率为()100.0300.0100.4⨯+=,所以得分在80分及以上的人数为10000.4400⨯=,故C 正确;这组数据的众数的估计值为75,故D 错误.故选:AC .10.下列说法正确的是()A.对任意向量,a b ,都有a b b a⋅=⋅B.若a b a c ⋅=⋅且0a ≠,则b c=C.对任意向量,,a b c,都有()()a b c a b c⋅⋅=⋅⋅ D.对任意向量,,a b c ,都有()+⋅=⋅+⋅ a b c a c b c【答案】AD 【解析】【分析】可由数量积的定义及运算律可逐一判定选项.【详解】cos ,a b a b a b ⋅=,cos ,b a a b a b ⋅= ,可得a b b a ⋅=⋅,故选项A 正确;由a b a c ⋅=⋅ 可得()0a b c ⋅-=,又0a ≠ ,可得b c = 或()a cb ⊥- ,故选项B 错误;()()cos ,R a b c a b a b c c λλ⋅⋅==∈,()()cos ,R a b c c b c b a a μμ⋅⋅==∈所以()()a b c a b c ⋅⋅=⋅⋅ 不一定成立,故选项C 错误;由向量数量积运算的分配律可知选项D 正确;故选:AD.11.甲、乙两支田径队队员的体重(单位:kg)信息如下:甲队体重的平均数为60,方差为200,乙队体重的平均数为68,方差为300,又已知甲、乙两队的队员人数之比为1:3,则关于甲、乙两队全部队员的体重的平均数和方差的说法正确的是()A.平均数为67B.平均数为66C.方差为296D.方差为287【答案】BD 【解析】【分析】先利用比重计算全部队员体重的平均值,再利用平均值计算方差即可.【详解】依题意,甲的平均数160x =,乙的平均数268x =,而甲、乙两队的队员人数之比为1:3,所以甲队队员在所有队员中所占比重为14,乙队队员在所有队员中所占比重为34故甲、乙两队全部队员的体重的平均数为:1360686644x =⨯+⨯=;甲、乙两队全部队员的体重的方差为:()()22213200606630068665922828744s ⎡⎤⎡⎤=⨯+-+⨯+-=+=⎣⎦⎣⎦.故选:BD.12.已知四面体中三组对棱的中点间的距离都相等,则下列说法正确的是()A.该四面体相对的棱两两垂直B.该四面体四个顶点在对面三角形的射影是对面三角形的外心C.该四面体的四条高线交于同一点(四面体的高线即为过顶点作底面的垂线)D.该四面体三组对棱平方和相等【答案】ACD 【解析】【分析】设,,AB b AC c AD d ===,利用向量法AD 选项,用几何法判断BC 选项.【详解】选项A ,如图,四面体ABCD 中,,,,,,E F G H I J 是所在棱中点,EF GH IJ ==,设,,AB b AC c AD d === ,则111()()222EF AF AE AD AB AC d b c =-=-+=-- ,111()()222GH AH AG AC AD AB c d b =-=+-=+- ,EF GH =,即EF GH = ,所以11()()22d b c c d b --=+-,所以222222222222d b c b d c d b c d b c c d b d b c++-⋅-⋅+⋅=+++⋅-⋅-⋅c d b c ⋅=⋅ ,即()0c b d ⋅-= ,所以()c b d ⊥- ,即AC DB ⊥,所以AC BD ⊥,同理,AB CD AD BC ⊥⊥,A 正确;选项B ,设1AH ⊥平面BCD ,1H 是垂足,CD ⊂平面BCD ,所以1AH CD ⊥,又AB CD ⊥,11,,AB AH A AB AH =⊂ 平面1ABH ,所以CD ⊥平面1ABH ,而1BH ⊂平面1ABH ,所以1CD BH ⊥,同理1BC DH ⊥,所以1H 是平面BCD 垂心,同理可得其它顶点在对面的射影是对面三角形的垂心,B 错;选项C ,如上图,1AH ⊥平面BCD ,2BH ⊥平面ACD ,3DH ⊥平面ABC ,123,,H H H 是垂足,先证明12,AH BH 相交,1AH ⊥平面BCD ,CD ⊂平面BCD ,所以1AH CD ⊥,又AB CD ⊥,11,,AB AH A AB AH =⊂ 平面1ABH ,所以CD ⊥平面1ABH ,同理CD ⊥平面2ABH ,所以平面1ABH 和平面2ABH 重合,即12,AH BH 共面,它们必相交,设12AH BH H ⋂=,下面证明DH ⊥平面ABC ,与证明CD ⊥平面1ABH 同理可证得BC ⊥平面1ADH ,又DH ⊂平面1ADH ,所以BC DH ⊥,同理由2BH ⊥平面ACD 可证得DH AC ⊥,而,AC BC 是平面ABC 内两相交直线,所以DH ⊥平面ABC ,因此DH 与3DH 重合,同理可证CH ⊥平面ABD ,C 正确;选项D ,由选项A 的讨论同理可得b c b d c d ⋅=⋅=⋅,222222222()2AB CD AB CD b d c b c d c d +=+=+-=++-⋅ ,222222222()2AC BD AC BD c d b b c d b d +=+=+-=++-⋅,所以2222AB CD AC BD +=+,同理222222AB CD AC BD AD BC +=+=+,D 正确.故选:ACD .第Ⅱ卷(非选择题,共90分)三.填空题:本大题共4小题,每小题5分,共20分.13.经过()()0,2,1,0A B -两点的直线的方向向量为()1,k ,则k =______.【答案】2【解析】【分析】方向向量与BA平行,由此可得.【详解】由已知(1,2)BA =,()1,k 是直线AB 的方向向量,则2k =,故答案为:2.14.在一次篮球比赛中,某支球队共进行了8场比赛,得分分别为25,29,30,32,37,38,40,42,那么这组数据的第65百分位数为______.【答案】38【解析】【分析】根据百分位数的定义即可求解.【详解】865% 5.2⨯=,故这组数据的第65百分位数为第6个数38,故答案为:3815.写出与圆221:(1)(3)1C x y +++=和222:(3)(1)9C x y -++=都相切的一条直线的方程__________.【答案】0x =##4y =-##430x y -=##34100x y ++=【解析】【分析】判断两个圆是相离的,得到应该有四条公切线,画出图形易得0x =或4y =-为公切线,设切线方程为y kx b =+,根据圆心到直线的距离等于半径列出关于,k b 方程组,求解.【详解】因为圆1C 的圆心为()11,3C --,半径11r =圆2C 的圆心为()23,1C -,半径23r =又因为124C C =所以圆1C 与圆2C 相离,所以有4条公切线.画图为:易得:0a x =或:4n y =-是圆221:(1)(3)1C x y +++=和222:(3)(1)9C x y -++=的公切线设另两条公切线方程为:y kx b =+圆1C 到直线y kxb =+的距离为1=圆2C 到直线y kxb =+3=所以3133k b b k ++=-+所以31339k b b k ++=-+或31339k b b k ++=-+-34k b =+或52b =-当52b =-1==所以34k =-,切线方程为34100x y ++=当34k b =+3==所以()()225249b b +=++所以240b b +=所以0b =或4b =-当0b =时43k =,切线方程为430x y -=当4b =-时0k =,切线方程为4y =-故答案为:0x =或4y =-或430x y -=或34100x y ++=16.已知P 为直线=2y -上一动点,过点P 作圆221x y +=的两条切线,切点分别为,B C ,则点()2,1A 到直线BC 的距离的最大值为______.【答案】52【解析】【分析】首先设点00(,)P x y ,求过点BC 的直线方程,并判断直线BC 过定点,再利用几何关系求最大值.【详解】设00(,)P x y ,过点P 引圆221x y +=的两条切线,切点分别为,B C ,则切点在以OP 为直径的圆上,圆心00,22x y ⎛⎫ ⎪⎝⎭,半径r =,则圆的方程是22220000224x y x y x y +⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭,整理为:22000x y x x y y +--=,又点,B C 在圆221x y +=上,两圆方程相减得到001x x y y +=,即直线BC 的方程是001x x y y +=,因为02y =-,代入001x x y y +=得021x x y -=,则直线BC 恒过定点10,2N ⎛⎫- ⎪⎝⎭,所以点()2,1A 到直线BC 的距离52d AN ≤==,所以点()2,1A 到直线BC 的距离的最大值为52.故答案为:52.【点睛】思路点睛:首先本题求以OP 为直径的圆,利用两圆相减,求得过两圆交点的直线方程,关键是发现直线BC 过定点,这样通过几何关系就容易求定点与动直线距离的最大值.四.解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知ABC 的周长为()()14,3,0,3,0B C -.(1)求点A 的轨迹方程;(2)若AB AC ⊥,求ABC 的面积.【答案】(1)()2210167x y y +=≠(2)7【解析】【分析】(1)结合椭圆定义可得A 的轨迹方程.(2)利用AB AC ⊥及椭圆定义可列出方程,求解AC AB ⋅,即可算出ABC 的面积.【小问1详解】ABC 的周长为14且6,86BC AC AB BC =∴+=>=,根据椭圆的定义可知,点A 的轨迹是以()()3,0,3,0B C -为焦点,以8为长轴长的椭圆,即4,3,a c b ===A 的轨迹方程为221167x y+=,又A 为三角形的顶点,故所求的轨迹方程为()2210167x y y +=≠.【小问2详解】222,||||36AB AC AB AC BC ⊥∴+== ①.A 点在椭圆()2210167x y y +=≠上,且()()3,0,3,0B C -为焦点,8AC AB ∴+=,故22||264AC AB AC AB ++⋅=②.由①②可得,14AC AB ⋅=,故172S AC AB =⋅⋅=.ABC ∴ 的面积为7.18.如图,四面体OABC 的所有棱长都为1,,D E 分别是,OA BC 的中点,连接DE .(1)求DE 的长;(2)求点D 到平面ABC 的距离.【答案】18.219.3【解析】【分析】(1)利用基底,,OA OB OC 表示出向量DE,再根据向量数量积求长度的方法即可求出;(2)由该几何体特征可知,点O 在平面ABC 的射影为ABC 的中心,即可求出.【小问1详解】因为四面体OABC 的所有棱长都是1,所以该四面体为正四面体,()1111122222DE DA AB BE OA OB OA OC OB OA OB OC =++=+-+-=-++,而且12OA OB OB OC OA OC ⋅=⋅=⋅= ,所以()()2211131442DE OA OB OC =--=-=,即2DE =,所以DE 的长为2.【小问2详解】因为四面体OABC 为正四面体,所以点O 在平面ABC 的射影O '为ABC 的中心,ABC 的外接圆半径为11sin6023︒⨯=,所以点O 到平面ABC 的距离为3d ==,由于D 点为线段OA 的中点,所以点D 到平面ABC 的距离为3.19.现从学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[)155160,,第二组[)160,165,⋅⋅⋅,第八组[]190195,.右图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4人.(1)求第七组的频率并估计该校的800名男生的身高的中位数;(2)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记事件A 表示随机抽取的两名男生不.在同一组....,求()P A .【答案】(1)第七组的频率为0.06,中位数为174.5cm(2)815【解析】【分析】(1)根据频率为和1,可得第七组的频率为0.06,设学校的800名男生的身高中位数为m ,根据中位数的定义可得()0040080217000405...m ..+++-⨯=,求解即可;(2)用列举法写出基本事件的总数和两名男生不在同一组所包含的基本事件,即可得解.【小问1详解】(1)由直方图的性质,易知第七组的频率为415(0.008+0.016+0.04+0.04+0.06++0.008)=0.06505-⨯⨯.由于0.040.080.20.320.5,0.040.080.20.20.520.5++=<+++=>,设学校的800名男生的身高中位数为m ,则170175m <<,由()0040080217000405...m ..+++-⨯=,得1745m .=,所以学校的800名男生的身高的中位数为174.5cm .【小问2详解】解:第六组[)180185,的人数为4,设为a b c d ,,,,第八组[]190195,的人数为0.0085502⨯⨯=,设为,A B ,则从中随机抽取两名男生有,,,,,,,,,,,,,dB,ab ac ad bc bd cd aA aB bA bB cA cB dA AB 共15种情况.事件A 表示随机抽取的两名男生不在同一组,所以事件A 包含的基本事件为,,,aA aB bA bB ,,,,cA cB dA dB 共8种情况.所以()815P A =.20.已知圆C 经过点()0,2A ,()6,4B ,且圆心在直线340x y --=上.(1)求圆C 的方程;(2)若平面上有两个点()6,0P -,()6,0Q ,点M 是圆C 上的点且满足2MP MQ=,求点M 的坐标.【答案】(1)()22420x y -+=(2)10,33⎛⎫ ⎪ ⎪⎝⎭或10,33⎛⎫-⎪ ⎪⎝⎭【解析】【分析】(1)设出圆心,利用点到直线的距离公式即可求得圆的方程.(2)根据已知条件求得M 满足的方程联立即可求得M 的坐标.【小问1详解】∵圆心在直线340x y --=上,设圆心()34,C a a +,已知圆C 经过点()0,2A ,()6,4B ,则由CA CB =,=解得0a =,所以圆心C 为()4,0,半径r CA ===所以圆C 的方程为()22420x y -+=;【小问2详解】设(),M x y ,∵M 在圆C 上,∴()22420x y -+=,又()6,0P -,()6,0Q ,由2MPMQ=可得:()()2222646x y x y ⎡⎤++=-+⎣⎦,化简得()221064x y -+=,联立()()22224201064x y x y ⎧-+=⎪⎨-+=⎪⎩解得10411,33M ⎛⎫ ⎪ ⎪⎝⎭或10411,33⎛⎫- ⎪ ⎪⎝⎭.21.如图,在直三棱柱111ABC A B C -中,1π,2,3,2BAC AB AC AA M ∠====是AB 的中点,N 是11B C 的中点,P 是1BC 与1B C 的交点,点Q 在线段1A N 上.(1)若//PQ 平面1A CM ,请确定点Q 的位置;(2)请在下列条件中任选一个,求11A QA N的值;①平面BPQ 与平面ABC的夹角余弦值为53;②直线AC 与平面BPQ所成角的正弦值为106.【答案】(1)Q 为1A N 靠近N 三等分点处(2)①1112A Q A N =;②1112A Q A N =【解析】【分析】(1)分别以1,,AC AB AA 所在直线为,,x y z 轴,建立空间直角坐标系,求出面1A CM 的法向量n,由//PQ 平面1A CM 得PQ n ⊥ ,即0PQ n ⋅= ,求解11A QA N即可;(2)设()1101A Q A Nλλ=<<,求出平面BPQ 的法向量为m,平面ABC 的法向量,若选择①,利用平面与平面的夹角的向量求法求解;若选择②,由直线与平面所成角的向量求法求解.【小问1详解】分别以1,,AC AB AA 所在直线为,,x y z轴,建立空间直角坐标系,()()()()()130,0,3,2,0,0,0,1,0,1,1,3,1,1,,,,32A C M N P Q a a ⎛⎫ ⎪⎝⎭,则()()1132,0,3,0,1,3,1,1,2A C A M PQ a a ⎛⎫=-=-=-- ⎪⎝⎭ .设面1A CM 的法向量(),,n x y z =r ,则110A C n A M n ⎧⋅=⎪⎨⋅=⎪⎩ ,即23030x z y z -=⎧⎨-=⎩.令2z =,得()3,6,2n =.因为//PQ 平面1A CM ,所以PQ n ⊥ ,即0PQ n ⋅=.所以()()316130a a -+-+=,得23a =,122,,033A Q ⎛⎫= ⎪⎝⎭,所以13A Q = .因为11123A Q A N A N ==,所以Q 为1A N 靠近N 三等分点处时,有//PQ 平面1A CM .【小问2详解】设()1101A QA Nλλ=<<,则()11,,0A Q A N λλλ== .所以1111331,1,,1,1,22PQ PA A Q PA A N PB λλλ⎛⎫⎛⎫=+=+=--=--⎪ ⎪⎝⎭⎝⎭.设平面BPQ 的法向量为()111,,m x y z =,则00PQ m PB m ⎧⋅=⎪⎨⋅=⎪⎩,即()()11111131102302x y z x y z λλ⎧-+-+=⎪⎪⎨⎪-+-=⎪⎩.令()141z λ=-,得()()()3,32,41m λλλ=--.注意到平面ABC 的法向量为()0,0,1,直线AC 的方向向量为()1,0,0,若选择①,平面BPQ 与平面ABC的夹角余弦值为53,则()10,0,1cos 53m mθ⋅==.即()2483001λλλ-+=<<,解得12λ=,即1112A Q A N =.若选择②,直线AC 与平面BPQ所成角的正弦值为106,则()21,0,0sin 106m mθ⋅==.即()2181713001λλλ+-=<<,解得12λ=,即1112A Q A N =.22.已知()()()2,3,2,0,2,0,A B C ABC -∠的内角平分线与y 轴相交于点E .(1)求ABC 的外接圆的方程;(2)求点E 的坐标;(3)若P 为ABC 的外接圆劣弧 BC 上一动点,ABC ∠的内角平分线与直线AP 相交于点D ,记直线CD 的斜率为1k ,直线CP 的斜率为2k ,当1275k k =-时,判断点E 与经过,,P D C 三点的圆的位置关系,并说明理由.【答案】(1)2232524x y ⎛⎫+-=⎪⎝⎭(2)20,3⎛⎫ ⎪⎝⎭(3)点E 在经过,,P D C 三点的圆上,理由见解析【解析】【分析】(1)根据直角三角形的性质即可求解圆心和半径,从而得解;(2)根据等面积法或者利用角平分线的性质可得AB AF BCCF=,即可求解长度得斜率,进而可求解直线方程,得解;(3)联立方程可得22223234,11k k k P k k ⎛⎫--- ⎪++⎝⎭,6743,3131k k D k k --⎛⎫ ⎪--⎝⎭,根据1275k k =-可得1k =,即可求解点的坐标,由点的坐标求解圆的方程,即可判定.【小问1详解】易知ABC 为C 为直角的直角三角形,故外接圆的圆心为斜边AB 边的中点30,2⎛⎫ ⎪⎝⎭,半径为52,所以外接圆的方程为2232524x y ⎛⎫+-= ⎪⎝⎭.【小问2详解】设ABC ∠的内角平分线交AC 于点F ,根据角平分线性质定理,可知AB AF BCCF=,(利用11sin 22211sin 222ABFBCFABC AB BF AF BC S ABC S BC BF FC BC ∠⋅⋅==∠⋅⋅ 可得AB AF BC CF =)由结合3AF CF +=,5AB ==,4,3BC AC ==所以4133BD CF CF k BC =⇒==所以,ABC ∠的内角平分线方程为()123y x =+,令0x =,即可得点E 坐标20,3⎛⎫⎪⎝⎭.【小问3详解】点E 在经过,,P D C 三点的圆上,理由如下:由题意可知直线AP 的斜率存在,故设直线AP 的直线方程为()32y k x -=-,联立直线与圆的方程()223232524y k x x y ⎧-=-⎪⎨⎛⎫+-=⎪ ⎪⎝⎭⎩,可得()()22221344640kx k k x kk ++-+--=注意到,A P 两点是直线与圆的交点,所以2246421P k k x k --⋅=+222321P k k x k --∴=+,故22223234,11k k k P k k ⎛⎫--- ⎪++⎝⎭.联立直线AP 与ABC ∠的内角平分线方程()321233y k x y x ⎧-=-⎪⎨=+⎪⎩,可得6731k x k -=-6743,3131k k D k k --⎛⎫∴ ⎪--⎝⎭.此时221222243433434003443313111,6753423253422313111k k k k k k k k k k k k k k k k k k k k k ----------++======------+----++,12343475,1435534k k k k k k k -+∴==-=-∴=-+.此时,点31,22P ⎛⎫-- ⎪⎝⎭,点11,.22D P ⎛⎫- ⎪⎝⎭点满足在劣弧 BC 上.设经过,,P D C 三点的圆的方程为()2222040x y mx ny t m n t ++++=+->,则4205320120m t m n t m n t ++=⎧⎪--+=⎨⎪-++=⎩,解得5617673m n t ⎧=-⎪⎪⎪=⎨⎪⎪=-⎪⎩.所以,经过,,P D C 三点的圆的方程为2251770663x y x y +-+-=.将点20,3E ⎛⎫ ⎪⎝⎭代入圆的方程成立,所以点E 在经过,,P D C 三点的圆上.。
安徽省池州市贵池区2024-2025学年高二上学期期中检测数学试题含答案

2024~2025学年第一学期高二期中检测数学(答案在最后)全卷满分150分,考试时间120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将条形码粘贴在答题卡上的指定位置.2.请按题号顺序在答题卡上各题目的答题区域内作答,写在试卷、草稿纸和答题卡上的非答题区域均无效.3.选择题用2B 铅笔在答题卡上把所选答案的标号涂黑;非选择题用黑色签字笔在答题卡上作答;字体工整,笔迹清楚.4.考试结束后,请将试卷和答题卡一并上交.5.本卷主要考查内容:选择性必修第一册第一章~第二章.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量()1,2,4a =,()1,0,2b =-r,则a b ⋅的值为()A.()1,0,8- B.9C.-7D.7【答案】D 【解析】【分析】根据空间向量数量积坐标运算法则进行计算.【详解】()()1,1,2,00874,21a b ⋅⋅=-=-++=.故选:D2.直线+1=0x 的倾斜角为()A.34π B.4π C.2π D.不存在【答案】C 【解析】【分析】根据倾斜角的定义可得结果【详解】因为直线+1=0x 即直线1x =-垂直于轴,根据倾斜角的定义可知该直线的倾斜角为2π,故选:C.3.与直线20x y +=垂直,且在x 轴上的截距为-2的直线方程为().A.220x y -+=B.220x y --= C.220x y -+= D.220x y --=【答案】A 【解析】【分析】先求出直线的斜率,再利用直线的点斜式方程求解.【详解】由题得所求直线的斜率为12,∴所求直线方程为10(2)2y x -=+,整理为220x y -+=.故选:A【点睛】方法点睛:求直线的方程,常用的方法:待定系数法,先定式(从直线的五种形式中选择一种作为直线的方程),后定量(求出直线方程中的待定系数).4.如图所示,在平行六面体1111ABCD A B C D -中,点E 为上底面对角线11A C 的中点,若1BE AA x AB y AD =++,则()A.11,22x y =-=B.11,22x y ==-C.11,22x y =-=-D.11,22x y ==【答案】A 【解析】【分析】根据空间向量的线性运算即可求解.【详解】根据题意,得;11()2BE BB BA BC =++11122AA BA BC=++111,22AA AB AD =-+ 1BE AA xAB y AD =++ 又11,,22x y =-=∴故选:A5.已知向量()0,0,2a = ,()1,1,1b =- ,向量a b + 在向量a上的投影向量为().A.()0,0,3 B.()0,0,6C.()3,3,9- D.()3,3,9--【答案】A 【解析】【分析】根据空间向量的坐标运算及投影向量的公式计算即可.【详解】由题意可知()1,13a b +=-,,()6,2a b a a +⋅== ,所以向量a b + 在向量a上的投影向量为()()()60,0,20,0,322a b a a a a +⋅⋅=⨯=⋅ .故选:A6.若圆()()2213425O x y -+-=:和圆()()()222228510O x y r r +++=<<:相切,则r 等于A.6B.7C.8D.9【答案】C 【解析】【分析】根据的圆标准方程求得两圆的圆心与半径,再根据两圆内切、外切的条件,分别求得r 的值并验证510r <<即可得结果.【详解】圆()()2213425O x y -+-=:的圆心()13,4O ,半径为5;圆()()2222:28O x y r +++=的圆心()22,8O --,半径为r.=|r-5|,求得r=18或-8,不满足5<r<10.=|r+5|,求得r=8或-18(舍去),故选C.【点睛】本题主要考查圆的方程以及圆与圆的位置关系,属于基础题.两圆半径为,R r ,两圆心间的距离为d ,比较d 与R r -及d 与R r +的大小,即可得到两圆的位置关系.7.在空间直角坐标系Oxyz 中,已知点()2,1,0D ,向量()4,1,2,m m =⊥平面DEF ,则点O 到平面DEF 的距离为()A.21B.7C.21D.21【答案】B 【解析】【分析】根据空间向量的坐标运算直接计算点O 到平面DEF 的距离.【详解】因为()2,1,0D ,所以()2,1,0OD = ,又向量()4,1,2,m m =⊥平面DEF ,所以()4,1,2m =是平面DEF 的一个法向量所以点O 到平面DEF的距离为7OD m d m ⋅===.故答案为:7.8.已知直线l :x -my +4m -3=0(m ∈R ),点P 在圆221x y +=上,则点P 到直线l 的距离的最大值为()A.3B.4C.5D.6【答案】D 【解析】【分析】先求得直线过的定点的坐标,再由圆心到定点的距离加半径求解.【详解】解:直线l :x -my +4m -3=0(m ∈R )即为()()340x y m -+-=,所以直线过定点()3,4Q ,所以点P 到直线l的距离的最大值为16OQ r +=+=,故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知直线2y x =与0x y a ++=交于点()1,P b ,则()A.3a =-B.2b =C.点P 到直线30ax by ++=的距离为13D.点P 到直线30ax by ++=的距离为13【答案】ABD 【解析】【分析】联立直线方程结合其交点坐标求参数a 、b ,进而应用点线距离公式求P 到直线30ax by ++=的距离即可.【详解】由题意,得:210b b a =⎧⎨++=⎩,解得3a =-,2b =,故A 、B 正确,∴()1,2到直线3230x y -++=的距离13d ==,故C 错误,D 正确.故选:ABD.10.已知空间向量()()3,1,2,3,3,1a b =--= ,则下列说法正确的是()A.()32//a b a+B.()57a a b⊥+C.a =D.b =【答案】BCD 【解析】【分析】根据题意,结合向量的坐标运算,以及向量的共线和垂直的坐标表示,准确计算,即可求解.【详解】因为向量()()3,1,2,3,3,1a b =--= ,可得214,10a a b =⋅=-,对于A 中,由()323,3,8a b +=-,设32a b a λ+= ,即()3,3,8(3,1,2)λ-=--,可得33382λλλ-=-⎧⎪=-⎨⎪=⎩,此时方程组无解,所以32a b + 与a 不平行,所以A 错误;对于B 中,由()257575147(10)0a a b a a b ⋅+=+⋅=⨯+⨯-=,所以()57a a b ⊥+,所以B 正确;对于C中,由a ==,所以C 正确;对于D中,由b == D 正确.故选:BCD.11.直线2y x m =+与曲线y =恰有两个交点,则实数m 的值可能是()A.4B.5C.3D.4110【答案】AD 【解析】【分析】做出函数图象,数形结合,求出m 的取值范围,再进行选择.【详解】做出函数2y x m =+与y =的草图.设2y x m =+与圆224x y +=2=⇒m =m =-(舍去).因为函数2y x m =+与y =有两个交点,所以4m ≤<.故选:AD三、填空题:本题共3小题,每小题5分,共15分.12.已知在空间直角坐标系xOy 中,点A 的坐标为(1,2,)3-,点B 的坐标为(0,1,4)--,点A 与点C 关于x 轴对称,则||BC =___________.【答案】【解析】【分析】首先根据对称求出点C 的坐标,然后根据两点间的距离公式求||BC 的值即可.【详解】因为点A 与点C 关于x 轴对称,所以点C 的坐标为()1,2,3-,又因为点B 的坐标为(0,1,4)--,所以BC ==.13.过点()2,4作圆224x y +=的切线,则切线方程为___________.【答案】2x =或34100x y -+=【解析】【分析】考虑直线斜率不存在和直线斜率存在两种情况,利用圆心到直线距离等于半径列出方程,求出切线方程.【详解】①直线的斜率不存在时2x =满足,②直线斜率存在时,设切线方程为()42y k x -=-,则324d k ==⇒=,所以切线方程为4y -=()324x -,即34100x y -+=.故答案为:2x =或34100x y -+=.14.在平面直角坐标系xOy 中,设直线y =-x +2与圆x 2+y 2=r 2(r >0)交于A ,B 两点.若圆上存在一点C ,满足5344OC OA OB =+,则r 的值为________.【答案】【解析】【详解】22225325539OC OA OB OA 2OA OB OB44164416⎛⎫=+=+⋅⋅+ ⎪⎝⎭即222225159r r r cos AOB r 16816=+∠+,整理化简得cos∠AOB=-35,过点O 作AB 的垂线交AB 于D,则cos∠AOB=2cos 2∠AOD-1=-35,得cos 2∠AOD=15.又圆心到直线的距离为OD==,所以cos 2∠AOD=15=22OD r=22r ,所以r 2.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15.已知直线l 过点()2,1P -.(1)若直线l 与直线230x y ++=垂直,求直线l 的方程(2)若直线l 在两坐标轴的截距互为相反数,求直线l 的方程.【答案】(1)240x y --=;(2)20x y +=或30x y --=.【解析】【分析】(1)根据直线方程垂直设出方程求解未知数即可;(2)根据截距的概念分类讨论求方程即可.【小问1详解】因为直线l 与直线230x y ++=垂直,所以可设直线l 的方程为20x y m -+=,因为直线l 过点()2,1P -,所以()2210m -⨯-+=,解得4m =-,所以直线l 的方程为240x y --=【小问2详解】当直线l 过原点时,直线l 的方程是2xy =-,即20x y +=.当直线l 不过原点时,设直线l 的方程为x y a -=,把点()2,1P -代入方程得3a =,所以直线l 的方程是30x y --=.综上,所求直线l 的方程为20x y +=或30x y --=16.已知向量()()1,1,,2,,a t t t b t t =--=.(1)若a b ⊥ ,求t 的值;(2)求b a -的最小值.【答案】(1)2(2)5【解析】【分析】(1)由空间向量垂直得到方程,求出答案;(2)计算出()1,21,0b a t t -=+-,利用模长公式得到b a -= ,求出最小值.【小问1详解】因为a b ⊥ ,所以0a b ⋅=,即()()22110t t t t -+-+=,解得2t=;【小问2详解】()1,21,0 b a t t-=+-所以b a-=.所以当15t=时,b a-取得最小值为5.17.如图,在四棱锥P ABCD-中,底面ABCD为直角梯形,//AD BC,AB BC⊥,AP⊥平面ABCD,Q为线段PD上的点,2DQ PQ=,1AB BC PA===,2AD=.(1)证明://BP平面ACQ;(2)求直线PC与平面ACQ所成角的正弦值.【答案】(1)证明见解析(2)13【解析】【分析】(1)利用三角形相似得2MD MB=,结合2DQ PQ=,则有//MQ BP,利用线面平行的判定即可证明;(2)以A为坐标原点,建立合适的空间直角坐标系,求出平面ACQ的法向量,利用线面角的空间向量法即可得到答案.【小问1详解】如图,连接BD与AC相交于点M,连接MQ,∵//BC AD,2AD BC=,则AMD CMB,∴2MD ADMB CB==,2MD MB=,∵2DQ PQ=,∴//MQ BP,BP ⊄ 平面ACQ ,MQ Ì平面ACQ ,∴//BP 平面ACQ ;【小问2详解】AP ⊥ 平面ABCD ,,AB AD ⊂平面ABCD ,,AP AB AP AD ∴⊥⊥,因为底面AB BC ⊥,则AB ,AD ,AP 两两垂直,以A 为坐标原点,建立如图所示空间直角坐标系,各点坐标如下:()0,0,0A ,()1,1,0C ,()0,0,1P ,220,,33Q ⎛⎫⎪⎝⎭.设平面ACQ 的法向量为(),,m x y z =,由()1,1,0AC = ,220,,33AQ ⎛⎫= ⎪⎝⎭ ,有02233AC m x y AQ m y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,令1x =,1y =-,1z =,可得()1,1,1m =- ,由()1,1,1CP =-- ,有1CP m ⋅=,CP m ==,则1cos ,3CP m == .故直线PC 与平面ACQ 所成角的正弦值为13.18.如图,在正方体1111ABCD A B C D -中,,F G 分别是棱1,CC AD 的中点,E 为棱AB 上一点,且异面直线1B E 与BG 所成角的余弦值为25.(1)证明:E 为AB 的中点;(2)求平面1B EF 与平面11ABC D 所成锐二面角的余弦值.【答案】(1)见解析(2)4242【解析】【分析】(1)以D 为坐标原点,建立如图所示的空间直角坐标系D xyz -,不妨令正方体的棱长为2,设()2,,0E a ,利用111cos ,B E BG B E BG B E BG⋅= ,解得1a =,即可证得;(2)分别求得平面1B EF 与平面11ABC D 的法向量m n ,,利用cos ,m n m n m n⋅=⋅ 求解即可.【小问1详解】证明:以D 为坐标原点,建立如图所示的空间直角坐标系D xyz -.不妨令正方体的棱长为2,则()0,0,0D ,()1,0,0G ,()2,2,0B ,()12,2,2B ,()0,2,1F ,设()2,,0E a ,则()10,2,2B E a =-- ,()1,2,0BG =-- ,所以()1121422cos ,5524B E BG a B E BG B E BG a ⋅-===-+ ,所以2430a a -+=,解得1a =(3a =舍去),即E 为AB 的中点.【小问2详解】由(1)可得()10,1,2B E =-- ,()2,1,1EF =- ,设(),,m x y z = 是平面1B EF 的法向量,则12020m B E y z m EF x y z ⎧⋅=--=⎪⎨⋅=-++=⎪⎩ .令2z =,得()1,4,2m =-- .易得平面11ABC D 的一个法向量为()12,0,2n DA == ,所以cos ,42m n m n m n ⋅===⋅ .所以所求锐二面角的余弦值为42.19.已知圆C 过点(1,0)M -且与直线20x +-=相切于点1,22⎛⎫ ⎪ ⎪⎝⎭,直线:30l kx y k --+=与圆C 交于不同的两点A ,B .(1)求圆C 的方程;(2)若圆C 与x 轴的正半轴交于点P ,直线PA ,PB 的斜率分别为1k ,2k ,求证:12k k +是定值.【答案】(1)221x y +=(2)证明见解析.【解析】【分析】(1)确定圆心和半径,可得圆C 的方程.(2)把直线方程与圆C 方程联立,得到12x x +,21x x ,再表示出12k k +,运算整理即可.【小问1详解】过点1,22⎛⎫ ⎪ ⎪⎝⎭且与直线20x +-=垂直的直线为:1022x y ⎛⎫⎫---= ⎪⎪ ⎪⎭⎝⎭0y -=.又线段MN,其中1,22N ⎛⎫ ⎪ ⎪⎝⎭的垂直平分线为:()222213122x y x y ⎛⎫⎛⎫++=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭0y +=.由00y y -=+=,得圆心()0,0C ,又221r CM ==.故圆C 的方程为:221x y +=.【小问2详解】将()3y kx k =+-代入221x y +=得:()2231x kx k ⎡⎤++-=⎣⎦,整理得:()()()222123310k x k k x k ++-+--=.由0∆>⇒()()()22224341310k k k k ⎡⎤--+-->⎣⎦⇒43k >.设1,1,2,2,则()122231k k x x k -+=+,()2122311k x x k --=+.又()1,0P ,所以()111111133111k x y k k x x x -+===+---,同理:2231k k x =+-.所以121233211k k k x x +=++--()()()121236211x x k x x +-=+--()()1212123621x x k x x x x +-=+-++()()()22222336123123111k k k k k k k k k -⨯-+=+----+++()()()22222336123123111k k k k k k k k k -⨯-+=+----+++18629k k --=+23=-.所以1223k k +=-为定值.。
2024-2025学年黑龙江省哈尔滨市高二上学期11月期中考试数学检测试题(含解析)

2024-2025学年黑龙江省哈尔滨市高二上学期11月期中考试数学检测试题一、单选题(本大题共10小题)1.直三棱柱中,若,则( )111ABC A B C -1,,CA a CB b CC c === 1A B =A .B .a b c+-r r ra b c-+r r r C .D .a b c -++ a b c-+- 2.已知点,,若直线的斜率为,则( )()1,0A (),B n m AB 21n m -=A .B .C .D .22-1212-3.已知,则( )()()1,5,1,3,2,5a b =-=-a b -= A .B .C .D .()4,3,6--()4,3,6--()4,3,6-()4,3,64.已知焦点在轴上的椭圆的焦距为6,则实数等于( )x 2213x y m +=mA .B .C .12D .3421412-5.已知正方体的棱长为1,则( )1111ABCD A B C D -A .B .C .D .11ACB D ⊥1AC BC⊥1B D BC⊥1B D AC^6.已知圆,圆,则这两圆的位置关系为( 22:(2)(4)25E x y -+-=22:(2)(2)1F x y -+-=)A .内含B .相切C .相交D .外离7.设直线的方向向量为,平面的法向量为,若,则( )l a αb0a b ⋅= A .B .C .D .或//l αl α⊂l α⊥l α⊂//l α8.与平行,则( )1:10l ax y -+=2:2410l x y +-==aA .B .C .D .21212-2-9.经过点,斜率为的直线方程为( )(3,1)12A .B .210x y --=250x y +-=C .D .250x y --=270x y +-=10.已知,则该圆的圆心坐标和半径分别为( )221:202C x y x y ++-+=A .,B .,1,12⎛⎫- ⎪⎝⎭()1,2-C .,D .,1,12⎛⎫ ⎪⎝⎭()1,2-二、多选题(本大题共2小题)11.下列结论错误的是( )A .过点,的直线的倾斜角为()1,3A ()3,1B -30︒B .若直线与直线平行,则2360x y -+=20ax y ++=23a =-C .直线与直线之间的距离是240x y +-=2410x y ++=D .已知,,点在轴上,则的最小值是5()2,3A ()1,1B -P x PA PB+12.以A (1,1),B (3,-5)两点的线段为直径的圆,则下列结论正确的是()A .圆心的坐标为(2,2)B .圆心的坐标为(2,-2)C .圆心的坐标为(-2,2)D .圆的方程是()222)210x y ++-=(E .圆的方程是22(2)(2)10x y -++=三、填空题(本大题共4小题)13.已知平面的法向量是,平面的法向量是,若,则的α()2,3,1-β()4,,2λ-//αβλ值是.14.直线与圆的位置关系是.34120x y ++=()()22119-++=x y 15.三条直线与相交于一点,则的值为.280,4310ax y x y +-=+=210x y -=a16.在空间直角坐标系中,直线的一个方向向量为,平面的一个法向l ()1,0,3m =-α量为,则直线与平面所成的角为.()2n =l α四、解答题(本大题共3小题)17.求满足下列条件的直线方程(要求把直线的方程化为一般式):(1)已知,,,求的边上的中线所在的直线方程.(1,2)A (1,4)B -(5,2)C ABC V AB (2)直线经过点,倾斜角为直线的倾斜角的2倍,求的方程.l (2,1)B --12y x=l 18.如图,在棱长为2的正方体中,分别是的中点,G 在棱CD 上,且,E F 1,DD DB ,H 是的中点.建立适当的空间直角坐标系,解决下列问题:13CG CD=1C G(1)求证:;1EF B C ⊥(2)求异面直线EF 与所成角的余弦值.1C G 19.已知圆C 经过坐标原点O 和点(4,0),且圆心在x 轴上(1)求圆C 的方程;(2)已知直线l :34110x y +-=与圆C 相交于A 、B 两点,求所得弦长的值.AB答案1.【正确答案】D【详解】.()11111A A B B a b B A B cCC C CB =+=-+=-+--+ 故选:D .2.【正确答案】C【详解】若直线的斜率为,则,AB 221mn =-所以,211n m -=故选:C.3.【正确答案】C【详解】向量,则.()()1,5,1,3,2,5a b =-=- (4,3,6)a b -=- 故选:C4.【正确答案】C【详解】由题意知,,3,3m a b c >==又,所以,222a b c =+3912m =+=即实数的值为12.m 故选:C5.【正确答案】D 【详解】以为原点,为单位正交基底建立空间直角坐标系,D {}1,,DA DC DD 则,,,,,,()0,0,0D A (1,0,0)1(1,0,1)A ()1,1,0B ()11,1,1B ()0,1,0C 所以,,,.()11,1,1A C =-- ()11,1,1B D =--- ()1,0,0BC =- ()1,1,0AC =-因为,所以.111111,1,1,0AC B D AC BC BC B D AC B D ⋅=⋅==⋅=⋅ 1B D AC ^故选:D.6.【正确答案】A【详解】圆的圆心为,半径;22:(2)(4)25E x y -+-=E (2,4)15r =圆的圆心为,半径,22:(2)(2)1F x y -+-=F (2,2)11r =,故,所以两圆内含;2=12EF r r <-故选:A7.【正确答案】D【详解】∵直线的方向向量为,平面的法向量为且,即,l a αb0a b ⋅= a b ⊥ ∴或.l α⊂//l α故选:D8.【正确答案】B【详解】由与平行,得,所以.1:10l ax y -+=2:2410l x y +-=11241a -=≠-12a =-故选:B9.【正确答案】A【详解】经过点,斜率为的直线方程为,即.(3,1)1211(3)2y x -=-210x y --=故选:A.10.【正确答案】A【详解】的标准方程为,故所求分别为221:202C x y x y ++-+= ()2213124x y ⎛⎫++-= ⎪⎝⎭,1,12⎛⎫- ⎪⎝⎭故选:A.11.【正确答案】AC 【详解】对于A ,,即,故A 错误;131tan 312AB k α-===--30α≠︒对于B ,直线与直线平行,所以,解得,故B 2360x y -+=20ax y ++=123a =-23a =-正确;对于C ,直线与直线(即)之间的距离为240x y +-=2410x y ++=1202x y ++=C 错误;d 对于D ,已知,,点在轴上,如图()2,3A ()1,1B -P x取关于轴的对称点,连接交轴于点,此时()1,1B -x ()1,1B '--AB 'x P,5=所以的最小值是5,故D 正确;PA PB+故选:AC.12.【正确答案】BE 【详解】AB 的中点坐标为,则圆心的坐标为()2,2-()2,2-=r =所以圆的方程是22(2)(2)10x y -++=故选:BE13.【正确答案】6【详解】∵,∴的法向量与的法向量也互相平行.//αβαβ∴,∴.23142λ-==-6λ=故6.14.【正确答案】相交【详解】圆的圆心为,半径为,()()22119x y -++=()1,1-3因为圆心到直线,()1,1-34120x y ++=1135<所以直线与圆相交.34120x y ++=()()22119x y -++=故相交15.【正确答案】3【详解】由,即三条直线交于,431042102x y x x y y +==⎧⎧⇒⎨⎨-==-⎩⎩(4,2)-代入,有.280ax y +-=44803a a --=⇒=故316.【正确答案】π6【分析】应用向量夹角的坐标表示求线面角的正弦值,即可得其大小.【详解】设直线与平面所成的角为,l απ20θθ⎛⎫≤≤ ⎪⎝⎭则,所以.1sin cos ,2m n m n m n θ⋅====π6θ=故π617.【正确答案】(1)x +5y ﹣15=0(2)4x ﹣3y +5=0【详解】(1)因为,则的中点,(1,2),(1,4)A B -AB (0,3)D 因为的边上的中线过点,ABC V AB (5,2),(0,3)C D 所以的方程为,即,CD 233050y x --=--()5150x y +-=故的边上的中线所在的直线方程为;ABC V AB 5150x y +-=(2)设直线的倾斜角为, 则,则所求直线的倾斜角为,12y x=απ0,4α⎛⎫∈ ⎪⎝⎭2α因为,所以,1tan 2α=22tan 4tan 21tan 3ααα==-又直线经过点,故所求直线方程为,即4x ﹣3y+5=0;(2,1)B --4123y x +=+()18.【正确答案】(1)证明见解析【详解】(1)证明:如图,以D 为原点,以射线DA 、DC 、分别为x 轴、y 轴、1DD z 轴的正半轴,建立空间直角坐标系,D xyz -则,,,,,()0,0,0D E (0,0,1)()1,1,0F ()0,2,0C ()10,2,2C ,,()12,2,2B 40,,03G ⎛⎫ ⎪⎝⎭所以,,()1,1,1EF =- ()12,0,2B C =--所以,()()()()()11,1,12,0,21210120EF B C ⋅=-⋅--=⨯-+⨯+-⨯-=所以,故.1EF B C ⊥1EF B C ⊥(2)因为,所以120,,23C G ⎛⎫=-- ⎪⎝⎭1C G =因为,EF =()12241,1,10,,22333EF C G ⎛⎫⋅=-⋅--=-+=⎪⎝⎭所以.1114cos ,3EF C G EF C G EF C G ⋅=====19.【正确答案】(1)()2224x y -+=(2)【分析】(1)求出圆心和半径,写出圆的方程;(2)求出圆心到直线距离,进而利用垂径定理求出弦长.(1)由题意可得,圆心为(2,0),半径为2.则圆的方程为()2224x y -+=;(2)由(1)可知:圆C 半径为2r =,设圆心(2,0)到l 的距离为d ,则61115d -==,由垂径定理得:AB ==。
湖北省武汉市部分重点中学2024-2025学年高二上学期期中联考数学试题含答案

武汉市部分重点中学2024-2025学年度上学期期中联考高二数学试卷(答案在最后)本试卷共4页,19题.满分150分.考试用时120分钟.考试时间:2024年11月12日下午14:00—16:00祝考试顺利★注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码贴在答题卡上的指定位置.2,选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题所给的四个选项中,只有一项是符合题目要求的)1.直线320x y --=在y 轴上的截距为()A .2-B .2C .23D .23-2.已知直线1:1l y x =-绕点(0,1)-逆时针旋转512π,得到直线2l ,则2l 不过第__________象限.A .四B .三C .二D .一3.已知某种设备在一年内需要维修的概率为0.2.用计算器进行模拟实验产生1~5之间的随机数,当出现随机数1时,表示一年内需要维修,其概率为0.2,由于有3台设备,所以每3个随机数为一组,代表3台设备一年内需要维修的情况,现产生20组随机数如下:412451312531224344151254424142435414135432123233314232353442据此估计一年内这3台设备都不需要维修的概率为()A .0.4B .0.45C .0.5D .0.554.已知事件A ,B 互斥,它们都不发生的概率为13,且()3()P A P B =,则()P B =()A .16B .13C .23D .565.现有一段底面周长为12π厘米和高为15厘米的圆柱形水管,AB 是圆柱的母线,两只蚂蚁分别在水管内壁爬行,一只从A 点沿上底部圆弧顺时针方向爬行2π厘米后再向下爬行5厘米到达P 点,另一只从B 沿下底部圆弧逆时针方向爬行2π厘米后再向上爬行4厘米爬行到达Q 点,则此时线段PQ 长(单位:厘米)为()A .B .12C .D .6.概率论起源于博弈游戏17世纪,曾有一个“赌金分配”的问题:博弈水平相当的甲、乙两人进行博弈游戏,每局比赛都能分出胜负,没有平局.双方约定:各出赌金210枚金币,先赢3局者可获得全部赎金.但比赛中途因故终止了,此时甲赢了2局,乙赢了1局,问这420枚金币的赌金该如何分配?数学家费马和帕斯卡都用了现在称之为“概率”的知识,合理地给出了赌金分配方案.该分配方案是()A .甲315枚,乙105枚B .甲280枚,乙140枚C .甲210枚,乙210枚D .甲336枚,乙84枚7.在平面直角坐标系中,点P 的坐标为50,2⎛⎫ ⎪⎝⎭,圆22121:10504C x x y y -+-+=,点(,0)T t 为x 轴上一动点.现由点P 向点T 发射一道粗细不计的光线,光线经x 轴反射后与圆C 有交点,则t 的取值范围为()A .1527,88⎡⎤⎢⎣⎦B .710,43⎡⎤⎢⎥⎣⎦C .727,48⎡⎤⎢⎥⎣⎦D .1510,83⎡⎤⎢⎥⎣⎦8.如图所示,四面体ABCD 的体积为V ,点M 为棱BC 的中点,点E ,F 分别为线段DM 的三等分点,点N 为线段AF 的中点,过点N 的平面α与棱AB ,AC ,AD 分别交于O ,P ,Q ,设四面体AOPQ 的体积为V ',则V V'的最小值为()A .14B .18C .116D .127二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对得6分,部分选对得部分分,有选错的得0分)9.给出下列命题,其中是真命题的是()A .已知{,,}a b c 是空间的一个基底,若23m a c =+ ,则,,}a b m 〈也是空间的一个基底B .平面α经过三点(2,1,0)A ,(1,3,1)B -,(2,2,1)C -,向量(1,,)n u t =是平面α的法向量,则2u t +=C .若0a b ⋅> ,则,a b <>是锐角D .若对空间中任意一点O ,有111362OM OA OB =++,则M ,A ,B ,C 四点不共面10.下列命题正确的是()A .设A ,B 是两个随机事件,且1()2P A =,1()3P B =,若1()6P AB =,则A ,B 是相互独立事件B .若()0P A >,()0P B >,则事件A ,B 相互独立与A ,B 互斥有可能同时成立C .若三个事件A ,B ,C 两两相互独立,则满足()()()()P ABC P A P B P C =D .若事件A ,B 相互独立,()0.4P A =,()0.2P B =,则()0.44P AB AB = 11.平面内到两个定点A ,B 的距离比值为一定值(1)λλ≠的点P 的轨迹是一个圆,此圆被称为阿波罗尼斯圆,俗称“阿氏圆”.已知平面内点(2,0)A ,(6,0)B ,动点P 满足||1||3PA PB =,记点P 的轨迹为τ,则下列命题正确的是()A .点P 的轨迹τ的方程是2230x y x +-=B .过点(1,1)N 的直线被点P 的轨迹τ所截得的弦的长度的最小值是1C .直线220x y -+=与点P 的轨迹τ相离D .已知点3,02E ⎛⎫⎪⎝⎭,点M 是直线:270l x -+=上的动点,过点M 作点P 的轨迹τ的两条切线,切点为C ,D ,则四边形ECMD 面积的最小值是3三、填空题(本大题共3小题,每小题5分,共15分)12.同时扡掷两颗质地均匀的骰子,则两颗骰子出现的点数之和为6的概率为__________.13.已知曲线1y =+与直线y x b =+有两个相异的交点,那么实数b 的取值范围是__________.14.在空间直角坐标系中,(0,0,0)O ,(0,,3)A a ,(3,0,)B a ,(,3,0)C a ,33,3,2D ⎛⎫ ⎪⎝⎭,P 为ABC △所确定的平面内一点,设||PO PD -的最大值是以a 为自变量的函数,记作()f a .若03a <<,则()f a 的最小值为__________.四、解答题(本大题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本题满分13分)“体育强则中国强,国运兴则体育兴”.为备战2025年杭州举办的国际射联射击世界杯,某射击训练队制订了如下考核方案:每一次射击中10环、中8环或9环、中6环或7环、其他情况,分别评定为A ,B ,C ,D 四个等级,各等级依次奖励6分、4分、2分、0分.假设评定为等级A ,B ,C 的概率分别是12,14,18.(1)若某射击选手射击一次,求其得分低于4分的概率;(2)若某射击选手射击两次,且两次射击互不影响,求这两次射击得分之和为8分的概率.16.(本题满分15分)已知ABC △的顶点(4,2)A ,边AB 上的中线CD 所在直线方程为7250x y +-=,边AC 上的高线BE 所在直线方程为40x y +-=.(1)求边BC 所在直线的方程;(2)求BCD △的面积.17.(本题满分15分)如图所示,已知斜三棱柱111ABC A B C -中,AB a = ,AC b = ,1AA c =,在1AC 上和BC 上分别有一点M 和N 且AM k AC = ,BN k BC =,其中01k ≤≤.(1)求证:MN ,a ,c共面;(2)若||||||2a b c ===,13AB =且160BAC BB C ∠=∠=︒,设P 为侧棱1BB 上靠近点1B 的三等分点,求直线1PC 与平面11ACC A 所成角的正弦值.18.(本题满分17分)已知在平面直角坐标系xOy 中,(1,0)A -,(7,0)B -,平面内动点P 满足||2||PB PA =.(1)求点P 的轨迹方程;(2)点P 轨迹记为曲线C ,若曲线C 与x 轴的交点为M ,N 两点,Q 为直线:17l x =上的动点,直线MQ ,NQ 与曲线C 的另一个交点分别为E ,F ,求|EF|的最小值.19.(本题满分17分)对于三维向量()(),,,,N,0,1,2,k k k k k k k a x y z x y z k =∈= ,定义“F 变换”:()1F k k a a += ,其中,1k k k x x y +=-,1k k k y y z +=-,1k k k z z x +=-.记k k k k a x y z = ,k k k k a x y z =++.(1)若0(2,3,1)a =,求2a 及2a ;(2)证明:对于任意0a ,必存在*k ∈N ,使得0a 经过k 次F 变换后,有0k a = ;(3)已知1(,2,)()a p q q p =≥ ,12024a = ,将1a再经过m 次F 变换后,m a 最小,求m 的最小值.武汉市部分重点中学2024-2025学年度上学期期中联考高二数学试卷参考答案与评分细则题号1234567891011答案ADCDBA DCABADACD12.53613.1)+14.215.解:(1)设事件A ,B ,C ,D 分别表示“被评定为等级A ,B ,C ,D ”.由题意得,事件A ,B ,C ,D 两两互斥,所以1111()12488P D =---=.所以111()()()884P C D P C P D =+=+= .因此其得分低于4分的概率为14;(2)设事件i A ,i B ,i C ,i D 表示"第i 次被评定为等级A ,B ,C ,D ,i 1,2=.(2)设事件i A ,i B ,i C ,i D 表示“”第i 次被评定为等级A ,B ,C ,D ,i 1,2=.则“两次射击得分之和为8分”为事件()()()121221B B AC A C ,且事件12B B ,12AC,21A C 互斥,()121114416P B B =⨯=,()()12211112816P AC P A C ==⨯=,所以两次射击得分之和为8分的概率()()()()()()121221*********2161616P P B B AC A C P B B P ACP A C ⎡⎤==++=+⨯=⎣⎦ .16.解:(1)因为AC BE ⊥,所以设直线AC 的方程为:0x y m -+=,将(4,2)A 代入得2m =-,所以直线AC 的方程为:20x y --=,联立AC ,CD 所在直线方程:207250x y x y --=⎧⎨+-=⎩,解得(1,1)C -,设()00,B x y ,因为D 为AB 的中点,所以0042,22x y D ++⎛⎫⎪⎝⎭,因为()00,B x y 在直线BE 上,D 在CD 上,所以0040x y +-=,0042725022x y ++⨯+⨯-=,解得06x =-,010y =,所以(6,10)B -,10(1)11617BC k --==---,所以BC 所在直线的方程为:111(1)7y x +=--,即11740x y +-=.(2)由(1)知点(1,6)D -到直线BC 的距离为:d ==,又||BC ==,所以12722BCD S ==△.17.(1)证明:因为1AM k AC kb kc ==+,()(1)AN AB BN a k BC a k a b k a kb =+=+=+-+=-+,所以(1)(1)MN AN AM k a kb kb kc k a kc =-=-+--=-- .由共面向量定理可知,MN ,a ,c共面.(2)取BC 的中点为O ,在1AOB △中,1AO B O ==13AB =,由余弦定理可得22211cos2AOB ∠=-,所以12π3AOB ∠=,依题意ABC △,1B BC △均为正三角形,所以BC AO ⊥,1BC B O ⊥,又1B O AO O = ,1B O ⊂平面1B AO ,AO ⊂平面1B AO ,所以BC ⊥平面1AOB ,因为BC ⊂平面ABC ,所以平面1AOB ⊥平面ABC ,所以在平面1AOB 内作Oz OA ⊥,则Oz ⊥平面ABC ,以OA ,OC ,Oz 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系如图所示:则1332B ⎛⎫ ⎪⎝⎭,(0,1,0)B -,3,0,0)A ,(0,1,0)C ,1332C ⎛⎫⎪⎝⎭,1332A ⎫⎪⎝⎭设(,,)n x y z =是平面11ACC A 的一个法向量,(3,1,0)AC =,13332AC ⎛⎫= ⎪⎝⎭ ,则100n AC n AC ⎧⋅=⎪⎨⋅=⎪⎩ ,即303332022y x y z ⎧+=⎪⎨-++=⎪⎩,取1z =得(3,3,1)n =-- ,依题意可知123BP BB =,则11112332333713,,,323232C P C B BP C B BB ⎫⎛⎫⎛⎫=+=+=--+⨯-=--⎪ ⎪⎝⎭⎝⎭⎝⎭ .设直线1PC 与平面11ACC A 所成角为θ,则11169sin cos ,13213||133n C PC P n n C Pθ⋅====⋅⨯.故直线1PC 与平面11ACC A 所成角的正弦值为913.18.解:(1)设动点坐标(,)P x y ,因为动点P 满足||2||PB PA =,且(1,0)A -,(7,0)B -,2222(7)2(1)x y x y ++=++化简可得,222150x y x +--=,即22(1)16x y -+=,所以点P 的轨迹方程为22(1)16x y -+=.(2)曲线22:(1)16C x y -+=中,令0y =,可得2(1)16x -=,解得3x =-或5x =,可知(3,0)M -,(5,0)N ,当直线EF 为斜率为0时,||||EK FK +即为直径,长度为8,当直线EF 为斜率不为0时,设EF 的直线方程为x ny t =+,()11,E x y ,()22,F x y ,联立22(1)16x ny t x y =+⎧⎨-+=⎩消去x 可得:22(1)16ny t y +-+=,化简可得;()2212(1)(3)(5)0n y t ny t t ++-++-=由韦达定理可得1221222(1)1(3)(5)1t n y y n t t y y n -⎧+=⎪⎪+⎨+-⎪=⎪+⎩,因为()11,E x y ,()22,F x y ,(3,0)M -,(5,0)N ,所以EM ,FN 的斜率为113EM y k x =+,225FN y k x =-,又点()11,E x y 在曲线C 上,所以()2211116x y -+=,可得()()()22111116135y x x x =--=+-,所以111153EM y x k x y -==+,所以EM ,FN 的方程为115(3)x y x y -=+,22(5)5y y x x =--,令17x =可得()1212205125Q x y y y x -==-,化简可得;()()121235550y y x x +--=,又()11,E x y ,()22,F x y 在直线x ny t =+上,可得11x ny t =+,22x ny t =+,所以()()121235550y y ny t ny t ++-+-=,化简可得;()()221212535(5)5(5)0n y y n t y y t ++-++-=,又1221222(1)1(3)(5)1t n y y n t t y y n -⎧+=⎪⎪+⎨+-⎪=⎪+⎩,代入可得()2222(3)(5)2(1)535(5)5(5)011t t t n n n t t n n +--++-+-=++,化简可得()()222253(3)(5)10(5)(1)5(5)10n t t n t t t n ++-+--+-+=,()222222(5)3951510105525250t t n t n n n t n t t n -++++-++--=,(5)(816)0t t --=,所以2t =或5t =,当5t =时EF 为5x ny =+,必过(5,0),不合题意,当2t =时EF 为2x ny =+,必过(2,0),又||EF 为圆的弦长,所以当EF ⊥直径MN 时弦长||EF 最小,此时半径4r =,圆心到直线EF 的距离为211-=||8EF =,综上,||EF的最小值.19.解:(1)因为0(2,3,1)a = ,1(1,2,1)a = ,2(1,1,0)a = ,所以21100a =⨯⨯= ,21102a =++=,(2)设{}max ,,(0,1,2)k k k k M x y z k == 假设对N k ∀∈,10k a +≠,则1k x +,1k y +,1k z +均不为0;所以12k k M M ++>,即123M M M >>> ,因为*(1,2)k M k ∈=N ,112321121M M M M M M +≥+≥+≥≥++ ,所以121M M +≤-,与120M M +>矛盾,所以假设不正确;综上,对于任意0a ,经过若干次F 变换后,必存在K N*∈,使得0K a =.(3)设()0000,,a x y z = ,因为1(,2,)()a p q q p =≥,所以有000x y z ≤≤或000x y z ≥≥,当000x y z ≥≥时,可得0000002p x y y z q z x=-⎧⎪=-⎨⎪-=-⎩,三式相加得2q p -=又因为12024a =,可得1010p =,1012q =;当000x y z ≤≤时,也可得1010p =,1012q =,所以1(1010,2,1012)a =;设k a的三个分量为()*2,,2m m m +∈N 这三个数,当2m >时,1k a +的三个分量为2m -,2,m 这三个数,所以14k k a a +=- ;当2m =时,k a 的三个分量为2,2,4,则1k a + 的三个分量为0,2,2,2k a +的三个分量为2,0,2,所以124k k a a ++=== ;所以,由12024a = ,可得5058a = ,5064a =;因为1(1010,2,1012)a = ,所以任意k a的三个分量始终为偶数,且都有一个分量等于2,所以505a 的三个分量只能是2,2,4三个数,506a的三个分量只能是0,2,2三个数,所以当505m <时,18m a +≥ ;当505m ≥时,14m a +=,所以m 的最小值为505.。
江苏省扬州市扬州中学2024-2025学年高二上学期11月期中考试数学试题(含答案)

江苏省扬州中学2024-2025学年第一学期期中试卷高 二 数 学 2024.11一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.圆的圆心和半径分别是( )A .,1B .,3C .,2D .,22.经过两点,的直线的斜率为( )A .B .C .D .3.椭圆x 225+y 216=1的焦点为为椭圆上一点,若,则( )A .B .C .D .4.已知双曲线的离心率大于实轴长,则的取值范围是( )A .B .C .D.5.两平行直线与之间的距离为( )ABCD6.已知圆关于直线对称,则实数( )A .1或B .1C .3D .或37.已知抛物线C :y 2=2px (p >0)的焦点为,若抛物线上一点满足|MF |=2,∠OFM =60°,则( )A .3B .4C .6D .88.如图,双曲线的左右焦点分别为、,过的直线与该双曲线的两支分别交于、两点(在线段上),⊙与⊙分别为与的内切圆,其半径分别为、,则的取值范围是( )A .B .C .D .(0,+∞)二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.下列说法正确的是( )A .若,且直线不经过第二象限,则,.()()22232x y +++=()2,3-()2,3-()2,3--()2.3-(2,7)A (4,6)B 12-2-12212,,F F P 13PF =2PF =435722:1y C x m -=m (3,)+∞)+∞(0,3)320mx y --=4670x y --=22:330C x y mx y +-++=:0l mx y m +-=m =3-1-F M p =2218y x -=1F 2F 1F l A B A 1F B 1O 2O 12AF F △2ABF △1r 2r 12r r 1132⎛⎫ ⎪⎝⎭,1233⎛⎫⎪⎝⎭,1223⎛⎫ ⎪⎝⎭,0abc ≠0ax by c ++=0ab >0bc <B .方程()表示的直线都经过点.C .,直线不可能与轴垂直.D .直线的横、纵截距相等.10.已知曲线.点,,则以下说法正确的是( )A .曲线C 关于原点对称B .曲线C 存在点P,使得C .直线与曲线C 没有交点D .点Q 是曲线C 上在第三象限内的一点,过点Q 向作垂线,垂足分别为A ,B ,则.11.已知集合.由集合中所有的点组成的图形如图中阴影部分所示,中间白色部分形如美丽的“水滴”.给出下列结论,正确的有( )A .白色“水滴”区域(含边界)任意两点间距离的最大值为B .在阴影部分任取一点,则到坐标轴的距离小于等于3.C .阴影部分的面积为.D .阴影部分的内外边界曲线长为.三、填空题:本题共3小题,每小题5分,共15分.12.若双曲线的离心率为2,则其两条渐近线所成的锐角的大小为 .13.已知椭圆的左、右焦点分别为F 1、F 2,过点的直线交椭圆于A 、B 两点,若,则该椭圆的离心率为 .14.已知为曲线y =1+4―x 2上的动点,则的最大值为 .四、解答题:本题共5小题,共77分.解答题写出文字说明、证明过程或演算步骤.15.已知△ABC 的顶点坐标是为的中点.(1)求中线的方程;(2)求经过点且与直线平行的直线方程.16.已知双曲线C :x 2a2―y 2b 2=1(a >0,b >0)的离心率为为双曲线的右焦点,且点到直线的()()21250x y λλ++--=R λ∈()2,1m ∈R 220m x y ++=y 3310x y +-=:44C x x y y =-1F 2(0,F 124PF PF -=2y x =2y x =±45QA QB ⋅=(){}22,(cos )(sin )4,0πP x y x y θθθ=-+-=≤≤∣P 1M M 8π8π()222210,0y x a b a b -=>>22221(0)x y a b a b+=>>2F 1AB F B ⊥,14sin 5F AB ∠=(),P a b 223a b a b --++()()()2,0,6,2,2,3,A B C M --AB CM B AC ()5,,03F c F 2a x c=距离为.(1)求双曲线的方程;(2)若点,点为双曲线左支上一点,求的最小值.17.已知,是抛物线:上的两点.(1)求抛物线的方程;(2)若斜率为的直线经过的焦点,且与交于,两点,求的最小值.18.椭圆与椭圆:有相同的焦点,且经过点.(1)求椭圆的方程;(2)椭圆的右焦点为,设动直线与坐标轴不垂直,与椭圆交于不同的,两点,且直线和的斜率互为相反数.①证明:动直线恒过轴上的某个定点,并求出该定点的坐标.②求△OMN 面积的最大值.19.定义:M 是圆C 上一动点,N 是圆C 外一点,记的最大值为m ,的最小值为n ,若,则称N 为圆C 的“黄金点”;若G 同时是圆E 和圆F 的“黄金点”,则称G 为圆“”的“钻石点”.已知圆165C ()12,0A P C PA PF +()6,2A m +()24,8B m +C ()221y px p =>C ()0k k ≠l C C P Q 2PQ k +C 1C 2212x y +=31,2Q ⎛⎫ ⎪⎝⎭C C B l l C M N BM BN l x MN MN 2m n =E F -A :,P 为圆A 的“黄金点”(1)求点P 所在曲线的方程.(2)已知圆B :,P ,Q 均为圆“”的“钻石点”.①求直线的方程.②若圆H 是以线段为直径的圆,直线l :与圆H 交于I ,J 两点,对于任意的实数k ,在y 轴上是否存在一点W ,使得y 轴平分?若存在,求出点W 的坐标;若不存在,请说明理由.()()221113x y +++=()()22221x y -+-=A B -PQ PQ 13y kx =+IWJ ∠江苏省扬州中学2024-2025学年第一学期期中试卷高二数学(参考答案)2024.11参考答案:题号12345678910答案C A D A C C A C BD CD 题号11 答案ABD8.【详解】设,∴S △AF 1F 2=12r 1(8+2m )=(4+m )r 1,S △ABF 2=12r 2(2m +2p )=(m +p )r 2,.在△与△中:,即,,当双曲线的斜率为正的渐近线时,取最大,此时,,当与轴重合时,取最小,此时,经上述分析得:,.故选:C.10.【详解】当时,曲线,即;当时,曲线,即;不存在;时,曲线,即;时,曲线,即;画出图形如右:对于A ,由图可得A 错误,故A 错误;对于B ,方程是以为上下焦点的双曲线,当时,曲线C 存在点P ,使得,故B 错误;对于C ,一三象限曲线的渐近线方程为,所以直线与曲线C 没有交点,故C 正确;对于D ,设,设点在直线上,点在直线,11222,,6,2,2AF m BA p F F AF m BF m p ====+=+-()()11224m r S m S p m p r +∴==+12AF F 2AF B 122cos cos F AF F AB ∠=-∠()()()()()2222222262222224m m m p m p m p m m m pm++-++-+-=-⇒=⋅⋅+⋅+⋅-32212324444444m m r m mp m m m r p mp m m m++-∴===+++--//l m p →+∞404m m ∴-=⇒=l x m 2m =()2,4m ∈1212,23r r ⎛⎫∴∈ ⎪⎝⎭0,0x y ≥>22:44C x y =-2214y x -=0,0x y ≥<22:44C x y =--2214y x +=-0,0x y ≤≥22:44C x y -=-2214y x +=0,0x y <≤22:44C x y -=--2214y x -=2214y x -=12,F F 0,0x y ≥>214PF PF -=2y x =2y x =()00,Q x y A 2y x =B 2y x =-又点Q 是曲线C 上在第三象限内的一点,代入曲线方程可得,故D 正确;故选:CD.11.【详解】对于A ,由于,令时,整理得,解得,“水滴”图形与轴相交,最高点记为A ,则点A 的坐标为,点,白色“水滴”区域(含边界)任意两点间距离的最大值为,故A 正确;对于B ,由于,整理得:,所以,所以到坐标轴的距离为或,因为,所以,,所以到坐标轴的距离小于等于3,故B正确;对于C ,由于,令时,整理得,解得,因为表示以为圆心,半径为的圆,则,且,则在x 轴上以及x 轴上方,故白色“水滴”的下半部分的边界为以为圆心,半径为1的半圆,阴影的上半部分的外边界是以为圆心,半径为3的半圆,根据对称可知:白色“水滴”在第一象限的边界是以以为圆心,半径为2的圆弧,设,则,即AN 所对的圆心角为,同理AM 所在圆的半径为2,所对的圆心角为,阴影部分在第四象限的外边界为以为圆心,半径为2的圆弧,设,可得,DG 所对的圆心角为,同理DH 所在圆的半径为2,所对的圆心角为,故白色“水滴”图形由一个等腰三角形,两个全等的弓形,和一个半圆组成,22004455x y QA QB -⋅==22(cos )(sin )4x y θθ-+-=0x =[]32sin 0,2y yθ=-∈[1]y ∈- y (0,1)B -||1AB =22(cos )(sin )4x y θθ-+-=2cos cos 2sin sin x y αθαθ=+⎧⎨=+⎩2cos cos ,2sin sin )(M αθαθ++M ||2cos cos αθ+|2sin sin |αθ+cos [1,1],sin [0,1]θθ∈-∈2cos cos ||2cos ||cos |213|αθαθ+≤+≤+=|2sin sin ||2sin ||sin |213αθαθ+≤+≤+=M 22(cos )(sin )4x y θθ-+-=0y =[]32cos 2,2y yθ=-∈-[3,1][1,3]x ∈-- 22(cos )(sin )4x y -+-=θθ()cos ,sin Q θθ2r =13r OQ OP OQ r =-≤≤+=0πθ≤≤()cos ,sin Q θθO O ()1,0M -()1,0N 2AN AM MN ===π3π3()1,0N ()()3,0,3,0G H -π1,3ON OD OND ==∠=2π32π3所以它的面积是.轴上方的半圆(包含阴影和水滴的上半部分)的面积为,第四象限的阴影和水滴部分面积可以看作是一个直角三角形和一个扇形的面积的和,且等于所以阴影部分的面积为C 错误;对于D ,轴上方的阴影部分的内外边界曲线长为,轴下方的阴影部分的内外边界曲线长为,所以阴影部分的内外边界曲线长为,故D 正确.故选:ABD.12.13【详解】如图,设,因为,所以.由椭圆定义可知,,由,可得,所以.在Rt △F 1BF 2中,由,可得,即得,故得14.【详解】曲线,由于在曲线上,令,则,(其中),,又,,当时取得最大值15.【详解】(1)因为,所以,212π111π2π1222326S S S S ⎛=++=⨯⨯+⨯+⨯=⎝V 弓形半圆x 219π3π22⨯=2114π21π323⨯⨯+=941116π2(πππ2363++-=+x 1π4132π3223πππ2333⨯⨯+⨯⨯=+=x 111112π1(2π2π2)2π2233⨯⨯+⨯⨯-⨯⨯=13π11π8π33+=π314BF t =1AB F B ⊥,14sin 5F AB ∠=15,3AF t AB t ==21212=25,224AF a AF a t BF a BF a t =--=-=-22493AB AF BF a t t =+=-=13t a =1242,33BF a BF a ==2221212||||||F F BF BF =+222424(()33a a c =+2295c a =c e a ==9+1y =()()22141x y y +-=≥(),P a b ()2cos ,0π12sin a b θθθ=⎧≤≤⎨=+⎩()()222232cos 12sin 32cos 12sin a b a b θθθθ--++=---+++2cos 2sin 454sin 42sin 2cos 54sin θθθθθθ=--++=+-++()96sin 2cos 9θθθϕ=+-=+-sin ϕ=cos ϕ=π0,2ϕ⎛⎫∈ ⎪⎝⎭[][]0,π,πθθϕϕϕ∈∴-∈-- π,02ϕ⎛⎫-∈- ⎪⎝⎭ππ,π2ϕ⎛⎫-∈ ⎪⎝⎭∴π2θϕ-=223a b a b --++9+()()2,0,6,2A B -()4,1M -故的方程是,即;(2)因为直线的斜率,所以经过点且与直线平行的直线方程为,即.16.【详解】(1)由题意知,解得,则,所以双曲线的方程为.(2)记双曲线的左焦点为,则,可得,当三点共线时,最小,且最小值为.故的最小值为.17.【详解】(1)∵,是抛物线C :上的两点,∴,则,整理得,解得, 当时,,解得,不合题意;当时,,解得.故抛物线C 方程为y 2=6x .(2)由(1)知C 的焦点为,故直线l 的方程为,联立,得,必有,设,,则,∴, ∴,即所以的最小值为18.【详解】(1)椭圆:的焦点坐标为,所以椭圆的焦点坐标也为,即得焦距为,∵椭圆过点,∴,CM 143124y x +-=+--2350x y +-=AC 303224ACk -==---B AC ()3264y x +=--34100x y +-=253165c a a c c ⎧=⎪⎪⎨⎪-=⎪⎩35a c =⎧⎨=⎩4b ==C 221916x y -=C 0F ()05,0F -0026PA PF PA PF a PA PF +=++=++0,,P F A 0PA PF +017AF =PA PF +17623+=()6,2A m +()24,8B m +()221y px p =>()()22212,848m p m p⎧+=⎪⎨+=⎪⎩()()22842m m +=+216m =4m =±4m =-()21224p m =+=113p =<4m =()212236p m =+=31p =>3,02⎛⎫⎪⎝⎭32y k x ⎛⎫=- ⎪⎝⎭2632y xy k x ⎧=⎪⎨⎛⎫=- ⎪⎪⎝⎭⎩()222293604k x k x k -++=0∆>()11,P x y ()22,Q x y 212236k x x k ++=2122236636k PQ x x p k k+=++=+=+222666PQ k k k +=++≥+226k k=2k =2PQ k +6+1C 2212x y +=()1,0±C ()1,0±22c =C 31,2Q ⎛⎫⎪⎝⎭24a +=∴,,∴椭圆的标准方程为.(2)①设直线:(),由,得,设M (x 1,y 1),N (x 2,y 2),所以,,所以,因为直线和的斜率互为相反数,所以,所以,所以,所以.即,所以,因为,所以,所以动直线恒过轴上的定点②由①知,,且,即,又S △OMN =12⋅|OT |⋅|y 1―y 2|=12⋅4⋅(y 1+y 2)2―4y1y 2令,则,∴S △OMN=24⋅n (3n +16)2≤24⋅n (2⋅3n⋅16)2=24⋅n 4⋅3n ⋅16=3(当且仅当时取“=”)∴(S △OMN )max =3.19.【详解】(1)因为点P 为圆A 的“黄金点”,即,所以点P的轨迹是以AP 所在曲线的方程为(2)①因为P 为圆B 的“黄金点”,则所以,即点P 在圆上,则P 是圆和的交点.因为P ,Q 均为圆“”的“钻石点”,所以直线即为圆和的公共弦所在直线,2a =b =22143x y +=l x my t =+0m ≠223412x my t x y =+⎧⎨+=⎩()2223463120m y mty t +++-=122634mt y y m +=-+212231234t y y m -=+()()()()1221121212111111MF NF y x y x y yk k x x x x -+-+=+=----()()()()1221121111y my t y my t x x +-++-=--BM BN 0MB NB k k =+()()()()12211211011y my t y my t x x +-++-=--()()1221110y my t y my t +-++-=()()1212210my y t y y +-+=()22231262103434t mtm t m m --⨯+-⨯=++()640m t -=0m ≠4t =l x ()4,0T 1222434m y y m +=-+1223634y y m =+()()22Δ24434360m m =-+⋅>24m >224==240n m =->24m n =+316n ==PA =()()2211 3.x y +++=()121PB PB +=-||3PB =()()22229x y -+-=()()22113x y +++=()()22229x y -+-=A B -PQ ()()22113x y +++=()()22229x y -+-=两圆方程相减可得,故直线的方程为.②设的圆心为的圆心为,半径为.直线的方程为,得的中点坐标为,点S 到直线,则,所以圆H 的方程为.假设轴上存在点满足题意,设,.若轴平分,则,即,整理得又,所以代入上式可得,整理得①,由可得,所以x 1+x 2=―23k k 2+1,x 1x 2=―89k 2+1,代入①并整理得,此式对任意的都成立,所以.故轴上存在点,使得轴平分.0x y +=PQ 0x y +=22(1)(1)3x y +++=(11),S --()()22229x y -+-=(2,2)T 3ST y x =PQ (0,0)0x y +==12PQ ==221x y +=y (0),W t ()()1122,,,I x y J x y 120x x ≠y IWJ ∠0IM JW k k +=12120y t y tx x --+=()()21120.x y t x y t -+-=11223,113y kx y kx =+=+211211)33(()0x kx t x kx t +-++-=()12121203kx x t x x ⎛⎫+-+= ⎪⎝⎭22131y kx x y ⎧=+⎪⎨⎪+=⎩()22281039k x kx ++-=2203k kt -+=k 3t =y ()0,3W y IWJ ∠。
四川省2024-2025学年高二上学期期中调研测试数学试题含答案

四川省2024-2025学年上学期期中调研测试高二数学试卷(答案在最后)试卷共4页,19小题,满分150分.考试用时120分钟.注意事项:1,考查范围:必修第二册第十章,选择性必修第一册第一章和第二章.2.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡指定位置上.3.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.4.考生必须保持答题卡的整洁.考试结束后,请将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线2025π:cos4l x =的倾斜角为()A.π2 B.2025π4 C.π4D.0【答案】A 【解析】【分析】根据直线的方程可得出其倾斜角.【详解】因为2025πcos 4为常数,故直线2025π:cos 4l x =的倾斜角为π2.故选:A.2.直线3230x y +-=与320x y +=之间的距离为()A.5B.13C.9D.13【答案】D 【解析】【分析】根据两平行直线的距离公式计算即可求解.【详解】因为直线3230x y +-=和320x y +=平行,由两条平行直线间的距离公式可得13d ===.故选:D .3.圆221:4C x y +=与圆222:(2)(3)9C x y -+-=的公切线条数为()A.0B.1C.2D.3【答案】C 【解析】【分析】根据两圆的位置关系可判断两圆公切线的条数.【详解】圆221:4C x y +=,则圆心()10,0C ,半径12r =,圆222:(2)(3)9C x y -+-=,则圆心()22,3C ,半径23r=,则12CC ==15<,即211212r r C C r r -<<+,故圆1C 与圆2C 相交,其公切线条数为2.故选:C .4.过点()1,3P -作圆22(1)(1)2x y -++=的切线,则切线的斜率为()A.1-或7-B.1- C.2-或7- D.2-【答案】A 【解析】【分析】设出直线的方程,由点到直线距离得到方程,求出1k =-或7k =-.【详解】因为圆22(1)(1)2x y -++=的圆心为()1,1-,易知过点()1,3P -的切线l 斜率存在,设l 的方程为()31y k x -=+,即30kx y k -++=,则d ==,解得1k =-或7k =-.故选:A .5.若连续抛掷一枚质地均匀的骰子两次,则两次抛掷骰子的点数之积为奇数的概率为()A.12B.14C.15D.16【答案】B【解析】【分析】利用列举法写出满足题意的样本点,结合古典概型的概率公式计算即可求解.【详解】连续抛掷一枚质地均匀的骰子两次,基本事件总数为6636⨯=个.其中事件“两次抛掷骰子的点数之积为奇数”包含的样本点有:()()()()()()()()()1,1,3,3,5,5,1,3,1,5,3,1,3,5,5,1,5,3,共9个,故91364P ==.故选:B .6.在正方体1111ABCD A B C D -中,Q 为11B C 的中点,则平面ABQ 与平面11ACC A 夹角的余弦值为()A.63B.4C.15D.5【答案】D 【解析】【分析】设正方体的棱长为1,利用向量法求平面ABQ 与平面11ACC A 夹角的余弦值.【详解】1,,DA DC DD 两两垂直,故以D 为坐标原点,1,,DA DC DD 所在的直线分别为,,x y z 轴建立如图所示的空间直角坐标系,设1DA =,取1BB 的中点为P ,连接CP ,则()()()10,1,0,1,1,,1,1,0,0,0,02C P B D ⎛⎫ ⎪⎝⎭,1,1,1,2Q ⎛⎫ ⎪⎝⎭1,0,0,()11,0,1A ,则11,0,1,1,0,,0,22QB CP QB CP QB CP ⎛⎫⎛⎫=-=∴⋅=∴⊥ ⎪ ⎪⎝⎭⎝⎭,()10,1,0,1,0,,0,2AB CP CP AB CP AB⎛⎫==∴⋅=∴⊥ ⎪⎝⎭又因为QB CP ⊥,CP AB ⊥,AB BQ B = ,,QB AB ⊂平面ABQ ,故⊥CP 平面ABQ ,所以11,0,2CP ⎛⎫= ⎪⎝⎭ 为平面ABQ 的一个法向量,设平面11ACC A 的一个法向量为(),,n x y z =,则11001000x n AC x y y z n AA z =⎧⎧⋅=-+=⎧⎪⎪⇒⇒=⎨⎨⎨=⋅=⎩⎪⎪⎩=⎩,所以()1,1,0n =-- ()1,1,0n =--为平面11ACC A 的一个法向量,设平面ABQ 与平面11ACC A 的夹角为α,则P cos 5C nCP nα⋅=== ,故平面ABQ 与平面11ACC A夹角的余弦值为5.故选:D.7.如图,E 是棱长为1的正方体1111ABCD A B C D -内部(含表面)一动点,则EA EB ED ++的最大值为()A.B.C.D.【答案】C 【解析】【分析】建立空间直角坐标系,求出向量坐标,然后根据模的坐标求法求出最值即可.【详解】以A 为坐标原点,1,,AB AD AA 所在的直线分别为,,x y z 轴,建立如图所示的空间直角坐标系,则()()()0,0,0,1,0,0,0,1,0A B D ,设()(),,01,01,01E x y z x y z ≤≤≤≤≤≤,则()(),,,(1,,),,1,EA x y z EB x y z ED x y z =---=---=---,则()13,13,3EA EB ED x y z ++=---.故EA EB ED ++= 1x y z ===.故选:C .8.如图,在直三棱柱111ABC A B C -中,ABC V 为腰长为1的等腰直角三角形,且AB AC >,侧面11ACC A 为正方形,2,AB AE P =为平面1A BC 内一动点,则PA PE +的最小值是()A.62B.32C.D.265【答案】A 【解析】【分析】建立空间直角坐标系,设A 关于平面1A BC 的对称点为A ',利用对称点A 、A '到平面1A BC 距离相等,得出A 关于平面1A BC 的对称点为A ',利用对称点求出最短路径即可【详解】由题意,以C 为坐标原点,1,,CA CB CC 所在的直线分别为,,x y z 轴,建立如图所示的空间直角坐标系-C xyz ,则()()()()1111,0,1,0,1,0,0,0,0,1,0,0,,,022A B C A E ⎛⎫⎪⎝⎭,所以()()()110,1,0,1,0,1,0,0,1CB CA AA ===,设A 关于平面1A BC 的对称点为(),,,0A x y z z >',则()()11,,1,1,,A A x y z AA x y z =---'=-',设平面1A BC 的法向量()111,,n x y z =,则10,0,CB n CA n ⎧⋅=⎪⎨⋅=⎪⎩ 即1110,0,y x z =⎧⎨+=⎩令11x =,则110,1y z ==-,所以()1,0,1n =-为平面1A BC 的一个法向量,所以A 与A '到平面1A BC的距离112AA n A A n d n n ⋅⋅==='=,即1x z -+=①,又AA n '∥,所以1,x z y -=-⎧⎨=⎩②,所以由①②得211z -=,又由0z >可得0,0,1x yz ===,所以()0,0,1A ',所以2PA PE PA PE A E +=+≥==='',当且仅当,,A P E '三点共线时取等号,所以PA PE +的最小值为62.故选:A.二、选择题:本题共3小题,每小题6分,共18分在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.在空间直角坐标系O xyz -中,下列叙述正确的是()A.点()1,1,0-与点()1,1,0关于x 轴对称B.点()3,1,6--与点()3,1,6-关于z 轴对称C.点()2,5,7与点()2,5,7-关于平面xOy 对称D.坐标轴两两确定的平面把空间分为12个部分【答案】AC 【解析】【分析】ABC 选项,根据空间直角坐标系内点的坐标特征得到AC 正确,B 错误;D 选项,坐标轴确定的平面把空间分为8个部分.【详解】A 选项,点()1,1,0-与点()1,1,0关于x 轴对称,A 正确;B 选项,点()3,1,6--关于z 轴的对称点是()3,1,6,B 错误;C 选项,点()2,5,7与点()2,5,7-关于平面xOy 对称,C 正确;D 选项,坐标轴两两确定的平面把空间分为8个部分,D 错误.故选:AC .10.已知直线()1:120l ax y a -+-=在x 轴上的截距大于0,直线2:240l x y +-=与y 轴交于点B ,则()A.0a < B.1l 恒过定点2,1C.点B 到直线1l 的距离可能为3 D.不存在a 使得12//l l 【答案】BD 【解析】【分析】运用截距概念求解即可判断A 、C ;运用消去参数判断B ;根据1l 恒过定点判断D 【详解】对于A ,把0y =代入()120ax y a -+-=,得210a x a -=>,所以0a <或12a >,A 错误;对于B ,将直线()120ax y a -+-=改写为()()210x a y -+-+=,所以2010x y -=⎧⎨-+=⎩,所以21x y =⎧⎨=⎩,所以1l 恒过定点()2,1C ,B 正确;对于C ,对于2:240l x y +-=,令0x =可得()0,2B ,易得当1BC l ⊥时,点B 到直线1l 的距离取得最大值=,C 错误;对于D ,因为直线1l 恒过的定点()2,1C 也在直线2l 上,即12,l l 至少有一个交点C ,D 正确.故选:BD .11.已知平面内一动点M 到坐标原点的距离为1,以M 为圆心、1为半径的动圆与圆22:(1)(2)5N x y -+-=交于,A B 两点,则()A.存在唯一的圆M ,使得,A B 两点重合B.1MN ⎤∈-⎦C.若ABN 存在,则其不可能为等边三角形D.tan ANB ∠的最大值为43【答案】BCD 【解析】【分析】由给定条件可得坐标原点与点,A B 之一重合,利用动圆M 与圆N 的位置关系判断A ;由圆上的点与定点距离最值判断B ;求出AB 最大值判断C ;由余弦定理求解判断D.【详解】依题意,坐标原点与点,A B 之一重合,不妨设坐标原点为A ,圆22:(1)(2)5N x y -+-=的圆心(1,2)N ,半径,对于A ,当动圆M 与圆N 内切或外切时,均有,A B 两点重合,A 错误;对于B ,点M 在以A 为圆心、1为半径的圆上运动,||AN =||1]MN ∈+,B 正确;对于C ,||BN =,要使ABN 为等边三角形,则||AB =,而2||||||AB MA MB ≤+=,当且仅当点,,A M B 共线时取等号,则ABN 不可能为等边三角形,C 正确;对于D ,要使tan ANB ∠最大,即ANB ∠最大,只需||AB 取最大值2,此时2223cos5ANB ∠=,44sin ,tan 53ANB ANB ∠=∠=,D 正确.故选:BCD三、填空题:本题共3小题,每小题5分,共15分.12.已知空间向量()()2,1,3,,21,3a b m n =-=+ 满足a b ⊥ ,则m n +=______.【答案】4【解析】【分析】根据空间向量的坐标表示和垂直向量的坐标表示计算即可求解.【详解】因为a b ⊥ ,故()()2,1,3,21,322190m n m n -⋅+=++-=,解得4m n+=.故答案为:413.已知圆P 过()()()1,1,7,3,5,7---三点,则圆P 的面积为______.【答案】25π【解析】【分析】设圆的一般方程,将3点的坐标代入方程,利用待定系数法求解圆的方程,结合圆的面积公式计算即可求解.【详解】设圆P 的方程为220x y Dx Ey F ++++=,代入()()()1,1,7,3,5,7---三点坐标可得110,499730,2549570,D E F D E F D E F +-++=⎧⎪++-+=⎨⎪++-+=⎩解得4,6,12,D E F =-⎧⎪=⎨⎪=-⎩所以圆P 的方程为2246120x y x y +-+-=,其标准方程为22(2)(3)25x y -++=,故其面积2π25πS r ==.故答案为:25π14.在正三棱锥P ABC -中,AB AP =⊥平面PBC ,点P 在底面ABC 内的投影为点,O M 是平面ABC 内以O 为圆心、1为半径的圆上一动点,则异面直线PM 与AB 所成角的余弦值最大为______.【答案】3【解析】【分析】过点O 作AB 的平行线交BC 于点E ,以O 为坐标原点,建立如下图所示的空间直角坐标系,设()[)cos ,sin ,0,0,2πM ααα∈,由异面直线所成角的向量公式结合三角函数的性质即可得出答案.【详解】正三棱锥P ABC -中,因为AP ⊥平面PBC ,又,PB PC ⊂平面PBC ,因此,PA PB PA PC ⊥⊥,故PB PC ⊥,故22sin60223PA PB PC AB AO AB =====︒=,则PO ==,延长CO 交AB 于点D ,过点O 作AB 的平行线交BC 于点E ,易知,,OD OE OP 两两垂直,以O 为坐标原点,建立如下图所示的空间直角坐标系,则()()(1,,,0,0,A B P ,设()[)cos ,sin ,0,0,2πM ααα∈,则(cos ,sin ,PM αα=,()0,AB =,设直线PM 与AB 所成的角为θ,则3cos 3PM AB PM ABθα⋅===≤,当π2α=或3π2时,取最大值3.故答案为:3.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知()()()2,2,2,6,4,2A B C ---三点,点P 在圆22:4E x y +=上运动.(1)若直线PA 与圆E 有唯一公共点,求PA ;(2)求222PA PB PC ++的最小值.【答案】(1)2(2)56【解析】【分析】(1)求出圆心和半径,根据题意得到直线PA 与圆E 相切,且唯一公共点为点P ,由勾股定理求出切线长;(2)设s ,且224x y +=,表达出2228012PA PB PCy ++=-,而22y -≤≤,故当2y =时,取得最小值56.【小问1详解】由题意知,圆E 的圆心为()0,0E ,半径2r =,故2AE ==>,由题意可得直线PA 与圆E 相切,且唯一公共点为点P ,在Rt APE 中,由勾股定理可得2PA ==.【小问2详解】设s ,且224x y +=,故222222222(2)(2)(2)(6)(4)(2)PA PB PC x y x y x y ++=++-+++-+-++()22312681268128012x y y y y =+-+=+-=-,而22y -≤≤,当2y =时,222PA PB PC ++取得最小值56.16.已知在ABC V 中,()()()0,0,2,0,1,3,,A B C D E ,分别在线段,AC AB 上,且//DE BC .(1)求AC 边上的高所在直线的斜截式方程;(2)若ADE V 的面积为ABC V 面积的14,求直线DE 的一般式方程.【答案】(1)1233y x =-+;(2)330x y +-=.【解析】【分析】(1)由AC 的斜率和垂直关系可得AC 边上的高所在直线的斜率,接着由点斜式即可求出所求直线方程,再转化成斜截式即可.(2)先由题意得12AD AE AC AB ==,即E 为AB 的中点,接着由中点坐标公式、直线BC 的斜率和平行关系即可由点斜式求出直线DE 的方程,再转化成一般式即可.【小问1详解】由题直线AC 的斜率为130310k -==-,所以AC 边上的高所在直线的斜率为1113k -=-,所以AC 边上的高所在直线的方程为()1023y x -=--,化为斜截式为1233y x =-+.【小问2详解】因为ADE V 的面积为ABC V 面积的1,,4D E 分别在线段,AC AB 上,且//DE BC ,所以1,2AD AE E AC AB ==为AB 的中点,即()1,0E ,又直线BC 的斜率为30312-=--,所以直线DE 的斜率也为3-,所以直线DE 的方程为()031y x -=--,即330x y +-=,所以直线DE 的一般式方程为330x y +-=.17.如图,在四面体OABC 中,3OA = ,且26,,3OA OB OA OC CD CB G ⋅=⋅== 为AD 的中点,点H 是线段OA 上的动点(含端点).(1)以{},,OA OB OC 为基底表示OG ;(2)求DH OH ⋅的最小值.【答案】(1)111236OG OA OB OC =++ (2)-1【解析】【分析】(1)利用空间向量基本定理得到2133AD OA OB OC =-++ ,111236OG OA AG OA OB OC =+=++ ;(2)设()01OH OA λλ=≤≤ ,得到2133DH OA OB OC λ=-- ,求出()29601DH OH λλλ⋅=-≤≤ ,当13λ=时,DH OH ⋅ 取得最小值1-.【小问1详解】由题意可得()2233AD AC CD AC CB OC OA OB OC =+=+=-+- 2133OA OB OC =-++ ,所以11212233OG OA AG OA AD OA OA OB OC ⎛⎫=+=+=+-++ ⎪⎝⎭111236OA OB OC =++ ;【小问2详解】设()01OH OA λλ=≤≤ ,因为()2133DH OH OD OA OA AD OA OA O B A OC O λλ⎛⎫=-=-+=--++ ⎪⎝⎭ 2133OA OB OC λ=-- ,所以2212()3333DH OH OA OB OC OA OA OA OB OA OC λλλλλ⎛⎫⋅=--⋅=-⋅-⋅ ⎪⎝⎭()29601λλλ=-≤≤,故当13λ=时,DH OH ⋅ 取得最小值,最小值为1196193⨯-⨯=-.18.已知在空间直角坐标系中,点()()()()0,0,0,1,0,1,0,1,1,2,1,1O P Q R --.(1)证明:,,OP OQ OR 不共面;(2)求点O 到平面PQR 的距离;(3)设S 为平面PQR 上的一个动点,且222PS = ,求,PO PS 的夹角θ取得最小值时,OS 的值.【答案】(1)证明见解析(2)11(3)62【解析】【分析】(1)用反正法证明即可;(2)求出OP 和平面PQR 的一个法向量,利用空间向量求解即可;(3)求出OP 和平面PQR 的一个法向量,利用空间向量的夹角公式求解余弦值,进而可知正弦值,利用向量的模长公式求解即可.【小问1详解】由题意假设存在,a b ∈R ,使得OR aOP bOQ =+成立,则()()()2,1,11,0,10,1,1a b =-+-,即()()2,1,1,,a b a b =--,可得2,1,1,a b a b =-⎧⎪=⎨⎪=-⎩此方程组无解,所以假设不成立,故,,OP OQ OR 不共面.【小问2详解】由题意可得()()()1,0,1,1,1,2,3,1,0OP PQ PR =-=-= ,设平面PQR 的法向量为 =s s ,所以20,30,x y z x y +-=⎧⎨+=⎩令1x =-,则3,1y z ==,故平面PQR 的一个法向量为()1,3,1n =-,故点O 到平面PQR 的距离21111OP n d n ⋅== .【小问3详解】设,OP n 的夹角为α,则cos OP n OP nαα⋅==== 所以min π2θα=-,所以OS OP PS =+=2=.19.现定义:若圆A 上一动点M ,圆A 外一定点N ,满足MN 的最大值为其最小值的两倍,则称N 为圆A 的“上进点”.若点G 同时是圆A 和圆B 的“上进点”,则称G 为圆“A B ⊗”的“牵连点”.已知圆221:(1)(1)3A x y +++=.(1)若点C 为圆A 的“上进点”,求点C 的轨迹方程并说明轨迹的形状;(2)已知圆22:(2)(2)1B x y -+-=,且,P Q 均为圆“A B ⊗”的“牵连点”.(ⅰ)求直线PQ 的方程;(ⅱ)若圆H 是以线段PQ 为直径的圆,直线1:3l y kx =+与H 交于,I J 两点,探究当k 不断变化时,在y 轴上是否存在一点W ,使得0IW JW k k +=(IW k 和JW k 分别为直线IW 和JW 的斜率)恒成立?若存在,求出点W 的坐标;若不存在,请说明理由.【答案】(1)轨迹方程为22(1)(1)3x y +++=,点C 的轨迹是以()1,1A --为半径的圆.(2)(ⅰ)0x y +=;(ⅱ)存在,()0,3W 【解析】【分析】(1)由“上进点”的定义知C 是圆A 的“上进点”,则()2CA r CA r +=-,(其中r 是圆A 的半径),由此得点C 的轨迹.(2)(ⅰ)由“牵连点”的定义知,若,P Q 均为圆“A B ⊗”的“牵连点”,则,P Q 均同时为圆A 与圆B 的“上进点”,所以,P Q 应为圆A 、圆B 的“上进点”所成的两轨迹(圆)的交点,由此可求直线PQ 的方程;(ⅱ)先求出圆H 的方程,设()()112212,,,,0I x y J x y x x ≠,假设y 轴上存在点()0,W t ,使得0IW JW k k +=.则1212t 0y t y x x --+=,联立221,31,y kx x y ⎧=+⎪⎨⎪+=⎩结合韦达定理可求解.【小问1详解】因为点C 为圆A的“上进点”,所以233CA CA ⎛⎫+=- ⎪ ⎪⎝⎭,即CA =,所以C 的轨迹方程为22(1)(1)3x y +++=,所以点C 的轨迹是以()1,1A --【小问2详解】(ⅰ)∵P 为圆“A B ⊗”的“牵连点”,∴P 同时为圆A 与圆B 的“上进点”,由P 为圆B 的“上进点”,得()121PB PB +=-,所以3PB =,即点P 在圆22(2)(2)9x y -+-=上,由P 为圆A 的“上进点”,得点P 在圆22(1)(1)3x y +++=上;∴点P 是圆22(1)(1)3x y +++=和22(2)(2)9x y -+-=的交点.因为,P Q 均为圆“A B ⊗”的“牵连点”,所以直线PQ 即为圆22(1)(1)3x y +++=和22(2)(2)9x y -+-=的公共弦所在直线,两圆方程相减可得0x y +=,故直线PQ 的方程为0x y +=.(ⅱ)设22(1)(1)3x y +++=的圆心为()1,1S --22(2)(2)9x y -+-=的圆心为()2,2T ,半径为3.直线ST 的方程为y x =,与y 0x +=联立得PQ 的中点坐标为()0,0,点S 到直线0x y +=的距离为=,则12PQ ==,所以圆H 的方程为221x y +=.假设y 轴上存在点()0,W t 满足题意,设()()112212,,,,0I x y J x y x x ≠.则0IW JW k k +=,即1212t 0y t y x x --+=,整理得()()21120x y t x y t -+-=.将11223,113y kx y kx =+=+,代入上式可得211211033x kx t x kx t ⎛⎫⎛⎫+-++-= ⎪ ⎪⎝⎭⎝⎭,整理得()12121203kx x t x x ⎛⎫+-+=⎪⎝⎭①,联立221,31,y kx x y ⎧=+⎪⎨⎪+=⎩可得()222810,Δ039k x kx ++-=>,所以1212222839,11k x x x x k k -+=-=++,代入(1)并整理得2203k kt -+=,此式对任意的k 都成立,所以3t =.故y 轴上存在点()0,3W ,使得0IW JW k k +=恒成立.。
安徽A10联盟2024—2025学年高二上学期11月期中数学试题及答案

2023级高二上学期11月期中考数学(人教A 版)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分,考试时间120分钟。
请在答题卡上作答。
第I 卷(选择题共58分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题所给四个选项中,只有一项是符合题意的.1.在空间直角坐标系Oxyz 中,已知点()2,1,4A --,点()2,1,4B ---,则()A.点A 和点B 关于x 轴对称B.点A 和点B 关于Oyz 平面对称C.点A 和点B 关于y 轴对称D.点A 和点B 关于Oxz 平面对称2.已知空间向量()2,1,3a =- ,()1,2,2b =- ,()1,,2c m =- ,若a ,b ,c共面,则实数m 的值为()A.1B.0C.-1D.-23.已知入射光线所在的直线的倾斜角为π3,与y 轴交于点(0,2),则经y 轴反射后,反射光线所在的直线方程为()20y +-=20y ++=20y --=20y -+=4.若点(-2,1)在圆220x y x y a ++-+=的外部,则实数a 的取值范围是()A.()2,-+∞ B.(),2-∞- C.12,2⎛⎫- ⎪⎝⎭D.()1,2,2⎛⎫-∞-+∞ ⎪⎝⎭5.已知空间向量()2a =,1,0,22b ⎛⎫= ⎪ ⎪⎝⎭,则向量a 在向量b 上的投影向量为()A.)B.()C.(D.1,0,44⎛⎫⎪ ⎪⎝⎭6.已知椭圆C :2216x y m+=(0m >且6m ≠),直线340x y +-=与椭圆C 相交于A ,B 两点,若(1,1)是线段AB 的中点,则椭圆的焦距为()A.2B.4C.7.古希腊数学家阿波罗尼奥斯与欧几里得、阿基米德齐名.他的著作《圆锥曲线论》是古代数学光辉的科学成果,阿氏圆(阿波罗尼斯圆)是其成果之一.在平面上给定相异两点A ,B ,设点P 在同一平面上,且满足PA PB λ=,当0λ>且1λ≠时,点P 的轨迹是圆,我们把这个轨迹称之为阿波罗尼斯圆.在ABC △中,2AB =,且2CA CB =,当ABC △面积取得最大值时,cos C =()A.5B.5C.35D.458.已知点P 在椭圆C :22143x y +=上(点P 不是椭圆的顶点),1F ,2F 分别为椭圆C 的左、右焦点,2PF 交y 轴于点G ,且112PF G GF F ∠=∠,则线段1PF 的长为()A.32B.53C.85D.374二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知直线1l :()1230m x y m +++-=,2l :220x my m ++-=,则下列说法正确的是()A.若12l l ∥,则1m =或2m =-B.若12l l ⊥,则23m =-C.若直线1l 不经过第四象限,则1m <-D.若直线1l 与x 轴负半轴和y 轴正半轴分别交于点A ,B ,O 为坐标原点,则AOB △面积的最小值是2010.已知椭圆C :2214x y +=的左、右焦点分别是1F ,2F ,左、右顶点分别是A ,B ,M 是椭圆C 上的一个动点(不与A ,B 重合),则()A.离心率1e 2=B.12MF F △的周长与点M 的位置无关C.122MF -<<+D.直线MA 与直线MB 的斜率之积为定值11.如图,正方体1111ABCD A B C D -的棱长为2,P 为上底面1111A B C D 内部一点(包括边界),M ,N 分别是棱AB 和BC 的中点,则下列说法正确的是()A.当直线1AA 和直线AP 所成的角是30°时,点P的轨迹长度是3B.若AP ∥平面1B MN ,则1B P的最小值为2C.若()111111A P mA D m A B =+-,则直线AP 和底面ABCD 所成的最大角是45°D.平面1D MN 被正方体所截的截面形状是六边形第Ⅱ卷(非选择题共92分)三、填空题:本大题共3个小题,每小题5分,共15分.12.已知圆C 过()1,3A ,()4,2B 两点,且圆心C 在直线30x y +-=上,则该圆的半径为_________.13.已知实数x ,y满足1y =+,则14y x ++的取值范围为_________.14.已知椭圆C :()222210x y a b a b+=>>,1F ,2F 分别是椭圆C 的左、右焦点122F F c =,若椭圆上存在点P ,满足12111PF PF c+=,则椭圆C 的离心率的取值范围为_________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知直线l 过点()2,1A -,求满足下列条件的直线l 的方程.(1)与直线m :50x y +-=垂直;(2)两坐标轴上截距相反.16.(15分)如图,在四棱锥P ABCD -中,四边形ABCD 为正方形,PA ⊥平面ABCD ,M ,N 分别为PB ,BC 的中点,2AF AE PGFD EB GC===,3AB PA ==.(1)求证:异面直线EF 和MN 垂直;(2)求点A 到平面MFG 的距离17.(15分)已知过点()1,0P 的直线l 与圆O :224x y +=相交于A ,B 两点.(1)若弦AB l 的方程;(2)在x 轴正半轴上是否存在定点Q ,无论直线l 如何运动,x 轴都平分AQB ∠?若存在,请求出点Q 的坐标;若不存在,请说明理由.18.(17分)如图1,在矩形ABCD 中,2AB =,BC =,连接AC ,DAC △沿AC 折起到PAC △的位置,如图2,PB =.(1)求证:平面PAC ⊥平面ABC ;(2)若点M 是线段PA 的中点,求平面MBC 与平面PAB 夹角的余弦值.19.(17分)已知椭圆E :()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,离心率5e 5=,短轴长为4.(1)求E 的标准方程;(2)过点()2,0T 的直线交E 于P ,Q 两点,若以PQ 为直径的圆过E 的右焦点2F ,求直线PQ 的方程;(3)两条不同的直线1l ,2l 的交点为E 的左焦点1F ,直线1l ,2l 分别交E 于点A ,B 和点C ,D ,点G ,H 分别是线段AB 和CD 的中点,1l ,2l 的斜率分别为1k ,2k ,且1240k k +=,求OGH △面积的最大值(O 为坐标原点)2023级高二上学期11月期中考数学(人教A 版)参考答案一、选择题:本题共8小题,每小题5分,共40分.在每小题的四个选项中,只有一项是最符合题目要求的.题号12345678答案BDACABDC1.B 已知点A 和点B 的横坐标互为相反数,纵坐标和竖坐标相等,所以点A 和点B 关于Oyz 平面对称.故选B.2.D 由题意得,c xa yb =+ ,即()()()1,,22,1,31,2,2m x y -=-+-,所以122232x y m x y x y =-⎧⎪=+⎨⎪-=-+⎩,解得012x y m =⎧⎪=-⎨⎪=-⎩.故选D.3.A由题意得,所求直线的斜率为πtan 3⎛⎫-=⎪⎝⎭,且与y 轴交于点(0,2),则所求直线的方程为2y =+20y +-=.故选A.4.C 由点(-2,1)在圆220x y x y a ++-+=的外部,得()()2222114021210a a ⎧+-->⎪⎨-+--+>⎪⎩,解得122a -<<,故选C.5.A 向量a 在向量b上的投影向量为)230313,0,122a bb a b b bb b⎛⋅⋅+⋅=⋅== ⎝⎭.故选A.6.B 设()11,A x y ,()22,B x y ,则12122x x y y +=+=,将A ,B 的坐标代入椭圆方程得:221116x y m +=,222216x y m +=,两式相减,得:2222121206x x y y m--+=,变形为()()121212126m x x y y x x y y +-=--+,又直线AB 的斜率为121213yy x x -=--,所以12362m ⨯-=-⨯,即2m =,因此椭圆的焦距为4=,故选B.7.D 由题意设()1,0A -,()1,0B ,()(),0C x y y ≠,由2CA CB ==化简得()22516039x y y ⎛⎫-+=≠ ⎪⎝⎭.∵122ABC S y y =⨯⨯=△,∴当43y =时,ABC △面积最大,此时不妨设54,33C ⎛⎫ ⎪⎝⎭,则453CA =,253CB =.∴22245252334cos 5C ⎛⎫⎛+- ⎪ ==.故选D.8.C 根据对称,不妨设()00,P x y ,00x <.由题意得,2a =,b =,1c =则离心率1e 2c a ==,左准线方程为24a x c=-=-,所以()()1001442PF e x x =+=+,因为112PF G GF F ∠=∠,所以由角平分线定理得1122PF PGF F GF =,即()0014221x x +-=,解得045x =-,所以185PF =.故选C.二、选择题:本题共3小题,每小题6分,共18分。
2024学年江苏省扬州中学高二上学期期中考数学试题及答案

江苏省扬州中学2023-2024学年第一学期期中考试高二数学2023.11试卷满分:150分 考试时间:120分钟注意事项:1.作答前,请考生务必将自己的姓名、考试证号等写在答题卡上并贴上条形码.2.将选择题答案填写在答题卡的指定位置上(使用机读卡的用2B 铅笔在机读卡上填涂),非选择题一律在答题卡上作答,在试卷上答题无效.3.考试结束后,请将机读卡和答题卡交监考人员.一.单项选择题:本大题共8小题,每小题5分,共40分.在每题给出的四个选项中,只有一项是最符合题意的.(请将所有选择题答案填到答题卡的指定位置中.)1.经过(A 、()1,0B -两点的直线的倾斜角为( )A.π6 B.π3C.2π3D.5π62. 抛物线22x py =的准线方程是2y =,则实数p 的值为( )A. 8- B. 4- C. 4D. 83. 已知(),P x y 是椭圆22114425x y +=上的点,则x y +的值可能是( )A. 13B. 14C. 15D. 164. 若点()2,1在圆220x y x y a +-++=的外部,则a 的取值范围是( )A. 1,2⎛⎫+∞⎪⎝⎭B. 1,2⎛⎫-∞ ⎪⎝⎭C. 14,2⎛⎫- ⎪⎝⎭D. ()1,4,2⎛⎫-∞-⋃+∞⎪⎝⎭5. 已知12,F F 是椭圆 221259x y +=的两个焦点,过1F 的直线交椭圆于,M N 两点,则2MNF 的周长为( )A. 10B. 16C. 20D. 266. 已知抛物线2:16C y x =,直线:4l x =与C 交于A ,B 两点,M 是射线BA 上异于A ,B 的动点,圆1C 与圆2C 分别是OMA 和OMB △的外接圆(O 为坐标原点),则圆1C 与圆2C 面积的比值为( )A 小于1B. 等于1C. 大于1D. 与M 点的位置有关.7. 由伦敦著名建筑事务所Steyn Studio 设计的南非双曲线大教堂惊艳世界,该建筑是数学与建筑完美结合造就的艺术品. 若将如图所示的大教堂外形弧线的一段近似看成双曲线22221y x a b-=(00)a b >>,下支的一部分,且此双曲线的下焦点到渐近线的距离为2,离心率为2,则该双曲线的方程为( )A. 221124y x -= B. 223144y x -=C. 22144x y -= D. 221164y x -=8. 已知点()2,4M ,若过点()4,0N 的直线l 与圆()22:69C x y -+=交于A 、B 两点,则MA MB +的最大值为( )A. 12B. C. 10D. 6二.多项选择题:本大题共4小题,每小题5分,共20分.在每题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.(请将所有选择题答案填到答题卡的指定位置中. )9. 已知直线2:(1)10l a a x y ++-+=,其中R a ∈,则( )A. 直线l 过定点(0,1)B. 当1a =-时,直线l 与直线0x y +=垂直C. 当0a =时,直线l 在两坐标轴上的截距相等D. 若直线l 与直线0x y -=10. 已知椭圆2222:1(0)x y E a b a b+=>>的两个焦点分别为12,F F ,与y 轴正半轴交于点B ,下列选项中给出的条件,能够求出椭圆E 标准方程的选项是( )A. 2,1a c ==B. 已知椭圆E 的离心率为12,短轴长为2C. 12BF F △是等边三角形,且椭圆E 的离心率为12D. 设椭圆E 的焦距为4,点B 在圆22()9x c y -+=上11. 抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出.已知抛物线24y x =的焦点为F ,一束平行于x 轴的光线1l 从点()3,1M 射入,经过抛物线上的点()11,P x y 反射后,再经抛物线上另一点()22,Q x y 反射后,沿直线2l 射出,则下列结论中正确的是( )A. 34PQ k =- B. 121=x x C. 254PQ =D. 1l 与2l 之间的距离为412. 已知双曲线22:13y C x -=的左、右焦点分别为12,F F ,点P 是双曲线C 的右支上一点,过点P 的直线l 与双曲线C 的两条渐近线分别交于,M N ,则( )A. 2212PF PF -的最小值为8C. 若直线l 与双曲线C 相切,则点,M N 的纵坐标之积为2-;D. 若直线l 经过2F ,且与双曲线C 交于另一点Q ,则PQ 最小值为6.三.填空题:本大题共4小题,每小题5分,共20分.(请将所有填空题答案填到答题卡的指定位置中.)13. 若双曲线22221x y a b-=()0,0a b >>____.14. 若在抛物线y 2=-4x 上存在一点P ,使其到焦点F 的距离与到A (-2,1)的距离之和最小,则该点的坐标为________.15. 阿基米德是古希腊著名数学家、物理学家,他利用“逼近法”得到椭圆的面积除以圆周率π等于椭圆的长半轴长与短半轴长的乘积. 已知椭圆22221x y a b+=(a >b >0)的右焦点为(3,0)F ,过F 作直线l 交椭圆于A 、B 两点,若弦AB 中点坐标为(2,1)-,则该椭圆的面积为_____________.16. 已知圆1C 和圆2C 与x 轴和直线(0)y kx k =>相切,两圆交于,P Q 两点,其中P 点坐标为(3,2),已知两圆半径的乘积为132,则k 的值为___________.的的四.解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.(请将所有解答题答案填到答题卡的指定位置中.)17. 已知方程2214x y m+=(R m ∈且0m ≠)(1)若方程表示焦点在y 上的椭圆,且离心率为12,求m 的值;(2)若方程表示等轴双曲线,求m 的值及双曲线的焦点坐标.18. 已知直线l 经过直线12:34110, :2380l x y l x y +-=+-=的交点M .(1)若直线l 经过点(3,1)P ,求直线l 的方程;(2)若直线l 与直线3250x y ++=垂直,求直线l 的方程.19. 已知圆C 经过()()1,4,5,0A B 两点,且在x 轴上截距之和为2.(1)求圆C 的标准方程;(2)圆M 与圆C 关于直线10x y -+=对称,求过点()3,0且与圆M 相切的直线方程.20. 已知双曲线:()2211551x y m m m -=<<--的一个焦点与抛物线C :()220y px p =>的焦点重合.(1)求抛物线C 的方程;(2)若直线l :8xty =+交抛物线C 于A 、B 两点,O 为原点,求证:以AB 为直径的圆经过原点O .21.已知直线:R)l y kx k =+∈,与双曲线22:13x C y -=左支交于A ,B 两点.(1)求实数k 的取值范围;(2)若OAB(O 为坐标原点),求此时直线l 的斜率k 的值.22. 已知椭圆()2222:10x y C a b a b +=>>过点(2.(1)求椭圆C 方程;(2)点,A B 分别为椭圆C 的上下顶点,过点()04P ,且斜率为k 的直线与椭圆C 交于不同的两点,M N ,探究直线,BM AN 的交点是否在一条定直线0l 上,若存在,求出该直线0l 的方程;若不存在,请说明理由.的的江苏省扬州中学2023-2024学年第一学期期中考试高二数学2023.11试卷满分:150分 考试时间:120分钟注意事项:1.作答前,请考生务必将自己的姓名、考试证号等写在答题卡上并贴上条形码.2.将选择题答案填写在答题卡的指定位置上(使用机读卡的用2B 铅笔在机读卡上填涂),非选择题一律在答题卡上作答,在试卷上答题无效.3.考试结束后,请将机读卡和答题卡交监考人员.一.单项选择题:本大题共8小题,每小题5分,共40分.在每题给出的四个选项中,只有一项是最符合题意的.(请将所有选择题答案填到答题卡的指定位置中.)1. 经过(A 、()1,0B -两点的直线的倾斜角为( )A.π6 B.π3C.2π3D.5π6【答案】B 【解析】【分析】求出直线AB 的斜率,利用直线的斜率与倾斜角的关系可得出结果.【详解】设直线AB 的倾斜角为α,则0πα≤<,且tan α==,故π3α=.故选:B.2. 抛物线22x py =的准线方程是2y =,则实数p 的值为( )A. 8- B. 4- C. 4D. 8【答案】B 【解析】【分析】根据抛物线的准线求得p 的值【详解】由题意可得:22p-=,则4p =-故选:B3. 已知(),P x y 是椭圆22114425x y +=上的点,则x y +的值可能是( )A. 13B. 14C. 15D. 16【答案】A【解析】【分析】根据题意,可设12cos ,5sin x y θθ==,得到13sin()x y θϕ+=+,求得x y +的取值范围,即可求解.【详解】由椭圆22114425x y +=,可设12cos ,5sin x y θθ==,其中[]0,2πθ∈,则12cos 5sin 13sin()x y θθθϕ=+=++,其中12tan 5ϕ=,因为1sin()1θϕ-≤+≤,所以1313x y -≤+≤,即x y +的取值范围为[]13,13-,结合选项,可得A 符合题意.故选:A.4. 若点()2,1在圆220x y x y a +-++=的外部,则a 的取值范围是( )A 1,2⎛⎫+∞ ⎪⎝⎭B. 1,2⎛⎫-∞ ⎪⎝⎭C. 14,2⎛⎫- ⎪⎝⎭D. ()1,4,2⎛⎫-∞-⋃+∞⎪⎝⎭【答案】C 【解析】【分析】利用表示圆的条件和点和圆的位置关系进行计算.【详解】依题意,方程220x y x y a +-++=可以表示圆,则22(1)140a -+->,得12a <;由点()2,1在圆220x y x y a +-++=的外部可知:2221210a +-++>,得4a >-.故142a -<<.故选:C5. 已知12,F F 是椭圆 221259x y +=的两个焦点,过1F 的直线交椭圆于,M N 两点,则2MNF 的周长为( )A. 10 B. 16C. 20D. 26【答案】C 【解析】【分析】由椭圆的定义可得122MF MF a +=,122NF NF a +=,代入即可求出答案.【详解】由椭圆的定义可得:122MF MF a +=,122NF NF a +=,.则2MNF 的周长为:22112244520MN MF NF MF NF MF NF a ++=+++==⨯=.故选:C .6. 已知抛物线2:16C y x =,直线:4l x =与C 交于A ,B 两点,M 是射线BA 上异于A ,B 的动点,圆1C 与圆2C 分别是OMA 和OMB △的外接圆(O 为坐标原点),则圆1C 与圆2C 面积的比值为( )A. 小于1 B. 等于1C. 大于1D. 与M 点的位置有关【答案】B 【解析】【分析】求出,A B 的坐标,由对称性可得OB OA =,OBA OAB ∠=∠,设OAM △,OBM 的外接圆半径为12,R R ,由正弦定理得到12sin OM R OAB =∠,22sin OMR OBA=∠,故12R R =,故面积比值为1.【详解】由题意得,抛物线2:16C y x =的焦点坐标为()4,0F ,将4x =代入2:16C y x =中,8y =±,不妨令()()4,8,4,8A B -,由对称性可知,A B 两点关于y 轴对称,OB OA =,OBA OAB ∠=∠,设OAM △,OBM 的外接圆半径为12,R R ,当点M 在A 点上方时,()12sin sin πsin OM OM OM R OAM OAB OAB===∠-∠∠,当点M 在A 点上方时,12sin OMR OAB=∠,同理22sin OMR OBA=∠,因为OBA OAB ∠=∠,所以12R R =,所以圆1C 圆2C 面积的比值为1.故选:B7. 由伦敦著名建筑事务所Steyn Studio 设计的南非双曲线大教堂惊艳世界,该建筑是数学与建筑完美结合造就的艺术品. 若将如图所示的大教堂外形弧线的一段近似看成双曲线22221y x a b-=(00)a b >>,下支的一部分,且此双曲线的下焦点到渐近线的距离为2,离心率为2,则该双曲线的方程为( )A. 221124y x -= B. 223144y x -=C. 22144x y -= D. 221164y x -=【答案】B 【解析】【分析】首先根据题意得到22222b c a c a b=⎧⎪⎪=⎨⎪=+⎪⎩,再解方程组即可.【详解】设双曲线的一个焦点为()0,c ,一条渐近线方程为a y x b=,则焦点到渐近线的距离2d b ===,所以2222224234b a ca b c a b=⎧⎧⎪=⎪⎪=⇒⎨⎨⎪⎪=⎩=+⎪⎩,即双曲线方程为:223144y x -=.故选:B8. 已知点()2,4M ,若过点()4,0N 的直线l 与圆()22:69C x y -+=交于A 、B 两点,则MA MB + 的最大值为( )A. 12B. C. 10D. 6【答案】A 【解析】【分析】设AB 中点(),P x y ,根据垂径定理可得点P 的轨迹方程,进而可得MP的取值范围,又2MA MB MP +=,即可得解.【详解】设AB 中点(),P x y ,则()6,CP x y =- ,()4,NP x y =-,所以()()2640CP NP x x y ⋅=--+= ,即()2251x y -+=,所以点P 的轨迹为以()5,0E 为圆心,1为半径的圆,所以11ME MP ME -≤≤+,5ME ==,所以46MP ≤≤,又2MA MB MP +=,所以MA MB +的最大值为12,故选:A.二.多项选择题:本大题共4小题,每小题5分,共20分.在每题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.(请将所有选择题答案填到答题卡的指定位置中. )9. 已知直线2:(1)10l a a x y ++-+=,其中R a ∈,则( )A. 直线l 过定点(0,1)B. 当1a =-时,直线l 与直线0x y +=垂直C. 当0a =时,直线l 在两坐标轴上的截距相等D. 若直线l 与直线0x y -=【答案】ABD 【解析】【分析】坐标代入方程检验判断A ,根据垂直的条件判断B ,求出两坐标轴上截距判断C ,求出平行线间距离判断D .【详解】选项A ,把坐标(0,1)代入直线方程而立,A 正确;选项B ,1a =-时直线l 方程为10x y -+=,斜率是1,直线0x y +=斜率是1-,两直线垂直,B 正确;选项C ,0a =时直线方程为10x y -+=,在x 轴上截距为=1x -,在y 轴上截距为1y =,不相等,C 错;选项D ,211a a ++=即0a =或1-时,直线l 方程为10x y -+=与直线0x y -=平行,距离为d ==D 正确.故选:ABD .10. 已知椭圆2222:1(0)x y E a b a b+=>>的两个焦点分别为12,F F ,与y 轴正半轴交于点B ,下列选项中给出的条件,能够求出椭圆E 标准方程的选项是( )A 2,1a c ==B. 已知椭圆E 的离心率为12,短轴长为2C. 12BF F △是等边三角形,且椭圆E 的离心率为12D. 设椭圆E 的焦距为4,点B 在圆22()9x c y -+=上【答案】ABD.【解析】【分析】逐项代入分析即可求解.【详解】根据222a b c =+之间的关系即可求解,故选项A 正确;根据2221,22,2c e b a b c a ====+即可求解,故选项B 正确;12BF F △是等边三角形,且椭圆E 的离心率为12,只能确定12,2c a c e a ===,不能求椭圆E 标准方程,故选项C 不正确;设椭圆E 的焦距为4,点B 在圆22()9x c y -+=上,所以()2222224,09c c b c b a =-+=+==,即可求出椭圆E 标准方程,故选项D 正确.故选:ABD.11. 抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出.已知抛物线24y x =的焦点为F ,一束平行于x 轴的光线1l 从点()3,1M 射入,经过抛物线上的点()11,P x y 反射后,再经抛物线上另一点()22,Q x y 反射后,沿直线2l 射出,则下列结论中正确的是( )A. 34PQ k =-B. 121=x xC. 254PQ = D. 1l 与2l 之间的距离为4【答案】BC【解析】【分析】由抛物线的光学性质可知,直线PQ 过焦点(1,0)F ,设直线:1PQ x my =+,代入24y x =,由韦达定理得124y y =-,进而求得121=x x ,可判断B ;先求点P 的坐标,再结合124y y =-可得点Q 的坐标,然后利用斜率公式即可判断A ;根据抛物线的定义可知12Q x p P x ++=,可判断C ;由于1l 与2l 平行,所以1l 与2l 之间的距离12d y y =-,可判断D .【详解】由抛物线的光学性质可知,直线PQ 过焦点(1,0)F ,设直线:1PQ x my =+,代入24y x =得2440y my --=,则124y y =-,所以()212121616y y x x ==,所以121=x x ,故B 正确;点P 与M 均在直线1l 上,则点P 的坐标为(1,14),由124y y =-得24y =-,则点Q 的坐标为(4,4)-,则4141344PQ k --==--,故A 错误;由抛物线的定义可知,121254244PQ x x p =++=++=,故C 正确;1l 与2l 平行,1l ∴与2l 之间的距离125d y y =-=,故D 错误.故选:BC.12. 已知双曲线22:13y C x -=的左、右焦点分别为12,F F ,点P 是双曲线C 的右支上一点,过点P 的直线l 与双曲线C 的两条渐近线分别交于,M N ,则( )A. 2212PF PF -的最小值为8B. 212PF PF OP -为定值C. 若直线l 与双曲线C 相切,则点,M N 的纵坐标之积为2-;D. 若直线l 经过2F ,且与双曲线C 交于另一点Q ,则PQ 的最小值为6.【答案】AB【解析】【分析】设00(,)P x y ,由2221208PF PF x -=,可判定A 正确;化简2122PF PF OP -=,可判定B 正确;设直线l 的方程为x my n =+,联立方程组,结合Δ0=,得到2213n m =-,在化简123y y =-,可判定C 不正确;根据通经长和实轴长,可判定D 错误.【详解】由题意,双曲线2213y x -=,可得1,a b ==2c ==,所以焦点12(2,0),(2,0)F F -,且1222PF PF a -==,设00(,)P x y ,则01x ≥,且220013y x -=,即220033=-y x ,双曲线C的两条渐近线的方程为y =,对于A 中,由()][()22222212000002288PF PF x y x y x ⎡⎤-=++--+=≥⎣⎦,所以A 正确;对于B中,2221200()PF PF OP x y -=-+2200(33)x x =-+-2000(21)(21)(43)2x x x =+---=(定值),所以B 正确;对于C 中,不妨设1122(,),(,)M x y N x y ,直线l 的方程为x my n =+,联立方程组2213x my n y x =+⎧⎪⎨-=⎪⎩,整理得222(31)6330m y mny n -++-=,若直线l 与双曲线C 相切,则22223612(31)(1)0m n m n ∆=---=,整理得2213n m =-,联立方程组x my n y =+⎧⎪⎨=⎪⎩,解得y =M的纵坐标为1y =,联立方程组x my n y =+⎧⎪⎨=⎪⎩,解得y =N的纵坐标为2y =,则点,M N的纵坐标之积为21222233(13)33113y n m mm y ---===-=--所以C 不正确;对于D 中,若点Q 在双曲线的右支上,则通经最短,其中通经长为226b a=,若点Q 在双曲线的左支上,则实轴最短,实轴长为226a =<,所以D 错误.故选:AB.三.填空题:本大题共4小题,每小题5分,共20分.(请将所有填空题答案填到答题卡的指定位置中.)13. 若双曲线22221x y a b-=()0,0a b >>____.【答案】y =【解析】【分析】由c e a ===b a =,即可求出双曲线的渐近线方程.【详解】因为双曲线22221x y a b-=()0,0a b >>c e a ===222b a =,所以b a =,双曲线22221x y a b-=()0,0a b >>渐近线方程为:b y x a =±=.故答案为:y =14. 若在抛物线y 2=-4x 上存在一点P ,使其到焦点F 的距离与到A (-2,1)的距离之和最小,则该点的坐标为________.【答案】1,14⎛⎫-⎪⎝⎭##()0.25,1-【解析】【分析】作出图象,结合题意可知A ,P 及P 到准线的垂足三点共线时,所求距离之和最小,此时P 点的纵坐标为1,代入抛物线即可求得P 点的坐标.【详解】根据题意,由y 2=-4x 得p =2,焦点坐标为(-1,0),作出图象,如图,.因为PF 等于P 到准线的距离PQ ,所以PF PA PQ PA AQ +=+≥,可知当A ,P 及P 到准线垂足三点共线时,点P 与点F 、点P 与点A 的距离之和最小,此时点P 的纵坐标为1,将y =1代入抛物线方程求得14x =-,所以点P 的坐标为1,14⎛⎫- ⎪⎝⎭.故答案为:1,14⎛⎫- ⎪⎝⎭.15. 阿基米德是古希腊著名的数学家、物理学家,他利用“逼近法”得到椭圆的面积除以圆周率π等于椭圆的长半轴长与短半轴长的乘积. 已知椭圆22221x y a b+=(a >b >0)的右焦点为(3,0)F ,过F 作直线l 交椭圆于A 、B 两点,若弦AB 中点坐标为(2,1)-,则该椭圆的面积为_____________.【答案】【解析】【分析】利用作差法构建斜率、中点坐标相关方程2121221212y y x x b x x y y a-+=-⋅-+,再结合222a c b -=即可求解出a 、b ,进而求出面积.【详解】设()11,A x y ,()22,B x y ,记AB 的中点为M ,即(2,1)M -,因为AB 的中点为M ,所以由中点坐标公式得121242x x y y +=⎧⎨+=-⎩,因为直线AB 过椭圆焦点()3,0F ,所以直线AB 斜率为121201132y y k x x --===--,又因为A ,B 在椭圆22221x y a b+=上,的所以22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得22221212220x x y y a b --+=,整理得2121221212y y x x b x x y y a-+=-⋅-+,代值化简得222b a =,因为椭圆22221x y a b+=的焦点为()3,0F ,所以22a b 9-=,得a =,3b =,由题意可知,椭圆的面积为ab π=.故答案为:.16. 已知圆1C 和圆2C 与x 轴和直线(0)y kx k =>相切,两圆交于,P Q 两点,其中P 点坐标为(3,2),已知两圆半径的乘积为132,则k 的值为___________.【答案】【解析】【分析】根据题意可设1(,)C ma a ,2(,)C mb b ,(0)m >,由P 在两圆上,将坐标代入对应圆的方程整理,易知,a b 是22(64)130m r m r -++=的两个根,进而求直线12C C 的斜率,再根据直线12C C 、(0)y kx k =>倾斜角的关系求k 值.【详解】由题设,圆1C 和圆2C 与x 轴和直线(0)y kx k =>相切,且一个交点P (3,2),∴1C 和2C 在第一象限,若,a b 分别是圆1C 和圆2C 的半径,可令1(,)C ma a ,2(,)C mb b ,(0)m >,∴222222(3)+(2){(3)+(2)ma a a mb b b --=--=,易知:,a b 是22(64)130m r m r -++=的两个根,又132ab =,∴213132m =,可得m =12C C k =,而直线12C C 的倾斜角是直线(0)y kx k =>的一半,∴1212221C C C C k k k ==-.故答案为:【点睛】关键点点睛:分析圆心的坐标并设1(,)C ma a ,2(,)C mb b ,结合已知确定,a b 为方程的两个根,应用韦达定理求参数m ,进而求12C C 斜率,由倾斜角的关系及二倍角正切公式求k 值.四.解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.(请将所有解答题答案填到答题卡的指定位置中.)17. 已知方程2214x y m+=(R m ∈且0m ≠)(1)若方程表示焦点在y 上椭圆,且离心率为12,求m 的值;(2)若方程表示等轴双曲线,求m 的值及双曲线的焦点坐标.【答案】(1)163m = (2)4m =-,()±【解析】【分析】(1)根据题中条件及离心率公式直接计算即可;(2)根据题中条件得4m =-,进一步计算得到c 的值,即可求解.【小问1详解】因为方程为焦点在y 轴上的椭圆,所以22,4a m b ==则离心率12c e a ===,解得163m =故163m =【小问2详解】由题意得 4m =-,c ===故焦点坐标为()±18. 已知直线l 经过直线12:34110, :2380l x y l x y +-=+-=的交点M .(1)若直线l 经过点(3,1)P ,求直线l 的方程;(2)若直线l 与直线3250x y ++=垂直,求直线l 的方程.【答案】(1)250x y +-=(2)2340x y -+=【解析】的.【分析】(1)联立方程求得交点坐标,再由两点式求出直线方程.(2)根据直线垂直进行解设方程,再利用交点坐标即可得出结果.【小问1详解】由341102380x y x y +-=⎧⎨+-=⎩得12x y =⎧⎨=⎩,即直线1l 和2l 的交点为(1,2)M .直线l 还经过点()3,1P ,∴l 的方程为211231y x --=--,即250x y +-=.【小问2详解】由直线l 与直线3250x y ++=垂直,可设它的方程为230x y n -+=.再把点(1,2)M 的坐标代入,可得260n -+=,解得4n =,故直线l 的方程为2340x y -+=.19. 已知圆C 经过()()1,4,5,0A B 两点,且在x 轴上的截距之和为2.(1)求圆C 的标准方程;(2)圆M 与圆C 关于直线10x y -+=对称,求过点()3,0且与圆M 相切的直线方程.【答案】(1)()22116x y -+=(2)3x =或3490x y --=【解析】【分析】(1)根据题意,设圆的一般式方程,代入计算,即可得到结果;(2)根据题意,分直线的斜率存在与不存在讨论,结合点到直线的距离公式列出方程,即可得到结果.【小问1详解】设圆C 的方程为()2222040x y Dx Ey F D E F ++++=+->,令0y =,可得20x Dx F ++=,则122x x D +=-=,将()()1,4,5,0A B 代入可得,116402550D E F D F ++++=⎧⎨++=⎩,解得2015D E F =-⎧⎪=⎨⎪=-⎩,所以圆C 方程为222150x y x +--=,即()22116x y -+=.【小问2详解】圆C 的圆心()1,0C ,圆M 的圆心与()1,0C 关于10x y -+=对称,∴设圆M 的圆心为(),M a b 则11022111a b b a +⎧-+=⎪⎪⎨⎪⨯=-⎪-⎩,解得12a b =-⎧⎨=⎩,圆M 的标准方程为:()()221216x y ++-=,若过点()3,0的直线斜率不存在,则方程为3x =,此时圆心()1,2C -到直线3x =的距离为314r +==,满足题意;若过点()3,0且与圆C 相切的直线斜率存在,则设切线方程为()3y k x =-,即30kx y k --=,则圆心到直线30kx y k --=4,解得34k =,所以切线方程为39044x y --=,即3490x y --=,综上,过点()3,0且与圆C 相切的直线方程为3x =或3490x y --=.20. 已知双曲线:()2211551x y m m m -=<<--的一个焦点与抛物线C :()220y px p =>的焦点重合.(1)求抛物线C 的方程;(2)若直线l :8x ty =+交抛物线C 于A 、B 两点,O 为原点,求证:以AB 为直径的圆经过原点O .【答案】(1)28y x =(2)见解析.【解析】【分析】(1)根据双曲线方程求出其焦点坐标,即也是抛物线焦点,得到抛物线方程.(2)直线l 与抛物线联立后,利用韦达定理求出0OA OB ⋅= 即可得证.【小问1详解】由双曲线方程()2211551x y m m m -=<<--知其焦点在x 轴上且焦点坐标为1(2,0)F -,2(2,0)F ,所以2(2,0)F 为抛物线C :()220y px p =>的焦点,得242p p =⇒=,所以抛物线C 的方程为28y x =.【小问2详解】设11(,)A x y ,22(,)B x y 联立22886408x ty y ty y x=+⎧⇒--=⎨=⎩,2644640t ∆=+⨯>由韦达定理得128y y t +=,1264y y =-所以12121212(8)(8)OA OB x x y y ty ty y y ⋅=+=+++ 21212(1)8()64t y y t y y =++++2(1)(64)8(8)640t t t =+-++=所以OA OB ⊥ ,所以以AB 为直径的圆经过原点O .得证21. 已知直线:R)l y kx k =+∈,与双曲线22:13x C y -=的左支交于A ,B 两点.(1)求实数k 的取值范围;(2)若OAB (O 为坐标原点),求此时直线l 的斜率k 的值.【答案】(11k <<(2)k =【解析】【分析】(1)设点坐标,联立方程组,根据根与系数的关系求解;(2)通过OAB 面积求解出12x x -,从而求解出k 的值.【小问1详解】依题意,设()()1122,,,A x y B x y ,联立方程组22330y kx x y ⎧=+⎪⎨--=⎪⎩,整理得:()221390,k x ---=因为直线:R)l y kx k =∈,与双曲线22:13x C y -=的左支交于A ,B 两点,所以()2212212130361090130k k x x k x x ⎧-≠⎪=->⎪⎪⎪-⎨=>⎪-⎪⎪+=<⎪⎩ ,解得210,13k k ><<1k <<,【小问2详解】设点O到直线:R)l y kx k =∈的距离为d,则d =,212OAB S AB d x ==-=- ,又因为S =,所以1212,5x x -=又因为12125x x -==,代入12212913x x k x x -⎧=⎪-⎪⎨⎪+=⎪⎩125,整理得4236210k k+-=1k <<,解得k =,此时直线l的斜率k.22. 已知椭圆()2222:10x y C a b a b +=>>过点(2.(1)求椭圆C 方程;(2)点,A B 分别为椭圆C 的上下顶点,过点()04P ,且斜率为k 的直线与椭圆C 交于不同的两点,M N ,探究直线,BM AN 的交点是否在一条定直线0l 上,若存在,求出该直线0l 的方程;若不存在,请说明理由.【答案】(1)22:184x y C += (2)存在,1y =【解析】【分析】(1)由椭圆离心率可得222a b =,再将(2代入椭圆的方程可得228,4a b ==,即可求出椭圆的方程;(2)设()()1122,,,M x y N x y ,直线MN 的方程为:4y kx =+,联立直线MN 和椭圆的方程求出两根之积和两根之和,设直线AN 的方程和直线BM 的方程,两式联立求得交点的纵坐标的表达式,将两根之积和两根之和代入可证得交点在一条定直线上.【小问1详解】,即c e a ===,所以2212b a =,所以222a b =,又因为椭圆()2222:10x y C a b a b +=>>过点(2,所以224212b b +=,解得:228,4a b ==,所以椭圆C 方程为22184x y +=.【小问2详解】因为()()0,2,0,2A B -,设()()1122,,,M x y N x y ,直线MN 的方程为:4y kx =+,联立方程221844x y y kx ⎧+=⎪⎨⎪=+⎩,得()221216240k x kx +++=,()()222Δ164241264960,k k k =-⨯⋅+=->得232k >则1212221624,1212k x x x x k k -+=⋅=++直线AN 的方程为:2222y y x x --= ,直线BM 的方程为:1122y y x x ++=,联立两直线方程消元:()()2112112122222226y x kx x x y y y x kx x x -+-==+++ 法1:由()221216240k x kx +++=解得:12x x ==,代入化简,2123y y -===-+,解得:1y =,即直线,BM AN 的交点在定直线1y =上.法2:由韦达定理得1221612k x x k-=-+代入化简()()22222222224162824211212242324612612k k x k k x y k k k y k k x x k -⎛⎫+- ⎪--+-++⎝⎭===-+++++,得1y =,即直线,BM AN 的交点在定直线1y =上.法3:由1212221624,1212k x x x x k k -+=⋅=++,得()121232x x kx x -+=⋅代入化简()()1211223221232362x x x y y x x x -++-==-+-++,得1y =,即直线,BM AN 的交点在定直线1y =上.法4: 代()11,M x y 点进椭圆方程得2211184x y +=化简得()()221111221844y y x y +-=-=进而得到()()1111222y x y x -=+,代入化简()()121222222y y y y x x ----=+⋅转化为韦达定理代入()()()()1212121222222222y y kx kx y y x x x x ----++-==+⋅⋅()22221212122241622422412122412k k k k x x k x x k k x x k ⎛⎫-⋅-⋅+ ⎪⎡⎤-+++++⎣⎦⎝⎭==⋅+22222243248211224312k k k k k -++-⋅+=-+,得1y =,即直线,BM AN 的交点在定直线1y =上.【点睛】思路点睛:本题考查直线与椭圆综合应用中的定直线问题的求解,求解此类问题的基本思路如下:①假设直线方程,与椭圆方程联立,整理为关于x 或y 的一元二次方程的形式;②利用0∆>求得变量之间的关系,同时得到韦达定理的形式;③利用韦达定理表示出已知的等量关系,化简整理得到所求定直线.。
(完整版)高二数学试题及答案

高二数学期中测试卷(时间: 120分钟满分: 150分)一、选择题(本大题共 12小题,每小题 5分,共 60分.在每小题给出的四个选项中,只有一项是符合题目要求的 )1.设 a<b<0,则下列不等式一定成立的是 ( )A .a2<ab<b2B. b2<ab<a2C. a2<b2<ab D. ab<b2<a2答案 B2.关于数列 3,9,⋯, 2187,⋯,以下结论正确的是 ( ) A.此数列不是等差数列,也不是等比数列B.此数列可能是等差数列,也可能是等比数列C.此数列可能是等差数列,但不是等比数列D.此数列不是等差数列,但可能是等比数列解析记 a1= 3,a2=9,⋯, a n=2187,⋯若该数列为等差数列,则公差 d= 9- 3=6, a n=3+(n-1)×6=2187,∴ n=365.∴{a n}可为等差数列.9若{a n} 为等比数列,则公比 q=93=3.a n= 3·3n 1=2187=37,∴ n=7.∴{a n}也可能为等比数列.答案 B3.在△ ABC 中,若 sin2A+sin2B=2sin2C,则角 C 为()A .钝角B .直角C .锐角D . 60°解析 由 sin 2A +sin 2B = 2sin 2C ,得 a 2+b 2=2c 2. 即 a 2+b 2-c 2=c 2>0, cosC>0. 答案 C4.设{a n } 是公比为正数的等比数列,若 a 1=1,a 5=16,则数列 {a n } 的前 7 项和为 ( )A .63 D .128解析 a 5=a 1q 4=q 4=16,∴ q =2. 1- 27∴S 7=11--22=128-1=127.答案 C5.一张报纸,其厚度为 a ,面积为 b ,现将此报纸对折 7 次,这时报纸的厚度和面积分别为 ()A .8a ,b 8B .64a ,6b 4bbC.128a,128D.256a,256答案 C6.不等式 y ≤ 3x +b 所表示的区域恰好使点 (3,4)不在此区域内, 而点(4,4)在此区域内,则 b 的范围是 ( )A .-8≤b ≤-5B .b ≤-8或 b>-5C .-8≤b<-5D .b ≤-8或 b ≥-5B .64C .127解析∵4>3×3+b,且 4≤3×4+ b,∴- 8≤b<- 5.答案 C2m +n≤4,m ≥0,程 x 2-(3m +2n)x + 6mn =0 的两根之和的最大值和最小值分别是 ()A .7,-4 D .6,-6解析 两根之和 z =3m + 2n ,画出可行域,当 m =1,n =2 时,z max =7;当 m =0, n =- 2 时, z min =- 4.答案 A8.已知 a ,b , c 成等比数列, a ,x ,b 成等差数列, b ,y ,c 成 等差数列,则 xa+cy的值等于 ( )11A.4B.2C . 2D . 1解析 用特殊值法,令 a =b = c. 答案 C9.制作一个面积为 1m 2,形状为直角三角形的铁架框,有下列四 种长度的铁管供选择,较经济的 (够用、又耗材最少 )是()A .4.6mB . 4.8mC . 5mD . 5.2m解析 设三角形两直角边长为 am ,bm ,则 ab = 2,周长 C =a +b + a 2+ b 2≥2 ab + 2ab =2 2+2≈4.828(m).7.已知实数 m , n 满足不等式组m -n ≤2,m +n ≤3, 则关于 x 的方 B .8,-8 C .4,- 72m+n≤4,答案 C10.设{ a n}是正数等差数列,{ b n}是正数等比数列,且 a1=b1,a2n。
湖北省部分重点中学2024_2025学年高二数学上学期期中试题含解析

湖北省部分重点中学2024-2025学年高二数学上学期期中试题(含解析)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分,考试时间120分钟. 留意事项:1.答卷前,考生务必将自己的姓名、准考证号精确地写在答题卡上。
2.全部试题的答案均写在答题卡上。
对于选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案。
3.答第Ⅱ卷时,必需用0.5毫米墨水签字笔在答题卡上书写。
在试题卷上作答无效。
第I 卷(选择题)一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中只有一项是符合题目要求的1.已知点(-3,2)A ,(0,1)B -,则直线AB 的倾斜角为( ) A .030B .045C .0135D .01202.某工厂为了对40个零件进行抽样调查,将其编号为00,01,…,38,39.现要从中选出5个,利用下面的随机数表,从第一行第3列起先,由左至右依次读取,则选出来的第5个零件编号是( ) 0347 4373 8636 9647 3661 4698 6371 6233 2616 8045 6011 1410 9577 7424 6762 4281 1457 2042 5332 3732 2707 3607 5124 5179 A .36B .16C .11D .143.ABC ∆的内角,,A B C 的对边分别为,,a b c ,且3A π=,4c =,26a =,则角C =( )A .34π B .4π C .4π或34π D .3π或23π4.已知αβ、是平面,l m 、是直线,αβ⊥且=l αβ,m α⊂,则“m β⊥”是“m l ⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5.若圆O 1:x 2+y 2=5与圆O 2:(x -m )2+y 2=20()m R ∈相交于A ,B 两点,且两圆在点A 处的切线相互垂直,则线段AB 的长度是( )A .2B .4C .5D .106.已知直线l :2(0,0)x ya b a b+=>>经过定点(1,1)M ,则32a b +的最小值是( ) A .3222+ B .526+C .562+ D .37.某学校随机抽查了本校20个学生,调查他们平均每天进行体育熬炼的时间(单位:min ),依据所得数据的茎叶图,以5为组距将数据分为8组,分别是[0,5),[5,10),…,[35,40],作出频率分布直方图如图所示,则原始的茎叶图可能是( )第7题图A .B .C .D .8.棱长为1的正方体ABCD-A 1B 1C 1D 1中,点P 在线段AD 上(点P 异于A 、D 两点),线段DD 1的中点为点Q ,若平面BPQ 截该正方体所得的截面为四边形,则线段AP 长度的取值范围为( ) A .103⎛⎤ ⎥⎝⎦,B .112⎛⎤ ⎥⎝⎦,C .1[,1)3D .102⎛⎤ ⎥⎝⎦,二、选择题:本题共4小题,每小题5分,共20分,在每小题给出的选项中有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分 9.下列说法正确的是( ) A .命题“x R∀∈,21x >-”的否定是“0x ∃∈R ,201x <-”B .命题“0(3,)x ∃∈-+∞,209x ≤”的否定是“(3,)x ∀∈-+∞,29x >”C .“0m <”是“关于x 的方程220x x m -+=有一正一负根”的充分不必要条件D .“5a >”是命题“2,0x R x ax a ∀∈++≥”为假命题的充分不必要条件10.抛掷一枚骰子1次,记“向上的点数是4,5,6”为事务A ,“向上的点数是1,2”为事务B ,“向上的点数是1,2,3”为事务C ,“向上的点数是1,2,3,4”为事务D ,则下列关于事务A ,B ,C ,D 推断正确的是( ) A .A 与B 是互斥事务但不是对立事务 B .A 与C 是互斥事务也是对立事务 C .A 与D 是互斥事务 D .C 与D 不是对立事务也不是互斥事务 11.以下四个命题为真命题的是( )A .过点()10,10-且在x 轴上的截距是在y 轴上截距的4倍的直线的方程为11542y x =-+ B .直线3y +2=0的倾斜角的范围是50,[,)66πππ⎡⎤⎢⎥⎣⎦ C .曲线22120C :x y x ++=与曲线222480C :x y x y m +--+=恰有一条公切线,则4m =D .设P 是直线20x y --=上的动点,过P 点作圆O :221x y +=的切线PA ,PB ,切点为A ,B ,则经过A ,P ,O 三点的圆必过两个定点。
重庆市2024-2025学年高二上学期期中考试数学试卷含答案

重庆市高2026届高二上期期中考试数学试题(答案在最后)2024.11注意事项:1.本试卷满分为150分,考试时间为120分钟.2.答卷前,考生务必将自己的姓名、班级、准考证号填写在答题卡上.3.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每题5分,共40分.1.直线l 过(,),(,)()P b c b Q a c a a b ++≠两点,则直线l 的斜率为()A.a b a b+- B.a b a b-+ C.1D.1-【答案】C 【解析】【分析】利用直线上两点的坐标求斜率即可.【详解】由题意可知,斜率()()1a b a bk a c b c a b--===+-+-,故选:C.2.若平面α的法向量为()4,4,2n =--,方向向量为(),2,1x 的直线l 与平面α垂直,则实数x =()A.4B.4- C.2D.2-【答案】D 【解析】【分析】根据直线垂直于平面,则直线的方向向量平行于平面的法向量,即可求解.【详解】由直线l 与平面α垂直,故直线l 方向向量(),2,1x 与平面α的法向量()4,4,2n =--平行,设()()4,4,2,2,1x λ--=,即4422xλλλ=⎧⎪-=⎨⎪-=⎩,解得22x λ=-⎧⎨=-⎩.故选:D.3.圆心为(1,1)-且过原点的圆的一般方程是()A.22220x y x y ++-= B.22220x y x y +-+=C.22220x y x y +--= D.222210x y x y ++-+=【答案】B 【解析】【分析】先求半径,再得圆的标准方程,最后转化为圆的一般方程.【详解】由题意知,()0,0在圆上,圆心为(1,1)-,所以圆的半径r ==,所以圆的标准方程为()()22112x y -++=,则一般方程为:22220x y x y +-+=,故选:B.4.椭圆22221x y a b +=和2222(0,0,,0)x y k a b a b k a b+=>>≠>一定具有()A.相同的离心率B.相同的焦点C.相同的顶点D.相同的长轴长【答案】A 【解析】【分析】先将方程化为标准方程,再根据离心率,焦点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学期中考试试题及答案
注意事项:1.本试卷全卷150分,考试时间120分钟。
2.本试卷分为、II卷,共4页,答题纸4页。
3.I卷答案必须使用2B铅笔填涂在答题卡相应题号的位置。
4.II卷均需写在答题纸上,在草稿纸和试卷上答题无效。
5.注意在答题卡、答题纸相应位置完整涂写考生信息。
第I卷(选择题60分)
一、选择题(共12小题,每小题5分,计60分)
1. 不等式x3x40的解集为
A.{x|1x4}
B.{x|x4或x1} D.{x|4x1} 2
C.{x|x1或x4}
002.在△ABC中,已知a8,B=60,C=75,则b等于A.46 B.45 C.43
D.22 3
3.已知ABC中,三内角A、B、C成等差数列,则sinB= A.1 B. C.
D. 2
2
2
3
4.在等差数列an中,已知a521,则a4a5a6等于
A.15 B.33 C.51 D.63
5.已知等比数列{an }的公比为2,前4项的和是1,则前8项的和为
A .15 B.17 C.19 D .216.若a1,则a1的最小值是a1
A.2
B.a
7.已知点(3,1)和(4,6)在直线3x-2y+a=0的两侧,则a的取值范围是
A.a0
B.a7
C.a0或a7
D.7a0
8.数列{an}的前n项和为Sn,若an1,则S5等于n(n1)
C. A.1 B.5 6 11
D. 630
9.在△ABC中,AB=3,BC=,AC=4,则边AC上的高为
A.32 2
B.333
C.
D.33 22
10.已知x>0,y>0,且x+y=1,求41的最小值是xy
A.4
B.6
C.7
D.9
x211.若y2则目标函数zx2y的取值范围是
xy2
A.[2,6]
B.[2,5]
C.[3,6]
D.[3,5]
12.设ABC的三内角A、B、C成等差数列,sinA、sinB、sinC成等比数列,则这
个三角形的形状是
A.直角三角形
B.钝角三角形
C.等边三角形
D.等腰直角三角形第II卷(非选择题,共90分)
二、填空题:(共4小题,每小题4分,共16分)
13.设等比数列{an}的公比为q1S,前n项和为Sn,则4_____________. 2a4
14. 在△ABC中,若a2b2bcc2,则A_________。
15.小明在玩投石子游戏,第一次走1米放2颗石子,第二次走2米放4颗石子…第n次走n米放2颗石子,当小明一共走了36米时,他投放石子的总数是______.
16.若不等式mx+4mx-4<0对任意实数x恒成立,则实数m的取值范围为.
三、解答题(共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.)
17.(本小题满分12分)
(1)Sn为等差数列{an}的前n项和,S2S6,a41,求a5.
(2)在等比数列an中,若a4a224,a2a36,求首项a1和公比q.
18.(本小题满分12分)
在ABC中,A、B为锐角,角A、B、C所对的边分别为a、b、c,且2nab21,sinA
(1)求a,b的值;5,sinB. 105
(2)求角C和边c的值。
数学试题第3页,共4页
第3 / 7页
19.(本小题满分12分)已知数列{an}的前n项和Snn248n。
(1)求数列的通项公式;(2)求Sn的或最小值。
20.(本小题满分12分)
若0≤a≤1, 解关于x的不等式(x-a)(x+a-1)<0.
21.(本小题满分12分)
某种汽车购买时费用为14.4万元,每年应交付保险费、养路费及汽油费共0.9万元,汽车的维修费为:第一年0.2万元,第二年0.4万元,第三年0.6万元,……,依等差数列逐年递增.
(1)设使用n年该车的总费用(包括购车费用)为f(n),试写出f(n)的表达式;
(2)求这种汽车使用多少年报废最合算(即该车使用多少年平均费用最少).
22.(本小题满分12分)已知数列{an}满足a11,an12an1(nN)
(1)求证:数列{an1}是等比数列;
(2)求通项公式an;(3)设bnn,求anbn的前n项和Tn.
数学试题第4页,共4页
第4 / 7页
高二数学试题答案
一、选择题:
BABDB CDBBD AC
二、填空题:
13. 14. 15. 500 ______ 16. 1m0
三、解答题:
17.解:(1)设等差数列{an}的公差为d,
由题意,得2a1d6a115d,2a17d0,即………………3分a3d1,a3d1,11 解得,d2,a17.所以,a5a14d74(2)1. ……………6分
(2)设等比数列{an}的公比为q,
a1q(q21)24,由题意,得………………………………9分a1q(1q)6,
1. 解得,q5,a1 ………………………………………12分5
a2aba2b18. 解:(1)由得a2b,联立解得sinAsinBb1ab21
(2)A,B为锐角,cosA23 ,cosB510
2 2cosCcos(AB)cosAcosBsinAsinB=-
C135
c2a2b22abcosC5 c
19. (1)a1=S1=1-48×1=-47, 2
当n≥2时,an=Sn-Sn-1=n2-48n-[(n-1)2-48(n-1)]
第5 / 7页
=2n-49,a1也适合上式,
∴an=2n-49 (n∈N+).
(2)a1=-49,d=2,所以Sn有最小值,
∴当n=24时,Sn取得最小值-576.
20. 解:原不等式即为(x-a)[x-(1-a)]>0,
因为a-(1-a)=2a-1,所以,
当0≤a
当11a2n490由n,得23n24,又nN,22an12(n1)490∴n=24,即Sn最小,2423S2424(47)2576,2或:由Sn=n2-48n=(n-24)2-576,1时,a1a,所以原不等式的解集为{x|x1a或xa};……3分21a≤1时,a1a,所以原不等式的解集为{x|xa或x1a};……6分2
1121当a时,原不等式即为(x)>0,所以不等式的解集为{x|x,xR} (9)
分222
1综上知,当0≤a时,原不等式的解集为{x|x1a或xa};2
1 当a≤1时,所以原不等式的解集为{x|xa或x1a};2
11当a时,原不等式的解集为{x|x,xR}. ………………12分22
21.解:(Ⅰ)依题意f(n)=14.4+(0.2+0.4+0.6+…+0.2n)+0.9n ……………………4分
14.40.2n(n1)0.9n 2
0.1n2n14.4 ……………………6分
(Ⅱ)设该车的年平均费用为S万元,则有
S11f(n)(0.1n2n14.4) …………………8分
nn
n14.411……………………………………9分10n
21.213.4……………………………………………10分
仅当n14.4,即n=12时,等号成立. ………………12分10n
第6 / 7页
答:汽车使用12年报废为宜.
22. 解:(1)an12an1(nN)
得an112(an1)(nN)
an112(nN) an1
数列{an1}成等比数列.
(2)由(1)知,{an1}是以a11=2为首项,以2为公比的等比数列
an122n-12n an2n1
(3)bnn anbnn(2n1)
Tna1b1a2b2a3b3anbn
1(211)2(221)3(231)n(2n1) =(121222323n2n)(123n) 令Sn121222323n2n
2Sn122223324n2n1
两式相减Sn12122232nn2n1
Sn2n1(n1)2 n(n1) 2Tn2n1(n1)2。