第4章 射频谐振电路与微波谐振腔汇总

合集下载

射频与微波技术知识点总结

射频与微波技术知识点总结

射频/微波的特点: 1.频率高 2.波长短 3.大气窗口 4.分子谐振微波频率:3003000 波长:0.11m独特的特点:的波长与自然界物体尺寸相比拟在波段,由于导体的趋肤效应、介质损耗效应、电磁感应等影响,期间区域不再是单纯能量的集中区,而呈现分布特性。

长线概念:通常把导线(传输线)称为长线,传统的电路理论已不适合长线!系统的组成:传输线:传输信号微波元器件:完成微波信号的产生、放大、变换等和功率的分配、控制及滤波天线:辐射或接收电磁波微波、天线与电波传播的关系:(简答)微波:对象:如何导引电磁波在微波传输系统中的有效传输目的:希望电磁波按一定要求沿微波传输系统无辐射的传输;天线任务:将导行波变换为向空间定向辐射的电磁波,或将在空间传播的电磁波变为微波设备中的导行波作用:1.有效辐射或接收电磁波;2.把无线电波能量转换为导行波能量电波传播分析和研究电波在空间的传播方式和特点常用传输线机构:矩形波导共面波导同轴线带状线微带线槽线分析方法 场分析法:麦克斯韦方程满足边界条件的波动解传输线上电磁场表达式分析传输特性等效电路法:传输线方程满足边界条件的电压电流波动方程的解沿线等效电压电流表达式分析传输特性称为传输线的特性阻抗特性阻抗Z0通常是个复数, 且与工作频率有关。

它由传输线自身分布参数决定而与负载及信源无关, 故称为特性阻抗对于均匀无耗传输线, 0, 传输线的特性阻抗为 此时, 特性阻抗Z0为实数, 且与频率无关。

常用的平行双导线传输线的特性阻抗有250Ω, 400Ω和600Ω三种。

常用的同轴线的特性阻抗有50 Ω 和75Ω两种。

均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗及工作频率有关, 且一般为复数, 故不宜直接测量。

无耗传输线上任意相距λ /2处的阻抗相同, 一般称之为λ /2重复性。

传输线上电压和电流以波的形式传播, 在任一点的电压或电流均由沿方向传播的行波(称为入射波)和沿方向传播的行波(称为反射波)叠加而成。

微波谐振腔

微波谐振腔

微波技术与天线哈尔滨工业大学(威海)微波谐振器一.引言在微波领域中,具有储能和选频特性的元件称为微波谐振器,它相当于低频电路中的LC振荡回路,它是一种用途广泛的微波元件。

低频LC振荡回路是一个集中参数系统,随着频率的升高,LC回路出现一系列缺点,主要是,①损耗增加。

这是因为导体损耗、介质损耗及辐射损耗均随频率的升高而增大,从而导致品质因数降低,选频特性变差。

②尺寸变小。

LC回路的谐振频率,可见为了提高必须减少LC数值,回路尺寸相应地需要变小,这将导致回路储能减少,功率容量降低,寄生参量影响变大。

因为这些缺点,所以到分米波段也就不能再用集中参数的谐振回路了。

在分米波段,通常采用双线短截线作谐振回路。

当频率高于1GHz时,这种谐振元件也不能满意地工作了。

为此,在微波波段必须采用空腔谐振器作谐振回路。

实际上,我们可以把空腔谐振器(简称谐振腔)看成是低频LC回路随频率升高时的自然过渡。

图7-1-1表示由LC回路到谐振腔的过渡过程。

为了提高工作频率,就必须减小L 和C,因此就要增加电容器极板间的距离和减少电感线圈的匝数,直至减少到一根直导线。

然后数根导线并接,在极限情况下便得到封闭式的空腔谐振器。

二.微波谐振器的基本参量根据不同用途,微波谐振器的种类也是多种多样。

图7-2-1示出了微波谐振器的几种结构。

(a)为矩形腔,(b)为圆柱腔,(c)为球形腔,(d)为同轴腔,(e)为一端开路同轴腔,(f)为电容加载同轴腔,(g)为带状腔,(h)为微带腔。

在这些图中,省略了谐振器的输入和输出耦合装置,目的是使问题简化。

但在实际谐振器中,必须有输入和输出耦合装置。

微波谐振器的主要参量是谐振波长(谐振频率或、固有品质因数Q0及等效电导G0。

图7-2-1 几种微波谐振器的几何形状1、谐振波长与低频时不同,微波谐振器可以在一系列频率下产生电磁振荡。

电磁振荡的频率称为谐振频率或固有频率,记以。

对应的为谐振波长。

是微波腔体的重要参量之一,它表征微波谐振器的振荡规律,即表示在腔体内产生振荡的条件。

电动力学-第4章-第4节-谐振腔

电动力学-第4章-第4节-谐振腔

一、有界空间中的电磁波
这种有界空间中传播的电磁波有其本身的特点,而且广泛应二、理想导体边界条件
由于边界为理想导体,故认为导体内,只有面电流分布!略去角标表示介质一侧的场强,有边界条件:
3,理想导体为边界的边值问题在边界面上,若取轴沿法线方向,由
例:证明两平行无穷大的导体平面间可以传播一种偏振的
轴方向偏振,则此平面波满足导体板上
的边界条件,因此可以在导体板之间传播。

与导体面相切) 不满足
边界条件,因而不能在导体面间存在。

所以在两导
TEM平面波。

三、谐振腔
(10)
在光学中,采用由光学谐振腔来产生近单色的激光束。

反射镜(反射率100%)
反射镜(部分投射)
在微波范围,通常采用具有金属壁面的谐振腔来产生高频
2)设3)用可以得到三个方程:
4)用边界条件0
1≡⇒
D D C A =x
z
y
O
1
L 2
L 3
L 其中0同理可以求得
2,谐振波的讨论(2) 谐振腔的谐振频率(本征频率):(3) 最低频率的谐振波型。

射频微波电路导论课件

射频微波电路导论课件

滤波器设计
滤波器的作用
滤波器用于选择特定频率范围的 信号,抑制不需要的频率成分,
从而提高信号的纯度。
滤波器的设计方法
可以采用LC电路、微带线等方法进 行滤波器的设计,通过调整元件的 值和连接方式来实现不同的滤波特 性。
滤波器的应用场景
在射频微波电路中,滤波器广泛应 用于信号处理、通信系统等领域。
天线设计
THANKS
感谢观看
物联网技术将促进射频微波电路与其他技术的 结合,如传感器技术、云计算技术等,为射频 微波电路的创新发展提供更多可能性。
新材料的应用前景
新材料的出现将为射频微波电 路的设计和制造提供更多的选 择和可能性。
新材料具有优异的物理性能和 化学性能,可以提高射频微波 电路的性能和稳定性。
新材料的应用将推动射频微波 电路向绿色环保、可持续发展 方向迈进,降低对环境的负面 影响。
04
射频微波电路的设计与实现
匹配网络设计
匹配网络的作用
匹配网络的应用场景
匹配网络是用于实现射频微波电路中 各个元件之间的阻抗匹配,确保信号 传输的效率和质量。
在射频微波电路中,如放大器、滤波 器、混频器等元件都需要用到匹配网 络,以确保信号的顺畅传输。
匹配网络的设计方法
可以采用传输线理论、Smith Chart 等方法进行匹配网络的设计,通过调 整元件的阻抗值来实现匹配。
01
03
滤波器在射频微波电路中的设计和制作需考虑其频率 响应特性、插入损耗和群时延等因素,以确保电路性
能的稳定性和可靠性。
04
滤波器的种类繁多,常见的有LC滤波器、微带线滤波 器和介质滤波器等,根据不同的应用需求选择合适的 滤波器类型和规格。
03

chap4-4谐振腔

chap4-4谐振腔
2010-11-18
谐振腔——激发高频电磁波 ① 低频电磁波一般利用LC电路组成的振荡器激 低频电磁波 般利用LC电路组成的振荡器激 发; ② 当频率升高时(例如微波段的电磁波),回 路辐射损耗逐渐地增加; ③ 高频电磁波可采用谐振腔来激发。 高频电磁波可采用谐振腔来激发
§ 4 谐振腔
本节主要内容 1. 矩形谐振腔内的电场 1 2. 矩形谐振腔内的磁场 3. 矩形谐振腔的本征频率、最小本征频率
2谐振腔中本征模的磁场20101118sinsincossincossincossinsincoscossincoscossincossincossincoscos3矩形谐振腔的本征频率最小本征频率本征频率最小本征频率1谐振腔的本征频率圆频率本征频率圆频率为ckmnl2如果谐振腔中充满绝缘介质vkmnl3从上面的公式中可以看出mmnnll不能有不能有两个同时为零
110 c
1 1 2 2 L1 L2
作业
(1,1,0)本征模的波长为:
110
2c 110 2 1 1 2 2 L1 L2
P181:习题15
此本征模波长与谐振腔的线度处于同一数量级上。
6
y
3
2010-11-18
E x E0 x cos k x x sin k y y sin k z z
矩形谐振腔内的电场:
E x E0 x cos k x x sin k y y sin k z z
E y E0 y sin k x x cos k y y sin k z z
E x E0 x cos k x x sin k y y sin k z z E y E0 y sin k x x cos k y y sin k z z

微波技术基础第四章课后答案 杨雪霞.

微波技术基础第四章课后答案   杨雪霞.

4-1 谐振腔有哪些主要的参量?这些参量与低频集总参数谐振回路有何异同点?答:谐振腔的主要特性参数有谐振频率、品质因数以及与谐振腔中有功损耗有关的谐振电导,对于一个谐振腔来说,这些参数是对于某一个谐振模式而言的,若模式不同,这些参数也是不同的。

谐振频率具有多谐性,与低频中的回路,当其尺寸、填充介质均不变化时,只有一个谐振频率是不相同的。

在谐振回路中,微波谐振腔的固有品质因数要比集总参数的低频谐振回路高的多。

一般谐振腔可以等效为集总参数谐振回路的形式。

4-2 何谓固有品质因数、有载品质因数?它们之间有何关系?答:固有品质因数是对一个孤立的谐振腔而言的,或者说,是谐振腔不与任何外电路相连接(空载)时的品质因数。

当谐振腔处于稳定的谐振状态时,固有品质因数0Q 的定义为02TWQ W π=,其中W 是谐振腔内总的储存能量,T W 是一周期内谐振腔内损耗的能量。

有载品质因数是指由于一个腔体总是要通过孔、环或探针等耦合机构与外界发生能量的耦合,这样不仅使腔的固有谐振频率发生了变化,而且还额外地增加了腔的功率损耗,从而导致品质因数下降,这种考虑了外界负载作用情况下的腔体的品质因数称为有载品质因数l Q 。

对于一个腔体,01l Q Q k=+,其中k 为腔体和外界负载之间的耦合系数。

4-4 考虑下图所示的有载RLC 谐振电路。

计算其谐振频率、无载Q 0和有载Q L 。

谐振器负载1800Ω解:此谐振电路属于并联谐振电路,其谐振频率为:0356f MHz ===无载时,017.9R Q w L====有载时,040.25L e R Q w L ====根据有载和无载的关系式111L e Q Q Q=+得: 1112.5111140.2517.9L e Q Q Q===++4-5 有一空气填充的矩形谐振腔。

假定x 、y 、z 方向上的边长分别为a 、b 、l 。

试求下列情形的振荡主模及谐振频率:(1)a b l >>;(2)a l b >>;(3)l a b >>;(4)a b l ==。

电动力学课件 4.4 谐振腔

电动力学课件 4.4 谐振腔

k B 0
B
k E

2.有界空间中的电磁波
金属一般为良导体,电磁波几乎全部被反射。因此,若空间中 的良导体构成电磁波存在的边界,金属边界制约管内电磁波的存 在形式。在这种情况下, Helmholtz方程的解不再是平面波解而 受到导体界面边界条件的束缚。
3
二.理想导体边界条件
实际导体虽然不是理想导体,但是象银或铜等金属导体,对无线 电波来说,透入其内而损耗的电磁能量一般很小,接近于理想导体。 在一定频率的电磁波情形,两不同介质(包括导体)界面上的 边值关系可以归结为
E z A 3 s in k x x s in k y y c o11 sk z z
表明 A1、 A2、 A3中只有两个是独立的
3.谐振波型
( 1)电场强度
E x , t E x e i t
E x E y E z m L1
m n A1 cos x sin y sin L1 L2 m n A2 sin x cos y sin L1 L2 m n A3 sin x sin y cos L1 L2 n p A1 A2 A3 0 L2 L3
0
C3 0
C
z
O
因此
E x A1 co s k x x sin k y y sin k z z
A1 C 1 D 2 D 3
L3
B
Ex
D
( 2)考虑 x L 1 E x 有 x L1 0 x
sin k x L 1 0
L2
A
k x A1 sin k x x sin k y y sin k z z
光学谐振腔
1
谐振腔是在微波频率下工作的谐振元件,它是一个任意形状的 由导电壁包围的,并能在其中形成电磁振荡的介质区域,它具 有储存电磁能及选择一定频率信号的特性. 根据不同用途,微波谐振腔的种类是多种多样的:矩形腔、圆 柱形腔、球形腔。

微波技术同轴谐振腔

微波技术同轴谐振腔
图 5.6-4 给出了矩形波导中加脊的情形。
图 5.6-4 脊形波导
截止频率 fc 降低。
由脊型波导 TE10 模场分布可知,加脊的微扰发生在强电场、弱磁场区域,根据微扰公式
不过,如果脊的尺寸较大,用微扰法计算出来的结果就不精确了。
除了上述机械调谐外,还可在腔中引入变容二极管,通过改变在其偏压而改变电容,从而 实现谐振腔的电调谐;
而当腔壁变化发生在强电场、弱磁场区域即 时, 0 < 0,即频率降低。
v < 0, , 0 > 0,即频率升高
v < 0, , 0 < 0,即频率降低。
对于外向微扰其结论恰好与上面相反。
表 5.6-1 给出了频率随谐振腔壁变化的情况。
表 5.6-1 腔壁微扰时频率的变化
由于微波元件电磁能量传输的可逆特性,谐振腔的激励元件和耦合元件的结构和工作特性是完全相同的。
也就是说,一个元件用作激励和用作耦合时所具有的特性完全相同,它们两者的差别仅在于波在其中的传输方向相反。
对谐振腔激励(耦合)元件的基本要求:必须能够在腔中激励(耦合)所需模式的振荡,而且必须能够避免激励(耦合)其他不需要的干扰模式。
图 5.5-5 电容加载同轴腔的 边缘电场线 内导体端面与端壁之间平板电容可按下式来计算: 假设边缘电场线为 1/4 圆弧的边缘电容可按下式近似计算: 等效电路中集中参数的电容 C 为两部分之和,即 C = C1 + C2
图 5.5-5 电容加载同轴腔的 边缘电场线
C = C1 + C2
通常耦合环常安置在腔中磁场最强处,且环平面常与磁场线垂直。
3.绕射耦合(孔耦合)
因为这种耦合是利用电磁波的绕射特性来实现的,所以称为绕射耦合。

微波谐振器

微波谐振器

• 可以利用如图4-2-3所示的曲线图来确定
图4-2-3 方程求解
当给定了腔体谐振频率 f r 、加载电容C 和特性阻抗Z0时,即可求出腔体尺寸 l
l2r arctg2f1rCZ0n2r
n0,1,2,3
8
注意:
• 交点无穷多个如图所示图4-2-3(a),对应着 无穷多个谐振频率,这说明微波谐振腔具 有多谐性,也就是说,当腔体尺寸固定不 变时,有多个频率谐振。这种多谐性是与 低频谐振回路不同的。
H1201a l221a4 blH 4m 2
a2l2
ab l
由于在矩形谐振腔体前后壁 z0,zl
的内表面上,切向磁场有Hx,则
H 前 2后Hx2H 1201a l2 2sin2ax
32
• 在矩形谐振腔体两个侧壁(x=0,x=a)的内表 面上,切向磁场有Hz,则
H 2 x0,aHz2H1201sin2l z
• 求解步骤: (1)选取某个适当位置作为参考面,求出其等效电路
。 (2)把所有的电纳都归到此参考面上。 (3)谐振时,此参考面上总的电纳为零.
例题:
6
• 图4-2-1a所示,同轴线谐振腔长为l,谐 振模式(或工作模式)为TEM模。
• 一端短路,另一端开路但内外导体非常 接近。
• 同轴线谐振腔一端短路:等效为终端短 路的传输线。
HxH101a lsinaxcosl z
Hz H101cosaxsinl z
27
Ex Ez Hy 0
•场分布
28
3. 基本参量计算
1) 谐振频率和谐振波长
K2
Kc2
p
l
2
Kc
m
a
2
n
b

第4章--微波谐振腔

第4章--微波谐振腔

QL1 Q01 Qe1
QL
Q0 Qe Q0 Qe
Q0
1 Q0
Qe
第四章 微波谐振腔
二、谐振腔的电磁能量关系及功耗
微波谐振腔中电磁能量关系和集总参数LC 谐振回路中能
量关系有许多相似之处,如图。
第四章 微波谐振腔
但微波谐振器和LC谐振回路也有许多不同之处。 1.LC谐振回路的电场能量集中在电容器中,磁场能量集
3.讨论
1)多模性。m、n、q的不同组合导致多种不同场分布的
谐振模式,记为TE mnq和TM mnq,其中下标m、n和q分
别表示场分量沿波导宽壁、窄壁和腔长度方向上分布的驻 波数。
2)单模谐振。矩形波导中可单模传输TE10,故矩形腔只可 能单模谐振TE10q中之一种。
第四章 微波谐振腔
单模传输TE10条件
(f0D)2的坐标系内,则可得到一系列的
直线,这些直线构成了右图所示的模
式图。即使同一个腔长,对于不同的
模式都会同时谐振于同一个频率上,
这就是圆柱腔存在的干扰模问题。
精品课件!
精品课件!
第四章 微波谐振腔
为了使谐振腔正常工作,就必须合理选择工作方框,使工 作方框内不出现或少出现不需要的干扰模式。工作方框是以
1、 TM010模
圆波导TM01模的截止波长c = 2.62R和p = 0
圆柱腔TM010模的谐振波长0的计算公式为0 TM010 2.62R
2、TE111模
圆柱腔TE111模的谐振波长0的计算公式
为3、TE011模
0 TE111
1
1 3.41R
2
1 2l
2
圆柱腔TE011模的谐
振波长0的计算公式
2)谐振具有多模性

《电磁场与微波技术教学课件》4.5 同轴线谐振腔-PPT精选文档

《电磁场与微波技术教学课件》4.5 同轴线谐振腔-PPT精选文档

(4-77)
当ι=λr/4时,
b ln 2 a Q0 1 1 8 b ln a b r a
(4-78)
第四章 微波谐振器
§4.5 同轴线谐振腔
4.5.3 电容加载同轴线谐振腔
内导体端面与短路板间平板电容为 a 2 C t 考虑边缘电容后的修正式
(4-73) 二端面上的损耗 (4-74)
侧壁上的损耗 当ι=λr/2时,
2 1 Q0 1 1 a b 8 b r ln a
在谐振频率一定时,Q0与同轴线谐振腔的横截面尺寸a、b有关.
用求极值的方法可以得到,当b/a≈3.6时,Q0有极大值。
第四章 微波谐振器
§4.5 同轴线谐振腔
两个传播方向相反的行波叠加时,场的表达式为
E a E aj j z z 0 0 E e e r r r
第四章 微波谐振器
§4.5 同轴线谐振腔
在z=0与z=ι处的边界条件:短路板上切向电场Er=0 所以
p l p 或 ( p 1 , 2 , 3 ) l
则固有品质因数表达式可写为
Q0
2V 2 H dS
S
H dV
2
(4-16)
将Hφ在腔体内进行体积分 将Hτ在腔体的内、外表面上进行面积分
第四章 微波谐振器
§4.5 同轴线谐振腔
积分结果代入上面固有品质因数计算公式,得
b l ln 2 a Q0 b 1 1 l 4 ln a b a
§4.5 同轴线谐振腔

( l 2 p 1 p 1 , 2 , 3 )
2

电磁场课件-第四章微波谐振器

电磁场课件-第四章微波谐振器

选择合适的材料
根据设计目标,选择合适的介 质材料和导电材料。
确定几何参数
根据理论计算和仿真优化,确 定微波谐振器的几何参数,如
长度、宽度、高度等。
仿真优化
利用电磁仿真软件进行性能仿 真和优化,确保设计满足要求

设计实例分析
矩形谐振腔设计
分析矩形谐振腔的频率特 性、品质因数等性能参数, 以及影响因素。
01
采用适当的表面处理技术提高附着力。
尺寸精度问题
02
采用高精度的加工设备提高尺寸精度。
电磁泄露问题
03
采用适当的电磁屏蔽措施减小电磁泄露。
THANKS FOR WATCHING
感谢您的观看
微波谐振器在测量仪器和设备中也有广泛应用,如微 波频谱分析仪、网络分析仪等。
微波谐振器在这些仪器和设备中起到关键作用,提供 高精度和高稳定性的测量结果,为电子设备和系统的 研发、生产和维护提供支持。
05
微波谐振器的设计
设计方法与步骤
01
02
03
04
确定设计目标
明确微波谐振器的性能要求, 如频质因数和较宽的带宽,适用于 宽带通信和信号处理等应用。
金属谐振器的主要缺点是体积 较大,不易集成,且容易受到 温度和环境的影响。
介质覆盖金属谐振器
介质覆盖金属谐振器是利用金属 材料作为导磁体,电介质材料作 为覆盖层,在高频磁场和电场共 同作用下产生谐振的微波器件。
介质覆盖金属谐振器通常具有较 高的品质因数和较稳定的谐振频 率,适用于窄带通信和频率合成
02
在微波系统中,微波谐振器能够 提供稳定的振荡频率,实现信号 的传输、处理和放大等功能。
微波谐振器的基本概念
微波谐振器是一种能够存储微波能量的器件,通常由电感和电容组成的回路构成。

第4章 射频谐振电路与微波谐振腔

第4章 射频谐振电路与微波谐振腔

(4.30)
• 当ω=ω0时,
1 Yin R
• 当ω与ω0不等时, Yin为复数。
1 0 2 1 1 Q Yin jC (1 2 ) j 2C j 2 R R R 0 R
R Z in Q 1 j2
0
4.2.4 带宽
图4.4 并联谐振电路的带宽
矩形谐振腔是一种短路波导型的λ/2传输线谐振腔。 矩形腔的截止波数:
kmnp
m n p a b d
2
2
2
矩形谐振腔的模为TEmnp或TMmnp模,下标m,n,p相应地为 驻波图在x,y,z方向的变化数。这时,TEmnp或TMmnp模的谐 振频率为
VC
I jC
所以
1 2 1 We I 4 2C

当电感L储存的平均磁能Wm与电容C储存的平均 电能We相等时,产生谐振。
Wm We
• 由式(4.1)和式(4.3)可以得到,谐振时的角频 率为
0
1 LC
• 由式(4.4)可以看出,只有当ω=ω0时电路才能产 生谐振。
4.1.2 品质因数 品质因数描述了能耗这一谐振电路的 重要内在特征。品质因数定义为
4.1.1 谐振频率 图4.1所示的电路,只有当频率为某一特殊值时, 才能产生谐振,此频率称为谐振频率。
V 电流: I Z in
输入阻抗: Zin R j L j
1 C
1 2 电感L储存的平均磁能: Wm I L 4 1 2 电容C储存的平均电能: We VC C 4
由于
QL
0 L
R RL
三个品质因数的关系:
1 1 1 QL Q Qe

微波课件4-1234

微波课件4-1234

p 2l
2
取 p 0可得圆柱腔中最低E模— E010 模的谐振波长
0(E○010) 2.62R
结论:E010 模的谐振波长决定于腔半径 R,与腔长 l 无关。
调谐方法:不能采用调节腔长的办法来实现,只能通过
在腔端壁轴线处插入一长度可调的金属销钉来进行微调。
0(H○111)
1
1 3.41R
自由空间波长。
对于非色散波(TEM 波),相应的谐振频率为 cp fo r 2l
对于色散波(TE、TM 波),相应的谐振频率为
fo
c
r
1
c
2
p 2l
2
TEM 波
02l pFra bibliotekf0
c p r 2l
TE 波、TM 波
0
1
1
c
2
p 2l
2
f0
c r
1
c
2
p 2l
2
结论:传输线型谐振腔的谐振频率 f0 与腔的型式、尺寸、
对于非色散波(TEM 波), g o,谐振波长为
o
2l p
对于色散波(TE、TM 波)
谐振波长为
g
1 ( c )2
o
1
1
c
2
p 2l
2
TEM 波
TE 波、TM 波
o
2l p
o
1
1
c
2
p 2l
2
注意:谐振波长 o 是指谐振时电磁波在腔内填充介质中的
介质波长,仅当腔中为真空(或空气填充)时,它才相应于
0 ( H1○1 1)
这时 H111 模是圆柱形谐振腔的最低模式。

第4章微波谐振腔

第4章微波谐振腔

第四章 微波谐振腔
1.电能与磁能
腔内电场能量时间平均值
W
e
腔内磁场能量时间平均值 W H H d V m V 4
谐振时:
4
EE d V V
W m W e

腔内总的电磁能量时间平均值:
e m
W W W 2 W 2 W H H d V
We 为谐振腔内储存的电能的时间平均值
PR 为谐振腔自身损耗功率
代表谐振腔本身质量的优劣,值大表明腔本身功耗小, 自身质量优良。
第四章 微波谐振腔
2. 外部品质因数Q e :
W m W e Q e 0 P L
式中 P L 为与谐振腔相连接的外部负载消耗的功率 代表谐振腔向外部负载提供能量的效率高低。
~ ~ B B B B 0 1 2 1 2
第四章 微波谐振腔
由上式可导出谐振波长0与腔体长度l 的关系为
n 1 l 2 0 0 0 l 1 l2
2 l n 1 得谐振条件: ( l ) 0 0 n 1 2
第四章 微波谐振腔
3. 讨论 1)谐振具有多谐性。 n=0时 得最短谐振长度 或得最大谐振波长
第四章 微波谐振腔
W0 Q 2 0 一 个 周 期 内 损 耗 的 电 磁 能 量 PL 谐 振 时
谐 振 器 内 储 存 电 磁 能 量
式中W0为谐振器中的储能,PL为谐振器中的损耗功率。 1. 固有品质因数Q0 (空载):
W m W e Q 0 0 P R
式中 W m 为谐振腔内储存的磁能的时间平均值
4 4 l 0 m a x v 1 f 0 m i n
l lmin

《电磁场与微波技术教学课件》4.5同轴线谐振腔

《电磁场与微波技术教学课件》4.5同轴线谐振腔

03
同轴线谐振腔的工作模式
同轴线谐振腔的主模
定义
01
同轴线谐振腔的主模是指在该谐振腔中,电磁场分布最简单且
能量主要集中在腔体内部的一种工作模式。
特点
02
主模的电场和磁场分布具有旋转对称性,且在主模下,同轴线
谐振腔的谐振频率由腔体的几何尺寸决定。
应用
03
同轴线谐振腔的主模常用于微波信号的选频、滤波和放大等应
它利用同轴线内导体和外导体之间的电容效应,以及高介电常数 介质对电场的影响,实现微波信号的谐振。
同轴线谐振腔的原理
同轴线谐振腔的原理基于微波谐振理论,当特定频率的微波 信号输入时,会在同轴线谐振腔内产生谐振,能量被限制在 腔内,从而实现信号的选频和放大。
同轴线谐振腔的谐振频率由其几何尺寸和高介电常数介质的 性质决定。
关键环节。
04
同轴线谐振腔的设计与优化
同轴线谐振腔的设计原则
结构简单
同轴线谐振腔的结构应尽可能简单,以降低制造成本 和复杂度。
高Q值
为了获得更好的性能,同轴线谐振腔应具有高Q值, 这意味着较低的能量损耗。
易于调整
设计时应考虑未来可能需要的调整,以便在必要时对 同轴线谐振腔进行优化。
同轴线谐振腔的优化方法
80%
介质常数
填充介质的介电常数会影响同轴 线谐振腔的谐振频率和品质因数 。
同轴线谐振腔的特性
谐振频率
同轴线谐振腔具有特定的谐振 频率,由其长度和填充介质的 介电常数决定。
品质因数
同轴线谐振腔的品质因数表示 其能量储存和放出的能力,是 评估其性能的重要参数。
阻抗特性
同轴线谐振腔的阻抗特性对其 应用具有重要影响,阻抗匹配 是实际应用中需要考虑的问题 。

谐振腔介绍资料

谐振腔介绍资料
dt
dW PL dt
0W
Q
另外,根据式(31-17),导出
(31-18) (31-19)
dW 2 0Wdt
比较(31-18)和(31-19)很清楚
二、品质因数Q0
1 2Q
(31-20)
这样,引入复频率,可以把谐振频率和值包含 在一个公式之中
1 ~ 0 1 j 2Q
讨论谐振腔的主要指标是谐振频率0、品质因数 Q 和电导 G。谐振腔的讨论思路是 : 理想腔 — 耦合腔 — 非理想腔,如图(31-2)所示。 在研究谐振频率 f0时,采用不计及腔损耗,即腔 壁由理想导体构成。但是,当研究 Q 时 , 则必须考虑 损耗的因素。 耦合腔和实际腔反映了谐振腔的具体应用。
0
i
y
Ey
j
z
0
k
E x E0 0 x 1 E y z z Hx j j 0 sin cos = j sin cos 0 z 0 l a l 2l a l E0 E0 0 1 E y x z x z Hz j j cos cos sin j sin x a a l 2a a l
2
2 E0 0 2 l 2 x 2 z 0 E0 a + 2 cos sin dxdz 0 0 2a a l 8 2 l a
2 1 1 l b a 2 2 2 1 E dv E0 sin x sin z dxdydz ablE02 a l 2 V 2 0 0 0 8
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.2.5 有载品质因数
ห้องสมุดไป่ตู้
串联谐振电路和并联谐振电路的参量见表4.1.
• 例4.1 设计一个由理想电感和理想电容构成的并联谐振电 路,要求在负载RL=50Ω及f=142.4MHz时的有载品质因数 QL=1.1,讨论改变电感电容提高有载品质因数的途径。 • 解:可将电感值降低20倍,电容值提高20倍,改进电路如 图(b)。
4.1.1 谐振频率 图4.1所示的电路,只有当频率为某一特殊值时, 才能产生谐振,此频率称为谐振频率。
V 电流: I Z in
输入阻抗: Zin R j L j
1 C
1 2 电感L储存的平均磁能: Wm I L 4 1 2 电容C储存的平均电能: We VC C 4
由于
2
4.2.1 谐振频率
•式(4.25)表明只有当ω=ω0时电路才能产生谐振。 比较式(4.25)和式(4.4)可以看出,并联谐振电路 与串联谐振电路的谐振频率都取决于 1/ LC 。
4.2.2 品质因数
并联谐振电路的平均储能为
4.2.3 输入导纳

输入导纳为
1 1 Yin jC R jL
图4.5 例4.1用图
4.3 传输线谐振电路
• 传输线谐振电路通常称 为谐振器。 • 微波频段,不易集总元 件实现,通常用终端短 路或开路的传输线作为 谐振器。 • 传输线谐振器有四种类 型:
图4.6 传输线谐振器
有耗传输线输入阻抗:
Zin z Z 0 Z L jZ 0 tanh (l z ) Z 0 jZ L tanh (l z )
QL
0 L
R RL
三个品质因数的关系:
1 1 1 QL Q Qe
4.2 并联谐振电路
• 并联谐振电路如图4.3所示,由电阻R、 电感L和电容C并联而成。
图4.3 并联谐振电路
谐振电路上的复功率:
1 * V Pin VI 2 2Zin*
其中,
1 1 1 jC Z in R j L
VC
I jC
所以
1 2 1 We I 4 2C

当电感L储存的平均磁能Wm与电容C储存的平均 电能We相等时,产生谐振。
Wm We
• 由式(4.1)和式(4.3)可以得到,谐振时的角频 率为
0
1 LC
• 由式(4.4)可以看出,只有当ω=ω0时电路才能产 生谐振。
4.1.2 品质因数 品质因数描述了能耗这一谐振电路的 重要内在特征。品质因数定义为
第4章 射频谐振电路与微波谐振腔
4.1
串联谐振电路 并联谐振电路 传输线谐振电路 矩形和圆柱形波导谐振腔
4.2

4.3 4.4 4.5 4.6
介质谐振器
谐振器的激励和耦合

谐振电路有多种应用,可以在滤波器、振 荡器和匹配电路中使用,其功能是有选择地让 一部分频率的源信号通过,同时衰减通带外的 信号。 • 当频率不高时,谐振电路由集总参数元件 组成,但当频率达到微波波段时,谐振电路通 常由各种形式的传输线实现。 • 谐振电路可以用谐振频率、品质因数、输 入阻抗和带宽等描述。本章将对谐振电路作一 简述,讨论串联谐振电路、并联谐振电路, 传 输线谐振电路的构成和参数,以及微波谐振腔。
(4.42)
其中,
j
4.3.1 终端短路 / 2 传输线
相当于串联谐振电路。
l / 2时,
L Z 0 , 20 C 2
0 Z 0
品质因数:
Q
0 L
R

2 l 2
4.3.2 终端短路
/4
传输线
相当于并联谐振电路。
l / 4时,
带宽可以由品质因数和谐振频率求得:
BW 2 1
0
Q
4.1.5 有载品质因数

前面定义的Q称为无载品质因数,体现了谐振电 路自身的特性。实际应用中,谐振电路总是要与外负 载RL相耦合,由于外负载消耗能量,使总的品质因数 下降。 0 L 外部品质因数: Qe RL 总的品质因数:
平均储能 Q 0 功率损耗
式中
(4.5)
4.1.3 输入阻抗
• 当ω=ω0时,
Zin R
• 当ω与ω0不等时, Z in为复数。
2 0 2 RQ Zin R j L( ) R j 2 L R j 2 2 0
4.1.4 带宽
图4.2 串联谐振电路的带宽

由式(4.59),终端开路传输线的输入 阻抗还可以写为
相当于串联谐振电路。
Q 4 l 2
4.4 矩形和圆柱形波导谐振腔
• 4.4.1 矩形波导腔
1. 谐振频率
矩形谐振腔的几何形状如图4.8所示,它由一段长为 d,两端短路(z = 0,d)的矩形波导组成。
图4.8 矩形谐振腔中,TE101和TE102模的电场分布
Q 0 RC
4 l 2
4.3.3 终端开路 / 2 传输线
在微带电路中,谐振器通常由终端开路的传输线构 成。终端开路传输线 Z L ,由式(4.42)可以得到传输线的输入阻抗为
相当于并联谐振电路。
Q 2 l 2
4.3.4 终端开路 / 4 传输线
4.1 串联谐振电路
• • 串联谐振电路如图4.1所示, 由电阻R、电感L和电容C串联而成。
图4.1 串联谐振电路
• 电路中的电感L储存磁能并提供感抗; • 电容C储存电能并提供容抗; • 当电感L储存的平均磁能与电容C储存 的平均电能相等时,电路产生谐振。 • 此时电感L的感抗和电容C的容抗相互 抵消,输入阻抗为纯电阻R。
(4.30)
• 当ω=ω0时,
1 Yin R
• 当ω与ω0不等时, Yin为复数。
1 0 2 1 1 Q Yin jC (1 2 ) j 2C j 2 R R R 0 R
R Z in Q 1 j2
0
4.2.4 带宽
图4.4 并联谐振电路的带宽
矩形谐振腔是一种短路波导型的λ/2传输线谐振腔。 矩形腔的截止波数:
kmnp
m n p a b d
2
2
相关文档
最新文档