斜面上的平抛运动

合集下载

斜面上的平抛运动

斜面上的平抛运动

斜面上的平抛运动一、落到斜面上位置的解⎪⎪⎩⎪⎪⎨⎧===θtan 2120xy gt y tv x 解得θtan 20g v t =,θtan 220g v x =,θ220tan 2gv y = 1.如下图所示,AB 为斜面,BC 为水平面,从A 点以水平初速度v 向右抛出一小球,其落点与A 的水平距离为s 1;从A 点以水平初速度3v 向右抛出一小球,其落点与A 的水平距离为s 2、不计空气阻力。

则s 1:s 2可能为( )A . 1:3B . 1:6C . 1:9D . 1:122.如图所示,两斜面的倾角分别为37o 和53o ,在顶点把两个小球以同样大小的初速度分别向左、向右水平抛出,小球都落在斜面上,若不计空气阻力,则A 、B 两小球运动时间之比为二、速度与水平面夹角φ和位移与水平面夹角θ的关系,有tan φ=2tan θ。

速度矢量三角形:tan v gt =ϕ 位移矢量三角形:v 0 θ φ gt v 0 gt 2/2 v 0t53o 37o A B0222/tan v gt t v gt ==θ∴tan φ=2tan θ3.下图所示为一物体做平抛运动的x -y 图像,物体从O 点抛出,x 、y 分别为其水平和竖直位移,P(x,y)为物体运动过程中的任一点,其速度的反向延长线交于x 轴A 点(A 点未画出),则OA 的长为( )A . xB . 0.5xC . 0.3xD . 不能确定4.如图,从倾角为θ的足够长的斜面顶端A 点,先后将相同的小球以大小不同的水平速度v 1和v 2向右抛出,落在斜面上。

关于两球落到斜面上的情况,说法正确的是( )A . 落到斜面上的瞬时速度大小相等B . 落到斜面上的瞬时速度方向相同C . 落到斜面上的位置相同D . 落到斜面上前,在空中飞行的时间相同5.如下图所示,墙壁上落有两只飞镖,它们是从同一位置水平射出的,飞镖A 与竖直墙壁成53°角,飞镖B 与竖直墙壁成37°角,两者相距为d 。

模型10 斜面上的平抛运动

模型10 斜面上的平抛运动

模型10 斜面上的平抛运动平抛运动与斜面模型组合是一种常见的题型,也是高考考查的热点题型,具体有以下两种情况。

模型解题方法方法应用分解速度,构建速度矢量三角形水平方向:v x=v0竖直方向:v y=gt合速度:v=方向:tan θ=分解位移,构建位移矢量三角形水平方向:x=v0t竖直方向:y=gt2合位移:s=方向:tan θ=【典例1】如图所示,倾角为θ的斜面上有A、B、C三点,现从这三点分别以不同的初速度水平抛出一小球,三个小球均落在斜面上的D点,今测得AB∶BC∶CD=5∶3∶1,由此可判断()A.A、B、C处三个小球运动时间之比为1∶2∶3B.A、B、C处三个小球的运动轨迹可能在空中相交C.A、B、C处三个小球的初速度大小之比为1∶2∶3D.A、B、C处三个小球落在斜面上时速度与初速度间的夹角之比为1∶1∶1【答案】D【解析】选D。

A、B、C处三个小球下降的高度之比为9∶4∶1,根据平抛运动的时间t=知,A、B、C处三个小球运动时间之比为3∶2∶1,故A项错误;因最后三个小球落到同一点,抛出点不同,轨迹不同,故三个小球的运动不可能在空中相交,故B项错误;三个小球的水平位移之比为9∶4∶1,根据x=v0t知,初速度之比为3∶2∶1,故C项错误;对于任意一球,因为平抛运动某时刻速度方向与水平方向夹角的正切值是位移与水平方向夹角正切值的2倍,三个小球落在斜面上,位移与水平方向夹角相等,即位移与水平方向夹角正切值相等,则三个小球在D点速度与水平方向上的夹角的正切值相等,也就是三个小球在D点的速度与水平方向的夹角相等,故D项正确。

【变式训练1】第十六届中国崇礼国际滑雪节在张家口市崇礼区的长城岭滑雪场隆重举行.如图1所示,跳台滑雪运动员经过一段加速滑行后从A点水平飞出,落到斜坡上的B点.A、B两点间的竖直高度h=45 m,斜坡与水平面的夹角α=37°,不计空气阻力(取sin37°=0.6,cos37°=0.8,g取10 m/s2).求:(1)运动员水平飞出时初速度v0的大小;(2)设运动员从A点以不同的水平速度v0飞出,落到斜坡上时速度大小为v,请通过计算确定v与v0的关系式,并在图2中画出v-v0的关系图象.【答案】(1)20 m/s (2)v =132 v 0 图见解析 【解析】(1)运动员离开A 点后做平抛运动,竖直方向上,h =12gt 2 根据几何关系可知,水平位移x =h tan α=60 m 水平方向上,v 0=x t=20 m/s. (2)竖直方向上的位移y =12gt 2 水平方向上位移x =v 0t根据平抛运动规律可知tan α=y x =gt 2v 0竖直分速度v y =gt根据平行四边形定则可知,合速度v =v 20+v 2y联立解得v =132v 0,作图如下.【典例2】如图所示,在斜面顶端a 处以速度v a 水平抛出一小球,经过时间t a 恰好落在斜面底端P 处;今在P 点正上方与a 等高的b 处以速度v b 水平抛出另一小球,经过时间t b 恰好落在斜面的中点处。

平抛运动中的典型问题

平抛运动中的典型问题
水平:x=v0t 竖直:y=gt2/2
tan y gt
x 2v0
分解速度: 水平:vx=v0 竖直:vy=gt
v0
α
θ
v
θ vy
第4页
返回目录
v0 y x
结束放映
数字媒体资源库
【例1】如图所示,在与水平方向成37°角
的斜坡上的A点,以10m/s的速度水平抛出
一个小球,求落在斜坡上的B点与A点的距
可算出(ABC ).
A.轰炸机的飞行高度 B.轰炸机的飞行速度 C.炸弹的飞行时间 D.炸弹投出时的动能
审题设疑
1、审题中的关键着眼点在哪里?
2、通过什么办法找出各量之间的 关系,列方程求解?
第8页
数字媒体资源库ຫໍສະໝຸດ Hxv0H-h=12vyt x=v0t, vv0y=ta1n θ x=tahn θ vy=返g回t 目录
第14页
返回目录
结束放映
数字媒体资源库
典型问题二 平抛运动的临界问题
第15页
返回目录
结束放映
数字媒体资源库
【例6】如图,排球场总长18m,设网的高度为2m,运动员 站在离网3m远的线上正对网前竖直跳起把球水平击出 .(g=10m/s2). (1)设击球点的高度为2.5m,问球被水平击出时的速度在 什么范围内才能使球既不触网也不出界? (2)若击球点的高度小于某个值,那么无论球被水平击出 的速度多大,球不是触网就是出界,试求此高度?
B.小球的抛出点距斜面的竖直高度约是 15 m
C.若将小球以水平速度 v0′=5 m/s 向右抛出, 它一定落在 AB 的中点 P 的上方
D.若将小球以水平速度 v0′=5 m/s 向右抛出, 它一定落在 AB 的中点 P 处

平抛运动斜面问题

平抛运动斜面问题

4.2 平抛运动的规律和应用(二)考点:斜面上的平抛运动典型例题[例1] 如图4-2-1所示,斜面倾角为300,小球从A 点以初速度v 0水平抛出,恰好落到斜面B 点,求:①AB 间的距离;②物体在空中飞行的时间;③从抛出开始经多少时间小球与斜面间的距离最大?[例2]一斜面倾角为θ,A 、B 两个小球均以水平初速度v0水平抛出(如图4-2-2所示,A 球垂直撞在斜面上,B 球落到斜面上的位移最短,不计空气阻力,则A 、B 两个小球下落时间tA 与tB 之间的关系为( )A .tA =tB B .tA =2tBC .tB =2tAD .无法确定[例3] 如图4-2-3所示,一个斜面固定在水平面上,从斜面顶端以不同初速度v0水平抛出一小球,得到小球在`空中运动时间t 与初速度v0的关系如下表所示,g 取10 m/s2试求:v 0/m ·s -1…2…910…t /s …0.400… 1.000 1.000…(1)v0=2 m/s 时平抛水平位移s ;(2)斜面的高度h ;(3)斜面的倾角θ。

针对训练:1.某同学在篮球训练中,以一定的初速度投篮,篮球水平击中篮板,现在他向前走一小段距离,与篮板更近,再次投篮,出手高度和第一次相同,篮球又恰好水平击中篮板上的同一点,则( )A .第二次投篮篮球的初速度大些B .第二次击中篮板时篮球的速度大些图4-2-1C.第二次投篮时篮球初速度与水平方向的夹角大些D.第二次投篮时篮球在空中飞行时间长些2.如图1所示,在水平地面上固定一倾角为θ=37°、表面光滑的斜面体,物体A以v1=6 m/s的初速度沿斜面上滑,同时在物体A的正上方,有一物体B以某一初速度水平抛出.如果当A上滑到最高点时恰好被B物体击中.(A、B均可看做质点,sin37°=0.6,cos37°=0.8,取g=10 2m/s)求:(1)物体A上滑到最高点所用的时间t;(2)物体B抛出时的初速度v2;(3)物体A、B间初始位置的高度差h.图13.如图2所示,在距地面2l的高空A处以水平初速度v0=gl投掷飞镖,在与A点水平距离为l的水平地面上的B点有一个气球,选择适当时机让气球以速度v0=gl匀速上升,在升空过程中被飞镖击中。

高考专题复习之斜面上的平抛运动

高考专题复习之斜面上的平抛运动

平抛专题练习一、物体的起点在斜面外,落点在斜面上1.求平抛时间1.以Vo=9.8m/s 的初速水平抛出一小球,小球垂直撞击倾角为30°的斜面,问小球在空中飞行了多少时间。

解:t=3s 2.求平抛初速度2.如图3,在倾角为37°的斜面底端的正上方H 处,平抛一小球,该小球垂直打在斜面上的一点,求小球抛出时的初速度。

解:3.质量为m 的小球以v 0的水平初速度从O 点抛出后,恰好击中斜角为θ的斜面上的A 点.如果A 点距斜面底边(即水平地面)的高度为h ,小球到达A 点时的速度方向恰好与斜面方向垂直,如图5-2-20,则以下正确的叙述为( )ABDA .可以确定小球到达A 点时,重力的功率;B .可以确定小球由O 到A 过程中,动能的改变C .可以确定小球从A 点反弹后落地至水平面的时间D .可以确定小球起抛点O 距斜面端点B 的水平距离 3.求平抛物体的落点4.如图5-14所示,斜面上有a 、b 、c 、d 四个点,ab =bc =cd 点正上方O 点以速度v 水平抛出一个小球,它落在斜面上b 点,若小球从O 点以速度2v 水平抛出,不计空气阻力,则它落在斜面上的( A)A .b 与c 之间某一点B .c 点C .c 与d 之间某一点D .d 点二、物体的起点和落点均在斜面上此类问题的特点是物体的位移与水平方向的夹角即为斜面的倾角。

一般要从位移关系入手,根据位移中分运动和合运动的大小和方向(角度)关系进行求解。

1.求平抛初速度及时间5.如图,倾角为θ的斜面顶端,水平抛出一钢球,落到斜面底端,已知抛出点到落点间斜边长为L ,求抛出的初速度及时间?解:钢球下落高度:,∴飞行时间t =,水平飞行距离 ,初速度v 0==θθsin 2cos gl6.如图所示,从倾角为θ的斜面上的A 点以速度V 0平抛一个小球,小球落在斜面上的B 点.则小球从A 到B 的运动时间为 。

(gv θtan 20) 2.求平抛末速度及位移大小7.如图,从倾角为θ的斜面上的A 点,以初速度v 0,沿水平方向抛出一个小球,落在斜面上B 点。

与斜面有关的平抛运动

与斜面有关的平抛运动

与斜面有关的平抛运动与斜面有关的平抛运动,包括两种情况:(1)物体从空中抛出落在斜面上;(2)物体从斜面上抛出落在斜面上.在解答该类问题时,除要运用平抛运动的位移和速度规律外,还要充分利用斜面倾角,找出斜面倾角同位移和速度的关系,从而使问题得到顺利解决.两种情况的特点及分析方法对比如下:方法内容斜面飞行时间总结分解速度水平方向:v x=v0竖直方向:v y=gt合速度:v=v x2+v y2特点:tan θ=v xv y=v0gtt=v0g tan θ分解速度,构建速度三角形分解位移水平方向:x=v0t竖直方向:y=12gt2合位移:s=x2+y2特点:tan θ=yx=gt2v0t=2v0tan θg分解位移,构建位移三角形【例1】如图所示,以9.8 m/s的水平初速度v 0抛出的物体,飞行一段时间后,垂直地撞在倾角为30°的固定斜面上,这段飞行所用的时间为(不计空气阻力,g取9.8 m/s2)()A.23s B.223s , C. 3 s D.2 s【例2】如图所示,AB为固定斜面倾角为30°,小球从A点以初速度v0水平抛出,恰好落到B点.求:(空气阻力不计,重力加速度为g)(1)A、B间的距离及小球在空中飞行的时间;(2)从抛出开始,经过多长时间小球与斜面间的距离最大?最大距离为多大?【例3】如图所示,B 为竖直圆轨道的左端点,它和圆心O 的连线与竖直方向的夹角为α.一小球在圆轨道左侧的A 点以速度v 0平抛,恰好沿B 点的切线方向进入圆轨道.已知重力加速度为g ,则A 、B 之间的水平距离为( )A.v 20tan αgB.2v 20tan αgC.v 20g tan αD.2v 20g tan α【例4】如图所示,在倾角为37°的斜面上从A 点以6 m/s 的初速度水平抛出一个小球,小球落在B 点,求:(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8,不计空气阻力)(1)A 、B 两点间的距离和小球在空中飞行的时间;(2)小球刚碰到斜面时的速度方向与水平方向夹角的正切值.【例5】如图所示,一个小球从高h =10 m 处以水平速度v 0=10 m/s 抛出,撞在倾角θ=45°的斜面上的P 点,已知AC =5 m .g =10 m/s 2,不计空气阻力,求:(1)P 、C 之间的距离;(2)小球撞击P 点时速度的大小和方向.课后作业1.如图所示,位于同一高度的小球A、B分别以v1和v2的速度水平抛出,都落到了倾角为30°的斜面上的C点,小球B恰好垂直打在斜面上,则v1、v2之比为()A.1∶2B.2∶1 C.3∶2 D.2∶32.如图所示,斜面与水平面之间的夹角为45°,在斜面底端A点正上方高度为10 m处的O 点,以5 m/s的速度水平抛出一个小球,飞行一段时间后撞在斜面上,不计空气阻力,这段飞行所用的时间为(g取10 m/s2)()A.2 s B. 2 s C.1 s D.0.5 s3.如图所示,一个倾角为37°的斜面固定在水平面上,在斜面底端正上方的O点将一小球以速度v0=3 m/s水平抛出,经过一段时间后,小球垂直打在斜面P点处.(小球可视为质点,不计空气阻力,取重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8),则()A.小球击中斜面时的速度大小为5 m/sB.小球击中斜面时的速度大小为4 m/sC.小球做平抛运动的水平位移是1.6 mD.小球做平抛运动的竖直位移是1 m4.将一小球以水平速度v0=10 m/s从O点向右抛出,经 3 s小球恰好垂直落到斜面上的A点,不计空气阻力,g=10 m/s2,B点是小球做自由落体运动在斜面上的落点,如图所示,下列判断正确的是()A.斜面的倾角是60°B.小球的抛出点距斜面的竖直高度约是15 mC.若将小球以水平速度v0′=5 m/s向右抛出,它一定落在AB的中点P的上方D.若将小球以水平速度v0′=5 m/s向右抛出,它一定落在AB的中点P处5.如图所示,在斜面顶端先后水平抛出同一小球,第一次小球落到斜面中点,第二次小球落到斜面底端,从抛出到落至斜面上(忽略空气阻力)( )A.两次小球运动时间之比t 1∶t 2=1∶2B.两次小球运动时间之比t 1∶t 2=1∶2C.两次小球抛出时初速度之比v 01∶v 02=1∶2D.两次小球抛出时初速度之比v 01∶v 02=1∶46.如图所示,从斜面上的A 点以速度v 0水平抛出一个物体,飞行一段时间后,落到斜面上的B 点,已知AB =75 m ,α=37°,不计空气阻力,g =10 m/s 2,sin 37°=0.6,下列说法正确的是( )A.物体的位移大小为60 mB.物体飞行的时间为6 sC.物体的初速度v 0大小为20 m/sD.物体在B 点的速度大小为30 m/s7.如图所示,可视为质点的小球,位于半径为3m 半圆柱体左端点A 的正上方某处,以一定的初速度水平抛出小球,其运动轨迹恰好能与半圆柱体相切于B 点.过B 点的半圆柱体半径与水平方向的夹角为60°,则初速度为(不计空气阻力,重力加速度g 取10 m/s 2)( )A.553 m/sB.4 3 m/sC.3 5 m/sD.152m/s8.如图所示,一小球从平台上水平抛出,恰好落在平台前一倾角为α=53°的固定斜面顶端并刚好沿斜面下滑,已知平台到斜面顶端的高度为h =0.8 m ,不计空气阻力,g =10 m/s 2,sin 53°=0.8,cos 53°=0.6,求: (1)小球水平抛出的初速度大小v 0; (2)斜面顶端与平台边缘的水平距离x .与斜面有关的平抛运动参考答案【例1】【答案】 C【解析】 如图所示,把末速度分解成水平方向的分速度v 0和竖直方向的分速度v y ,则有:tan 30°=v 0v y ,v y =gt ,联立得:t=v 0g tan 30°=3v 0g= 3 s ,故C 正确. 【例2】【答案】 (1)4v 0 23g 23v 03g (2)3v 03g 3v 0 212g【解析】 (1)设飞行时间为t ,则有:水平方向位移l AB cos 30°=v 0t 竖直方向位移l AB sin 30°=12gt 2解得:t =2v 0g tan 30°=23v 03g ,l AB =4v 023g .(2)方法二(结合斜抛运动分解)如图所示,把初速度v 0、重力加速度g 都分解成沿斜面和垂直斜面的两个分量.在垂直斜面方向上,小球做的是以v 0y 为初速度、g y 为加速度的“竖直上抛”运动.小球到达离斜面最远处时,速度v y =0, 由v y =v 0y -g y t ′可得:t ′=v 0y g y =v 0sin 30°g cos 30°=v 0g tan 30°=3v 03g小球离斜面的最大距离y =v 0y22g y =v 0 2sin 2 30°2g cos 30°=3v 0 212g.【例3】【答案】 A【解析】 如图所示,对在B 点时的速度进行分解,小球运动的时间t =v y g =v 0tan αg,则A 、B 间的水平距离x =v 0t =v 20tan αg,故A 正确,B 、C 、D 错误.【例4】【答案】 (1)6.75 m 0.9 s (2)32【解析】 (1)如图所示,小球落到B 点时位移与初速度的夹角为37°,设运动时间为t . 则tan 37°=h x =12gt 2v 0t =56t又因为tan 37°=34,解得:t =0.9 s所以x =v 0t =5.4 m则A 、B 两点间的距离l =xcos 37°=6.75 m(2)设小球落到B 点时速度方向和水平方向的夹角为α,则tan α=v y v 0=gt v 0=32.【例5】【答案】 (1)5 2 m (2)10 2 m/s 方向垂直于斜面向下 【解析】 (1)设P 、C 之间的距离为L ,根据平抛运动规律有: AC +L cos θ=v 0t ,h -L sin θ=12gt 2联立解得:L =5 2 m ,t =1 s.(2)小球撞击P 点时的水平速度v 0=10 m/s 竖直速度v y =gt =10 m/s所以小球撞击P 点时速度的大小v =v 02+v y 2=10 2 m/s设小球撞击P 点时的速度方向与水平方向的夹角为α,则tan α=v yv 0=1 解得:α=45°故小球撞击P 点时速度方向垂直于斜面向下.课后作业1.【答案】C【解析】球A 做平抛运动,根据分位移公式,有x =v 1t ,y =12gt 2,又tan 30°=yx ,联立解得v 1=32gt ;小球B 恰好垂直打到斜面上,则有tan 30°=v 2v y =v 2gt ,则得v 2=33gt ,可得v 1∶v 2=3∶2,故C 正确,A 、B 、D 错误. 2.【答案】C【解析】设小球撞到斜面AB 中的一点D 上,则小球的水平运动的时间与竖直下落的时间相等,设飞行时间为t ,则根据几何关系可得v 0t =10 m -12gt 2,代入数据解得t =1 s ,故选项C正确. 3.【答案】 A【解析】 P 点小球的速度方向与斜面垂直,则有:tan 37°=v 0v y ,解得:v y =v 0tan 37°=334 m/s=4 m/s ,小球击中斜面时的速度大小为:v =v 20+v 2y =32+42 m/s =5 m/s ,A 正确,B 错误;小球运动的时间:t =v y g =410 s =0.4 s ,可知水平位移:x =v 0t =3×0.4 m =1.2 m ,竖直位移:y =12gt 2=12×10×0.42 m =0.8 m ,C 、D 错误.4.【答案】 C【解析】 设斜面倾角为θ,对小球在A 点的速度进行分解有tan θ=v 0gt,解得θ=30°,A 错误;小球距过A 点水平面的距离为h =12gt 2=15 m ,所以小球的抛出点距斜面的竖直高度一定大于15 m ,B 错误;若小球的初速度为v 0′=5 m/s ,过A 点做水平面,小球落到水平面的水平位移是小球以初速度v 0=10 m/s 抛出时的一半,延长小球运动的轨迹线,可知小球应该落在P 、A 之间,C 正确,D 错误。

《5.2 斜面上的平抛运动》PPT

《5.2 斜面上的平抛运动》PPT
y gt tan x 2v0
v0
y
分解速度:
水平:vx=v0 竖直:vy=gt
v0 α θ v
第4页
θ
x
vy
返回目录 结束放映
数字媒体资源库
【例1】如图所示,在与水平方向成37°角 的斜坡上的A点,以10m/s的速度水平抛出 一个小球,求落在斜坡上的B点与A点的距 离及在空中飞行的时间?
解.(1)落到抛出点正下方应满足: 2kd=v0 t y=h 得到;
v 0 2kd g 2h
同理:落到左板正下方满足 (2k+1)d= y=h 得到:
v0 ( 2k 1) d g 2h
法1: 分解位移
v0t x
1 2 gt y 2
y tan 37 x
2v0 tg 370 t g
t 1.5s
x 15m y 11.25m
第5页
S x 2 y 2 18.75m
返回目录 结束放映
法2:分解速度
vy v0
tg
0
v0
2v0 tg 370 t g
专题: 平抛运动中的典型问题
数字媒体资源库
典型问题一: 斜面上的平抛问题
第2页
返回目录
结束放映
模型阐述: 平抛运动与斜面相结合的模型, 其特点是做平抛运动的物体落在 斜面上,包括两种情况: (1)从斜面上抛出落到斜面上 (2)从空中抛出落到斜面上
数字媒体资源库
一、物体从斜面上抛出落在斜面上
分解位移: 水平:x=v0t 竖直:y=gt2/2
设击球点高度为h3时,球恰好既触网又压线。再设此时排球 飞出的初速度为v0, 球刚好触网, 水平方向: x3=3m , 竖直方向为:△h1=h3-h1

5.2 斜面上的平抛运动计算

5.2 斜面上的平抛运动计算



1 2
gt 2
2


L2







t=1s




tan

1 gt2 2

gt 10 1vt 2v0 10 ,解得θ=45°.故 C 正确
练习2.如图,以 v0 10m / s 的水平速度
抛出的物体,飞行一段时间后垂直撞在
倾角为 30o的斜面上,空气阻力不计。
因为物体可以落在斜面上,所以水平位 移和竖直位移满足
解得
1、顺着斜面的平抛运动
2.在倾角为37°的斜面上,从A点以4m/s的 初速度水平抛出一个小球,小球落在斜面上B 点,如图所示。g=10m/s2,求小球落到B点 时速度方向与水平方向夹角的正切值tanα及 A、B间距离s的大小。
运动轨迹如图,结合几何知识: tan 37 y vy 3 x 2v0 4 所以有:
(1)小球从抛出到落到斜面上所用的时间t;
(2)小球抛出点距斜面底端的高度H。
(1)小球垂直打在斜面上,如图所示:
根据几何关系可得:
tan 370

v0

v0
vy gt
代入数据解得:t=0.4s
(2)小球做平抛运动的水平位移x=v0t= 1.2m,故小球抛出点距斜面底端的高度
H x tan 370 1 gt2 2
代入数据解得:H=1.7m
练习1.某同学想要测量一斜坡的倾角θ,他在 斜坡上的A点以大小为v0=5m/s的初速度水平抛 出一个小球,小球落在斜坡上的B点,测出A、 B间的距离为L=5 m,重力加速度g=10m/s2, 不计空气阻力,则斜坡的倾角为多少度?

斜面上平抛运动问题

斜面上平抛运动问题

斜面上的平抛运动问题一、情景描述:如果物体是从斜面上平抛的,假设以斜面为参考系,平抛运动有垂直(远离)斜面和平行斜面两个方向的运动效果,如果题目要求讨论相对斜面的运动情况,如求解离斜面的最远距离等,往往沿垂直斜面和平行斜面两个方向进展分解,这种分解方法初速度、加速度都需要分解,难度较大,但解题过程会直观简便。

平抛运动中的“两个重要结论〞是解题的关键,一是速度偏向角α,二是位移偏向角β,画出平抛运动的示意图,抓住这两个角之间的联系,即tan α=2tan β,如果物体落到斜面上,那么位移偏向角β和斜面倾角θ相等,此时由斜面的几何关系即可顺利解题。

推论Ⅰ:做平抛(或类平抛)运动的物体在任一时刻任一位置处,设其末速度方向与水平方向的夹角为θ,位移方向与水平方向的夹角为φ,那么tan θ=2tan φ。

证明:如右图所示,由平抛运动规律得tan θ=v y v x =gt v 0, tan φ=y 0x 0=12·gt 2v 0t =gt 2v 0, 所以tan θ=2tan φ。

推论Ⅱ:做平抛(或类平抛)运动的物体,任意时刻的瞬时速度方向的反向延长线一定通过此时水平位移的中点。

证明:如右图所示,tan φ=y 0x 0tan θ=2tan φ=y 0x 0/2即末状态速度方向的反向延长线与x 轴的交点B 必为此时水平位移的中点。

注意:(1)在平抛运动过程中,位移矢量与速度矢量永远不会共线。

(2)它们与水平方向的夹角关系为tan θ=2tan φ,但不能误认为θ=2φ。

【典例精析】:如下图,一物体自倾角为θ的固定斜面顶端沿水平方向抛出后落在斜面上, 物体与斜面接触时速度与水平方向的夹角φ满足( )A .tan φ=sin θB .tan φ=cos θC .tan φ=tan θD .tan φ=2tan θ[解析]竖直速度与水平速度之比为:tan φ=gt v 0,竖直位移与水平位移之比为:tan θ=gt 22v 0t,故tan φ=2tan θ, D 正确。

物理建模系列(六) 四类常见平抛运动模型

物理建模系列(六) 四类常见平抛运动模型

物理建模系列(六) 四类常见平抛运动模型模型一 水平地面上空h 处的平抛运动 由h =12gt 2知t =2hg,即t 由高度h 决定.甲模型二 半圆内的平抛运动(如图甲) 由半径和几何关系制约时间t : h =12gt 2 R ±R 2-h 2=v 0t 联立两方程可求t .模型三 斜面上的平抛运动乙1.顺着斜面平抛(如图乙) 方法:分解位移 x =v 0t y =12gt 2 tan θ=yx 可求得t =2v 0tan θg丙2.对着斜面平抛(如图丙) 方法:分解速度 v x =v 0 v y =gt tan θ=v y v 0=gt v 0可求得t =v 0tan θg模型四 对着竖直墙壁的平抛运动(如图丁)丁水平初速度v 0不同时,虽然落点不同,但水平位移相同. t =d v 0例1 如图,从半径为R =1 m 的半圆AB 上的A 点水平抛出一个可视为质点的小球,经t =0.4 s 小球落到半圆上.已知当地的重力加速度g =10 m/s 2,则小球的初速度v 0可能为( )A .1 m/sB .2 m/s C.3 m/sD .4 m/s【解析】 由于小球经0.4 s 落到半圆上,下落的高度h =12gt 2=0.8 m ,位置可能有两处,如图所示.第一种可能:小球落在半圆左侧,v 0t =R -R 2-h 2=0.4 m ,v 0=1 m/s 第二种可能:小球落在半圆右侧,v 0t =R +R 2-h 2,v 0=4 m/s ,选项A 、D 正确. 【答案】 AD例2 如图所示,斜面上有a 、b 、c 、d 四个点,ab =bc =cd .从a 点正上方的O 点以速度v 水平抛出一个小球,它落在斜面上b 点.若小球从O 点以速度2v 水平抛出,不计空气阻力,则它落在斜面上的( )A .b 与c 之间某一点B .c 点C .c 与d 之间某一点D .d 点【解析】 如图所示,过b 点做水平线be ,由题意知小球第一次落在b 点,第二次速度变为原来的2倍后,轨迹为Oc ′,c ′在c 的正下方be 线上,故轨迹与斜面的交点应在bc 之间.据运动规律作图越直观,对解决问题越有利.【答案】 A[高考真题]1. (2015·课标卷Ⅰ,18)一带有乒乓球发射机的乒乓球台如图所示.水平台面的长和宽分别为L 1和L 2,中间球网高度为h .发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h .不计空气的作用,重力加速度大小为g .若乒乓球的发射速率v 在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v 的最大取值范围是( )A.L 12g6h <v <L 1g6hB.L 14gh <v < (4L 21+L 22)g6h C.L 12g 6h <v <12 (4L 21+L 22)g6h D.L 14g h <v <12(4L 21+L 22)g6h【解析】 发射机无论向哪个方向水平发射,乒乓球都做平抛运动. 当速度v 最小时,球沿中线恰好过网,有: 3h -h =gt 212①L 12=v 1t 1② 联立①②得v 1=L 14g h当速度最大时,球斜向右侧台面两个角发射,有124L 21+L 22=v 2t 2③ 3h =12gt 22④联立③④得v 2=12(4L 21+L 22)g6h所以使乒乓球落到球网右侧台面上,v 的最大取值范围为L 14g h <v <12(4L 21+L 22)g6h,选项D 正确.【答案】 D2.(2016·上海卷,23)如图,圆弧形凹槽固定在水平地面上,其中ABC 是位于竖直平面内以O 为圆心的一段圆弧,OA 与竖直方向的夹角为α.一小球以速度v 0从桌面边缘P 水平抛出,恰好从A 点沿圆弧的切线方向进入凹槽.小球从P 到A 的运动时间为 ________ ;直线P A 与竖直方向的夹角β= ________ .【解析】 据题意,小球从P 点抛出后做平抛运动,小球运动到A 点时将速度分解,有tan α=v y v x =gt v 0,则小球运动到A 点的时间为:t =v 0tan αg ;从P 点到A 点的位移关系有:tan β=v 0t 12gt 2=2v 0gt =2tan α=2cot α,所以P A 与竖直方向的夹角为:β=arctan(2cot α).【答案】v 0tan αgarctan(2cot α) 3.(2014·江苏卷,6)为了验证平抛运动的小球在竖直方向上做自由落体运动,用如图所示的装置进行实验.小锤打击弹性金属片,A 球水平抛出,同时B 球被松开,自由下落.关于该实验,下列说法中正确的有( )A .两球的质量应相等B .两球应同时落地C .应改变装置的高度,多次实验D .实验也能说明A 球在水平方向上做匀速直线运动【解析】 小锤打击弹性金属片后,A 球做平抛运动,B 球做自由落体运动.A 球在竖直方向上的运动情况与B 球相同,做自由落体运动,因此两球同时落地.实验时,需A 、B 两球从同一高度开始运动,对质量没有要求,但两球的初始高度及击打力度应该有变化,实验时要进行3~5次得出结论.本实验不能说明A 球在水平方向上的运动性质,故选项B 、C 正确,选项A 、D 错误.【答案】 BC[名校模拟]4.(2018·山东师大附中高三模拟)如图所示,A 、B 两质点从同一点O 分别以相同的水平速度v 0沿x 轴正方向抛出,A 在竖直平面内运动,落地点为P 1;B 沿光滑斜面运动,落地点为P 2,P 1和P 2在同一水平面上,不计阻力,则下列说法正确的是( )A .A 、B 的运动时间相同 B .A 、B 沿x 轴方向的位移相同C .A 、B 运动过程中的加速度大小相同D .A 、B 落地时速度大小相同【解析】 设O 点与水平面的高度差为h ,由h =12gt 21,h sin θ=12g sin θ·t 22可得:t 1=2hg,t 2=2hg sin 2θ,故t 1<t 2,A 错误;由x 1=v 0t 1,x 2=v 0t 2,可知,x 1<x 2,B 错误;由a 1=g ,a 2=g sin θ可知,C 错误;A 落地的速度大小为v A =v 20+(gt 1)2=v 20+2gh ,B 落地的速度大小v B =v 20+(a 2·t 2)2=v 20+2gh ,所以v A =v B ,故D 正确. 【答案】 D5.(2018·山东烟台高三上学期期中)如图所示,斜面倾角为θ,从斜面上的P 点以v 0的速度水平抛出一个小球,不计空气阻力,当地的重力加速度为g ,若小球落到斜面上,则此过程中( )A .小球飞行时间为2v 0tan θgB .小球的水平位移为2v 20tan θgC .小球下落的高度为2v 20sin θgD .小球刚要落到斜面上时的速度方向可能与斜面垂直【解析】 由x =v 0t ,y =12gt 2,tan θ=y x 三式得t =2v 0tan θg ,水平位移x =2v 20tan θg,小球下落高度y =12gt 2=2v 20tan 2θg.小球落在斜面上,速度方向斜向右下方,不可能与斜面垂直.A 、B 正确.【答案】 AB6.(2018·山东淄博一中高三上学期期中)如图所示,位于同一高度的小球A 、B 分别以v 1和v 2的速度水平抛出,都落在了倾角为45°的斜面上的C 点,小球B 恰好垂直打到斜面上,则A 、B 到达C 点的速度之比为( )A .2∶1B .1∶1 C.2∶ 5D .5∶2 2【解析】 对于A 球:x =v 1t ,y =12gt 2,x =y ,t =2v 1g ,v A =v 21+v 2y =5v 1;对于B 球:v 2=v y =g ·t =2v 1,v B =22v 1,所以v 1∶v 2=5∶2 2.【答案】 D课时作业(十一) [基础小题练]1.(2018·山东临沂高三上学期期中)在一次投球游戏中,某同学调整好力度,将球水平抛向放在地面的小桶中,结果球飞到小桶的右方(如图所示),不计空气阻力,则下次再投时,他可能作出的调整为( )A .减小初速度,抛出点高度不变B .增大初速度,抛出点高度不变C .初速度大小不变,提高抛出点高度D .初速度大小不变,降低抛出点高度 【解析】 由x =v 0t ,y =12gt 2,得x =v 02yg,球飞到小桶右方,说明水平位移偏大,可使高度不变,减小v 0,或v 0不变,降低高度,A 、D 正确.【答案】 AD2.从同一水平直线上的两位置分别沿同方向抛出两小球A 和B ,其运动轨迹如图所示,不计空气阻力.要使两球在空中相遇,则必须( )A .两球的初速度一样大B .B 球初速度比A 大C .同时抛出两球D .先抛出A 球【解析】 小球在竖直方向上做自由落体运动,由h =12gt 2,两小球从同一高度抛出在空中某处相遇,则两小球下落时间相同,故说明两小球从同一时刻抛出,C 正确,D 错误;由x =v 0t ,A 球的水平位移大,说明A 的初速度大,A 、B 错误.【答案】 C3.一阶梯如图所示,其中每级台阶的高度和宽度都是0.4 m ,一小球以水平速度v 飞出,g 取10 m/s 2,欲打在第四台阶上,则v 的取值范围是( )A. 6 m/s<v ≤2 2 m/s B .2 2 m/s<v ≤3.5 m/s C. 2 m/s<v < 6 m/s D .2 2 m/s<v < 6 m/s【解析】 根据平抛运动规律有:x =v t ,y =12gt 2,若打在第3台阶与第4台阶边沿,则根据几何关系有:v t =12gt 2,得v =12gt ,如果落到第四台阶上,有:3×0.4<12gt 2≤4×0.4,代入v =12gt ,得 6 m/s<v ≤2 2 m/s ,A 正确.【答案】 A4.一带有乒乓球发射机的乒乓球台水平台面的长是宽的2倍,中间球网高h ,发射机安装于台面左侧边缘的中点,发射点的高度可调,发射机能以不同速率向右侧不同方向水平发射乒乓球,不计空气阻力,当发射点距台面高度为3h 且发射机正对右侧台面的外边角以速度v 1发射时,乒乓球恰好击中边角,如图所示;当发射点距台面高度调为H 且发射机正对右侧台面以速度v 2发射时,乒乓球恰好能过球网且击中右侧台面边缘,则( )A.H h =43,v 1v 2=176 B .H h =21,v 1v 2=176C.H h =43,v 1v 2=23D .H h =21,v 1v 2=23【解析】 设乒乓球台宽为L ,乒乓球的运动是平抛运动,当以速度v 1发射时,由平抛规律知3h =12gt 21,(2L )2+⎝⎛⎭⎫L 22=v 1t 1,联立解得v 1=L217g6 h;同理,当以速度v 2发射时,H =12gt 22,2L =v 2t 2,H -h =12gt 23,L =v 2t 3,联立解得H =43 h ,v 2=L 3g 2h ,所以H h =43,v 1v 2=176,A 正确. 【答案】 A5.(2018·山东师大附中高三上学期二模)如图所示,一小球从一半圆轨道左端A 点正上方某处开始做平抛运动(小球可视为质点),飞行过程中恰好与半圆轨道相切于B 点.O 为半圆轨道圆心,半圆轨道半径为R ,OB 与水平方向夹角为60°,重力加速度为g ,则小球抛出时的初速度为( )A. 3gR2 B . 33gR2 C.3gR2D .3gR3【解析】 画出小球在B 点速度的分解矢量图.由图可知,tan 60°=v 0gt ,R (1+cos 60°)=v 0t ,联立解得:v 0=33gR2,选项B 正确. 【答案】 B6.如图所示,在距地面高为H =45 m 处,有一小球A 以初速度v 0=10 m/s 水平抛出,与此同时,在A 的正下方有一物块B 也以相同的初速度同方向滑出,B 与水平地面间的动摩擦因数为μ=0.4,A 、B 均可视为质点,空气阻力不计(取g =10 m/s 2).下列说法正确的是( )A .小球A 落地时间为3 sB .物块B 运动时间为3 sC .物块B 运动12.5 m 后停止D .A 球落地时,A 、B 相距17.5 m 【解析】 根据H =12gt 2得,t =2H g= 2×4510s =3 s ,故A 正确;物块B 匀减速直线运动的加速度大小a =μg =0.4×10 m/s 2=4 m/s 2,则B 速度减为零的时间t 0=v 0a =104 s=2.5 s ,滑行的距离x =v 02t 0=102×2.5 m =12.5 m ,故B 错误,C 正确;A 落地时,A 的水平位移x A =v 0t =10×3 m =30 m ,B 的位移x B =x =12.5 m ,则A 、B 相距Δx =(30-12.5)m =17.5 m ,故D 正确.【答案】 ACD[创新导向练]7.休闲运动——通过“扔飞镖”考查平抛运动知识飞镖运动于十五世纪兴起于英格兰,二十世纪初,成为人们日常休闲的必备活动.一般打飞镖的靶上共标有10环,第10环的半径最小.现有一靶的第10环的半径为1 cm ,第9环的半径为2 cm ……以此类推,若靶的半径为10 cm ,在进行飞镖训练时,当人离靶的距离为5 m ,将飞镖对准第10环中心以水平速度v 投出,g =10 m/s 2.则下列说法中正确的是( )A .当v ≥50 m/s 时,飞镖将射中第8环线以内B .当v =50 m/s 时,飞镖将射中第6环线C .若要击中第10环的线内,飞镖的速度v 至少为50 2 m/sD .若要击中靶子,飞镖的速度v 至少为25 2 m/s【解析】 根据平抛运动规律可得,飞镖在空中飞行有:x =v t ,h =12gt 2,将第8环半径为3 cm 、第6环半径为5 cm 、第10环半径为1 cm 、靶的半径为10 cm 代入两式可知正确选项为B 、D.【答案】 BD8.科技前沿——轰炸机上的投弹学问我国自主研制的“歼十五”轰炸机完成在航母上的起降.如图,轰炸机沿水平方向匀速飞行,到达山坡底端正上方时释放一颗炸弹,并垂直击中山坡上的目标A .已知A 点高度为h ,山坡倾角为θ,由此不能算出( )A .轰炸机的飞行速度B .炸弹的飞行时间C .轰炸机的飞行高度D .炸弹投出时的动能【解析】 由图可得炸弹的水平位移为x =htan θ.设轰炸机的飞行高度为H ,炸弹的飞行时间为t ,初速度为v 0.炸弹垂直击中山坡上的目标A ,则根据速度的分解有tan θ=v 0v y =v 0gt ,又H -h x =12gt2v 0t =gt 2v 0,联立以上三式得H =h +h 2tan 2θ,可知能求出轰炸机的飞行高度H ,炸弹的飞行时间t =2(H -h )g ,轰炸机的飞行速度等于炸弹平抛运动的初速度,为v 0=xt,故A 、B 、C 均能算出;由于炸弹的质量未知,则无法求出炸弹投出时的动能,故D 不能算出.【答案】 D9.体育运动——乒乓球赛中的平抛运动知识在某次乒乓球比赛中,乒乓球先后两次落台后恰好在等高处水平越过球网,过网时的速度方向均垂直于球网,把两次落台的乒乓球看成完全相同的两个球,球1和球2,如图所示.不计乒乓球的旋转和空气阻力,乒乓球自起跳到最高点的过程中,下列说法正确的是( )A .起跳时,球1的重力功率等于球2的重力功率B .球1的速度变化率小于球2的速度变化率C .球1的飞行时间大于球2的飞行时间D .过网时球1的速度大于球2的速度【解析】 乒乓球起跳后到最高点的过程,其逆过程可看成平抛运动.重力的瞬时功率等于重力乘以竖直方向的速度,两球起跳后能到达的最大高度相同,由v 2=2gh 得,起跳时竖直方向分速度大小相等,所以两球起跳时重力功率大小相等,A 正确;速度变化率即加速度,两球在空中的加速度都等于重力加速度,所以两球的速度变化率相同,B 错误;由h =12gt 2可得两球飞行时间相同,C 错误;由x =v t 可知,球1的水平位移较大,运动时间相同,则球1的水平速度较大,D 正确.【答案】 AD10.体育运动——足球运动中的平抛运动规律(2015·浙江卷,17)如图所示为足球球门,球门宽为L .一个球员在球门中心正前方距离球门s 处高高跃起,将足球顶入球门的左下方死角(图中P 点).球员顶球点的高度为h .足球做平抛运动(足球可看成质点,忽略空气阻力),则( )A .足球位移的大小x = L 24+s 2B .足球初速度的大小v 0= g 2h (L 24+s 2) C .足球末速度的大小v =g 2h (L 24+s 2)+4gh D .足球初速度的方向与球门线夹角的正切值tan θ=L2s【解析】 足球位移大小为x =(L2)2+s 2+h 2=L 24+s 2+h 2,A 错误;根据平抛运动规律有:h =12gt 2,L 24+s 2=v 0t ,解得v 0=g 2h (L 24+s 2),B 正确;根据动能定理mgh =12m v 2-12m v 20可得v =v 20+2gh =g 2h (L 24+s 2)+2gh ,C 错误;足球初速度方向与球门线夹角正切值tan θ=s L 2=2sL ,D 错误.【答案】 B[综合提升练]11.(2016·浙江卷,23)在真空环境内探测微粒在重力场中能量的简化装置如图所示,P是个微粒源,能持续水平向右发射质量相同、初速度不同的微粒.高度为h 的探测屏AB 竖直放置,离P 点的水平距离为L ,上端A 与P 点的高度差也为h .(1)若微粒打在探测屏AB 的中点,求微粒在空中飞行的时间; (2)求能被屏探测到的微粒的初速度范围;(3)若打在探测屏A 、B 两点的微粒的动能相等,求L 与h 的关系. 【解析】 (1)打在中点的微粒32h =12gt 2①t =3h g② (2)打在B 点的微粒v 1=L t 1,2h =12gt 21③v 1=Lg 4h④ 同理,打在A 点的微粒初速度v 2=L g 2h⑤ 微粒初速度范围Lg4h≤v ≤L g 2h⑥ (3)由能量关系12m v 22+mgh =12m v 21+2mgh ⑦代入④、⑤式L =22h ⑧ 【答案】 (1)3hg(2)L g4h≤v ≤L g 2h(3)L =22h12.如图所示,倾角为37°的斜面长l =1.9 m ,在斜面底端正上方的O 点将一小球以v 0=3 m/s 的速度水平抛出,与此同时静止释放顶端的滑块,经过一段时间后小球恰好能够以垂直斜面的方向击中滑块.(小球和滑块均可视为质点,重力加速度g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8),求:(1)抛出点O 离斜面底端的高度; (2)滑块与斜面间的动摩擦因数μ.【解析】 (1)设小球击中滑块时的竖直速度为v y ,由几何关系得v 0v y =tan 37°设小球下落的时间为t ,竖直位移为y ,水平位移为x ,由运动学规律得 v y =gt ,y =12gt 2,x =v 0t设抛出点到斜面最低点的距离为h ,由几何关系得 h =y +x tan 37° 由以上各式得h =1.7 m.(2)在时间t 内,滑块的位移为x ′,由几何关系得 x ′=l -xcos 37°, 设滑块的加速度为a ,由运动学公式得x ′=12at 2,对滑块由牛顿第二定律得 mg sin 37°-μmg cos 37°=ma , 由以上各式得μ=0.125. 【答案】 (1)1.7 m (2)0.125。

斜面上的平抛运动

斜面上的平抛运动

斜面上的平抛运动一、物体落在斜面上的一个重要关系式平抛一物体,不计空气阻力,经时间t,如图所示,从倾角为θ的斜面上以初速v物体落在斜面上时其水平位移和竖直位移分别为x,y,则。

遇到斜面上的平抛运动问题,往往会与这一关系式有关,所以,解题时要有意识地写出这一关系式。

例1. 从倾角为60°的斜面顶点A水平抛出一物体,初动能为10J,物体到达斜面底端B点时,物体的动能是多少?(不计空气阻力)解:设初速为v,依题意,依据上述等式得。

例2. 从倾角为θ的足够长的A点,先后将同一小球以不同的初速度水平向右抛,球落到斜面上前一瞬间的速度方向与斜面的夹角为,出,第一次初速度为v1第二次初速度,球落在斜面上前一瞬间的速度方向与斜面间的夹角为,若,试比较的大小。

解析:依以上等式所以。

即。

以不同初速度平抛的物体落在斜面上各点的速度是互相平行的。

例3. 如图所示,AB为斜面,BC为水平面,从A点以水平初速度v向右抛出一,从A点以水平初速度2v向右抛出一小球,小球,其落点与A的水平距离为s1其落点与A的水平距离为s,不计空气阻力,可能为:2A. 1:2B. 1:3C. 1:4D. 1:5解析:若两物体都落在水平面上,则运动时间相等,有,A是可能的。

若两物体都落在斜面上,由公式得,运动时间分别为,。

水平位移,C是可能。

若第一球落在斜面上,第二球落在水平面上(如图所示),不会小于1:4,但一定小于1:2。

故1:3是可能的,1:5不可能。

故可能为ABC。

二、斜面上的最值问题平抛一物体,经多长时间物体离斜面最远,例4. 在倾角为θ的斜面上以初速度v离斜面的最大距离是多少?解析:方法一如图所示,速度方向平行斜面时,离斜面最远所以运动时间为此时横坐标为。

设此时速度方向反向延长线交横轴于处(可证明)。

方法二:建立如图所示坐标系把运动看成是沿x方向初速度为,加速度为的匀加速运动和沿y 方向的初速度为,加速度为的匀减速运动的合运动。

第16讲 斜面上的平抛运动模型及类平抛运动模型(解析版)

第16讲 斜面上的平抛运动模型及类平抛运动模型(解析版)

第16讲 斜面上的平抛运动模型及类平抛运动模型一.知识总结斜面上的平抛运动问题是一种常见的题型,在解答这类问题时除要运用平抛运动的位移和速度规律,还要充分运用斜面倾角,找出斜面倾角同位移和速度与水平方向夹角的关系,从而使问题得到顺利解决。

1.从斜面上某点水平抛出,又落到斜面上的平抛运动的五个规律(推论) (1)位移方向相同,竖直位移与水平位移之比等于斜面倾斜角的正切值。

(2)刚落到侧面时的末速度方向都平行,竖直分速度与水平分速度(初速度)之比等于斜面倾斜角正切值的2倍。

(3)运动的时间与初速度成正比⎝ ⎛⎭⎪⎫t =2v 0tan θg 。

(4)位移与初速度的二次方成正比⎝ ⎛⎭⎪⎫s =2v 20tan θg cos θ。

(5)当速度与斜面平行时,物体到斜面的距离最远,且从抛出到距斜面最远所用的时间为平抛运动时间的一半。

2.常见的模型模型方法分解速度,构建速度三角形,找到斜面倾角θ与速度方向的关系 分解速度,构建速度的矢量三角形分解位移,构建位移三角形,隐含条件:斜面倾角θ等于位移与水平方向的夹角基本 规律水平:v x =v 0竖直:v y =gt 合速度:v =v 2x +v 2y水平:v x =v 0 竖直:v y =gt 合速度:v =v 2x +v 2y水平:x =v 0t 竖直:y =12gt 2 合位移: s =x 2+y 2方向:tanθ=v xv y方向:tanθ=v yv x方向:tanθ=yx运动时间由tanθ=v0v y=v0gt得t=v0g tanθ由tanθ=v yv0=gtv0得t=v0tanθg由tanθ=yx=gt2v0得t=2v0tanθg3.类平抛运动模型(1)模型特点:物体受到的合力恒定,初速度与恒力垂直,这样的运动叫类平抛运动。

如果物体只在重力场中做类平抛运动,则叫重力场中的类平抛运动。

学好这类模型,可为电场中或复合场中的类平抛运动打基础。

(2).类平抛运动与平抛运动的区别做平抛运动的物体初速度水平,物体只受与初速度垂直的竖直向下的重力,a=g;做类平抛运动的物体初速度不一定水平,但物体所受合力与初速度的方向垂直且为恒力,a=F合m。

斜面平抛运动结论

斜面平抛运动结论

斜面平抛运动结论
斜面平抛运动是指一个物体在斜面上以一定的速度沿着水平方向进行平抛运动。

斜面平抛运动的基本结论如下:
1. 斜面平抛运动的水平速度保持恒定,与水平方向的加速度为零,因为斜面没有对水平方向的加速度。

2. 斜面平抛运动的垂直速度会受到重力的影响,在垂直方向上存在加速度。

根据重力加速度的作用,物体的垂直速度会逐渐减小,直到达到最大高度时速度为零。

3. 斜面平抛运动的水平距离可以通过斜面的长度和速度来确定,可以用水平速度与时间的乘积来计算。

4. 在忽略空气阻力的情况下,斜面平抛运动可以看作是由两个独立的运动组合而成,即水平直线运动和自由落体运动。

平抛运动与斜面、曲面结合的问题(解析版)--高考物理热点模型

平抛运动与斜面、曲面结合的问题(解析版)--高考物理热点模型

1平抛运动与斜面、曲面结合的问题模型概述1.模型概述:在分析与斜面有关的平抛运动问题时,注意分析题干信息,强调的是速度方向还是位移方向,然后进行分解并利用两分量与已知角关系求解.2.各种类别:1)平抛与竖直面结合水平:d =v 0t竖直:h =12gt 22)平抛与斜面结合①顺着斜面平抛情形一:落到斜面上,已知位移方向沿斜面向下处理方法:分解位移.x =v 0t y =12gt 2tan θ=yx可求得t =2v 0tan θg .情形二:物体离斜面距离最大,已知速度方向沿斜面向下处理方法:分解速度v x =v 0v y =gt tan θ=v y vx可求得t =v 0tan θg .②对着斜面平抛:垂直打在斜面上,已知速度方向垂直斜面向下处理方法:分解速度.v x =v 0v y =gt tan θ=v x v y=v 0gt可求得t =v 0g tan θ.3)平抛与圆面结合①小球从半圆弧左边沿平抛,落到半圆内的不同位置.处理方法:由半径和几何关系制约时间t :h =12gt2R ±R 2-h 2=v 0t联立两方程可求t .②小球恰好沿B 点的切线方向进入圆轨道,此时半径OB 垂直于速度方向,圆心角α与速度的偏向角相等.处理方法:分解速度.v x =v 0v y =gt tan θ=v y v x=gt v可求得t =v 0tan θg .③小球恰好从圆柱体Q 点沿切线飞过,此时半径OQ 垂直于速度方向,圆心角θ与速度的偏向角相等.处理方法:分解速度.v x =v 0v y =gt tan θ=v y v x=gt v可求得t =v 0tan θg .4)与圆弧面有关的平抛运动:题中常出现一个圆心角,通过这个圆心角,就可找出速度的方向及水平位移和竖直位移的大小,再用平抛运动的规律列方程求解.典题攻破1.平抛运动与斜面结合的问题1.(2024·辽宁·模拟预测)如图所示,斜面的倾角为θ,斜面的长度为L 。

2-3斜面上的平抛运动

2-3斜面上的平抛运动

斜面上的平抛运动一、斜面上的平抛运动○顺着斜面运动(斜面足够长)<落到斜面>1.【典型例题】如图所示,斜面倾角为θ,小球从A点以初速度v0水平抛出,恰好落到斜面B点,求:①AB间的距离;②物体在空中飞行的时间;2.如图所示,从倾角为θ的斜面上的A点,以水平速度v0抛出一个小球,不计空气阻力,它落到斜面上B点所用的时间为()>答案:B3. 跳台滑雪是勇敢者的运动,它是利用山势特别建造的跳台,运动员穿着专用滑雪板,不带雪杖在助滑路上获得高速后水平飞出,在空中飞行一段距离后着陆,这项运动极为壮观。

设一位运动员由山坡顶部的A 点沿水平方向飞出,到山坡上的B 点着陆。

如图所示,已知运动员水平飞行的速度为v 0=20m/s ,山坡倾角为θ=37°,山坡可以看成一个斜面。

(取g=10m/s 2,sin37°=,cos37°=求:(1)运动员在空中飞行的时间t ; (2)AB 间的距离s 。

答案:(1)3s (2)75m解析:(1)设运动员从A 到B 时间为t ,则有x=v 0t y=gt 2《由数学关系知tan θ=y/x 所以t=3s 。

(2)A 、B 间的距离为:s= m =75m 。

〔STS 〕跳台滑雪4. 如图所示,在足够长的斜面上的A 点,以水平速度v 0抛出一个小球,不计空气阻力,它落到斜面上所用的时间为t 1;若将此球改用2v 0抛出,落到斜面上所用时间为t 2,则t 1与t 2之比为( ) A .1∶1 B .1∶2 C .1∶3 D .1∶4 答案:B解析:因小球落在斜面上,所以两次位移与水平方向的夹角相等,由平抛运动规律知tan θ=12gt 21v 0t 1=12gt 222v 0t 2,所以t 1t 2=12。

〔延展题〕变初速度 5. 。

6. [多选]如图所示,斜面上有a 、b 、c 、d 、e 五个点,ab =bc =cd =de ,从a 点以初速度v 0 水平抛出一个小球,它落在斜面上的b 点,速度方向与斜面之间的夹角为θ。

高一物理:与斜面(曲面)结合的平抛运动

高一物理:与斜面(曲面)结合的平抛运动

与斜面(曲面)结合的平抛运动题型一顺着斜面平抛宇航员站在某质量分布均匀的星球表面一斜坡上P 点,沿水平方向以初速度0v 抛出一个小球,测得小球经时间t 落到斜坡另一点Q 上,斜坡的倾角为α,已知该星球的半径为R ,引力常量为G ,球的体积公式是34π3V R 。

求:(1)该星球表面的重力加速度g ;(2)该星球的密度;(3)该星球的第一宇宙速度。

【解题技巧提炼】(1)落到斜面上,已知位移方向沿斜面向下(如图)处理方法:分解位移.x =v 0ty =12gt 2tan θ=y x可求得t =2v 0tan θg.(2)物体离斜面距离最大,已知速度方向沿斜面向下(如图)处理方法:分解速度v x=v0,v y=gttanθ=v yv0.t=v0tanθg从斜面上某点水平抛出,又落到斜面上的平抛运动的五个规律(推论)(1)位移方向相同,竖直位移与水平位移之比等于斜面倾斜角的正切值。

(2)刚落到侧面时的末速度方向都平行,竖直分速度与水平分速度(初速度)之比等于斜面倾斜角正切值的2倍。

(3(4(5)当速度与斜面平行时,物体到斜面的距离最远,且从抛出到距斜面最远所用的时间为平抛运动时间的一半。

题型二对着斜面平抛如图所示,倾角为37°的斜面长l=1.9m,在斜面底端正上方的O点将一小球以v0=3m/s的速度水平抛出,与此同时由静止释放斜面顶端的滑块,经过一段时间后,小球恰好能够以垂直于斜面的速度在斜面P点处击中滑块。

(小球和滑块均可视为质点,重力加速度g取10m/s2,sin37°=0.6,cos37°=0.8),求:(1)抛出点O离斜面底端的高度;(2)滑块与斜面间的动摩擦因数μ。

【解题技巧提炼】垂直撞在斜面上,已知速度方向垂直斜面向下(如图)处理方法:分解速度.v x =v 0v y =gttan θ=v x v y =v 0gt可求得t =v 0g tan θ.题型三与圆弧面有关的平抛运动(多选)如图所示为一半球形的坑,其中坑边缘两点M 、N 与圆心等高且在同一竖直面内。

(一)科学思维系列——落点在斜面上的平抛运动

(一)科学思维系列——落点在斜面上的平抛运动

核心素养提升微课堂(一)科学思维系列——落点在斜面上的平抛运动1.顺着斜面抛:如右图所示,物体从斜面上某一点水平抛出以后又重新落在斜面上,此时平抛运动物体的合位移方向与水平方向的夹角等于斜面的倾角.结论有:(1)速度方向与斜面夹角恒定;(2)水平位移和竖直位移的关系:tan θ=yx=12gt2v0t=gt2v0;(3)运动时间t=2v0tan θg.2.对着斜面抛:如右图所示,做平抛运动的物体垂直打在斜面上,此时物体的合速度与竖直方向的夹角等于斜面的倾角.结论有:(1)速度方向与斜面垂直;(2)水平分速度与竖直分速度的关系:tan θ=v0v y=v0gt;(3)运动时间t=v0g tan θ.3.平抛运动的关键词转化:【典例1】如图所示,滑雪运动员以20 m/s的水平速度从一山坡飞出,问经过多长时间又落到斜坡上?已知斜坡与水平面成45°角,取g=10 m/s2.【解析】将位移分解,x=v0t,y=12gt2.故tan 45°=yx=12gt2v0t=gt2v0.将v0=20 m/s代入上式得t=4 s【答案】 4 s[拓展]滑雪运动员落到斜坡上时,求滑雪运动员运动的位移,落到斜坡上时速度的大小和方向与v0夹角的正切值.解析:水平方向上由x=v0t得x=80 m.竖直方向上由y=12gt2得y=80 m.故滑雪运动员沿斜坡运动的合位移为80 2 m,约等于113 m.竖直方向上由v y=gt得v y=40 m/s.落到斜坡上时,以水平速度和竖直速度为邻边作平行四边形如图所示,解得v合=v2x+v2y=202+402m/s=20 5 m/s.设合速度方向与水平方向的夹角为α,则tan α=v y v x=4020=2,答案:20 5 m/s 2【典例2】 [2019·四川成都九校高一下期中联考]如图所示,轰炸机沿水平方向匀速飞行,到达山坡底端正上方时释放一枚炸弹,并垂直击中山坡上的目标A .已知A 点高度为h ,重力加速度为g ,不计空气阻力,则轰炸机的飞行速度为( )A.12ghB.2gh 2C.ghD.2gh 【解析】设炸弹离开轰炸机后在空中运动的时间为t ,山坡倾角为θ,击中目标时速度为v ′,由平抛运动规律有v ′sin θ=v ,v ′cos θ=gt .因为炸弹垂直击中山坡上的目标A ,可得htan θ=v t ,联立解得v =gh ,故C 正确.【答案】 C【易错分析】 本题炸弹离开轰炸机后做初速度为v 的平抛运动,最终垂直击中山坡上的目标,则hv t =tan θ,本题学生可能由于不能从题给条件“垂直击中山坡上的目标A ”提取有效信息,造成错解.变式训练1[2019·郑州检测](多选)从同一点沿水平方向抛出的A 、B 两个小球能落在同一个斜面上,运动轨迹如图所示,不计空气阻力,则小球初速度 v A 、v B 的关系和运动时间t A 、t B 的关系分别是( )A .v A >vB B .v A <v BC .t A >t BD .t A <t B解析:A 小球下落的高度小于B 小球下落的高度,所以根据y =12gt 2知t =2yg ,故t A <t B ,C 错误,D 正确;根据x =v t 知,B 的水平位移较小,时间较长,则水平初速度较小,故v A >v B ,A 正确、B 错误.答案:AD变式训练2 [2018·全国卷Ⅲ]在一斜面顶端,将甲、乙两个小球分别以v 和v2的速度沿同一方向水平抛出,两球都落在该斜面上.甲球落至斜面时的速率是乙球落至斜面时速率的( )A .2倍B .4倍C .6倍D .8倍解析:如图所示,可知:x =v t ,x ·tan θ=12gt 2则x =2tan θg ·v 2,即x ∝v 2甲、乙两球抛出速度为v 和v2,则相应水平位移之比为4:1, 由相似三角形知,下落高度之比也为4:1,由自由落体运动规律得,落在斜面上竖直方向速度之比为2:1,则可得落至斜面时速率之比为2:1.答案:A变式训练3[2019·浙江温州九校联考]如图所示,倾角θ=30°的斜面AB,在斜面顶端B向左水平抛出小球1,同时在底端A正上方与B点等高度处C水平向右抛出小球2,小球1、2同时落在P点,P 点为斜边AB的中点,则()A.小球2一定垂直撞在斜面上B.小球1、2的初速度可以不相等C.小球1落在P点时速度方向与斜面的夹角为30°D.改变小球1的初速度,小球1落在斜面上的速度方向都平行解析:两个小球同时做平抛运动,又同时落在P点,说明运动时间相同,水平位移大小相等,由x=v0t,知初速度相等,小球1落在斜面上时,有tan θ=12gt2v0t=gt2v0,小球2落在斜面上的速度与竖直方向的夹角的正切值tan α=v0gt=12tan θ,故α≠θ,所以小球2没有垂直撞在斜面上,故A、B错误;小球1落在P点时速度与水平方向的夹角正切值tan β=gt v=2tan θ=233<3,则有β<60°,则小球1落在P点时速度方向与斜面的夹角为β-θ<60°-30°=30°,所以小球1落在P点时与斜面的夹角小于30°,故C错误;根据tan β=2tan θ知,改变小球1的初速度,小球1落在斜面上的速度方向与水平方向的夹角相同,相互平行,故D正确.答案:D。

斜面上的平抛运动

斜面上的平抛运动

斜面上的平抛运动鄂南高中 彭生林三维目标知识、技能1.通过斜面上的平抛运动,让学生进一步掌握平抛运动的运动规律,并能解决相关问题。

2.通过“光滑斜面上的平抛运动〞,给学生引入“类平抛运动〞的概念,并能理解“类平抛运动〞的条件和运动规律。

过程、方法1.平抛运动问题求解的一般过程和解题的关键 2.类比法在“类平抛运动〞中的巧妙应用 情感态度、价值观1.通过例题的讲解,使学生会解决同类问题,让学生感觉到学有所成的快乐感和成就感 2.恰当设置悬疑,调动学生学习的积极性,从而激发学生学习物理的兴趣教学重点1.斜面倾角在平抛运动中的处理方法。

2.让学生理解,在平抛运动中,求解出运动时间是解决问题的关键、也是桥梁教学难点、1.如何把斜面的倾角转换为平抛运动的物理条件 2.对于普通班,学生记不住公式依然是一个难点教学过程 一、复习、引入1.平抛运动的运动规律水平方向:匀速直线运动v x =v 0 x=v 0t竖直方向:自由落体运动v y =gt 2gt 21y =合运动:匀变速曲线运动()220gt v v +=,tan v gt=α()⎪⎭⎫⎝⎛+=22021gt t v s ,02tan v gt=θ 所以:θαtan 2tan =2.平抛运动研究方法和解题关键:解题的方法:把运动分解成水平运动和竖直运动 解题的关键:通过条件,求解出时间t 3.平抛运动中求解时间的几种方法有三种:根据平抛运动分速度求解时间、根据平抛运动的位移求解时间、根据平抛运动的速度和位移方向角求解时间二、新课教学例1.〔2021全国理综1〕一水平抛出的小球落到一倾角为θ的斜面上时,其速度方向与斜面垂直,运动轨迹如图中虚线所示。

小球在竖直方向下落的距离与在水平方向通过的距离之比为A .tan θB .2tan θC .1tan θD .12tan θ练习1.如下图,物体的抛出点在斜面低端的正上方,物体抛出后恰好和斜面垂直碰撞,斜面的倾角θ=37°,〔提示:“和斜面垂直碰撞〞说明碰撞时的速度和斜面垂直〕求:①物体运动的时间t②求物体运动的水平位移x 、竖直位移y 、距离斜面底角高度H例题2:如图,足够长的固定斜面倾角为θ=37°,在斜面定点以水平初速度v 0=4m/s 抛出一小球,经过一段时间,又落在斜面上。

平抛运动斜面上的平抛问题(共10张PPT)

平抛运动斜面上的平抛问题(共10张PPT)
例3 从倾角为θ的足够长的斜面上的A点,先后将同一小球以不同的初速度水平向右抛出.第一次初速度为v1,球落到斜面上的瞬时速度方向
与斜面夹角为α1,第二次初速度为v2,球落到斜面上的瞬时速度方向与斜面夹角为α2,若v1>v2,则
A、α=β>γ B、α=β=γ
小球可能落在斜面上的c点与d点之间
C、α=β<γ D、α<β<γ
>v ,则 的速度方向与斜面夹角 为θ;不计空气阻力,初速度为v时
2 如图所示,在倾角为θ的斜面上以初速度v0 水平抛出一物体,落在斜面上,试求物体运动的时间.
A、B落到斜面上时的速度方向与水平方向的夹角分别为α、β,C落到水平面上时的速度方向与水平向方的夹角为γ,则有( )
A.α >α 小在球顶落 点在把斜两面个时小的球速以1度同方样向大与小2斜的面初夹速角度也分为别向θ 左、向右水平抛出,小球都落在斜面上,若不计空气阻力,则A、B两个小球运动时间之比为(
1
练习2.足够长的斜面上有a、b、c、d、e五个点, ab=bc=cd=de,从a点水平抛出一 个小球,初速度为v时,小 球落在斜面上的b点,落在斜面上时的速度方向与斜面夹角 为θ;不计空气阻力,初速度为2v时 A.小球可能落在斜面上的c点与d点之间 B.小球一定落在斜面上的e点
C.小球落在斜面时的速度方向与斜面夹角大于θ
B. ) α =α A、α=β>γ
B、1α=β=2 γ
C.α <α 足够长的斜面上有a、b、c、d、e五个点,ab=bc=cd=de,从a点水平抛出一 个小球,初速度为v时,小球落在斜面上的b点,落在斜面上时
2 的速度方向与斜面夹1 角 为θ;不计空气阻力,初速度为2v时
D.无法确定 A、α=β>γ B、α=β=γ
平抛运动2--斜面上的平抛问题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 A. 3 s
23 B. 3 s
C. 3 s
D.2 s
斜面上的平抛运动
创新微课
练习1.(多选)如图所示,倾角为θ的斜面上有A、B、C三点,现从这三点分别以不 同的初速度水平抛出一小球,三个小球均落在斜面上的D点,今测得AB∶BC∶CD
=5∶3∶1由此可判断( BC )
A.A、B、C处三个小球运动时间之比为1∶2∶3 B.A、B、C处三个小球落在斜面上时速度与初速度间 的夹角之比为1∶1∶1 C.A、B、C处三个小球的初速度大小之比为3∶2∶1 D.A、B、C处三个小球的运动轨迹可能在空中相交
解析 当运动员的速度方向平行于斜坡或与水平方向成37°角时,运动员离斜坡最远。
斜面上的平抛运动
1.从斜面上平抛
小结
位移夹角与斜面角相等
创新微课
斜面上的平抛运动
速度夹角与斜面角相等
2.对着斜面平抛
同学,下节再见
斜面上的平抛运动
创新微课
练习2.
如图所示,一名跳台滑雪运动员经过一段时间的加速滑行后从O点水平
飞出,经过3 s落到斜坡上的A点.已知O点是斜坡的起点,斜坡与水平面
的夹角θ =37°,运动员的质量m=50 kg,不计空气阻力(sin 37°=
0.6,cos 37°=0.8;g取10 m/s2).
求运动员从O点飞出开始到离斜坡距离最远所用的时间.
cos 37°=0.8;g取10 m/s2).求
x
(1)A点与O点的距离L;
y
(2)运动员离开O点时的速度大小;
斜面上的平抛运动
创新微课
例题2.如图所示,以10 m/s的水平初速度抛出的物体,飞行一段时 间后,垂直地撞在倾角为θ=30°的斜面上,g取10 m/s2,这段飞行 所用的时间为( C )
创新微课 现在开始
斜面上的平抛运动

斜面上的平抛运动
创新微课
例题1.如图所示,一名跳台滑雪运动员经过一段时间的加速滑行后从O点水
平飞出,经过3 s落到斜坡上的A点.已知O点是斜坡的起点,斜坡与水平面
的夹角θ=37°,运动员的质量m=50 kg,不计空气阻力(sin 37°=0.6,
相关文档
最新文档