高考理科数学数列专题复习
高考数学复习热点08 数列与不等式(原卷版)-2021年高考数学专练(新高考)
热点08 数列与不等式【命题趋势】在新高考卷的考点中,数列主要以两小和一大为主的考查形式,在小题中主要以等差数列和等比数列为主,大题中新高考比以往的考察有了很大的改变,以前是三角和数列在17题交替考查,现在作为主干知识必考内容,考察位置是17或18题,题型可以是多条件选择的开放式的题型。
由于三角函数与数列均属于解答题第一题或第二题的位置,考查的内容相对比较简单,这一部分属于必得分,对于小题部分,一般分布为一题简单题一道中等难度题目。
对于不等式内容新教材删除了线性规划和不等式选讲,新高考主要考察不等式性质和基本不等式。
基本不等式考察往往都是已基本不等式作为切入点形式出现,题目难度中等。
专题针对高考中数列、不等式等高频知识点,预测并改编一些题型,通过本专题的学习,能够彻底掌握数列,不等式。
请学生务必注意题目答案后面的名师点睛部分,这是对于本类题目的一个总结。
【满分技巧】1、等差、等比数列如果记住基本的通项公式以及求和公式和性质,基本上所有的等差、等比数列问题都可以解决。
2、数列求通项主要方法有:公式法、利用前n项和求通项、累加、累乘、构造等方法;这里要注意各个方法中递推关系的模型结构特点。
3、数列求和问题主要包含裂项求和,分组求和,绝对值求和,错位相减求和,掌握固定的求和方式即可快速得到答案;这里要注意各个方法中数列通项的结构模型;本专题有相应的题目供参考。
4、对于基本不等式类的题目应注意等号成立地条件和基本不等式的模型结构,对“1”的活用。
【考查题型】选择题、填空、解答题【常考知识】数列的概念、等差等比数列的概念和公式和性质、数列求通项的方法、数列求和的方法、不等式的性质、基本不等式【限时检测】(建议用时:90分钟)一、单选题1.(2020·云南省个旧市第一高级中学高三其他模拟(理))设等差数列的前项和为,且{}n a n n S ,则的值为( )1144S =378a a a ++A .11B .12C .13D .142.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))设是等比数列,且,{}n a 1231a a a ++=,则( )234+2a a a +=678a a a ++=A .12B .24C .30D .323.(2018·陆川中学高三其他模拟(理))等差数列的前项和为,且,.设{}n a n n S 10a >500S =,则当数列的前项和取得最大值时, 的值为( )()*12n n n n b a a a n N ++=∈{}nb n nT n A .23B .25C .23或24D .23或254.(2020·广西高三一模(理))已知数列,,则( )21131322n n n a a a --=++12a =()25log 1a +=A .B .C .D .263log 331-231log 315-363log 231-331log 215-5.(2020年浙江省高考数学试卷)已知等差数列{a n }的前n 项和S n ,公差d ≠0,.记b 1=S 2,11a d≤b n+1=S 2n+2–S 2n ,,下列等式不可能成立的是( )n *∈N A .2a 4=a 2+a 6B .2b 4=b 2+b 6C .D .2428a a a =2428b b b =6.(2020·江苏宝应中学高二期中)若a ,b 为正实数,且,则的最小值为( )1123a b +=3a b +A .2B .C .3D .4327.(2020·云南省个旧市第一高级中学高三其他模拟(理))已知数列的前项和为,且{}n a n n S ,,,则的通项公式为( )12n n S a n +=+-*n N ∈12a ={}n a A .B .C .D .121n n a -=-12n n a -=121n n a -=+2nn a =8.(2020·贵州高三其他模拟(理))已知是双曲线的半焦距,则的最c 2222:1(0,0)x y C a b a b -=>>a b c+大值是( )A BC D9.(2020·四川遂宁·高三零模(理))已知正项等比数列满足,,又为数{}n a 112a =2432a a a =+n S 列的前项和,则( ){}n a n 5S =A . 或B .312112312C .D .15610.(2020·河南焦作·高三一模(理))在等比数列中,,,则({}n a 11a =427a =352a a +=)A .45B .54C .99D .8111.(2020年全国统一高考数学试卷(理科)(新课标Ⅱ))数列中,,,若{}n a 12a =m n m n a a a +=,则( )155121022k k k a a a ++++++=- k =A .2B .3C .4D .512.(2020·江西高三二模(理))已知等比数列的首项,公比为,前项和为,则“{}n a 10a >q n n S”是“”的( )1q >3542S S S +>A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件13.(2020·浙江省东阳中学高三其他模拟)已知数列的前n 项和,则{}n a ()212,1n n S n a n a =≥=n a =( )A .B .C .D .()21n n +22(1)n +121n-121n -二、多选题14.(2020年新高考全国卷Ⅰ数学高考试题(山东))已知a >0,b >0,且a +b =1,则( )A .B .2212a b +≥122a b ->C .D 22log log 2a b +≥-+≤15.(2020·广东湛江·高三其他模拟)已知数列{a n }满足:0<a 1<1,.则下列说()14n n n a a ln a +-=-法正确的是( )A .数列{a n }先增后减B .数列{a n }为单调递增数列C .a n <3D .202052a >三、填空题16.(2020年浙江省高考数学试卷)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列就是二阶等差数列,数列的前3项和是________.(1)2n n +⎧⎫⎨⎬⎩⎭(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈17.(2020·广西高三一模(理))已知数列和满足,,,{}n a {}n b 12a =11b =1n n n a b b ++=.则=_______.114n n n a b a +++=20211008b a 18.(2020·山东济宁·高三其他模拟)已知,若不等式对140,0,1m n m n >>+=24m n x x a +≥-++已知的及任意实数恒成立,则实数最大值为_________.,m n x a 19.(2020·福建莆田·高三其他模拟)在△ABC 中,三边a ,b ,c 所对应的角分别是A ,B ,C ,已知a ,b ,c 成等比数列.若,数列满足,前n 项和为,sin sin sin B A C ={}n a 32|cos |2nn a nB =n S 2nS =__________.20.(2020·四川遂宁·高三零模(理))已知均为实数,函数在时取,a b 1()(2)2f x x x x =+>-x a =得最小值,曲线在点处的切线与直线_____2ln(1)y x =+()0,0y bx =a b +=四、解答题21.(2020·福建莆田·高三其他模拟)在①;②为等差数列,其中成131n n n a a a +=+1{}n a 236111,1,a a a +等比数列;③这三个条件中任选一个,补充到下面的问题中,然后解答2123111132n n na a a a -++++= 补充完整的题目.已知数列中,______.{}n a 11a =(1)求数列的通项公式;{}n a (2)设为数列的前项和,求证:.1,n n n n b a a T +={}n b n 13n T <注:如果选择多个条件分别解答,按第一个解答计分.22.(2020·安徽高三其他模拟(理))已知公比大于的等比数列满足,,1{}n a 2312a a +=416a =.2log n n b a =(1)求数列、的通项公式;{}n a {}n b (2)若数列的前项和为,求的前项和.{}n b n n S ()()*12n nnn a c n S -=∈N n n T 23.(2020年天津高考数学卷)已知为等差数列,为等比数列,{}n a {}n b .()()115435431,5,4a b a a a b b b ===-=-(Ⅰ)求和的通项公式;{}n a {}n b (Ⅱ)记的前项和为,求证:;{}n a n n S ()2*21n n n S S S n ++<∈N (Ⅲ)对任意的正整数,设求数列的前项和.n ()21132,,,.n nn n n n n a b n a a c a n b +-+⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数{}n c 2n 24.(2020年浙江省高考数学试卷)已知数列{a n },{b n },{c n }中,.1111121,,()nn n n n n n b a b c c a a c c n b +++====-=⋅∈*N (Ⅰ)若数列{b n }为等比数列,且公比,且,求q 与{a n }的通项公式;0q >1236b b b +=(Ⅱ)若数列{b n }为等差数列,且公差,证明:.0d >1211n c c c d +++<+*()n N ∈25.(2018·陆川中学高三其他模拟(理))已知数列为公差不为零的等差数列,且,{}n a 23a =1a 3a ,成等比数列.7a (1)求数列的通项公式;{}n a (2)若数列满足,记数列的前项和为,求证:.{}n b 110101n n n b a a +=+{}n b n n S 12n S <。
专题06数列解答题2013-2022十年全国高考数学真题分类汇编(全国通用版)(解析版)
2013-2022十年全国高考数学真题分类汇编专题06 数列解答题1.(2022年全国甲卷理科·第17题)记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.【答案】(1)证明见解析:; (2)78-.解析:(1)解:因为221nn S n a n+=+,即222n n S n na n +=+①,当2n ≥时,()()()21121211n n S n n a n --+-=-+-②,①-②得,()()()22112212211n n n n S n S n na n n a n --+---=+----,即()12212211n n n a n na n a -+-=--+,即()()()1212121n n n a n a n ----=-,所以11n n a a --=,2n ≥且N*n ∈,所以{}n a 是以1为公差的等差数列.(2)解:由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,所以()22112512562512222228n n n S n n n n -⎛⎫=-+=-=-- ⎪⎝⎭,所以,当12n =或13n =时()min 78n S =-.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2022年全国甲卷理科·第17题2.(2022新高考全国II 卷·第17题)已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-.(1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数.【答案】(1)证明见解析; (2)9.解析:(1)设数列{}n a 的公差为d ,所以,()11111111224283a d b a d b a d b b a d +-=+-⎧⎨+-=-+⎩,即可解得,112db a ==,所以原命题得证.(2)由(1)知,112d b a ==,所以()1111121k k m b a a b a m d a -=+⇔⨯=+-+,即122k m -=,亦即[]221,500k m -=∈,解得210k ≤≤,所以满足等式的解2,3,4,,10k = ,故集合{}1|,1500k m k b a a m =+≤≤中的元素个数为10219-+=.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2022新高考全国II 卷·第17题3.(2022新高考全国I 卷·第17题)记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式;(2)证明:121112na a a +++< .【答案】(1)()12n n n a +=(2)见解析解析:(1)∵11a =,∴111S a ==,∴111S a =,又∵n n S a ⎧⎫⎨⎬⎩⎭是公差为13的等差数列,∴()121133n n S n n a +=+-=,∴()23n n n a S +=,∴当2n ≥时,()1113n n n a S --+=,∴()()112133n n n n n n a n a a S S --++=-=-,整理得:()()111nn n an a --=+,即111n n a n a n -+=-,∴31211221n n n n n a a a a a a a a a a ---=⨯⨯⨯⋯⨯⨯()1341123212n n n n n n ++=⨯⨯⨯⋯⨯⨯=--,显然对于1n =也成立,∴{}n a 的通项公式()12n n n a +=;(2)()12112,11n a n n n n ⎛⎫==- ⎪++⎝⎭∴12111n a a a +++ 1111112121222311n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-=-< ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2022新高考全国I 卷·第17题4.(2021年新高考全国Ⅱ卷·第17题)记n S 是公差不为0的等差数列{}n a 的前n 项和,若35244,a S a a S ==.(1)求数列{}n a 的通项公式n a ;(2)求使n n S a >成立的n 的最小值.【答案】解析:(1)由等差数列的性质可得:535S a =,则:3335,0a a a =∴=,设等差数列的公差为d ,从而有:()()22433a a a d a d d =-+=-,()()()41234333322S a a a a a d a d a a d d =+++=-+-++-=-,从而:22d d -=-,由于公差不为零,故:2d =,数列的通项公式为:()3326n a a n d n =+-=-.(2)由数列的通项公式可得:1264a =-=-,则:()()214262n n n S n n n -=⨯-+⨯=-,则不等式n n S a >即:2526n n n ->-,整理可得:()()160n n -->,解得:1n <或6n >,又n 为正整数,故n 的最小值为7.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2021年新高考全国Ⅱ卷·第17题5.(2021年新高考Ⅰ卷·第17题)已知数列{}n a 满足11a =,11,,2,.n n n a n a a n +⎧+=⎨+⎩为奇数为偶数(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式;(2)求{}n a 的前20项和.【答案】122,5b b ==;300.解析:(1)由题设可得121243212,1215b a a b a a a ==+===+=++=又22211k k a a ++=+,2122k k a a +=+,故2223k k a a +=+即13n n b b +=+即13n n b b +-=所以{}n b 为等差数列,故()21331n b n n =+-⨯=-.(2)设{}n a 的前20项和为20S ,则2012320S a a a a =++++ ,因为123419201,1,,1a a a a a a =-=-=- ,所以()20241820210S a a a a =++++- ()1291091021021023103002b b b b ⨯⎛⎫=++++-=⨯⨯+⨯-= ⎪⎝⎭.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2021年新高考Ⅰ卷·第17题6.(2020年新高考I 卷(山东卷)·第18题)已知公比大于1的等比数列{}n a 满足24320,8a a a +==.(1)求{}n a 的通项公式;(2)记m b 为{}n a 在区间*(0,]()m m ∈N 中的项的个数,求数列{}m b 的前100项和100S .【答案】(1)2nn a =;(2)100480S =.解析:(1)由于数列{}n a 是公比大于1的等比数列,设首项为1a ,公比为q ,依题意有31121208a q a q a q ⎧+=⎨=⎩,解得解得12,2a q ==,或1132,2a q ==(舍),所以2nn a =,所以数列{}n a 的通项公式为2nn a =.(2)由于123456722,24,28,216,232,264,2128=======,所以1b 对应的区间为:(]0,1,则10b =;23,b b 对应的区间分别为:(](]0,2,0,3,则231b b ==,即有2个1;4567,,,b b b b 对应的区间分别为:(](](](]0,4,0,5,0,6,0,7,则45672b b b b ====,即有22个2;8915,,,b b b 对应的区间分别为:(](](]0,8,0,9,,0,15 ,则89153b b b ==== ,即有32个3;161731,,,b b b 对应的区间分别为:(](](]0,16,0,17,,0,31 ,则1617314b b b ==== ,即有42个4;323363,,,b b b 对应的区间分别为:(](](]0,32,0,33,,0,63 ,则3233635b b b ==== ,即有52个5;6465100,,,b b b 对应的区间分别为:(](](]0,64,0,65,,0,100 ,则64651006b b b ==== ,即有37个6.所以23451001222324252637480S =⨯+⨯+⨯+⨯+⨯+⨯=.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2020年新高考I 卷(山东卷)·第18题7.(2020新高考II 卷(海南卷)·第18题)已知公比大于1的等比数列{}n a 满足24320,8a a a +==.(1)求{}n a 通项公式;(2)求112231(1)n n n a a a a a a -+-+⋯+-.【答案】(1)2nn a =;(2)2382(1)55n n +--解析:(1)设等比数列{}n a 的公比为q (q >1),则32411231208a a a q a q a a q ⎧+=+=⎨==⎩,整理可得:22520q q -+=,11,2,2q q a >== ,数列的通项公式为:1222n n n a -=⋅=.(2)由于:()()()1121111122112n n n n n n n n a a --++-+=-⨯⨯=--,故:112231(1)n n n a a a a a a -+-+⋯+-35791212222(1)2n n -+=-+-+⋯+-⋅()()3223221282(1)5512nn n +⎡⎤--⎢⎥⎣⎦==----.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2020新高考II 卷(海南卷)·第18题的8.(2021年高考全国乙卷理科·第19题)记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知212n nS b +=.(1)证明:数列{}n b 是等差数列;(2)求{}n a 的通项公式.【答案】(1)证明见解析;(2)()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.解析:(1)由已知212n n S b +=得221n nn b S b =-,且0n b ≠,12n b ≠,取1n =,由11S b =得132b =,由于n b 为数列{}n S 的前n 项积,所以1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,所以12112222121n b b b b b +⋅=--,所以111221n n n nb b b b +++=-,由于10n b +≠所以12121n n b b +=-,即112n n b b +-=,其中*n N ∈所以数列{}n b 是以132b =为首项,以12d =为公差等差数列;(2)由(1)可得,数列{}n b 是以132b =为首项,以12d =为公差的等差数列,()3111222n nb n ∴=+-⨯=+,22211n n n b nS b n+==-+,当n =1时,1132a S ==,当n ≥2时,()121111n n n n n a S S nn n n -++=-=-=-++,显然对于n =1不成立,∴()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.【点睛】本题考查等差数列的证明,考查数列的前n 项和与项的关系,数列的前n 项积与项的关系,其中由1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,得到1121121222212121n n n b b b b b b b +++⋅⋅⋅⋅=---,进而得到111221n n n nb b b b +++=-是关键一步;要熟练掌握前n 项和,积与数列的项的关系,消和(积)得到项(或项的递推关系),或者消项得到和(积)的递推关系是常用的重要的思想方法.【题目栏目】数列\等差、等比数列的综合应用【题目来源】2021年高考全国乙卷理科·第19题9.(2021年高考全国甲卷理科·第18题)已知数列{}n a 的各项均为正数,记n S 为{}n a 的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{}n a是等差数列:②数列是等差数列;③213aa =.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】答案见解析解析:选①②作条件证明③:(0)an b a =+>,则()2n S an b =+,当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为{}n a 也是等差数列,所以()()222a b a a a b +=-+,解得0b =;所以()221n aa n =-,所以213a a =.选①③作条件证明②:因为213a a =,{}n a 是等差数列,所以公差2112d a a a =-=,所以()21112n n n S na d n a -=+==,)1n =+=,所以是等差数列.选②③作条件证明①:(0)an b a =+>,则()2n S an b =+,当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为213a a =,所以()()2323a a b a b +=+,解得0b =或43a b =-;当0b =时,()221,21n a a a a n ==-,当2n ≥时,2-1-2n n a a a =满足等差数列的定义,此时{}n a 为等差数列;当43a b =-4=3an b an a =+-03a=-<不合题意,舍去.综上可知{}n a 为等差数列.【点睛】这类题型在解答题中较为罕见,求解的关键是牢牢抓住已知条件,结合相关公式,逐步推演,等差数列的证明通常采用定义法或者等差中项法.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2021年高考全国甲卷理科·第18题10.(2020年高考数学课标Ⅰ卷理科·第17题)设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项.(1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.【答案】(1)2-;(2)1(13)(2)9nn n S -+-=.【解析】(1)设{}n a 的公比为q ,1a 为23,a a 的等差中项,212312,0,20a a a a q q =+≠∴+-= ,1,2q q ≠∴=- ;(2)设{}n na 前n 项和为n S ,111,(2)n n a a -==-,21112(2)3(2)(2)n n S n -=⨯+⨯-+⨯-++- ,①23121(2)2(2)3(2)(1)(2)(2)n n n S n n --=⨯-+⨯-+⨯-+--+- ,②①-②得,2131(2)(2)(2)(2)n nn S n -=+-+-++--- 1(2)1(13)(2)(2)1(2)3n n n n n ---+-=--=--,1(13)(2)9nn n S -+-∴=.【点睛】本题考查等比数列通项公式基本量的计算、等差中项的性质,以及错位相减法求和,考查计算求解能力,属于基础题.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2020年高考数学课标Ⅰ卷理科·第17题11.(2020年高考数学课标Ⅲ卷理科·第17题)设数列{a n }满足a 1=3,134n n a a n +=-.(1)计算a 2,a 3,猜想{a n }的通项公式并加以证明;(2)求数列{2n a n }的前n 项和S n .【答案】(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-⋅+.解析:(1)由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+,证明如下:当1n =时,13a =成立;假设n k =时,21k a k =+成立.那么1n k =+时,1343(21)4232(1)1k k a a k k k k k +=-=+-=+=++也成立.则对任意的*n N ∈,都有21n a n =+成立;的(2)由(1)可知,2(21)2n nn a n ⋅=+⋅231325272(21)2(21)2n n n S n n -=⨯+⨯+⨯++-⋅++⋅ ,①23412325272(21)2(21)2n n n S n n +=⨯+⨯+⨯++-⋅++⋅ ,②由①-②得:()23162222(21)2nn n S n +-=+⨯+++-+⋅ ()21121262(21)212n n n -+-=+⨯-+⋅⨯-1(12)22n n +=-⋅-,即1(21)22n n S n +=-⋅+.【点睛】本题主要考查了求等差数列的通项公式以及利用错位相减法求数列的和,属于中档题.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2020年高考数学课标Ⅲ卷理科·第17题12.(2019年高考数学课标全国Ⅱ卷理科·第19题)已知数列{}n a 和{}n b 满足11a =,10b =,1434n n n a a b +=-+,1434n n n b b a +=--.()1证明:{}n n a b +是等比数列,{}n n a b -是等差数列;()2求{}n a 和{}n b 的通项公式.【答案】()1见解析;()21122n n a n =+-,1122n n b n =-+.【官方解析】()1由题设得114()2()n n n n a b b +++=+,即111()2n n n n a b a b +++=+.又因为111a b +=,所以{}n n a b +是首项为1,公比为12的等比数列.由题设得114()4()8n n n n a b a b ++-=-+,即112n n n n a b a b ++-=-+.又因为111a b -=,所以{}n n a b -是首项为1,公差为2的等差数列.()2由()1知,112n n n a b -+=,21n n a b n -=-.所以111[()()]222n n n n n n a a b a b n =++-=+-,111[()()]222n n n n n n b a b a b n =+--=-+.【分析】()1可通过题意中的1434n n n a b a +=-+以及1434n n n b a b +=--对两式进行相加和相减即可推导出数列{}n n a b +是等比数列以及数列{}n n a b -是等差数列;()2可通过()1中的结果推导出数列{}n n a b +以及数列{}n n a b -的通项公式,然后利用数列{}n n a b +以及数列{}n n a b -的通项公式即可得出结果.【解析】()1由题意可知,,,,所以,即111()2n n n n a b a b +++=+,所以数列是首项为、公比为的等比数列,,因为,所以,数列是首项、公差为等差数列,.()2由()1可知,112n n n a b -+=,,所以111[()()]222n n n n n n a a b a b n =++-=+-,111[()()]222n n n n n n b a b a b n =+--=-+.【点评】本题考查了数列的相关性质,主要考查了等差数列以及等比数列的相关证明,证明数列是等差数列或者等比数列一定要结合等差数列或者等比数列的定义,考查推理能力,考查化归与转化思想,是中档题.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2019年高考数学课标全国Ⅱ卷理科·第19题13.(2018年高考数学课标Ⅲ卷(理)·第17题)(12分)等比数列{}n a 中,11a =,534a a =(1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和,若63m S =,求m .(1)12n n a -=或()12n n a -=-;(2)6m =【答案】【官方解析】(1)设{}n a 的公比为q ,由题设得1n n a q -=由已知得424q q =,解得0q =(舍去),2q =-或2q =故()12n n a -=-或12n n a -=(2)若()12n n a -=-,则()123mm S --=,由63m S =,得()2188m-=-,此方和没有正整数解若12n n a -=,则21m m S =-,由63m S =,得264m =,解得6m =综上,6m =.1434n n n a a b +-=+1434n n n b b a +-=-111a b +=111a b -=1144323442n n n n n n n n a b a b b a a b ++=+=--+++-{}n n a b +112(112n n n a b -+=()11443434448n n n n n n n n a b a b b a a b ++---=+-=-+-112n n n n a b a b ++=-+-{}n n a b -12的21n n a b n -=-21n n a b n -=-【民间解析】(1)设等比数列{}n a 的公比为q ,由11a =,534a a =可得42141q q ⨯=⨯⨯,所以24q =所以2q =±当2q =时,1112n n n a a q --==;当2q =-时,()1112n n n a a q --==-(2)由(1)可知2q =±当2q =时,由()1163631m m a q S q-=⇒=-即126312m-=-,即62642m ==,所以6m =;当2q =-时,由()1163631m m a q S q-=⇒=-即()126312m--=+,即()2188m-=-,无解综上可知6m =.【题目栏目】数列\等比数列\等比数列的综合应用【题目来源】2018年高考数学课标Ⅲ卷(理)·第17题14.(2018年高考数学课标Ⅱ卷(理)·第17题)(12分)记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-.(1)求{}n a 的通项公式;(2)求n S ,并求n S 的最小值.【答案】解析:(1)设{}n a 的公差为d ,由题意得13315a d +=-.由17a =得2d =,所以{}n a 的通项公式为29n a n =-.(2)由(1)得228(4)16n S n n n =-=--.所以当4n =时,n S 取得最小值,最小值为16-.【题目栏目】数列\等差数列\等差数列的前n 项和【题目来源】2018年高考数学课标Ⅱ卷(理)·第17题15.(2016高考数学课标Ⅲ卷理科·第17题)已知数列{}n a 的前n 项和1n n S a λ=+,其中0λ≠.(Ⅰ)证明{}n a 是等比数列,并求其通项公式;(Ⅱ)若53132S =,求λ.【答案】(Ⅰ)11(11n n a λλλ-=--;(Ⅱ)1λ=-.【解析】(Ⅰ)由题意得1111a S a λ==+,故1λ≠,111a λ=-,10a ≠.由1n n S a λ=+,111n n S a λ++=+得11n n n a a a λλ++=-,即1(1)n n a a λλ+-=.由10a ≠,0λ≠得0n a ≠,所以11n n a a λλ+=-.因此{}n a 是首项为11λ-,公比为1λλ-的等比数列,于是11()11n n a λλλ-=--.(Ⅱ)由(Ⅰ)得1()1n n S λλ=--,由53132S =得5311(132λλ-=-,即51()132λλ=-,解得1λ=-.【题目栏目】数列\等比数列\等比数列的前n 项和【题目来源】2016高考数学课标Ⅲ卷理科·第17题16.(2016高考数学课标Ⅱ卷理科·第17题)(本题满分12分)n S 为等差数列{}n a 的前n 项和,且17=128.a S ,=记[]=lg n nb a ,其中[]x 表示不超过x 的最大整数,如[][]0.9=0lg 99=1,.(I)求111101b b b ,,;(II)求数列{}n b 的前1 000项和.【答案】(1)[]1lg10b ==,[]11lg111b ==,[]101lg1012b ==;(2)1893.【解析】(1)设{}n a 的公差为d ,据已知有72128d +=,解得1d =.所以数列{}n a 的通项公式为n a n =.[]1lg10b ==,[]11lg111b ==,[]101lg1012b ==.(2)因为0,110,1,10100,2,1001000,3,1000,n n n b n n ≤<⎧⎪≤<⎪=⎨≤<⎪⎪=⎩所以数列{}n b 的前1000项和为1902900311893⨯+⨯+⨯=.【题目栏目】数列\等差数列\等差数列的前n 项和【题目来源】2016高考数学课标Ⅱ卷理科·第17题17.(2015高考数学新课标1理科·第17题)(本小题满分12分)n S 为数列{}n a 的前n 项和.已知20,24 3.n n n n a a a S >+=+(Ⅰ)求{}n a 的通项公式:(Ⅱ)设112n n n b a a +=,求数列{}n b 的前n 项和【答案】(Ⅰ)21n +(Ⅱ)11646n -+分析:(Ⅰ)先用数列第n 项与前n 项和的关系求出数列{n a }的递推公式,可以判断数列{n a }是等差数列,利用等差数列的通项公式即可写出数列{n a }的通项公式;(Ⅱ)根据(Ⅰ)数列{n b }的通项公式,再用拆项消去法求其前n 项和.解析:(Ⅰ)当1n =时,211112434+3a a S a +=+=,因为0n a >,所以1a =3,当2n ≥时,2211n n n n a a a a --+--=14343n n S S -+--=4n a ,即111()()2()n n n n n n a a a a a a ---+-=+,因为0n a >,所以1n n a a --=2,所以数列{n a }是首项为3,公差为2的等差数列,所以n a =21n +;(Ⅱ)由(Ⅰ)知,n b =1111((21)(23)22123n n n n =-++++,所以数列{n b }前n 项和为12n b b b +++ =1111111[((()]235572123n n -+-++-++ =11646n -+.考点:数列前n 项和与第n 项的关系;等差数列定义与通项公式;拆项消去法【题目栏目】数列\数列的求和\裂项相消法求和问题【题目来源】2015高考数学新课标1理科·第17题18.(2014高考数学课标2理科·第17题)(本小题满分12分)已知数列{}n a 满足1a =1,131n n a a +=+.(Ⅰ)证明{}12n a +是等比数列,并求{}n a 的通项公式;(Ⅱ)证明:12111na a a ++<…+【答案】解析:(Ⅰ)由131n n a a +=+,得1113(22n n a a ++=+,且11322a +=所以{}12n a +是首相为32,公比为3的等比数列。
高考数学理科二轮复习课件:专题3第二讲 数列求和及综合应用
综上,数列2an-n 1的前 n 项和 Sn=2nn-1.
本题考查等差数列的通项公式的求法以及用错位相减法 求数列的前n项和,难度适中.
数列{bn}的前 n 项和.
解析:(1)设等差数列{an}的公差为 d,由题意得: d=a4-3 a1=12- 3 3=3, 所以 an=a1+(n-1)d=3n(n=1,2,…), 设等比数列{bn-an}的公比为 q,由题意得:q3=bb41--aa41
=240--312=8,解得 q=2.
所以 bn-an=(b1-a1)qn-1=2n-1,从而 bn=3n+2n-1(n =1,2,…).
随堂讲义
专题三 数 列 第二讲 数列求和及综合应用
高考数列一定有大题,按近几年高考特点,可估计 2016年不会有大的变化,考查递推关系、数学归纳法的 可能较大,但根据高考题命题原则,一般会有多种方法 可以求解.因此,全面掌握数列求和相关的方法更容易 让你走向成功.
例 1 已知数列{an}中,a1=1,an·an+1=12n(n∈N*),
(1)求数列{an}的通项公式;
(2)求数列2an-n 1的前 n 项和. 思路点拨:(1)由题设求出 a1,d,可确定通项公式; (2)可用错位相减法求和.
解析:(1)设等差数列{an}的公差为 d,由已知条件可得 a21a+1+d1=2d0, =-10,解得ad1==-1,1.
(1)已知数列{bn}的前 n 项和 Sn,求 bn 时分如下三个步 骤进行:①当 n=1 时,b1=S1;②当 n≥2 时,bn=Sn-Sn -1;③验证 b1 是否适合 n≥2 的解析式,据验证情况写出 bn 的表达式.
高考理科数学一轮复习专题训练:数列(含详细答案解析)
B . 3 2.在正项等比数列{a }中,已知 a 4 = 2 , a = ,则 a 5 的值为( 8= 2 , a = ,可得 8 q 4 = 8 = ,又因为 q > 0 ,所以 q = 1 2 2127B .35063C .28051D . 3502第 7 单元 数列(基础篇)第Ⅰ卷一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知等差数列{a n }的前 n 项和为 S n ,若 a 1=12,S 5=90,则等差数列{a n }公差 d =()A .2【答案】C2 C .3D .4【解析】∵a =12,S =90,∴ 5 ⨯12 + 1 5 5 ⨯ 4 2d = 90 ,解得 d=3,故选 C .n 8 1 )1 1 A . B . - C . -1 D .14 4【答案】D【解析】由题意,正项等比数列{a }中,且 a n 48 1 a 1 a 16 41,则 a = a ⋅ q = 2 ⨯ = 1 ,故选 D .5 43.在等差数列{a n}中, a 5+ a = 40 ,则 a + a + a = ( ) 13 8 9 10A .72B .60C .48D .36【答案】B【解析】根据等差数列的性质可知: a 5 + a 13 = 40 ⇒ 2a 9 = 40 ⇒ a 9 = 20 ,a + a + a = 2a + a = 3a = 60 ,故本题选 B .8 9109994.中国古代数学名著《张丘建算经》中记载:“今有马行转迟,次日减半,疾七日,行七百里”.其大意:现有一匹马行走的速度逐渐变慢,每天走的里程数是前一天的一半,连续走了7 天,共走了 700 里,则这匹马第 7 天所走的路程等于()A .700里里 里【答案】A127里【解析】设马每天所走的路程是 a 1, a 2 ,.....a 7 ,是公比为1的等比数列,a 1 - ( )7 ⎪a = a q 6= 7005.已知等差数列{a n } 的前 n 项和 S n 有最大值,且 a=10(a +a )2= 5(a + a ) = 5(a + a ) > 0 , S =2 = 11a < 0 , (a + 2d - 1)2 = (a + d - 1)(a + 4d - 1) ⎩ d = 2这些项的和为 700, S = 7 ⎛ 1 ⎫ 1 ⎝ 2 ⎭1 - 12 = 700 ⇒ a =1 64 ⨯ 700 127 ,7 1 127 ,故答案为 A .a 5< -1 ,则满足 S 6n> 0 的最大正整数 n 的值为()A .6B .7C .10D .12【答案】C【解析】设等差数列{a n } 的公差为 d ,因为等差数列{a n } 的前 n 项和 S n 有最大值,所以 d < 0 ,a又 a 5 < -1 ,所以 a 5 > 0 , a 6 < 0 ,且 a 5 + a 6 > 0 ,6 所以 S1 101 10 5 6 11 所以满足 S n > 0 的最大正整数 n 的值为 10.11(a + a )1 1166.已知等差数列{a n}的公差不为零, Sn为其前 n 项和, S 3 = 9 ,且 a 2 - 1 , a 3 - 1, a 5 - 1构成等比数列,则 S 5 = ( )A .15B . -15C .30D .25【答案】D【解析】设等差数列{a n}的公差为 d (d ≠ 0),⎧⎪3a + 3d = 9⎧a = 1 由题意 ⎨ 1 ,解得 ⎨ 1 ⎪⎩ 1 1 1.∴ S = 5 ⨯1 +5 5 ⨯ 4 ⨯ 22 = 25 .故选 D .7.在等差数列{a n } 中, a 3 , a 9 是方程 x 2 + 24 x + 12 = 0 的两根,则数列{a n } 的前 11 项和等于(A .66B .132C . -66D . -132【答案】D)S = 11⨯ (a + a ) 2 2 2 = 15 ,解得 n = 5 ,( )nC . a = 3n -1D . a =3n【解析】因为 a 3 , a 9 是方程 x 2 + 24 x + 12 = 0 的两根,所以 a 3 + a 9 = -24 ,又 a 3 + a 9 = -24 = 2a 6 ,所以 a 6 = -12 ,11⨯ 2a1 11 = 6 = -132 ,故选 D . 118.我国南宋数学家杨辉 1261 年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就,在“杨辉三角”中,第n 行的所有数字之和为 2n -1 ,若去除所有为 1 的项,依次构成数列 2,3,3,4,6,4,5,10,10,5,…,则此数列的前 15 项和为()A .110B .114C .124D .125【答案】B【解析】由题意, n 次二项式系数对应的杨辉三角形的第 n +1行, 令 x = 1 ,可得二项展开式的二项式系数的和 2n ,其中第 1 行为 2 0 ,第 2 行为 21 ,第 3 行为 22 ,L L 以此类推,即每一行的数字之和构成首项为 1,公比为 2 的对边数列,则杨辉三角形中前 n 行的数字之和为 S = n 1- 2n1- 2 = 2n - 1,若除去所有为 1 的项,则剩下的每一行的数字的个数为1,2,3, 4,L ,可以看成构成一个首项为 1,公差为 2 的等差数列,则T =n n (n + 1)2 ,令 n (n + 1)所以前 15 项的和表示前 7 行的数列之和,减去所有的 1,即 27 - 1 - 13 = 114 ,即前 15 项的数字之和为 114,故选 B .9.已知数列{a }的前 n 项和为 S nn,满足 2S n =3a n -1 ,则通项公式 a n 等于()A . a = 2n- 1n【答案】CB . a= 2nn n: , + , + + , + + + , ,那么数列 {b }= ⎧⎨ 1 ⎩ a an n +1 ⎭n + 1 ⎭C . 4 ⨯ ⎝ 2 n + 1 ⎭D .⎝ 1 + 2 + ⋅⋅⋅ + n n2 a an (n + 1) ⎝ n n + 1 ⎭ = = = 4 ⨯ - ⎪ , ∴ S = 4 ⨯ 1 - + - + - + ⋅⋅⋅ + - = 4 ⨯ 1 - ⎪ 2 2 3 3 4 n n + 1 ⎭ ⎝ ⎝⎪ , 1 1 ⎫【解析】当 n = 1 时, 2S 1 = 3a 1 -1 ,∴ a 1 = 1 ,当 n ≥ 2 且 n ∈ N * 时, 2S n -1 = 3a n -1 - 1 ,则 2S n - 2Sn -1 = 2a n = 3a n - 1 - 3a n -1 + 1 = 3a n - 3a n -1 ,即 a n = 3an -1,∴ 数列 {a }是以1 为首项, 3 为公比的等比数列∴ a nn= 3n -1 ,本题正确选项 C . 10.已知数列 满足,且 ,则( )A .B .C .D .【答案】B【解析】利用排除法,因为,当当当当时,时,时,时, ,排除 A ;,B 符合题意;,排除 C ;,排除 D ,故选 B .11.已知数列为()1 12 1 23 1 2 34 2 3 3 4 4 45 5 5 5⋯ n ⎫ ⎬ 前 项和A .1 - 1 ⎛ n + 1B . 4 ⨯ 1 - 1 ⎫ ⎛ 1 ⎪ - 1 ⎫⎪1 1-2 n + 1【答案】B【解析】由题意可知: a =nn (n + 1)= = , n + 1 n + 1 2∴ b = 1n n n +11 4 ⎛ 1 1 ⎫ n n + 1 ⋅2 2⎛ 1 1 1 1 1 ⎛ n本题正确选项 B .1 ⎫n + 1 ⎭12.已知数列{a }满足递推关系: a , a = ,则 a 2017= (12016B . 12018D . 1=a 2 -= 1 . ⎩ a∴ 1=1}满足 a 2 q ,可设三数为 , a , aq ,可得 ⎪⎨ a⎪ q 求出 ⎨ ,公比 q 的值为 1.=3an n +1 = a 1 n a + 12 n)A .12017C .12019【答案】C【解析】∵ ana + 1 n1, a = ,∴ 1 1 1 a a n +1 n⎧ 1 ⎫∴数列 ⎨ ⎬ 是等差数列,首项为 2,公差为 1.n ⎭a2017= 2 + 2016 = 2018 ,则 a2018 .故选 C .第Ⅱ卷二、填空题:本大题共4 小题,每小题5 分.13.已知等比数列{a n 1 = 12 ,且 a 2a 4 = 4(a3 - 1) ,则 a 5 = _______.【答案】8【解析】∵ a 2a 4 = 4(a 3 - 1) ,∴ a 3 = 4(a 3 -1) ,则 a 3 = 2 ,∴ a = 5 a 2 3 = a122 1 2= 8 ,故答案为 8.14.若三数成等比数列,其积为 8,首末两数之和为 4,则公比 q 的值为_______.【答案】1【解析】三数成等比数列,设公比为⎧a = 2⎩ q = 1⎧ a3 = 8 a q + aq =4 ⎩,15.在数列 {an}中,a 1= 1 , an 3 + a n(n ∈ N *)猜想数列的通项公式为________.=3a4 3 + a 53 + a 6 3a 3a 32 数列的通项公式为 a = 3n + 2 n + 2+ = (m + n) + ⎪ = 10 + + ⎪ ≥ 10 + 2 ⋅ ⎪⎪ = 2 , n m ⎭ 8 ⎝ n m ⎭【答案】3n + 2【解析】由 an 3 + a n, a = 1 ,可得 a = 1 2 3a 1 3 + a 13 3 3= , a = = , a == ,……,∴ 猜想 3 4 2 33,本题正确结果 .n16.已知正项等比数列{a n } 满足 2a 5 + a 4 = a 3 ,若存在两项 a m , a n ,使得 8 a m a n = a 1 ,则9 1+ 的最小值 mn为__________.【答案】2【解析】Q 正项等比数列{a n } 满足 2a 5 + a 4 = a 3 ,∴ 2a 1q 4 +a 1q 3 =a 1q 2 ,整理得 2q 2 +q - 1 = 0 ,又 q > 0 ,解得 q = 12,Q 存在两项 a , a 使得 8 a ⋅ a = a ,∴ 64a 2 q m +n -2 = a 2 ,整理得 m + n = 8 ,m nmn111∴则 9 1 1 ⎛ 9 1 ⎫ 1 ⎛ m 9n ⎫ 1 ⎛ m 9n ⎫ m n 8 ⎝ m n ⎭ 8 ⎝9 1 m 9n+ 的最小值为 2,当且仅当 = 取等号,但此时 m , n ∉ N * .m n n m又 m + n = 8 ,所以只有当 m = 6 , n = 2 时,取得最小值是 2.故答案为 2.三、解答题:本大题共6 个大题,共 70 分,解答应写出文字说明、证明过程或演算步骤.17.(10 分)已知等差数列{a n(1)求 {a}的通项公式;n}的公差不为 0, a 1= 3 ,且 a , a , a 成等比数列.2 4 7(2)求 a 2 + a 4 + a 6 + L + a 2n .【答案】(1) a n = n + 2 ;(2) n 2 + 3n .【解析】(1)Q a 2 , a 4 , a 7成等比数列,∴a42= a a ,2 7即 (a 1 + 3d )2 = (a 1 + d )(a 1 + 6d ) ,化简得 (a 1 - 3d )d = 0 ,∵公差 d ≠ 0 ,∴ a 1 = 3d ,6=n (a +a ) (2)若b= 4 { ⎪ 12 由题意得 ⎨,则 ⎨ , ⎩ 7 ⎪(a + 6d )2 = (a + d )(a + 21d )⎩ 1化简得 ⎨⎧a + 2d = 7(2)证明: b = 42n (2n + 4) n (n + 2) 2 ⎝ n n + 2 ⎭ - + - + - + L +⎪1 + - - = - ⎪ < . ⎪Q a = 3 ,∴ d = 1,∴ a = a + (n - 1)d = n + 2 .1 n1(2)由(1)知 a 2n = 2n + 2 ,故{a 2n } 是首项为 4、公差为 2 的等差数列,所以 a + a + a + L + a2 4 6 n (4 + 2n + 2)2 2n = = n 2 + 3n . 2 218.(12 分)已知公差不为零的等差数列{a n } 满足 S 5 = 35 ,且 a 2 , a 7 , a 22 成等比数列.(1)求数列{a n } 的通项公式;n nn(a - 1)(a + 3) ,且数列 b n }的前 n 项和为 T n ,求证: T < 3n 4.【答案】(1) a n = 2n + 1;(2)见详解.【解析】(1)设等差数列{a n } 的公差为 d ( d ≠ 0 ),⎧ 5 ⨯ 4⎧S = 355a + d = 35 5a 2 = a a2 221 11 ⎩2a 1 = 3d ⎧a = 3 ,解得 ⎨ 1⎩d = 2,所以 a = 3 + 2 (n -1) = 2n +1. nn nn(a -1)(a + 3) =4 11⎛1 1 ⎫ = = - ⎪ ,所以 T = n 1 ⎛ 1 1 1 1 1 1 1 1 1 1 ⎫- + - 2 ⎝ 1 3 2 4 3 5 n - 1 n + 1 n n + 2 ⎭= 1 ⎛ 1 1 1 ⎫ 3 1 ⎛ 1 1 ⎫ 3 + 2 ⎝ 2 n + 1 n + 2 ⎭ 4 2 ⎝ n + 1 n + 2 ⎭ 419.(12 分)已知数列{a n}的前 n 项和为 Sn且 S = 2a - 1 (n ∈ N * ) .n n(1)求数列{a n}的通项公式;(2)求数列{na n}的前 n 项和 T n.【答案】(1) a = 2n- 1 ;(2) T = n ⋅ 2n - 2n + 1 .nn【解析】(1)因为 S = 2a - 1 ,当 n ≥ 2 时, S = 2a - 1 ,7= 2a + 1 , n ∈ N * .+1),数列 ⎨ 15 ≤ T n < ; 即 a ∴ 数列 {a }的通项公式为 a = 2n - 1 n ∈ N * .(2n + 1)(2n + 3) 2⎝ 2n + 1 2n + 3⎪⎭ , - ⎪ + - ⎪ +⋅⋅⋅+⎪⎥ 2 ⎢⎣⎝ 3 5 ⎭ ⎝ 5 7 ⎭ ⎝ 2n + 2n + 3 ⎭⎦ 6 4n + 6整理可得 a n = 2a n -1 ,Q a = S = 2a - 1 ,解得 a = 1 ,1 111所以数列 {a n}为首项为1 ,公比为 2 的等比数列,∴a = 2n -1 .n(2)由题意可得:T = 1⨯ 20 + 2 ⨯ 21 + ⋅⋅⋅ + n ⋅ 2n ,n所以 2T = 1⨯ 21 + 2 ⨯ 22 + ⋅⋅⋅ + (n - 1)2n -1 + n ⋅ 2n ,n两式相减可得 -T = 1 + 21 + 22 + ⋅⋅⋅+ 2n -1 - n ⋅ 2n = n∴ T = n ⋅ 2n - 2n + 1 .n1 - 2n 1 - 2- n ⋅ 2n = 2n - 1 - n ⋅ 2n ,20.(12 分)已知数列{a n}满足 a 1= 1 , an +1n(1)求证数列{a n +1}是等比数列,并求数列{a n } 的通项公式;(2)设 b = log (a n 2 2n +1 ⎧ 1 ⎫ 1 1b b ⎬ 的前 n 项和 T n ,求证:6 ⎩ n n +1 ⎭.【答案】(1)证明见解析, a = 2n - 1(n ∈ N * )(2)见解析. n【解析】(1)由 an +1 = 2a n + 1 ,得 a n +1 + 1 = 2 (a + 1),n+ 1n +1 a + 1n= 2 ,且 a + 1 = 2 ,1∴ 数列 {a +1}是以 2 为首项, 2 为公比的等比数列,n∴ a + 1 = 2 ⨯ 2n -1 = 2n ,n( )nn(2)由(1)得: b = logn2(a2n +1+ 1) = log (22n +1- 1 + 1)= 2n + 1 ,2∴1b bn n +11 1 ⎛ 1 1 ⎫ = = -∴T = n1 ⎡⎛ 1 1 ⎫ ⎛ 1 1 ⎫ ⎛ 1 1 ⎫⎤ 1 1 - = - (n ∈ N * ),8又 0 < 1即 1n (2)设数列满足 b = a sin a π2的前 项和 .⎪⎩n,2 3 L 2 3 L 2 (a + 4) = S + S 2a = d + 4 d = 2 ⎪ ⎩= asin n π + ⎪ = a cos (n π ) , 2 ⎭ ⎝n +1,2n -1,⎪⎩n, 2 3 L 2 3 L a ⋅ a1 1 1 1 1 1 1≤ ,∴- ≤- < 0 ,∴ ≤ - < ,4n + 6 10 10 4n + 6 15 6 4n + 6 61≤ T < .15 621.(12 分)已知等差数列的前 项和为 ,且 是 与 的等差中项.(1)求的通项公式;n ,求n n【答案】(1)⎧⎪- (n + 2), ;(2) T = ⎨n n = 2k - 1(k = 1,,, ) n = 2k (k = 1,,, ) .⎧a = 7⎧a + 2d = 7 ⎧a = 3 【解析】(1)由条件,得 ⎨ 3 ,即 ⎨ 1 , ⎨ 1⎪715⎩1⎩,所以{a n }的通项公式是(2)由(1)知, b = a sinnn.(2n + 1)π 2n n⎛ π ⎫(1)当 n = 2k -1 (k =1,2,3,…)即 n 为奇数时, b = -a , b nnn +1= aT = -a + a - a + L + a n 1 2 3 n -1 - a = -a + (-2) n - 1= -n - 2 ;n 1(2)当 n = 2k (k =1,2,3,…):即 n 为偶数时, b = a , bnnn -1= -aT = -a + a - a +⋯- a n 1 2 3 n -1+ a = 2 ⋅ n n 2= n ,⎧⎪- (n + 2), 综上所述, T = ⎨n22.(12 分)设正项数列n = 2k - 1(k = 1,,, ) n = 2k (k = 1,,, ) .的前 n 项和为 ,已知 .(1)求证:数列 是等差数列,并求其通项公式;(2)设数列的前 n 项和为 ,且 b = 4n nn +1,若对任意 都成立,求实数 的取值范围.9(2)由(1)可得 b = 1 n (n + 1) n n + 1∴ T = 1 - ⎪ + - ⎪ + L + - ⎛ 1 ⎫ ⎛ 1 1 ⎫ ⎛ 1 1 ⎫1 n = 1 -= , ⎪ 2 ⎭ ⎝ 2 3 ⎭⎝ n n + 1 ⎭n + 1 n + 1⎝,即 nλ < n + (-1)n ⋅ 2 对任意⎢⎣ ⎥⎦n 恒成立,令 f (n ) = (n + 2)(n + 1)Q f (n + 1)- f (n ) = n (n + 1)- 2②当 为奇数时, λ < (n - 2)(n + 1)又 (n - 2)(n + 1)= n - - 1 ,易知:f (n ) = n - 在【答案】(1)见证明,【解析】(1)证明:∵;(2),且.,当当即时,时,有,解得 .,即.,于是,即.∵ ,∴为常数,∴数列是 为首项, 为公差的等差数列,∴.1 1= - ,nnn + 1都成立⎡ n (n + 1)+ (-1)n ⋅ 2 (n + 1)⎤⇔ λ <⎢⎥ nmin(n ∈ N *),①当 为偶数时, λ < (n + 2)(n + 1) = n + 2+ 3 ,n nn (n + 1) > 0 ,在 上为增函数,;n 恒成立,2 2 n n n为增函数,,102⨯ 4 ⨯ 3 = 0 ⎧a = -3 ⎪S 4 = 4a 1 + ⎪⎩a = a + 4d = 516 4⎩q3 (a + a + a ) = 120 ∴由①②可知:,综上所述 的取值范围为.第 7 单元 数列(提高篇)第Ⅰ卷一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.记 S 为等差数列{a } 的前 n 项和.已知 S = 0 , a = 5 ,则()n n45A . a n = 2n - 5B . a n = 3n - 10C . S = 2n 2 - 8nD . S = 1n nn 2 - 2n【答案】A2.已知等比数列{a }中, a n 3 ⋅ a = 20 , a = 4 ,则 a 的值是( )13 6 10A .16B .14C .6D .5【答案】D【解析】由等比数列性质可知 a ⋅ a = a 2 = 20 ,3138由 a 6 = 4 ,得 q 4= a 2 8 = a 2620 5= ,∴ a = a q 4 = 5 ,本题正确选项 D .10 63.等比数列{a } 中, a + a + a = 30 , a + a + a = 120 ,则 a + a + a = ( )n123456789A .240B .±240C .480D .±480【答案】C【解析】设等比数列{a } 中的公比为 q ,由 a + a + a = 30 , a + a + a = 120 ,n 1 2 3 4 5 6⎧ 得 ⎨a + a + a = 301 2 31 2 3,解得 q 3 = 4 ,∴ a + a + a = q 3 (a + a + a ) = 480.7 8 9 4 5 6112 , N = 4.我国古代的《洛书》中记载着世界上最古老的一个幻方:如图,将1,2,…,9 填入3 ⨯ 3 的方格内,使三行,三列和两条对角线上的三个数字之和都等于 15.一般地,将连续的正整数1,2,3,L , n 2 填入 n ⨯ n 个方格中,使得每行,每列和两条对角线上的数字之和都相等,这个正方形叫做n 阶幻方.记 n 阶幻方的对角线上的数字之和为 N n ,如图三阶幻方的 N 3 = 15 ,那么 N 9 的值为()A .369B .321C .45D .41【答案】A【解析】根据题意可知,幻方对角线上的数成等差数列,根据等差数列的性质可知对角线的两个数相加正好等于1 + n 2,根据等差数列的求和公式 S = n (1+ n 2 ) 9 9 ⨯ (1+ 92 ) 2 = 369 ,故选 A .5.已知 1, a 1 , a 2 ,9 四个实数成等差数列,1, b 1 , b 2 , b 3 ,9 五个数成等比数列,则b 2 (a 2 - a 1 ) = ( A .8 B .-8 C .±8 D .98【答案】A)【解析】由 1, a 1 , a 2 ,9 成等差数列,得公差 d = a 2 - a 1 = 9 - 1 84 - 1 = 3 ,由 1, b , b , b ,9 成等比数列,得 b 2 = 1⨯ 9 ,∴ b = ±3 ,12322当 b = -3 时,1, b , -3 成等比数列,此时 b 2 = 1⨯ (-3) 无解,2 11所以 b = 3 ,∴ b (a - a 2 2 2 1 ) = 3 ⨯ 8= 8 .故选 A .36.已知数列{a n }是公比不为 1 的等比数列, S n为其前 n 项和,满足 a = 2 ,且16a , 9a , 2a2 1 4 7成等差数列,则 S = ()3A . 5B .6C .7D .9【答案】C【解析】数列{a n } 是公比 q 不为 l 的等比数列,满足 a 2 = 2 ,即 a 1q = 2 ,122 ⨯ 2 + 3)⨯ 2 ; 2 ⨯ 2 + 4 )⨯3 ;22- 5 =,且 A n =7n + 45a7= (10B .172C . 143A . 93【解析】因为 7 = 7 = a + a a 2a A = 13 = 7 ⨯13 + 45 = 17 1 13 2 且16a , 9a , 2a 成等差数列,得18a = 16a + 2a ,即 9a q 3 = 8a + a q 6 ,1 47417111解得 q = 2,a = 1 ,则 S = 1 3 1 - 23 1 - 2= 7 .故选 C .7.将石子摆成如图的梯形形状,称数列 5,9,14,20,L ,为“梯形数”.根据图形的构成,此数列的第 2016 项与 5 的差,即 a 2016- 5 = ()A . 2018⨯ 2014B . 2018⨯ 201C .1011⨯ 2015D .1010⨯ 2012【答案】C【解析】由已知的图形我们可以得出图形的编号与图中石子的个数之间的关系为:n =1 时, a = 2 + 3 = 11(n =2 时, a = 2 + 3 + 4 = 2…,由此我们可以推断:1 (a = 2 + 3 + L + (n + 2 ) = 1n⎡⎣2 + (n + 2)⎤⎦ ⨯ (n + 1),∴ a 1⨯ ⎡⎣2 + (2016 + 2)⎤⎦ ⨯ (2016 + 1)- 5 = 1011⨯ 2015 .故选 C .20168.已知两个等差数列{a }和 {b }的前 n 项和分别为 A 和 BnnnnB n + 3 b n 7)17D .15【答案】B771131313(a + a )1 131 13= 2 b 2b b + b 13(b + b ) B 13 + 3 2,故答案选 B .9.已知数列{ }的前 n 项和为 , , ( ),则 ( )A.32B.64C.128D.25613,∴ S B .C . 1a - 1 a - 1,n⎧B . 2019 ) =+ = + = + =2 ,1 1 + 1 + a 2a 2【答案】B【解析】由,得,又,∴- 1 n +1 S - 1n= 2 ,即数列{则∴10.数列1}是以 1 为首项,以 2 为公比的等比数列,,则 ..故选 B .满足: ,若数列 是等比数列,则 的值是()A .1 【答案】B2 D .【解析】数列为等比数列 ⇒ a- 1λa - 2上式恒成立,可知 ⎨λ =q⎩-2 = -q⇒ λ = 2 ,本题正确选项 B .11.已知函数 f (x ) =2( 1 + x 2x ∈ R ),若等比数列满足 a a1 2019= 1 ,则A .2019【答案】A ( )2 C .2D . 1 2【解析】∴ f (a )+ f (a12019,1 + a2 1 + a 2 1 + a 2 1 + a 21 2019 1 1 1为等比数列,则,14b b3B . 16 C . 115D . 2b b= = - ⎭ 数列 的前 项和 T = - + - ⎪ ⎪ , 2 ⎝ 3 5 5 72n + 1 2n + 3 ⎭ 2 ⎝ 3 2n + 3 ⎭可得 λ ≤ 12,即12.已知是公比不为 1 的等比数列,数列.满足: , , 成等比数列,c =1n2n 2n +2,若数列的前 项和对任意的恒成立,则 的最大值为( )A .115【答案】C【解析】由 , ,成等比数列得 a 2 =a a ,2 2nb n又是公比不为 1 的等比数列,设公比为 q ,则 a 2 q2b n-2 = a 2 q 2n ,整理得 b = n + 1,c =111n n2n 2n +21 1 ⎛ 1 1 ⎫ (2n + 1)(2n + 3)2 ⎝ 2n + 1 2n +3 ⎪ ,1 ⎛ 1 1 1 11 1 ⎫ 1 ⎛ 1 1 ⎫+ ⋅⋅⋅ +- = - n数列 是单调递增数列,则当 n =1 时取到最小值为1151 ,即 的最大值为,故选 C .1515,第Ⅱ卷二、填空题:本大题共4 小题,每小题5 分.13.已知{a n } 是等差数列, a 2 + a 4 + a 6 + a 8 = 16 ,则 S 9 = _________.【答案】36【解析】{a n } 是等差数列, a 2 + a 4 + a 6 + a 8 = 16 , a 2 + a 8 = a 4 + a 6 = 2a 5 ,得出 a 5 = 4 ,又由 S = 9 ⋅ (a 1 + a 9 )9 = 9a = 36 .514.在数列 {a }中, a n 1= 1,an +1- a = 2n + 1 ,则数列的通项 a = ________.n n15x【答案】 n 2【解析】当 n ≥ 2 时,a = (a - a ) + (ann n -1n -1- a n -2) + (an -2- a n -3) + L + (a - a ) + (a - a ) + a ,3 2 2 1 1⇒ a = (2n - 1) + (2n - 3) + (2 n - 5) + L + 5 + 3 + 1 = n当 n = 1 , a 也适用,所以 a = n 2 .1nn (2n - 1 + 1) 2= n 2 ,15.设数列{a n } 的前 n 项和为 S n ,且 ∀n ∈ N *, a n +1a = ________.n【答案】 n - 6(n ∈ N * ) (答案不唯一)> a , S ≥ S .请写出一个满足条件的数列{a } 的通项公式n n 6 n【解析】 ∀n ∈ N * , a n +1> a ,则数列{a } 是递增的, ∀n ∈ N * , S ≥ S ,即 S 最小,n n n 6 6只要前 6 项均为负数,或前 5 项为负数,第 6 项为 0,即可,所以,满足条件的数列{a n } 的一个通项公式 a n = n - 6(n ∈ N * ) (答案不唯一).16.已知函数 f ( x ) = x 2 cosπx2,数列 {a }中, a = f (n )+ f (n + 1)(n ∈ N * ) ,则数列{a }的n n n前 40 项之和 S 40 = __________.【答案】1680【解析】函数 f (x ) = x 2 cos π 2且数列 {a }中, a = f (n )+ f (n +1),n n可得 a = f (1)+ f (2) = 0 - 4 = -4 ; a = f (2)+ f (3) = -4 + 0 = -4 ;12a = f (3)+ f (4) = 0 +16 = 16 ; a = f (4)+ f (5) = 16 ;3 4a = f (5)+ f (6) = 0 - 36 = -36 ; a = f (6)+ f (7) = -36 ;…,5 6可得数列 {a n 即有数列 {a n}为 -4 , -4 , 16 ,16 , -36 , -36 , 64 , 64 , -100 , -100 ,…, }的前 40 项之和:S = (-4 - 4 +16 +16)+ (-36 - 36 + 64 + 64)+ (-100 -100 +144 +144)+ 40⋅⋅⋅+ (-1444 -1444 +1600 +1600) = 24 + 56 + 88 +⋅⋅⋅+ 31216= ⨯10 ⨯ (24 + 312 ) = 1680 , ( a b a 1 - 22n 2 + n (n ∈ N * ).2 2 222212本题正确结果1680 .三、解答题:本大题共6 个大题,共 70 分,解答应写出文字说明、证明过程或演算步骤.17.10 分)已知数列{a n}是等比数列,数列 {b }是等差数列,且满足: n 1= b = 1 , + b = 4a , - 3b = -5 .1 2 3 2 3 2(1)求数列{a n }和 {b }的通项公式;n(2)设 c n = a n + b n ,求数列 {c n}的前 n 项和 S n .【答案】(1) a = 2n -1 , n ∈ N * , b = 2n - 1,n ∈ N * ;(2) S = 2n + n 2 - 1 .nn n【解析】(1)设 {an}的公比为 q , {b }的公差为 d ,由题意 q > 0 ,n⎧(1+ d ) + (1+ 2d ) = 4q ⎧-4q + 3d = -2由已知,有 ⎨ ,即 ⎨⎩q 2 - 3(1+ d ) = -5 ⎩ q 2 - 3d = -2⇒ q 2 - 4q + 4 = 0 ⇒ d = q = 2 ,所以 {a n }的通项公式为 an= 2n -1 , n ∈ N * , {b }的通项公式为 b = 2n - 1,n ∈ N * .n n(2) c = a + b = 2n -1 + 2n - 1 ,分组求和,分别根据等比数列求和公式与等差数列求和公式得到nnn1 - 2nn (1+ 2n - 1)S =+= 2n + n 2 - 1 .n18.(12 分)己知数列{a }的前 n 项和为 S n(1)求 {a}的通项公式;nn且 S = n 1 12 2(2)设 b n =1a an n +1,求数列 {b n}的前 100 项和.【答案】(1) a n = n ;(2) T100 =100 101.【解析】(1)当 n ≥ 2 时, S =n两式相减得 a n = S n - S n -1 = n , n 2 + n , S = (n - 1)2 + (n - 1)= n 2 + n- n ,17当 n =1时, a = S = + = 1,满足 a = n ,\ a = n . 2 2骣 1 骣 1 骣1 1 1 1 1001 - + - +L + - +2 = - , n +1 =2 n∈ N * ). ⎧⎬(2)若数列{b }满足: ba + 1 3n4 4 == 3 +n⎩ a n +1⎭a + 1 = 3n ,所以 a =1 - 1 . 3n ( )⇒ S = 2n - 144(2)令 b = 2n + 1,求数列 {b }的前 n 项和 T 及 T 的最小值.a + 2 nn1 11 1 n n(2)由(1)可知 b n =1 1 1= - ,n (n + 1) n n + 1所以数列 {b n}的前 100 项和 T100= b +b +?1 2b100= 琪 琪 琪 琪 - = 1 - = .桫 2桫 3 ? 99 100100 101 101 10119.(12 分)已知数列{a }满足: a n 1 3a -2a n - 3 ( 3a + 4 n(1)证明数列 ⎨ 1 ⎫ 为等差数列,并求数列{a n }的通项公式;⎩ a n + 1⎭nn =3n (n ∈ N * ),求 {b }的前 n 项和 S . nn n【答案】(1)证明见解析, a = n1 2n - 1 9- 1;(2) S = ⨯ 3n +2 + .n【解析】(1)因为 an +1+ 1 = -2a - 3 a + 1 1 3a + 4 1 n + 1 = n ,所以 , 3a + 4 3a + 4 a + 1 a a + 1 n n n +1 n +1 n⎧ 1 ⎫所以 ⎨ ⎬ 是首项为 3,公差为 3 的等差数列,所以n1 n(2)由(1)可知: a =n 1 3n- 1,所以由 b = n 3n a + 1 nn ∈ N * ⇒ b = n ⋅ 3n +1 , nS = 1 ⨯ 32 + 2 ⨯ 33 + L + (n - 1) ⨯ 3n + n ⨯ 3n +1 ①;n3S = 1 ⨯ 33 + 2 ⨯ 34 + L + (n - 1) ⨯ 3n +1 + n ⨯ 3n +2 ②,n①-②得 -2S = 32 + 33 + L + 3n +1 - n ⨯ 3n +2 = n 32 (3n - 1)3 - 1 - n ⨯ 3n +2n9⨯ 3n +2+ .20.(12 分)已知数列{a n}的前 n 项和为 Sn,且 S n = 2a n - 2n -1 .(1)求数列{a n}的通项公式;n nn185 ⨯ 2n -1 (2)Q b = 2n + 1 1 1 1 ⎛ 3 5 7 2n + 1 ⎫ ,则 T n = ⎪ , a + 2 52n -1 5 ⎝ 20 21 22 2n -1 ⎭ T = ⎪ 两式作差得 1 - T = ⨯ ⎢3 + ⎛ 1 ⎫ 1 ⎡ ⎛ 2 2 2 ⎫ 2n + 1⎤ 2n + 5 + +⋅⋅⋅+ - = 1 -2n ⎥⎦ ⎝ 2 ⎭ n 5 ⎣21 22 2n -1 ⎭ 5 ⨯ 2n 5 ⨯ 2n -1 5 ⨯ 2n 5 ⨯ 2n -1 5 ⨯ 2n 5 ⎧( ⎧ n - 1)2n + , n 是奇数 3 - 3n ⎪b n = 2 2 , n 是奇数2 , b = ⎨ ;(2) T = ⎨ .3n ⎪(n - 1)2n + 1 + , n 是偶数 n -2 ⎪b = 2 2 , n 是偶数n n【答案】(1)a = 5 ⨯ 2n -1- 2 (n ∈ N *);(2) T = 2 - 2n +5 3,最小值 . 5【解析】(1)当 n =1 时, a 1 = S 1 = 2a 1 - 2 - 1 ,解得 a 1 = 3 ,当 n ≥ 2 时, a n = S n - S n -1 = 2a n - 2a n -1 - 2 ,解得 a n = 2 a n -1 + 2 .则 a + 2 = 2 (an n -1+ 2),故 {a n + 2}是首项为 a 1 + 2 = 5 ,公比为 2 的等比数列,∴ a = 5 ⨯ 2n -1 - 2 (n ∈ N * ). n = ⨯ (2n + 1)⨯ + + + ⋅⋅⋅ +nn1 1 ⎛2 n 5 ⎝3 5 7 2n - 1 2n + 1 ⎫+ + + ⋅⋅⋅ + +21 22 23 2n -1 2n ⎭⎪ ⎪⎝,所以 T = 2 - n 2n + 5 5 ⨯ 2n -1,2n + 5 2n + 7 2n + 5 -2n - 3令 c = ,有 c - c =- = < 0 ,对 n ∈ N * 恒成立, n n +1 n则数列{c n }是递减数列,故{T n } 为递增数列,则 (T n )min 3= T = . 121.(12 分)已知正项数列且.的前 项和为 ,且 , ,数列 满足 ,(1)求数列(2)令【答案】(1), 的通项公式;,求数列 的前 项和 .n +1 ⎪⎪ n n⎩ n ⎪⎩ 2【解析】(1)当时, ,即 ,,19⎧⎪S + S = a 2 由 ⎨ ,可得= a 2 (n ≥ 2) ,⎪⎩ n由 ⎨ 两式相除,得 n +1 = 2 (n ≥ 2 ),⎧b b = 2n b⎪⎩b n -1b n = 2n -1 (n ≥ 2)综上:b = ⎨ n ⎪b = 2 n -22 , n 是偶数 ⎩ ⎧ 3n ⎪⎪ 2 , 的前 项和为 B ,∴ B = ⎨ , -3n + 1 ⎪ , n 是奇数 ⎧(n - 1)2n + , n 是奇数 ⎪⎪ 2综上: T = ⎨ .3n ⎪(n - 1)2n + 1 + , n 是偶数n +1 n n +1 S + S n -1 n即,又是公差为 ,首项为 的等差数列,,由题意得:,n n +1 b n -1是奇数时,是公比是 ,首项 的等比数列,∴ b = 2nn +1 2 ,同理 是偶数时是公比是 ,首项的等比数列,∴ b = 2nn -2 2 ,n ⎧ n +1⎪b = 2 2 , n 是奇数n.(2)令,即 ,⎧⎪ A = 1⋅ 20 + 2 ⋅ 21 + 3 ⋅ 22 + ⋅⋅⋅ + n ⋅ 2n -1的前 项和为 ,则 ⎨ n⎪⎩2 A n = 1⋅ 21 + 2 ⋅ 22 + 3 ⋅ 23 + ⋅⋅⋅ + n ⋅ 2n,两式相减得 - A = 20 + 21 + 22 + 2n -1 - n ⋅ 2n = n,1 - 2n 1 - 2- n ⋅ 2n ,令n n⎪⎩ 2n 是偶数3 - 3nn⎪⎩ 220ln 22 ln 32 ln n 2 (n - 1)(2n + 1) (当 x ≥ a 时, f '( x ) = 1 - = ,此时要考虑 a 与 1 的大小.(2)由(1)可知当 a = 1 , x > 1 时, x -1 - ln x > 0 ,即 ln x > 1 - x ,所以 ln x = n - 1 - = n - 1 - - ⎪ < n - 1 - + + L + ⎝ 2 n 2 ⎭ ⎝ 2 ⨯ 3 3 ⨯ 4 n(n + 1) ⎭ 1 ⎫ n - 1 = (n - 1) - n + 1 ⎭ 2(n + 1) ⎛ 122.(12 分)已知函数 f ( x ) =| x - a | - ln x(a > 0) .(1)讨论 f ( x ) 的单调性;(2)比较 + +⋯+ 与 的大小 n ∈ N * 且 n > 2) ,并证明你的结论.22 32 n 2 2(n + 1)【答案】(1)见解析;(2)见解析.⎧ x - ln x - a, 【解析】(1)函数 f ( x ) 可化为 f ( x ) = ⎨⎩a - x - ln x,x ≥ a0 < x < a ,当 0 < x < a 时, f '( x ) = -1 - 1 x< 0 ,从而 f ( x ) 在 (0, a) 上总是递减的,1 x - 1x x①若 a ≥ 1 ,则 f '( x ) ≥ 0 ,故 f ( x ) 在 [a, +∞ ) 上递增;②若 0 < a < 1 ,则当 a ≤ x < 1 时, f '( x ) < 0 ;当 x > 1 时, f '( x ) > 0 ,故 f ( x ) 在 [a,1) 上递减,在 (1, +∞) 上递增,而 f ( x ) 在 x = a 处连续,所以当 a ≥ 1 时, f ( x ) 在 (0, a) 上递减,在[a, +∞ ) 上递增;当 0 < a < 1 时, f ( x ) 在 (0,1) 上递减,在[1, +∞ ) 上递增.1< 1 - .x x所以 ln 22 ln 32 ln n 2 1 1 1+ + L + < 1 - + 1 - + L 1 -22 32 n 2 22 32 n 2⎛ 1 1 + ⎝ 22 32 + L + 1 ⎫ 1 1 ⎫ ⎛ 1 ⎪ ⎪2n 2 - 2 - n + 1 (n - 1)(2n + 1) = = .2(n + 1) 2(n + 1)21。
高三理科数学一轮总复习第六章 数列
第六章数列高考导航知识网络6.1 数列的概念与简单表示法典例精析题型一 归纳、猜想法求数列通项【例1】根据下列数列的前几项,分别写出它们的一个通项公式: (1)7,77,777,7 777,… (2)23,-415,635,-863,… (3)1,3,3,5,5,7,7,9,9,…【解析】(1)将数列变形为79·(10-1),79(102-1),79(103-1),…,79(10n -1),故a n =79(10n -1).(2)分开观察,正负号由(-1)n+1确定,分子是偶数2n ,分母是1×3,3×5,5×7, …,(2n -1)(2n +1),故数列的通项公式可写成a n =(-1)n+1)12)(12(2+-n n n.(3)将已知数列变为1+0,2+1,3+0,4+1,5+0,6+1,7+0,8+1,9+0,….故数列的通项公式为a n =n +2)1(1n-+.【点拨】联想与转换是由已知认识未知的两种有效的思维方法,观察归纳是由特殊到一般的有效手段,本例的求解关键是通过分析、比较、联想、归纳、转换获得项与项序数的一般规律,从而求得通项.【变式训练1】如下表定义函数f (x ):对于数列{a n },a 1=4,a n =f (n -1 2 008 ) A.1B.2C.3D.4【解析】a 1=4,a 2=1,a 3=5,a 4=2,a 5=4,…,可得a n +4=a n . 所以a 2 008=a 4=2,故选B.题型二 应用a n =⎪⎩⎪⎨⎧≥-=-)2(),1(11n S S n S n n求数列通项【例2】已知数列{a n }的前n 项和S n ,分别求其通项公式: (1)S n =3n -2; (2)S n =18(a n +2)2 (a n >0).【解析】(1)当n =1时,a 1=S 1=31-2=1,当n ≥2时,a n =S n -S n -1=(3n -2)-(3n -1-2)=2×3n -1,又a 1=1不适合上式,故a n =⎪⎩⎪⎨⎧≥⨯=-)2(32),1(11n n n(2)当n =1时,a 1=S 1=18(a 1+2)2,解得a 1=2,当n ≥2时,a n =S n -S n -1=18(a n +2)2-18(a n -1+2)2,所以(a n -2)2-(a n -1+2)2=0,所以(a n +a n -1)(a n -a n -1-4)=0, 又a n >0,所以a n -a n -1=4, 可知{a n }为等差数列,公差为4,所以a n =a 1+(n -1)d =2+(n -1)·4=4n -2, a 1=2也适合上式,故a n =4n -2.【点拨】本例的关键是应用a n =⎪⎩⎪⎨⎧≥-=-)2(),1(11n S S n S n n求数列的通项,特别要注意验证a 1的值是否满足“n ≥2”的一般性通项公式.【变式训练2】已知a 1=1,a n =n (a n +1-a n )(n ∈N *),则数列{a n }的通项公式是( ) A.2n -1B.(n +1n)n -1C.n 2D.n【解析】由a n =n (a n +1-a n )⇒a n +1a n =n +1n. 所以a n =a n a n -1×a n -1a n -2×…×a 2a 1=n n -1×n -1n -2×…×32×21=n ,故选D.题型三 利用递推关系求数列的通项【例3】已知在数列{a n }中a 1=1,求满足下列条件的数列的通项公式: (1)a n +1=a n 1+2a n ;(2)a n +1=2a n +2n +1.【解析】(1)因为对于一切n ∈N *,a n ≠0,因此由a n +1=a n 1+2a n 得1a n +1=1a n +2,即1a n +1-1a n=2.所以{1a n }是等差数列,1a n =1a 1+(n -1)·2=2n -1,即a n =12n -1.(2)根据已知条件得a n +12n +1=a n 2n +1,即a n +12n +1-a n2n =1.所以数列{a n 2n }是等差数列,a n 2n =12+(n -1)=2n -12,即a n =(2n -1)·2n -1.【点拨】通项公式及递推关系是给出数列的常用方法,尤其是后者,可以通过进一步的计算,将其进行转化,构造新数列求通项,进而可以求得所求数列的通项公式.【变式训练3】设{a n }是首项为1的正项数列,且(n +1)·a 2n +1-na 2n +a n +1a n =0(n =1,2,3,…),求a n .【解析】因为数列{a n }是首项为1的正项数列, 所以a n a n +1≠0,所以(n +1)a n +1a n -na n a n +1+1=0,令a n +1a n=t ,所以(n +1)t 2+t -n =0, 所以[(n +1)t -n ](t +1)=0,得t =n n +1或t =-1(舍去),即a n +1a n =nn +1.所以a 2a 1·a 3a 2·a 4a 3·a 5a 4·…·a n a n -1=12·23·34·45·…·n -1n ,所以a n =1n .总结提高1.给出数列的前几项求通项时,常用特征分析法与化归法,所求通项不唯一.2.由S n 求a n 时,要分n =1和n ≥2两种情况.3.给出S n 与a n 的递推关系,要求a n ,常用思路是:一是利用S n -S n -1=a n (n ≥2)转化为a n 的递推关系,再求其通项公式;二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n .6.2 等差数列典例精析题型一 等差数列的判定与基本运算 【例1】已知数列{a n }前n 项和S n =n 2-9n .(1)求证:{a n }为等差数列;(2)记数列{|a n |}的前n 项和为T n ,求 T n 的表达式. 【解析】(1)证明:n =1时,a 1=S 1=-8,当n ≥2时,a n =S n -S n -1=n 2-9n -[(n -1)2-9(n -1)]=2n -10, 当n =1时,也适合该式,所以a n =2n -10 (n ∈N *). 当n ≥2时,a n -a n -1=2,所以{a n }为等差数列. (2)因为n ≤5时,a n ≤0,n ≥6时,a n >0. 所以当n ≤5时,T n =-S n =9n -n 2,当n ≥6时,T n =||a 1+||a 2+…+||a 5+||a 6+…+||a n =-a 1-a 2-…-a 5+a 6+a 7+…+a n =S n -2S 5=n 2-9n -2×(-20)=n 2-9n +40,所以,【点拨】根据定义法判断数列为等差数列,灵活运用求和公式.【变式训练1】已知等差数列{a n }的前n 项和为S n ,且S 21=42,若记b n =1391122a a a --,则数列{b n }( )A.是等差数列,但不是等比数列B.是等比数列,但不是等差数列C.既是等差数列,又是等比数列D.既不是等差数列,又不是等比数列【解析】本题考查了两类常见数列,特别是等差数列的性质.根据条件找出等差数列{a n }的首项与公差之间的关系从而确定数列{b n }的通项是解决问题的突破口.{a n }是等差数列,则S 21=21a 1+21×202d =42.所以a 1+10d =2,即a 11=2.所以b n =1391122a a a--=22-(2a 11)=20=1,即数列{b n }是非0常数列,既是等差数列又是等比数列.答案为C.题型二 公式的应用【例2】设等差数列{a n }的前n 项和为S n ,已知a 3=12,S 12>0,S 13<0. (1)求公差d 的取值范围;(2)指出S 1,S 2,…,S 12中哪一个值最大,并说明理由. 【解析】(1)依题意,有S 12=12a 1+12×(12-1)d 2>0,S 13=13a 1+13×(13-1)d2<0,即⎩⎨⎧<+>+②① 06 011211d a d a由a 3=12,得a 1=12-2d .③将③分别代入①②式,得⎩⎨⎧<+>+03,0724d d所以-247<d <-3.(2)方法一:由d <0可知a 1>a 2>a 3>…>a 12>a 13,因此,若在1≤n ≤12中存在自然数n ,使得a n >0,a n +1<0, 则S n 就是S 1,S 2,…,S 12中的最大值. 由于S 12=6(a 6+a 7)>0,S 13=13a 7<0, 即a 6+a 7>0,a 7<0,因此a 6>0,a 7<0, 故在S 1,S 2,…,S 12中,S 6的值最大.方法二:由d <0可知a 1>a 2>a 3>…>a 12>a 13,因此,若在1≤n ≤12中存在自然数n ,使得a n >0,a n +1<0, 则S n 就是S 1,S 2,…,S 12中的最大值.故在S 1,S 2,…,S 12中,S 6的值最大.【变式训练2】在等差数列{a n }中,公差d >0,a 2 008,a 2 009是方程x 2-3x -5=0的两个根,S n 是数列{a n }的前n 项的和,那么满足条件S n <0的最大自然数n = .【解析】由题意知⎩⎨⎧<-=>=+,05,030092008 2009 2008 2a a a a 又因为公差d >0,所以a 2 008<0,a 2 009>0. 当n =4 015时,S 4 015=a 1+a 4 0152×4 015=a 2 008×4 015<0;当n =4 016时,S 4 016=a 1+a 4 0162×4 016=a 2 008+a 2 0092×4 016>0.所以满足条件S n <0的最大自然数n =4 015.题型三 性质的应用【例3】某地区2010年9月份曾发生流感,据统计,9月1日该地区流感病毒的新感染者有40人,此后,每天的新感染者人数比前一天增加40人;但从9月11日起,该地区医疗部门采取措施,使该种病毒的传播得到控制,每天的新感染者人数比前一天减少10人.(1)分别求出该地区在9月10日和9月11日这两天的流感病毒的新感染者人数; (2)该地区9月份(共30天)该病毒新感染者共有多少人?【解析】(1)由题意知,该地区9月份前10天流感病毒的新感染者的人数构成一个首项为40,公差为40的等差数列.所以9月10日的新感染者人数为40+(10-1)×40=400(人). 所以9月11日的新感染者人数为400-10=390(人).(2)9月份前10天的新感染者人数和为S 10=10(40+400)2=2 200(人),9月份后20天流感病毒的新感染者的人数,构成一个首项为390,公差为-10的等差数列. 所以后20天新感染者的人数和为T 20=20×390+20(20-1)2×(-10)=5 900(人).所以该地区9月份流感病毒的新感染者共有2 200+5 900=8 100(人).【变式训练3】设等差数列{a n }的前n 项和为S n ,若S 4≥10,S 5≤15,则a 4的最大值为 .【解析】因为等差数列{a n }的前n 项和为S n ,且S 4≥10,S 5≤15,所以5+3d 2≤a 4≤3+d ,即5+3d ≤6+2d ,所以d ≤1,所以a 4≤3+d ≤3+1=4,故a 4的最大值为4.总结提高1.在熟练应用基本公式的同时,还要会用变通的公式,如在等差数列中,a m =a n +(m -n )d .2.在五个量a 1、d 、n 、a n 、S n 中,知其中的三个量可求出其余两个量,要求选用公式要恰当,即善于减少运算量,达到快速、准确的目的.3.已知三个或四个数成等差数列这类问题,要善于设元,目的仍在于减少运算量,如三个数成等差数列时,除了设a ,a +d ,a +2d 外,还可设a -d ,a ,a +d ;四个数成等差数列时,可设为a -3m ,a -m ,a +m ,a +3m .4.在求解数列问题时,要注意函数思想、方程思想、消元及整体消元的方法的应用.6.3 等比数列典例精析题型一 等比数列的基本运算与判定【例1】数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n S n(n =1,2,3,…).求证: (1)数列{S nn}是等比数列;(2)S n +1=4a n .【解析】(1)因为a n +1=S n +1-S n ,a n +1=n +2n S n ,所以(n +2)S n =n (S n +1-S n ).整理得nS n +1=2(n +1)S n ,所以S n +1n +1=2·S nn ,故{S nn }是以2为公比的等比数列.(2)由(1)知S n +1n +1=4·S n -1n -1=4a nn +1(n ≥2),于是S n +1=4(n +1)·S n -1n -1=4a n (n ≥2).又a 2=3S 1=3,故S 2=a 1+a 2=4.因此对于任意正整数n ≥1,都有S n +1=4a n .【点拨】①运用等比数列的基本公式,将已知条件转化为关于等比数列的特征量a 1、q 的方程是求解等比数列问题的常用方法之一,同时应注意在使用等比数列前n 项和公式时,应充分讨论公比q 是否等于1;②应用定义判断数列是否是等比数列是最直接,最有依据的方法,也是通法,若判断一个数列是等比数列可用a n +1a n=q (常数)恒成立,也可用a 2n +1 =a n ·a n +2 恒成立,若判定一个数列不是等比数列则只需举出反例即可,也可以用反证法.【变式训练1】等比数列{a n }中,a 1=317,q =-12.记f (n )=a 1a 2…a n ,则当f (n )最大时,n 的值为( )A.7B.8C.9D.10【解析】a n =317×(-12)n -1,易知a 9=317×1256>1,a 10<0,0<a 11<1.又a 1a 2…a 9>0,故f (9)=a 1a 2…a 9的值最大,此时n =9.故选C.题型二 性质运用【例2】在等比数列{a n }中,a 1+a 6=33,a 3a 4=32,a n >a n +1(n ∈N *). (1)求a n ;(2)若T n =lg a 1+lg a 2+…+lg a n ,求T n .【解析】(1)由等比数列的性质可知a 1a 6=a 3a 4=32, 又a 1+a 6=33,a 1>a 6,解得a 1=32,a 6=1, 所以a 6a 1=132,即q 5=132,所以q =12,所以a n =32·(12)n -1=26-n .(2)由等比数列的性质可知,{lg a n }是等差数列, 因为lg a n =lg 26-n =(6-n )lg 2,lg a 1=5lg 2,所以T n =(lg a 1+lg a n )n 2=n (11-n )2lg 2.【点拨】历年高考对性质考查较多,主要是利用“等积性”,题目“小而巧”且背景不断更新,要熟练掌握.【变式训练2】在等差数列{a n }中,若a 15=0,则有等式a 1+a 2+…+a n =a 1+a 2+…+a 29-n (n <29,n ∈N *)成立,类比上述性质,相应地在等比数列{b n }中,若b 19=1,能得到什么等式?【解析】由题设可知,如果a m =0,在等差数列中有a 1+a 2+…+a n =a 1+a 2+…+a 2m -1-n (n <2m -1,n ∈N *)成立, 我们知道,如果m +n =p +q ,则a m +a n =a p +a q , 而对于等比数列{b n },则有若m +n =p +q ,则a m a n =a p a q , 所以可以得出结论:若b m =1,则有b 1b 2…b n =b 1b 2…b 2m -1-n (n <2m -1,n ∈N *)成立. 在本题中则有b 1b 2…b n =b 1b 2…b 37-n (n <37,n ∈N *). 题型三 综合运用【例3】设数列{a n }的前n 项和为S n ,其中a n ≠0,a 1为常数,且-a 1,S n ,a n +1成等差数列. (1)求{a n }的通项公式;(2)设b n =1-S n ,问是否存在a 1,使数列{b n }为等比数列?若存在,则求出a 1的值;若不存在,说明理由.【解析】(1)由题意可得2S n =a n +1-a 1.所以当n ≥2时,有⎩⎨⎧-=-=-+11,1122a a S a a S n n n n两式相减得a n +1=3a n (n ≥2). 又a 2=2S 1+a 1=3a 1,a n ≠0,所以{a n }是以首项为a 1,公比为q =3的等比数列. 所以a n =a 1·3n -1.(2)因为S n =a 1(1-q n )1-q =-12a 1+12a 1·3n ,所以b n =1-S n =1+12a 1-12a 1·3n .要使{b n }为等比数列,当且仅当1+12a 1=0,即a 1=-2,此时b n =3n .所以{b n }是首项为3,公比为q =3的等比数列. 所以{b n }能为等比数列,此时a 1=-2.【变式训练3】已知命题:若{a n }为等差数列,且a m =a ,a n =b (m <n ,m 、n ∈N *),则a m +n =bn -amn -m .现在已知数列{b n }(b n >0,n ∈N *)为等比数列,且b m =a ,b n =b (m <n ,m ,n ∈N *),类比上述结论得b m +n = .【解析】n -m b na m.总结提高1.方程思想,即等比数列{a n }中五个量a 1,n ,q ,a n ,S n ,一般可“知三求二”,通过求和与通项两公式列方程组求解.2.对于已知数列{a n }递推公式a n 与S n 的混合关系式,利用公式a n =S n -S n -1(n ≥2),再引入辅助数列,转化为等比数列问题求解.3.分类讨论思想:当a 1>0,q >1或a 1<0,0<q <1时,等比数列{a n }为递增数列;当a 1>0,0<q <1或a 1<0,q >1时,{a n }为递减数列;q <0时,{a n }为摆动数列;q =1时,{a n }为常数列.6.4 数列求和典例精析题型一 错位相减法求和【例1】求和:S n =1a +2a 2+3a 3+…+nan .【解析】(1)a =1时,S n =1+2+3+…+n =n (n +1)2.(2)a ≠1时,因为a ≠0, S n =1a +2a 2+3a 3+…+nan ,①1a S n =1a 2+2a 3+…+n -1a n +n an +1.② 由①-②得(1-1a )S n =1a +1a 2+…+1a n -n a n +1=1a (1-1a n )1-1a-n a n +1, 所以S n =a (a n -1)-n (a -1)a n (a -1)2. 综上所述,S n =⎪⎪⎩⎪⎪⎨⎧≠----=+).1()1()1()1(),1(2)1(2a a a a n a a a n n n n 【点拨】(1)若数列{a n }是等差数列,{b n }是等比数列,则求数列{a n ·b n }的前n 项和时,可采用错位相减法;(2)当等比数列公比为字母时,应对字母是否为1进行讨论;(3)当将S n 与qS n 相减合并同类项时,注意错位及未合并项的正负号.【变式训练1】数列{2n -32n -3}的前n 项和为( ) A.4-2n -12n -1 B.4+2n -72n -2 C.8-2n +12n -3 D.6-3n +22n -1 【解析】取n =1,2n -32n -3=-4.故选C. 题型二 分组并项求和法【例2】求和S n =1+(1+12)+(1+12+14)+…+(1+12+14+…+12n -1). 【解析】和式中第k 项为a k =1+12+14+…+12k -1=1-(12)k 1-12=2(1-12k ). 所以S n =2[(1-12)+(1-122)+…+(1-12n )] =])111([2个n +⋯++-(12+122+…+12n )] =2[n -12(1-12n )1-12]=2[n -(1-12n )]=2n -2+12n -1. 【变式训练2】数列1, 1+2, 1+2+22,1+2+22+23,…,1+2+22+…+2n -1,…的前n 项和为( ) A.2n -1B.n ·2n -nC.2n +1-nD.2n +1-n -2 【解析】a n =1+2+22+…+2n -1=2n -1,S n =(21-1)+(22-1)+…+(2n -1)=2n +1-n -2.故选D.题型三 裂项相消法求和【例3】数列{a n }满足a 1=8,a 4=2,且a n +2-2a n +1+a n =0 (n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =1n (14-a n )(n ∈N *),T n =b 1+b 2+…+b n (n ∈N *),若对任意非零自然数n ,T n >m 32恒成立,求m 的最大整数值.【解析】(1)由a n +2-2a n +1+a n =0,得a n +2-a n +1=a n +1-a n ,从而可知数列{a n }为等差数列,设其公差为d ,则d =a 4-a 14-1=-2, 所以a n =8+(n -1)×(-2)=10-2n .(2)b n =1n (14-a n )=12n (n +2)=14(1n -1n +2), 所以T n =b 1+b 2+…+b n =14[(11-13)+(12-14)+…+(1n -1n +2)] =14(1+12-1n +1-1n +2)=38-14(n +1)-14(n +2)>m 32, 上式对一切n ∈N *恒成立.所以m <12-8n +1-8n +2对一切n ∈N *恒成立. 对n ∈N *,(12-8n +1-8n +2)min =12-81+1-81+2=163, 所以m <163,故m 的最大整数值为5. 【点拨】(1)若数列{a n }的通项能转化为f (n +1)-f (n )的形式,常采用裂项相消法求和.(2)使用裂项相消法求和时,要注意正负项相消时,消去了哪些项,保留了哪些项.【变式训练3】已知数列{a n },{b n }的前n 项和为A n ,B n ,记c n =a n B n +b n A n -a n b n (n ∈N *),则数列{c n }的前10项和为( )A.A 10+B 10B.A 10+B 102C.A 10B 10D.A 10B 10【解析】n =1,c 1=A 1B 1;n ≥2,c n =A n B n -A n -1B n -1,即可推出{c n }的前10项和为A 10B 10,故选C. 总结提高1.常用的基本求和法均对应数列通项的特殊结构特征,分析数列通项公式的特征联想相应的求和方法既是根本,也是关键.2.数列求和实质就是求数列{S n }的通项公式,它几乎涵盖了数列中所有的思想策略、方法和技巧,对学生的知识和思维有很高的要求,应充分重视并系统训练.6.5 数列的综合应用典例精析题型一 函数与数列的综合问题【例1】已知f (x )=log a x (a >0且a ≠1),设f (a 1),f (a 2),…,f (a n )(n ∈N *)是首项为4,公差为2的等差数列.(1)设a 是常数,求证:{a n }成等比数列;(2)若b n =a n f (a n ),{b n }的前n 项和是S n ,当a =2时,求S n .【解析】(1)f (a n )=4+(n -1)×2=2n +2,即log a a n =2n +2,所以a n =a 2n +2, 所以a n a n -1=a 2n +2a2n =a 2(n ≥2)为定值,所以{a n }为等比数列. (2)b n =a n f (a n )=a 2n +2log a a 2n +2=(2n +2)a 2n +2, 当a =2时,b n =(2n +2) ·(2)2n +2=(n +1) ·2n +2, S n =2·23+3·24+4·25+…+(n +1) ·2n +2, 2S n =2·24+3·25+…+n ·2n +2+(n +1)·2n +3, 两式相减得-S n =2·23+24+25+…+2n +2-(n +1)·2n +3=16+24(1-2n -1)1-2-(n +1)·2n +3, 所以S n =n ·2n +3. 【点拨】本例是数列与函数综合的基本题型之一,特征是以函数为载体构建数列的递推关系,通过由函数的解析式获知数列的通项公式,从而问题得到求解.【变式训练1】设函数f (x )=x m +ax 的导函数f ′(x )=2x +1,则数列{1f (n )}(n ∈N *)的前n 项和是( ) A.n n +1 B.n +2n +1C.n n +1D.n +1n 【解析】由f ′(x )=mx m -1+a =2x +1得m =2,a =1.所以f (x )=x 2+x ,则1f (n )=1n (n +1)=1n -1n +1.所以S n =1-12+12-13+13-14+…+1n -1n +1=1-1n +1=n n +1.故选C. 题型二 数列模型实际应用问题【例2】某县位于沙漠地带,人与自然长期进行着顽强的斗争,到2009年底全县的绿化率已达30%,从2010年开始,每年将出现这样的局面:原有沙漠面积的16%将被绿化,与此同时,由于各种原因,原有绿化面积的4%又被沙化.(1)设全县面积为1,2009年底绿化面积为a 1=310,经过n 年绿化面积为a n +1,求证:a n +1=45a n +425; (2)至少需要多少年(取整数)的努力,才能使全县的绿化率达到60%?【解析】(1)证明:由已知可得a n 确定后,a n +1可表示为a n +1=a n (1-4%)+(1-a n )16%,即a n +1=80%a n +16%=45a n +425. (2)由a n +1=45a n +425有,a n +1-45=45(a n -45), 又a 1-45=-12≠0,所以a n +1-45=-12·(45)n ,即a n +1=45-12·(45)n , 若a n +1≥35,则有45-12·(45)n ≥35,即(45)n -1≤12,(n -1)lg 45≤-lg 2, (n -1)(2lg 2-lg 5)≤-lg 2,即(n -1)(3lg 2-1)≤-lg 2,所以n ≥1+lg 21-3lg 2>4,n ∈N *, 所以n 取最小整数为5,故至少需要经过5年的努力,才能使全县的绿化率达到60%.【点拨】解决此类问题的关键是如何把实际问题转化为数学问题,通过反复读题,列出有关信息,转化为数列的有关问题.【变式训练2】规定一机器狗每秒钟只能前进或后退一步,现程序设计师让机器狗以“前进3步,然后再后退2步”的规律进行移动.如果将此机器狗放在数轴的原点,面向正方向,以1步的距离为1单位长移动,令P (n )表示第n 秒时机器狗所在的位置坐标,且P (0)=0,则下列结论中错误的是( )A.P (2 006)=402B.P (2 007)=403C.P (2 008)=404D.P (2 009)=405【解析】考查数列的应用.构造数列{P n },由题知P (0)=0,P (5)=1,P (10)=2,P (15)=3.所以P (2 005)=401,P (2 006)=401+1=402,P (2 007)=401+1+1=403,P (2 008)=401+3=404,P (2 009)=404-1=403.故D 错.题型三 数列中的探索性问题【例3】{a n },{b n }为两个数列,点M (1,2),A n (2,a n ),B n (n -1n ,2n)为直角坐标平面上的点. (1)对n ∈N *,若点M ,A n ,B n 在同一直线上,求数列{a n }的通项公式;(2)若数列{b n }满足log 2C n =a 1b 1+a 2b 2+…+a n b n a 1+a 2+…+a n,其中{C n }是第三项为8,公比为4的等比数列,求证:点列(1,b 1),(2,b 2),…,(n ,b n )在同一直线上,并求此直线方程.【解析】(1)由a n -22-1=2n -2n -1n-1,得a n =2n . (2)由已知有C n =22n -3,由log 2C n 的表达式可知: 2(b 1+2b 2+…+nb n )=n (n +1)(2n -3),①所以2[b 1+2b 2+…+(n -1)b n -1]=(n -1)n (2n -5).②①-②得b n =3n -4,所以{b n }为等差数列.故点列(1,b 1),(2,b 2),…,(n ,b n )共线,直线方程为y =3x -4.【变式训练3】已知等差数列{a n }的首项a 1及公差d 都是整数,前n 项和为S n (n ∈N *).若a 1>1,a 4>3,S3≤9,则通项公式a n=.【解析】本题考查二元一次不等式的整数解以及等差数列的通项公式.由a1>1,a4>3,S3≤9得令x=a1,y=d得在平面直角坐标系中画出可行域如图所示.符合要求的整数点只有(2,1),即a1=2,d=1.所以a n=2+n -1=n+1.故答案填n+1.总结提高1.数列模型应用问题的求解策略(1)认真审题,准确理解题意;(2)依据问题情境,构造等差、等比数列,然后应用通项公式、前n项和公式以及性质求解,或通过探索、归纳构造递推数列求解;(3)验证、反思结果与实际是否相符.2.数列综合问题的求解策略(1)数列与函数综合问题或应用数学思想解决数列问题,或以函数为载体构造数列,应用数列的知识求解;(2)数列的几何型综合问题,探究几何性质和规律特征建立数列的递推关系式,然后求解问题.。
有关高考数列的题PPT
热点题型
命题分析
综合考查等差数列与等比数列的定义、通项公式、
前n项和公式、等差(比)中项、等差(比)数列的性 类型一:等差数列、等
质.重点考查基本量(即“知三求二”,解方程(组)) 比数列及综合应用
的计算,灵活运用等差、等比数列的性质以及转化
化归、构造等思想解决问题.
∵a5=5,S5=15,∴a51a+1+4d5=×5(,25-1)d=15,∴ad1==11,,
∴an=a1+(n-1)d=n.
∴ana1n+1=n(n+1 1)=1n-n+1 1,
∴
数
列
1 anan+1
的
前
100
项 和 为 1-12 + 12-31 + … +
1100-1101=1-1101=110001.
高考总复习·数学理科(RJ)
第六章 数 列
角度二 数列与不等式的交汇 【例 4】 (2018·郑州质检二)已知数列{an}的前 n 项和为 Sn, a1=-2,且满足 Sn=12an+1+n+1(n∈N*). (1)求数列{an}的通项公式; (2)若 bn=log3(-an+1),设数列bnb1n+2的前 n 项和为 Tn,求 证:Tn<34.
高考总复习·数学理科(RJ)
第六章 数 列
【解析】 (1)由 Sn=12an+1+n+1(n∈N*),得 Sn-1 =21an+n(n≥2,n∈N*), 两式相减,并化简,得 an+1=3an-2, 即 an+1-1=3(an-1),又 a1-1=-2-1=-3≠0, 所以{an-1}是以-3 为首项,3 为公比的等比数列, 所以 an-1=(-3)·3n-1=-3n. 故 an=-3n+1.
2024届高三数学二轮专题复习数列求和—裂项相消法教学设计
高三二轮复习数列求和—裂项相消法教学设计内容教学目的掌握裂项相消求和的使用环境及一般过程和思路.教学重点难点识别裂项相消求和的使用环境.如何裂项?如何相消?教学过程过程一、强调本微课学习内容,学习目标,重难点,易错点。
学习目标:掌握裂项相消求和的使用环境及一般过程和思路.学习重点:识别裂项相消求和的使用环境.学习难点:如何裂项?如何相消?易错点:裂项时忘记配平,相消时留下哪些项?过程二、通过熟悉的典型例子入手,引导学生回顾裂项相消的具体类型。
裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消(注意消项规律),从而求得前n项和.看下面两个例子:)211(2121+-=+nnnn)(⎪⎭⎫⎝⎛+-+-+=⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛+-++⎪⎭⎫⎝⎛-+⎪⎭⎫⎝⎛-+⎪⎭⎫⎝⎛-=+++⨯+⨯+⨯211121121211......513141213112121......531421311nnnnnn)(()()))2)(1(1)1(1(21211++-+=++nnnnnnn()()⎪⎪⎭⎫⎝⎛++-=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫⎝⎛++-+++⎪⎭⎫⎝⎛⨯-⨯+⎪⎭⎫⎝⎛⨯-⨯=++++⨯⨯+⨯⨯+⨯⨯)2)(1(12121)2)(1(1)1(1......43132132121121211......543143213211nnnnnnnnn过程三、因为是二轮专题复习,学生经过一轮的复习,对于裂项的方法有一定的理解,在此基础上直接点出裂项的四种基本类型,并强调裂项的常用方法为通分的逆运算,分母有理化,对数的运算等。
本质是恒等变形,运用化归与转化思想、等式思想。
等差型:1a n a n+1=1d(1a n-1a n+1),其中a n≠0,d≠0. . (通分的逆运算)指数型:(a-1)a n(a n+b)(a n+1+b)=1a n+b-1a n+1+b. (通分的逆运算)无理型:1a+b=1a-b(a-b)(a>0,b>0). (分母有理化)对数型:log n a n +1a n=log n a n +1-log n a n (a n >0). (对数的运算法则)过程四、对照四种类型,分别用4道典型例题进行讲解与说明,并敲掉裂项时要配平,求和相消时要注意消去哪些项,剩下哪些项。
高考数学复习各地数列模拟测试题及解析
高考数学复习各地数列模拟测试题及解析一、有关通项问题1、利用11(1)(2)n nn S n a S S n -=⎧=⎨-≥⎩求通项.(北师大版第23页习题5)数列{}n a 的前n 项和21n S n =+.(1)试写出数列的前5项;(2)数列{}n a 是等差数列吗?(3)你能写出数列{}n a 的通项公式吗?变式题1、(2005湖北卷)设数列}{n a 的前n 项和为S n =2n 2,求数列}{n a 的通项公式; 解:(1):当;2,111===S a n 时,24)1(22,2221-=--=-=≥-n n n S S a n n n n 时当故{a n }的通项公式为4,2}{,241==-=d a a n a n n 公差是即的等差数列. 变式题2、(2005北京卷)数列{a n }的前n 项和为S n ,且a 1=1,113n n a S +=,n =1,2,3,……,求a 2,a 3,a 4的值及数列{a n }的通项公式.解:(I )由a 1=1,113n n a S +=,n=1,2,3,……,得 211111333a S a ===,3212114()339a S a a ==+=,431231116()3327a S a a a ==++=, 由1111()33n n n n n a a S S a +--=-=(n ≥2),得143n n a a +=(n ≥2),又a 2=31,所以a n =214()33n -(n ≥2),∴ 数列{a n }的通项公式为21114()233n n n a n -=⎧⎪=⎨⎪⎩≥变式题3、(2005山东卷)已知数列{}n a 的首项15,a =前n 项和为n S ,且*15()n n S S n n N +=++∈,证明数列{}1n a +是等比数列.解:由已知*15()n n S S n n N +=++∈可得12,24n n n S S n -≥=++两式相减得()1121n n n n S S S S +--=-+即121n n a a +=+从而()1121n n a a ++=+当1n =时21215S S =++所以21126a a a +=+又15a =所以211a =从而()21121a a +=+ 故总有112(1)n n a a ++=+,*n N ∈又115,10a a =+≠从而1121n n a a ++=+即数列{}1n a +是等比数列;2、解方程求通项:(北师大版第19页习题3)在等差数列{}n a 中,(1)已知812148,168,S S a d ==求和;(2)已知658810,5,a S a S ==求和;(3)已知3151740,a a S +=求.变式题1、{}n a 是首项11a =,公差3d =的等差数列,如果2005n a =,则序号n 等于(A )667 (B )668 (C )669 (D )670 分析:本题考查等差数列的通项公式,运用公式直接求出. 解:1(1)13(1)2005n a a n d n =+-=+-=,解得669n =,选C点评:等差等比数列的通项公式和前n 项和的公式是数列中的基础知识,必须牢固掌握.而这些公式也可视作方程,利用方程思想解决问题.3、待定系数求通项:(人教版第38页习题4)写出下列数列{}n a 的前5项:(1)111,41(1).2n n a a a n -==+>变式题1、(2006年福建卷)已知数列{}n a 满足*111,21().n n a a a n N +==+∈ 求数列{}n a 的通项公式; 解:*121(),n n a a n N +=+∈112(1),n n a a +∴+=+{}1n a ∴+是以112a +=为首项,2为公比的等比数列.12.n n a ∴+=即 *21().n n a n N =-∈4、由前几项猜想通项:(北师大版第10页习题1)根据下面的图形及相应的点数,在空格及括号中分别填上适当的图形和数,写出点数的通项公式.(1) (4)(7)( ) ( )变式题1、(深圳理科一模).如下图,第(1)个多边形是由正三角形“扩展“而来,第(2)个多边形是由正方形“扩展”而来,……,如此类推.设由正n 边形“扩展”而来的多边形的边数为n a ,则6a = ;345991111a a a a +++⋅⋅⋅+= .解:由图可得:22(1)n a n n n n n =+-=+,所以642a =;又211111(1)1n a n n n n n n ===-+++ 所以345991111a a a a +++⋅⋅⋅+=1111111197()()()3445991003100300-+-++-=-=变式题2、(北师大版第11页习题2)观察下列各图,并阅读下面的文字,像这样,10条直线相交,交点的个数最多是( ),其通项公式为 . A .40个 B .45个 C .50个 D .55个解:由题意可得:设{}n a 为n 条直线的交点个数,则21a =,1(1),(3)n n a a n n -=+-≥,因为11n n a a n --=-,由累加法可求得:(1)12(1)2n n n a n -=+++-=,所以10109452a ⨯==,选B.2条直线相交,最多有1个交点3条直线相交,最多有3个交点4条直线相交,最多有6个交点二、有关等差、等比数列性质问题1、(北师大版第35页习题3)一个等比数列前n 项的和为48,前2n 项的和为60,则前3n 项的和为( )A .83B .108C .75D .63变式题1、一个等差数列前n 项的和为48,前2n 项的和为60,则前3n 项的和为 。
高中数学高考高三理科一轮复习资料第5章 5.3 等比数列及其前n项和
因为 q<1,解得 q=-1 或 q=-2. 当 q=-1 时,代入①得 a1=2, - 通项公式 an=2×(-1)n 1; 1 当 q=-2 时,代入①得 a1=2, 1 通项公式 an=2×(-2)n-1.
点评:等比数列基本量的运算是等比数列中的一类基本问 题,解决这类问题的关键在于熟练掌握等比数列的有关公式, 并能灵活运用.尤其需要注意的是,在使用等比数列的前 n 项 和公式时,应根据公比的取值情况进行分类讨论,此外在运算 过程中,还应善于运用整体代换思想简化运算过程.
高中数学
5.3 等比数列及其前n项和
考纲点击 1.理解等比数列的概念. 2.掌握等比数列的通项公式与前 n 项和公式. 3.能在具体的问题情境中识别数列的等比关系,并能用 有关知识解决相应的问题. 4.了解等比数列与指数函数的关系
说基础
课前预习读教材
考点梳理 1.等比数列的定义 如果一个数列从第二项起,①____________等于同一个常 数,这个数列叫做等比数列,这个常数叫做等比数列的 ② ______.公比通常用字母 q 表示(q≠0). 2.通项公式与前 n 项和公式. (1)通项公式:③__________,a1 为首项,q 为公比. (2)前 n 项和公式: 当 q=1 时, ④__________; 当 q≠1 时, ⑤______________.
解析:由等比数列的性质知:a1· a19=16=a8· a12=a2 10,∴ a10=4,则 a8· a10· a12=a3 10=64,故选 B. 答案:B
1n 3. 若等比数列{an}的前 n 项和为 Sn=3( ) +m(n∈N*), 则 2 实数 m 的取值为( ) 3 A.- B.-1 2 C.-3 D.一切实数n-1 Nhomakorabea1 -2
高考数学二轮复习常考题型大通关(全国卷理数)解答题:数列
高考数学二轮复习常考题型大通关(全国卷理数)解答题:数列1.等比数列{}n a 中,已知142,16a a ==(1)求数列{}n a 的通项公式;(2)若35,a a 分别为等差数列{}n b 的第3项和第5项,试求数列{}n b 的通项公式及前n 项和n S 。
2.已知等差数列{}n a 的前n 项和为n S ,且满足:3576,24a a a =+=.(1)求等差数列{}n a 的通项公式;(2)求数列1{}nS 的前n 项和n T .3.已知数列{}n a 和{}n b 满足112,1a b ==,()12N n n a a n *+=∈,()12311111N 23n n b b b b b n n *+++++=-∈ .(1)求n a 与n b ;(2)记数列{}n n a b 的前n 项和为n T ,求n T .4.已知等差数列{}n a 满足36a =,前7项和为749S =.(1)求{}n a 的通项公式;(2)设数列{}n b 满足()33n n n b a =-⋅,求{}n b 的前n 项和n T .5.已知{}n a 是递增的等比数列,11a =,且22a 、332a 、4a 成等差数列.(1)求数列{}n a 的通项公式;(2)设21231log log n n n b a a ++=⋅,n *∈N ,求数列{}n b 的前n 项和n S .6.已知公差不为0的等差数列{}n a 的前3项和39S =,且125,,a a a 成等比数列.(1)求数列{}n a 的通项公式.(2)设n T 为数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和,求证12n T <.7.已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T .若113a b ==,42a b =,4212S T -=.(1)求数列{}n a 与{}n b 的通项公式;(2)求数列{}n n a b +的前n 项和.8.设数列{}n a 的前n 项和为n S ,()112,2*n n a a S n N +==+∈.(1)求数列{}n a 的通项公式;(2)令112(1)(1)n n n n b a a -+=--,求数列{}n b 的前n 项和n T ,求证:12n T <.答案以及解析1.答案:(1)设{}n a 的公比为q ,由已知得3162q =,解得2q =,∴112.n n n a a q -==(2)由(1)得358,32a a ==,则358,32b b ==,设{}n b 的公差为d ,则有1128432b d b d +=⎧⎨+=⎩解得11612b d =-⎧⎨=⎩∴1612112)2(8n b n n =+--=-,∴数列{}n b 的前n 项和2(161228)6222n n n S n n -+-==-.2.答案:(1设等差数列{}n a 的首项为1a 、公差为d ,3576,24a a a =+= ,()()111264624a d a d a d +=⎧∴⎨+++=⎩,解得:122d a =⎧⎨=⎩,(2122)n a n n ∴=+-⨯=;(2由(1)得:()1(22)(1)22n n n a a n n S n n ++===+,所以1211111111 11223(1)(1)n n n T S S S S n n n n =++++=++++-⨯⨯-+ 11111111112233411n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 1111n n n =-=++.3.答案:(1)由112,2n n a a a +==,知0n a ≠,故12n n a a +=,即{}n a 是以2为首项,2为公比的等比数列,得()2N n n a n *=∈.由题意知,当1n =时,121b b =-,故22b =.当2n ≥时,11n n n b b b n +=-,整理得11n n b b n n +=+,所以n b n ⎧⎫⎨⎬⎩⎭是以1为首项,1为公比的等比数列,即1n b n =,所以()N n b n n *=∈.(2)由(1)知2n n n a b n =⋅.因此231222322n n T n =⋅+⋅+⋅+⋅⋅⋅+⋅,①23412222322n n T n +=+⋅+⋅+⋅⋅⋅+⋅,②①-②得23122222n n n T n +-=+++⋅⋅⋅+-⋅.故()()1122N n n T n n +*=-+∈.4.答案:(1)由()177477492a a S a ⨯+===,得47a =,因为36a =,所以11.4d a ==,故3n a n =+.(2)()333n n n n b a n =-⋅=⋅,所以1231323333n n T n =⨯+⨯+⨯+⋯+⨯①23131323(1)33n n n T n n +=⨯+⨯+⋯+-⨯+⨯②由①-②得1231133233333313n n n n n T n n +++--=++++-⨯=-⨯- ,所以1(21)334n n n T +-⨯+=.5.答案:(1)设数列{}n a 的公比为q ,由题意及11a =,知1q >.22a 、332a 、4a 成等差数列成等差数列,34232a a a ∴=+,2332q q q ∴=+,即2320q q -+=,解得2q =或1q =(舍去),2q ∴=.∴数列{}n a 的通项公式为1112n n n a a q --==;(2)()212311111log log 222n n n b a a n n n n ++⎛⎫===- ⎪⋅++⎝⎭ ,11111111111232435112n S n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=-+-+-+⋅⋅⋅+-+- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.()()13113232212431114122221n n n n n n n ⎛⎫=-+ ⎪++⎝⎭+⎛⎫=--=- ⎪++++⎝⎭.6.答案:(1)由3S 9=得13a d +=①;125,,,a a a 成等比数列得:()()21114a a d a d +=+②;联立①②得11,2a d ==;故21n a n =-.(2)111111(21)(21)22121n n a a n n n n +⎛⎫==- ⎪-+-+⎝⎭ 11111111111233521212212n T n n n ⎛⎫⎛⎫∴=-+-+⋯+-=-< ⎪ ⎪-++⎝⎭⎝⎭.7.答案:(1)由1142,a b a b ==,则()()421234122312S T a a a a b b a a -=+++-+=+=,设等差数列{}n a 的公差为d ,则231236312a a a d d +=+=+=,所以2d =.所以32(1)21n a n n =+-=+.设等比数列{}n b 的公比为q ,由题249b a ==,即2139b b q q ===,所以3q =.所以3n n b =;(2)(21)3n n n a b n +=++,所以{}n n a b +的前n 项和为()()1212n n a a a b b b +++++++ ()2(3521)333n n =++++++++ ()()313331(321)(2)2132n n n n n n --++=+=++-8.答案:(1)()12,*n n a S n N +=+∈,①当1n =时,212a S =+,即24a =,当2n ≥时,12n n a S -=+,②由①-②可得11n n n n a a S S +--=-,即12n n a a +=,∴2222,2n n n a a n -=⨯=≥当1n =时,1122a ==,满足上式,∴()2n n a n N *=∈(2)由(1)得1112111()(21)(21)22121n n n n n n b -++==-----∴1111111111(1)(1)23372121221n n n n T ++=-+-++-=---- ∴12n T <。
大纲版数学理科高考总复习3-1数列
∴a1n-1=23·3n1-1=32n. ∴an=3n3+n 2. 答案:(1)A (2)an=3n3+n 2
题型四 数列的函数特征 典例 4 已知数列{an}的通项公式 an=(n+1)(1110)n(n ∈N*),试问数列{an}有没有最大项?若有,求最大项和 最大项的项数;若无,说明理由.
项.
【方法技巧】 (1)数列可以看作是一类特殊的函 数,因而数列也具备一般函数应具备的性质.
(2)求数列的最大(小)项,一般可以先研究数列的单 调性,可以用aann≥ ≥aann- +11, 或aann≤ ≤aann- +11, , 也可以转化为 函数最值问题或利用数形结合.
变式 4 已知数列{an}是递增数列,且对任意 n∈N*都 有 an=n2+λn 恒成立,则实数 λ 的取值范围是( )
• 【解】 (1)∵an+1-an=3n+2, • ∴an-an-1=3n-1(n≥2), • ∴an=(an-an-1)+(an-1-an-2)+…+
(a2-a1)+a1=(3n-1)+(3n-4)+…+ 5=+22+32n-1×n=n3n2+1 (n≥2).
当 n=1 时,a1=12×(3×1+1)=2 符合公式,∴an
又 a1=2=1×12+1+1,符合上式, 因此 an=nn+ 2 1+1. 答案:nn+ 2 1+1
• 题型一 根据观察归纳求通项公式 • 典例1 根据数列的前几项,写出下列
各数列的一个通项公式:
• (1)-1,7,-13,19,… • (2)0.7,0.77,0.777,…
• 【解】 (1)符号问题可通过(-1)n或(- 1)n+1表示,其各项的绝对值的排列规律 为:后面的数的绝对值总比前面数的绝 对 5).值(2)将大数6,列变故形通为项79(1公-0式.1)为,79a(n1=-0(.-01)1,)n79((61n--
高考数学理科二轮(通用版)复习练习:1.4.1数列(含答案)
第一部分 专题四 第1讲(见学用活页P 3)1.(2016·陕西八校联考)在等差数列{a n }中,a 1=0,公差d ≠0,若a m =a 1+a 2+…+a 9,则m 的值为( A )A .37B .36C .20D .19解析:a m =a 1+a 2+…+a 9=9a 1+9×82d =36d =a 37,∴m =37.故选A .2.(2016·河北唐山统考)设S n 是等比数列{a n }的前n 项和,若S 4S 2=3,则S 6S 4=( B )A .2B .73C .310D .1或2解析:设S 2=k ,S 4=3k ,由数列{a n }为等比数列(易知数列{a n }的公比q ≠-1),得S 2,S 4-S 2,S 6-S 4为等比数列,又S 2=k ,S 4-S 2=2k ,∴S 6-S 4=4k ,∴S 6=7k ,∴S 6S 4=7k 3k =73,故选B.3.(2016·山西四校联考)等比数列{a n }的前n 项和为S n ,若公比q >1,a 3+a 5=20,a 2a 6=64,则S 5=( A )A .31B .36C .42D .48解析:由等比数列的性质,得a 3a 5=a 2a 6=64,于是由⎩⎪⎨⎪⎧a 3+a 5=20,a 3a 5=64,且公比q >1,得a 3=4,a 5=16,所以⎩⎪⎨⎪⎧a 1q 2=4,a 1q 4=16,解得⎩⎪⎨⎪⎧a 1=1,q =q =-2舍,所以S 5=-251-2=31,故选A .4.设{a n }是等差数列.下列结论中正确的是( C ) A .若a 1+a 2>0,则a 2+a 3>0 B .若a 1+a 3<0,则a 1+a 2<0 C .若0<a 1<a 2,则a 2>a 1a 3D .若a 1<0,则(a 2-a 1)(a 2-a 3)>0解析:因为{a n }为等差数列,所以2a 2=a 1+a 3,当a 2>a 1>0时,得公差d >0,∴a 3>0,∴a 1+a 3>2a 1a 3,∴2a 2>2a 1a 3,即a 2>a 1a 3,故选C .5.(2016·江西南昌调研)已知等比数列{a n }的前n 项和为S n ,则下列说法中一定成立的是( C )A .若a 3>0,则a 2 015<0B .若a 4>0,则a 2 016<0C .若a 3>0,则S 2 015>0D .若a 4>0,则S 2 016>0解析:等比数列{a n }的公比q ≠0. 对于A ,若a 3>0,则a 1q 2>0,所以a 1>0,所以a 2 015=a 1q 2 014>0,所以A 不正确; 对于B ,若a 4>0,则a 1q 3>0,所以a 1q >0, 所以a 2 016=a 1q 2 015>0,所以B 不正确; 对于C ,若a 3>0,则a 1=a 3q 2>0,所以当q =1时,S 2 015>0, 当q ≠1时,S 2 015=a 1-q 2 0151-q>0(1-q 与1-q 2 015同号),所以C 正确,同理可知D错误,故选C .6.(2016·福建卷)若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q 的值等于( D )A .6B .7C .8D .9解析:由题可知a ,b 是方程x 2-px +q =0的两根, ∴a +b =p >0,ab =q >0,故a ,b 均为正数. ∵a ,b ,-2适当排序后成等比数列, ∴-2是a ,b 的等比中项,得ab =4,∴q =4. 又a ,b ,-2适当排序后成等差数列, 所以-2是第一项或第三项,不妨设a <b ,∴2a =b -2,联立⎩⎪⎨⎪⎧2a =b -2,ab =4,消去b 得a 2+a -2=0,得a =1或a =-2,又a >0,∴a =1,此时b =4, ∴p =a +b =5,∴p +q =9,故选D.7.下列关于五角星的图案构成一个数列,该数列的一个通项公式是( C )★★ ★ ★★★ ★ ★ ★ ★ ★★ ★ ★ ★ ★ ★ ★ ★ ★…A .a n =n 2-n +1B .a n =nn -2 C .a n =nn +2D .a n =nn +2解析:从图中观察五角星构成规律, n =1时,有1个; n =2时,有3个; n =3时,有6个; n =4时,有10个; …所以a n =1+2+3+4+…+n =nn +2.8.(2016·山东泰安模拟)在如图所示的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比数列,那么x +y +z 的值为( B )A .1B .C .3D .4解析:由题知表格中第三纵列中的数成首项为4,公比为12的等比数列,故有x =1.根据每横行成等差数列得第四列前两个数字依次为5,52,故第四列的公比为12.所以y =5×⎝⎛⎭⎫123=58, 同理z =6×⎝⎛⎭⎫124=38,因此x +y +z =2. 9.设S n 为等比数列{a n }的前n 项和.若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =3n-1.解析:设等比数列{a n }的公比为q (q ≠0),依题意得a 2=a 1·q =q ,a 3=a 1q 2=q 2,S 1=a 1=1,S 2=1+q ,S 3=1+q +q 2.又3S 1,2S 2,S 3成等差数列,所以4S 2=3S 1+S 3,即4(1+q )=3+1+q +q 2,所以q =3(q =0舍去).所以a n =a 1q n -1=3n -1.10.(2016·云南统考)在数列{a n }中,a n >0,a 1=12,如果a n +1是1与2a n a n +1+14-a 2n的等比中项,那么a 1+a 222+a 332+a 442+…+a 1001002的值是100101. 解析:由题意可得,a 2n +1=2a n a n +1+14-a 2n⇒(2a n +1+a n a n +1+1)(2a n +1-a n a n +1-1)=0, 又a n >0,∴2a n +1-a n a n +1-1=0, 又2-a n ≠0,∴a n +1=12-a n ⇒a n +1-1=a n -12-a n, 又可知a n ≠1,∴1a n +1-1=1a n -1-1,∴⎩⎨⎧⎭⎬⎫1a n -1是以1a 1-1为首项,-1为公差的等差数列,∴1a n -1=112-1-(n -1)=-n -1⇒a n =n n +1⇒a nn 2=1nn +=1n -1n +1,∴a 1+a 222+a 332+a 442+…+a 1001002=1-12+12-13+13-14+14-15+…+1100-1101=100101. 11.设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为2011.解析:由已知得,a 2-a 1=1+1,a 3-a 2=2+1,a 4-a 3=3+1,…,a n -a n -1=n -1+1(n ≥2),则有a n -a 1=1+2+3+…+n -1+(n -1)(n ≥2),因为a 1=1,所以a n =1+2+3+…+n (n ≥2),即a n =n 2+n 2(n ≥2),又当n =1时,a 1=1也适合上式,故a n =n 2+n2(n ∈N *),所以1a n =2n 2+n =2⎝⎛⎭⎫1n -1n +1,从而1a 1+1a 2+1a 3+…+1a 10=2×⎝⎛⎭⎫1-12+2×⎝⎛⎭⎫12-13+2×⎝⎛⎭⎫13-14+…+2×⎝⎛⎭⎫110-111=2×⎝⎛⎭⎫1-111=2011. 12.已知数列{a n }是等差数列,a 1=tan 225°,a 5=13a 1,设S n 为数列{(-1)n a n }的前n 项和,则S 2 016=3_024.解析:因为a 1=tan 225°=1,所以a 5=13a 1=13, 则公差d =a 5-a 15-1=13-14=3,所以a n =3n -2,所以(-1)n a n =(-1)n (3n -2),所以S 2 016=(a 2-a 1)+(a 4-a 3)+(a 6-a 5)+…+(a 2 016-a 2 015)=1 008 d =3 024.(见学用活页P 33)1.(2016·辽宁沈阳一模)已知函数f (x )=a ln x (a >0),e 为自然对数的底数. (1)若过点A (2,f (2))的切线斜率为2,求实数a 的值; (2)当x >0时,求证:f (x )≥a ⎝⎛⎭⎫1-1x ; (3)若在区间(1,e)上f xx -1>1恒成立,求实数a 的取值范围.解析:(1)函数f (x )=a ln x 的导函数f ′(x )=ax ,∵过点A (2,f (2))的切线斜率为2, ∴f ′(2)=a2=2,解得a =4.(2)证明:令g (x )=f (x )-a ⎝⎛⎭⎫1-1x =a ⎝⎛⎭⎫ln x -1+1x , 则函数的导数g ′(x )=a ⎝⎛⎭⎫1x -1x 2. 令g ′(x )>0,即a ⎝⎛⎭⎫1x -1x 2>0,解得x >1, ∵a >0∴g (x )在(0,1)上递减,在(1,+∞)上递增. ∴g (x )最小值为g (1)=0, 故f (x )≥a ⎝⎛⎭⎫1-1x 成立. (3)令h (x )=a ln x +1-x ,则h ′(x )=ax -1,令h ′(x )>0,解得x <a .当a >e 时,h (x )在(1,e)是增函数,所以h (x )>h (1)=0. 当1<a ≤e 时,h (x )在(1,a )上递增,(a ,e)上递减, ∴只需h (e)≥0,即a ≥e -1.当a ≤1时,h (x )在(1,e)上递减,则需h (e)≥0, ∵h (e)=a +1-e<0不合题意.综上,a ≥e -1.所以实数a 的取值范围为[e -1,+∞). 2.(2016·内蒙古包头一模)已知函数f (x )=x 2ln x . (1)求函数f (x )的单调区间;(2)证明:对任意的t >0,方程f (x )-t =0关于x 在(1,+∞)上有唯一解s ,使t =f (s ); (3)设(2)中所确定的s 关于t 的函数为s =g (t ),证明:当t >e 2时,有25<ln g t ln t <12.解析:(1)函数f (x )的定义域为(0,+∞),f ′(x )=2x ln x +x =x (2ln x +1) 令f ′(x )=0,得x =1e. 当x 变化时,f ′(x ),f (x )的变化情况如下表:所以函数f (x )的单调递减区间是⎝⎭⎫0,1e , 单调递增区间是⎝⎛⎭⎫1e ,+∞. (2)证明:当0<x ≤1时,f (x )≤0. 当x >1时,设t >0,h (x )=f (x )-t . 由(1)知,h (x )在区间(1,+∞)单调递增, 又h (1)=—t <0,h (e t )=e 2t ln e t -t =t (e 2t -1)>0,故方程h (x )=0在(1,+∞)有唯一零点,即f (x )-t =0关于x 在(1,+∞)上有唯一解. 因此,存在唯一的s ∈(1,+∞)使得t =f (s )成立. (3)证明:因为s =g (t ),由(2)知t =f (s ),且s >1, 从而ln g t ln t =ln sln f s =ln s s 2ln s =ln s2ln s +s=k2k +ln k,其中k =ln s ,要使25<ln g t ln t <12成立,只需0<ln k <k2.当t >e 2时,若s =g (t )≤e ,则由f (s )在(1,+∞)上单调递增,有t =f (s )≤f (e)=e 2,这与t >e 2矛盾. 所以s >e ,即k >1,从而ln k >0成立.另一方面,令F (k )=ln k -k 2,k >1,F ′(k )=1k -12,令F ′(k )=0,得k =2, 当1<k <2时,F ′(k )>0;当k >2时,F ′(k )<0,故对k >1,F (k )≤F (2)<0, 因此ln k <k2成立.综上,当t >e 2时,有25<ln g t ln t <12.3.(2016·太原一模)已知函数f (x )=x 2+a (x +ln x ),a ∈R.(1)当a =-1时,求f (x )的单调区间; (2)若f (x )>12(e +1)a ,求a 的取值范围.解析:(1)由题意得x ∈(0,+∞), 当a =-1时,f (x )=x 2-x -ln x , ∴f ′(x )=2x 2-x -1x .令f ′(x )<0,则0<x <1; 令f ′(x )≥0,则x ≥1,∴f (x )的单调递减区间是(0,1),单调递增区间是[1,+∞). (2)①当a =0时,f (x )=x 2,显然符合题意; ②当a >0时,当0<x <e -1-1a<1时,f (x )<1+a +a ln x <1+a +a ⎝⎛⎭⎫-1-1a =0<12(e +1)a , 不符合题意;③当a <0时,则f ′(x )=2x 2+ax +ax,令f ′(x 0)=0,则存在x 0∈(0,+∞),使得2x 20+ax 0+a =0, 即f ′(x 0)=0,令f ′(x )<0,则0<x <x 0; 令f ′(x )>0,则x >x 0,∴f (x )min =f (x 0)=x 20+a (x 0+ln x 0)=12a [(x 0-1)+2ln x 0], ∵f (x )>12(e +1)a ,∴x 0+2ln x 0-(e +2)<0,∴0<x 0<e , ∵2x 20+ax 0+a =0, ∴a =-2x 20x 0+1∈⎝⎛⎭⎫-2e 2e +1,0综上所述,实数a 的取值范围为⎝⎛⎦⎤-2e2e +1,0.4.(2016·山东济南模拟)设f (x )=ax+x ln x ,g (x )=x 3-x 2-3.(1)如果存在x 1,x 2∈[0,2]使得g (x 1)-g (x 2)≥M 成立,求满足上述条件的最大整数M ; (2)如果对于任意的s ,t ∈⎣⎡⎦⎤12,2,都有f (s )≥g (t )成立,求实数a 的取值范围. 解析:(1)存在x 1,x 2∈[0,2]使得g (x 1)-g (x 2)≥M 成立,等价于[g (x 1)-g (x 2)]max ≥M . 因为g (x )=x 3-x 2-3, 所以g ′(x )=3x 2-2x =3x ⎝⎛⎭⎫x -23. 由g ′(x )>0,得x <0或x >23;由g ′(x )<0,得0<x <23.又x ∈[0,2],所以g (x )在区间⎣⎡⎦⎤0,23上是单调减函数,在区间⎣⎡⎦⎤23,2上是单调递增函数. 所以g (0)=-3,g ⎝⎛⎭⎫23=-8527,g (2)=1. 故[g (x 1)-g (x 2)]max =g (x )max -g (x )min =11227≥M , 所以满足条件的最大整数M =4. (2)对于任意的s ,t ∈⎣⎡⎦⎤12,2,都有f (s )≥g (t )成立,等价于在区间⎣⎡⎦⎤12,2上, 函数f (x )min ≥g (x )max .由(1)可知在区间⎣⎡⎦⎤12,2上,g (x )max =g (2)=1. 在区间⎣⎡⎦⎤12,2上,f (x )=ax +x ln x ≥1恒成立, 等价于a ≥x -x 2ln x 恒成立.设h (x )=x -x 2ln x ,则h ′(x )=1-2x ln x -x , 可知h ′(x )在区间⎣⎡⎦⎤12,2上是单调减函数. 又h ′(1)=0,所以当1<x <2时,h ′(x )<0; 当12<x <1时,h ′(x )>0. 所以函数h (x )=x -x 2ln x 在区间⎣⎡⎦⎤12,1上单调递增,在区间[1,2]上单调递减. 所以h (x )max =h (1)=1,即实数a 的取值范围是[1,+∞). 5.(2016·陕西检测)设函数f (x )=e x -ax -1. (1)若函数f (x )在R 上单调递增,求a 的取值范围;(2)当a >0时,设函数f (x )的最小值为g (a ),求证:g (a )≤0;(3)求证:对任意的正整数n ,都有1n +1+2n +1+3n +1+…+n n +1<(n +1)n +1.解析:(1)由题意知f ′(x )=e x -a ≥0对x ∈R 均成立, 又e x >0(x ∈R),故a 的取值范围为a ≤0.(2)证明:由a >0,及f ′(x )=e x -a 可得,函数f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增,故函数f (x )的最小值为g (a )=f (ln a )=e ln a -a ln a -1=a -a ln a -1,则g ′(a )=-ln a , 故当a ∈(0,1)时,g ′(a )>0,当a ∈(1,+∞)时,g ′(a )<0,从而可知g (a )在(0,1)上单调递增,在(1,+∞)上单调递减,又g (1)=0,故g (a )≤0. (3)证明:当a =1时,f (x )=e x -x -1,由(2)可知,e x -x -1≥0,当且仅当x =0时等号成立. ∴当x ≠0时,总有e x >x +1. 于是,可得当x ≠0时, (x +1)n +1<(e x )n +1=e (n+1)x(n ∈N *).令x +1=1n +1,即x =-n n +1,可得⎝⎛⎭⎫1n +1n +1<e -n ;令x +1=2n +1,即x =-n -1n +1,可得⎝⎛⎭⎫2n +1n +1<e -(n -1);令x +1=3n +1,即x =-n -2n +1,可得⎝⎛⎭⎫3n +1n +1<e -(n -2);…令x +1=n n +1,即x =-1n +1,可得⎝⎛⎭⎫n n +1n +1<e -1.对以上各式求和可得:⎝⎛⎭⎫1n +1n +1+⎝⎛⎭⎫2n +1n +1+⎝⎛⎭⎫3n +1n +1+…+⎝⎛⎭⎫n n +1n +1<e -n +e -(n -1)+e -(n -2)+…+e -1=e-n-e n 1-e =e -n -11-e =1-e -n e -1<1e -1<1.故对任意的正整数n ,都有1n +1+2n +1+3n +1+…+n n +1<(n +1)n +1.6.(2016·中原名校大联考)已知函数f (x )=ln x ,g (x )=a x (a >0),设F (x )=f (x )+g (x ).(1)求函数F (x )的单调区间;(2)若以函数y =F (x )(x ∈(0,3])图象上任意一点P (x 0,y 0)为切点的切线的斜率k ≤12恒成立,求实数a 的最小值.解析:(1)F (x )=f (x )+g (x )=ln x +ax (x >0),F ′(x )=1x -a x 2=x -a x2.∵a >0,由F ′(x )>0⇒x ∈(a ,+∞),∴F (x )在(a ,+∞)上是增函数.由F ′(x )<0⇒x ∈(0,a ),∴F (x )在(0,a )上是减函数.综上,F (x )的单调递减区间为(0,a ),单调递增区间为(a ,+∞). (2)由F ′(x )=x -a x 2(0<x ≤3),得k =F ′(x 0)=x 0-a x 20≤12(0<x 0≤3)恒成立⇒a ≥-12x 20+x 0(0<x 0≤3)恒成立.当x 0=1时,-12x 20+x 0取得最大值12, ∴a ≥12,即实数a 的最小值为12.7.(2016·湖北武汉二月调考)已知f (x )=x 3+ax 2-a 2x +2. (1)若a =1,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)若a ≠0,求函数f (x )的单调区间;(3)若不等式2x ln x ≤f ′(x )+a 2+1恒成立,求实数a 的取值范围. 解析:(1)∵a =1, ∴f (x )=x 3+x 2-x +2, ∴f ′(x )=3x 2+2x -1,∴k =f ′(1)=4,又f (1)=3,∴切点坐标为(1,3), ∴所求切线方程为y -3=4(x -1),即4x -y -1=0. (2)f ′(x )=3x 2+2ax -a 2=(x +a )(3x -a ), 由f ′(x )=0,得x =-a 或x =a 3.①当a >0时,由f ′(x )<0,得-a <x <a3.由f ′(x )>0,得x <-a 或x >a3,此时f (x )的单调递减区间为⎝⎛⎭⎫-a ,a 3, 单调递增区间为(-∞,-a )和⎝⎛⎭⎫a 3,+∞. ②当a <0时,由f ′(x )<0,得a3<x <-a .由f ′(x )>0,得x <a3或x >-a ,此时f (x )的单调递减区间为⎝⎛⎭⎫a 3,-a , 单调递增区间为⎝⎛⎭⎫-∞,a3和(-a ,+∞). 综上,当a >0时,f (x )的单调递减区间为⎝⎛⎭⎫-a ,a3.单调递增区间为(-∞,-a )和⎝⎛⎭⎫a 3,+∞. 当a <0时,f (x )的单调递减区间为⎝⎛⎭⎫a 3,-a , 单调递增区间为⎝⎛⎭⎫-∞,a 3和(-a ,+∞). (3)依题意x ∈(0,+∞),不等式2x ln x ≤f ′(x )+a 2+1恒成立,等价于2x ln x ≤3x 2+2ax +1在(0,+∞)上恒成立,可得a ≥ln x -32x -12x在(0,+∞)上恒成立, 设h (x )=ln x -3x 2-12x, 则h ′(x )=1x -32+12x 2=-x -x +2x 2.令h ′(x )=0,得x =1,x =-13(舍), 当0<x <1时,h ′(x )>0;当x >1时,h ′(x )<0.当x 变化时,h ′(x )与h (x )变化情况如下表∴当x =1max ∴a ≥-2,即a 的取值范围是[-2,+∞).8.(2016·人民大学附中考前模拟)已知函数f (x )=x 22+m ln x ,g (x )=x 22-x ,p (x )=mx 2. (1)若函数f (x )与g (x )在公共定义域上具有相同的单调性,求实数m 的值.(2)若函数m (x ),m 1(x ),m 2(x )在公共定义域内满足m 1(x )>m (x )>m 2(x )恒成立,则称m (x )为从m 1(x )至m 2(x )的“过渡函数”.①在(1)的条件下,探究从f (x )至g (x )是否存在无穷多个“过渡函数”,并说明理由; ②是否存在实数m ,使得f (x )为从p (x )至g (x )的“过渡函数”?若存在,求出实数m 的取值范围;若不存在,请说明理由.解析:(1)易知f (x )与g (x )的公共定义域为(0,+∞),且g (x )=x 22-x 在(0,1)上单调递减,在(1,+∞)上单调递增,故f ′(1)=0. 又f ′(x )=x +m x,故1+m =0,则m =-1. 经检验,当m =-1时,f (x )与g (x )在公共定义域上具有相同的单调性,所以m =-1.(2)①f (x )=x 22-ln x ,g (x )=x 22-x ,公共定义域为(0,+∞).令F (x )=f (x )-g (x )=x -ln x ,x ∈(0,+∞),则F ′(x )=1-1x, 故F (x )在(0,1)上单调递减,在(1,+∞)上单调递增,故F (1)为F (x )在(0,+∞)上的极小值,也是最小值.所以F (x )min =F (1)=1>0,故f (x )-g (x )≥1,即f (x )≥g (x )+1.令h (x )=g (x )+t ,t ∈(0,1),故f (x )>h (x )>g (x )在(0,+∞)上恒成立,即存在无穷多个从f (x )至g (x )的“过渡函数”.②假设存在实数m ,使得f (x )为从p (x )至g (x )的“过渡函数”,则mx 2>x 22+m ln x >x 22-x 在(0,+∞)上恒成立.令H (x )=f (x )-g (x )=m ln x +x ,x ∈(0,+∞),则H ′(x )=m x +1=m +x x. (a )当m ≥0时,H ′(x )>0,故H (x )在(0,+∞)上单调递增,且值域为R ,此时f (x )-g (x )>0不恒成立,故m ≥0与假设不符,舍去;(b )当m <0时,令H ′(x )=0,解得x =-m ,可知H (x )在(0,-m )上单调递减,在(-m ,+∞)上单调递增,故H (x )min =H (-m )=m ln (-m )-m ,依题意得m ln (-m )-m >0,解得m >-e ,故-e<m <0.综上,当-e<m <0时,f (x )>g (x )在(0,+∞)上恒成立.令G (x )=p (x )-f (x )=⎝⎛⎭⎫m -12x 2-m ln x ,x ∈(0,+∞), 因为-e<m <0,故m -12<0. 又G (1)=m -12<0,所以当-e<m <0时,G (x )>0在(0,+∞)上不恒成立, 即p (x )>f (x )在(0,+∞)上不恒成立.所以不存在实数m ,使得f (x )为从p (x )至g (x )的“过渡函数”.。
高三理科数学一轮复习讲义,复习补习资料:第六章数列6.4数列求和(解析版)
§6.4 数列求和考纲展示►1.熟练掌握等差、等比数列的前n 项和公式.2.掌握非等差、等比数列求和的几种常见方法.考点1 公式法求和1.公式法直接利用等差数列、等比数列的前n 项和公式求和. (1)等差数列的前n 项和公式:S n =n a 1+a n 2=na 1+n n -2d .(2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q=a 1-q n1-q ,q ≠1.2.倒序相加法与并项求和法 (1)倒序相加法:如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和可用倒序相加法,如等差数列的前n 项和公式即是用此法推导的.(2)并项求和法:在一个数列的前n 项和中,可两两结合求解,则称之为并项求和. 形如a n =(-1)nf (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(1002-992)+(982-972)+…+(22-12)=(100+99)+(98+97)+…+(2+1)=5 050.非等差、等比数列求和的常用方法:倒序相加法;并项求和法.(1)[教材习题改编]一个球从100 m 高处自由落下,着地后又跳回到原高度的一半再落下,当它第10次着地时,经过的路程是( )A .100+200×(1-2-9) B .100+100(1-2-9) C .200(1-2-9)D .100(1-2-9)答案:A(2)[教材习题改编]已知函数f (n )=n 2cos n π,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100=________.答案:-100解析:因为f (n )=n 2cos n π=⎩⎪⎨⎪⎧-n 2,n 为奇数,n 2,n 为偶数,所以f (n )=(-1)n ·n 2,由a n =f (n )+f (n +1)=(-1)n ·n 2+(-1)n +1·(n +1)2=(-1)n [n 2-(n +1)2]=(-1)n +1·(2n +1),得a 1+a 2+a 3+…+a 100=3+(-5)+7+(-9)+…+199+(-201)=50×(-2)=-100.数列求和的两个易错点:公比为参数;项数的奇偶数.(1)设数列{a n }的通项公式是a n =x n,则数列{a n }的前n 项和S n =________.答案:S n =⎩⎪⎨⎪⎧n ,x =1,x -xn1-x,x ≠1解析:当x =1时,S n =n ;当x ≠1时,S n =x-xn1-x.(2)设数列{a n }的通项公式是a n =(-1)n,则数列{a n }的前n 项和S n =________.答案:S n =⎩⎪⎨⎪⎧0,n 为偶数,-1,n 为奇数解析:若n 为偶数,则S n =0;若n 为奇数,则S n =-1.[典题1] (1)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.[答案] 27[解析] 由a 1=1,a n =a n -1+12(n ≥2),可知数列{a n }是首项为1,公差为12的等差数列,故S 9=9a 1+-2×12=9+18=27.(2)若等比数列{a n }满足a 1+a 4=10,a 2+a 5=20,则{a n }的前n 项和S n =________. [答案]109(2n-1) [解析] 由题意a 2+a 5=q (a 1+a 4),得20=q ×10,故q =2,代入a 1+a 4=a 1+a 1q 3=10,得9a 1=10,即a 1=109.故S n =109-2n1-2=109(2n-1). [点石成金] 数列求和应从通项入手,若无通项,则先求通项,然后通过对通项变形,转化为等差或等比或可求数列前n 项和的数列来求之.考点2 分组转化法求和分组求和法若一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减.(1)数列112,314,518,…,⎣⎢⎡⎦⎥⎤n -+12n 的前n 项和S n =________________. 答案:n 2+1-12n(2)已知数列{a n }中,a n =⎩⎪⎨⎪⎧2n -1,n 为正奇数,2n -1,n 为正偶数, 设数列{a n }的前n 项和为S n ,则S 9=________.答案:377[典题2] 已知数列{a n }的通项公式是a n =2·3n -1+(-1)n ·(ln 2-ln 3)+(-1)nn ln 3,求其前n 项和S n .[解] 由通项公式知,S n =2(1+3+…+3n -1)+[-1+1-1+…+(-1)n]·(ln 2-ln 3)+[-1+2-3+…+(-1)nn ]ln 3,所以当n 为偶数时,S n =2×1-3n1-3+n 2ln 3=3n+n 2ln 3-1;当n 为奇数时,S n =2×1-3n 1-3-(ln 2-ln 3)+⎝ ⎛⎭⎪⎫n -12-n ln 3=3n-n -12ln 3-ln 2-1.综上知,S n=⎩⎪⎨⎪⎧3n +n2ln 3-1,n 为偶数,3n-n -12ln 3-ln 2-1,n 为奇数.[点石成金] 分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组转化法求{a n }的前n 项和. (2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是等比或等差数列,可采用分组转化法求和.[提醒] 某些数列的求和是将数列转化为若干个可求和的新数列的和或差,从而求得原数列的和,注意在含有字母的数列中对字母的讨论.在等差数列{a n }中,已知公差d =2,a 2是a 1 与a 4 的等比中项. (1)求数列{a n }的通项公式; (2)设b n =a nn +2,记T n =-b 1+b 2-b 3+b 4-…+(-1)nb n ,求T n .解:(1)由题意知,(a 1+d )2=a 1(a 1+3d ), 即(a 1+2)2=a 1(a 1+6), 解得a 1=2.所以数列{a n }的通项公式为a n =2n . (2)由题意知,b n =a nn +2=n (n +1).所以T n =-1×2+2×3-3×4+…+(-1)nn ×(n +1). 因为b n +1-b n =2(n +1), 可得当n 为偶数时,T n =(-b 1+b 2)+(-b 3+b 4)+…+(-b n -1+b n )=4+8+12+ (2)=n2+2n 2=n n +2;当n 为奇数时,T n =T n -1+(-b n )=n -n +2-n (n +1)=-n +22.所以T n=⎩⎪⎨⎪⎧-n +22,n 为奇数,nn +2,n 为偶数.考点3 错位相减法求和错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的.(1)[教材习题改编]数列1,11+2,11+2+3,…,11+2+…+n的前n 项和为________. 答案:2n n +1解析:因为11+2+…+n =2n n +=2⎝ ⎛⎭⎪⎫1n -1n +1, 所以数列的前n 项和为2×⎝ ⎛⎭⎪⎫1-12+12-13+13-14+…+1n -1n +1=2×⎝ ⎛⎭⎪⎫1-1n +1=2n n +1. (2)[教材习题改编]数列22,422,623, (2)2n ,…的前n 项的和为________.答案:4-n +22n -1解析:设该数列的前n 项和为S n , 由题可知,S n =22+422+623+ (2)2n ,①12S n =222+423+624+ (2)2n +1,② ①-②,得⎝ ⎛⎭⎪⎫1-12S n =22+222+223+224+…+22n -2n 2n +1=2-12n -1-2n 2n +1, ∴S n =4-n +22n -1.[典题3] [2018·山东模拟]设数列{a n }的前n 项和为S n .已知2S n =3n+3. (1)求{a n }的通项公式;(2)若数列{b n }满足a n b n =log 3a n ,求{b n }的前n 项和T n . [解] (1)因为2S n =3n+3, 所以2a 1=3+3,故a 1=3, 当n ≥2时,2S n -1=3n -1+3,此时2a n =2S n -2S n -1=3n-3n -1=2×3n -1,即a n =3n -1,所以a n =⎩⎪⎨⎪⎧3,n =1,3n -1,n ≥2.(2)因为a n b n =log 3a n ,所以b 1=13,当n ≥2时,b n =31-nlog 33n -1=(n -1)·31-n.所以T 1=b 1=13;当n ≥2时,T n =b 1+b 2+b 3+…+b n=13+[1×3-1+2×3-2+…+(n -1)×31-n], 所以3T n =1+[1×30+2×3-1+…+(n -1)×32-n],两式相减,得2T n =23+(30+3-1+3-2+…+32-n )-(n -1)×31-n=23+1-31-n1-3-1-(n -1)×31-n =136-6n +32×3n , 所以T n =1312-6n +34×3n ,经检验,n =1时也适合. 综上知,T n =1312-6n +34×3n .[点石成金] 用错位相减法求和的三个注意事项(1)要善于识别题目类型,特别是等比数列公比为负数的情形.(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便下一步准确写出“S n -qS n ”的表达式.(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.[2018·天津模拟]已知{a n }是各项均为正数的等比数列,{b n }是等差数列,且a 1=b 1=1,b 2+b 3=2a 3,a 5-3b 2=7.(1)求{a n }和{b n }的通项公式;(2)设c n =a n b n ,n ∈N *,求数列{c n }的前n 项和.解:(1)设数列{a n }的公比为q ,数列{b n }的公差为d ,由题意知q >0.由已知,有⎩⎪⎨⎪⎧2q 2-3d =2,q 4-3d =10,消去d ,整理得q 4-2q 2-8=0,解得q 2=4. 又因为q >0,所以q =2,所以d =2. 所以数列{a n }的通项公式为a n =2n -1,n ∈N *;数列{b n }的通项公式为b n =2n -1,n ∈N *. (2)由(1)有c n =(2n -1)·2n -1,设{c n }的前n 项和为S n ,则S n =1×20+3×21+5×22+…+(2n -3)×2n -2+(2n -1)×2n -1,2S n =1×21+3×22+5×23+…+(2n -3)×2n -1+(2n -1)×2n,上述两式相减,得-S n =1+22+23+…+2n -(2n -1)×2n =2n +1-3-(2n -1)·2n =-(2n -3)·2n-3,所以S n =(2n -3)·2n+3,n ∈N *.考点4 裂项相消法求和裂项相消法(1)把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. (2)常见的裂项技巧: ①1n n +=1n -1n +1. ②1nn +=12⎝ ⎛⎭⎪⎫1n -1n +2. ③1n -n +=12⎝ ⎛⎭⎪⎫12n -1-12n +1.④1n +n +1=n +1-n .[考情聚焦] 把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.裂项相消法求和是历年高考的重点,命题角度凸显灵活多变,在解题中要善于利用裂项相消的基本思想,变换数列a n 的通项公式,达到求解目的.主要有以下几个命题角度: 角度一 形如a n =1nn +k型 [典题4] [2019·重庆模拟]设S n 为等差数列{a n }的前n 项和,已知S 3=a 7,a 8-2a 3=3. (1)求a n ;(2)设b n =1S n ,数列{b n }的前n 项和为T n ,求证:T n >34-1n +1(n ∈N *).(1)[解] 设数列{a n }的公差为d ,由题意,得⎩⎪⎨⎪⎧3a 1+3d =a 1+6d ,a 1+7d -a 1+2d =3,解得a 1=3,d =2,∴a n =a 1+(n -1)d =2n +1.(2)[证明] 由(1),得S n =na 1+n n -2d =n (n +2),∴b n =1nn +=12⎝ ⎛⎭⎪⎫1n -1n +2. ∴T n =b 1+b 2+…+b n -1+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+…+⎝ ⎛⎭⎪⎫1n -1-1n +1+⎝ ⎛⎭⎪⎫1n -1n +2 =12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2,∴T n =12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2>12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +1=34-1n +1. 故T n >34-1n +1.角度二 形如a n =1n +k +n型[典题5] [2019·江南十校联考]已知函数f (x )=x a的图象过点(4,2),令a n =1f n ++f n,n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 014=( )A. 2 013-1B. 2 014-1C. 2 015-1D. 2 015+1[答案] C[解析] 由f (4)=2可得4a=2,解得a =12,则f (x )=x 12.∴a n =1f n ++f n=1n +1+n=n +1-n ,S 2 014=a 1+a 2+a 3+…+a 2 014=(2-1)+(3-2)+(4-3)+…+( 2 014- 2 013)+( 2 015- 2 014) = 2 015-1. 角度三形如a n =n +1n 2n +2型[典题6] 正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0. (1)求数列{a n }的通项公式a n ; (2)令b n =n +1n +2a 2n ,数列{b n }的前n 项和为T n .证明:对于任意的n ∈N *,都有T n <564. (1)[解] 由S 2n -(n 2+n -1)S n -(n 2+n )=0,得 [S n -(n 2+n )](S n +1)=0.由于{a n }是正项数列,所以S n >0,S n =n 2+n . 于是a 1=S 1=2,当n ≥2时,a n =S n -S n -1=n 2+n -(n -1)2-(n -1)=2n . 综上,数列{a n }的通项公式为a n =2n . (2)[证明] 由于a n =2n , 故b n =n +1n +2a 2n =n +14n 2n +2=116⎣⎢⎡⎦⎥⎤1n 2-1n +2.T n =116⎣⎢⎡⎦⎥⎤1-132+122-142+132-152+…+1n -2-1n +2+1n2-1n +2=116⎣⎢⎡⎦⎥⎤1+122-1n +2-1n +2<116×⎝ ⎛⎭⎪⎫1+122=564. [点石成金] 利用裂项相消法求和的注意事项(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项. (2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n }是等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1,1a n a n +2=12d ⎝ ⎛⎭⎪⎫1a n -1a n +2.[方法技巧] 非等差、等比数列的一般数列求和,主要有两种思想:(1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相消来完成.(2)不能转化为等差或等比的特殊数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和.[易错防范] 1.在应用错位相减法时,注意观察未合并项的正负号;结论中形如a n,an +1的式子应进行合并.2.在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项,特别是隔项相消.真题演练集训1.[2018·北京模拟]已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________.答案:6解析:设等差数列{a n }的公差为d ,由已知,得⎩⎪⎨⎪⎧ a 1=6,2a 1+6d =0,解得⎩⎪⎨⎪⎧ a 1=6,d =-2,所以S 6=6a 1+12×6×5d =36+15×(-2)=6.2.[2018·四川模拟]设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =________.答案:-1n解析:∵ a n +1=S n +1-S n ,a n +1=S n S n +1,∴ S n +1-S n =S n S n +1.∵ S n ≠0,∴ 1S n -1S n +1=1,即1S n +1-1S n =-1. 又1S 1=-1,∴ ⎩⎨⎧⎭⎬⎫1S n 是首项为-1,公差为-1的等差数列. ∴ 1S n=-1+(n -1)×(-1)=-n , ∴ S n =-1n. 3.[2018·山东模拟]已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1.(1)求数列{b n }的通项公式; (2)令c n =a n +n +1b n +n ,求数列{c n }的前n 项和T n .解:(1)由题意知,当n ≥2时,a n =S n -S n -1=6n +5,当n =1时,a 1=S 1=11,所以a n =6n +5.设数列{b n }的公差为d ,由⎩⎪⎨⎪⎧ a 1=b 1+b 2,a 2=b 2+b 3,得⎩⎪⎨⎪⎧ 11=2b 1+d ,17=2b 1+3d ,可解得b 1=4,d =3.所以b n =3n +1.(2)由(1)知,c n =n +n +1n +n =3(n +1)·2n +1.又T n =c 1+c 2+…+c n ,所以T n =3×[2×22+3×23+…+(n +1)×2n +1], 2T n =3×[2×23+3×24+…+(n +1)×2n +2], 两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2]=3×⎣⎢⎡⎦⎥⎤4+-2n 1-2-n +n +2=-3n ·2n +2, 所以T n =3n ·2n +2. 4.[2018·重庆模拟]S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3.(1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和. 解:(1)由a 2n +2a n =4S n +3,①可知a 2n +1+2a n +1=4S n +1+3.②②-①,得a 2n +1-a 2n +2(a n +1-a n )=4a n +1,即2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ). 由a n >0,得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n +1.(2)由a n =2n +1可知, b n =1a n a n +1=1n +n +=12⎝ ⎛⎭⎪⎫12n +1-12n +3. 设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n +1-12n +3=n n +.课外拓展阅读数列求和[典例] 已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N *),且S n 的最大值为8. (1)确定常数k ,并求a n ;(2)求数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和T n .[审题视角][解析] (1)当n =k ,k ∈N *时,S n =-12n 2+kn 取得最大值, 即8=S k =-12k 2+k 2=12k 2,故k 2=16,k =4. 当n =1时,a 1=S 1=-12+4=72, 当n ≥2时,a n =S n -S n -1=92-n . 当n =1时,上式也成立,故a n =92-n . (2)因为9-2a n 2n =n 2n -1, 所以T n =1+22+322+…+n -12n -2+n 2n -1,① 所以2T n =2+2+32+…+n -12n -3+n 2n -2,② ②-①,得2T n -T n =2+1+12+…+12n -2-n 2n -1 =4-12n -2-n 2n -1=4-n +22n -1. 故T n =4-n +22n -1. 方法点睛1.根据数列前n 项和的结构特征和最值确定k 和S n ,求出a n 后再根据⎩⎨⎧⎭⎬⎫9-2a n 2n 的结构特征确定利用错位相减法求T n .在审题时,要审题目中数式的结构特征判定解题方案.2.利用S n 求a n 时不要忽视当n =1的情况;错位相减时不要漏项或算错项数.3.可以通过当n =1,2时的特殊情况对结果进行验证.。
高考数学(理)真题专题汇编:数列
高考数学(理)真题专题汇编:数列一、选择题1.【来源】2019年高考真题——数学(浙江卷)设,a b R ∈,数列{a n }中,21,n n n a a a a b +==+,b N *∈ ,则( )A. 当101,102b a => B. 当101,104b a => C. 当102,10b a =->D. 当104,10b a =->2.【来源】2019年高考真题——数学(浙江卷)已知,a b R ∈,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩,若函数()y f x ax b =--恰有三个零点,则( ) A. 1,0a b <-< B. 1,0a b <-> C. 1,0a b >->D. 1,0a b >-<3.【来源】2019年高考真题——数学(浙江卷)设三棱锥V -ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P -AC -B 的平面角为γ,则( )A. ,βγαγ<<B. ,βαβγ<<C. ,βαγα<<D. ,αβγβ<<4.【来源】2019年高考真题——数学(浙江卷) 在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且0)a ≠的图象可能是( ) A. B.C. D.5.【来源】2019年高考真题——数学(浙江卷) 若0,0ab >>,则“4a b +≤”是 “4ab ≤”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件6.【来源】2019年高考真题——数学(浙江卷)祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高,若某柱体的三视图如图所示,则该柱体的体积(cm 3)是( )A. 158B. 162C. 182D. 3247.【来源】2019年高考真题——数学(浙江卷)若实数x ,y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则32z x y =+的最大值是( )A. -1B. 1C. 10D. 128.【来源】2019年高考真题——数学(浙江卷)渐近线方程为0x y ±=的双曲线的离心率是( )B. 1D. 29.【来源】2019年高考真题——数学(浙江卷)已知全集U ={-1,0,1,2,3},集合A ={0,1,2},B ={-1,0,1},则(C U A )∩B =( ) A. {-1} B. {0,1} C. {-1,2,3}D. {-1,0,1,3}二、填空题10.【来源】2019年高考真题——数学(浙江卷)已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍±1时,123456||AB BC CD DA AC BD λλλλλλ+++++的最小值是________;最大值是_______.11.【来源】2019年高考真题——数学(浙江卷)已知a R ∈,函数3()f x ax x =-,若存在t R ∈,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是____.12.【来源】2019年高考真题——数学(浙江卷)已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是_______. 13.【来源】2019年高考真题——数学(浙江卷)在△ABC 中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =____;cos ABD ∠=________.14.【来源】2019年高考真题——数学(浙江卷)在二项式9)x 的展开式中,常数项是________;系数为有理数的项的个数是_______. 15.【来源】2019年高考真题——数学(浙江卷)已知圆C 的圆心坐标是(0,m ),半径长是r .若直线230x y -+=与圆C 相切于点(2,1)A --,则m =_____,r =______.16.【来源】2019年高考真题——数学(浙江卷) 复数11z i=+(i 为虚数单位),则||z =________. 17.【来源】2019年高考真题——理科数学(北京卷)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.18.【来源】2019年高考真题——理科数学(北京卷)设函数f (x )=e x +a e −x (a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________.三、解答题19.【来源】2019年高考真题——数学(浙江卷)已知实数0a ≠,设函数()=ln 0.f x a x x +>(Ⅰ)当34a =-时,求函数f (x )的单调区间;(Ⅱ)对任意21[,)e x ∈+∞均有()f x ≤ 求a 的取值范围. 注:e=2.71828…为自然对数的底数.20.【来源】2019年高考真题——数学(浙江卷)如图,已知点F (1,0)为抛物线22(0)y px p =>,点F 为焦点,过点F 的直线交抛物线于A ,B 两点,点C 在抛物线上,使得△ABC 的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q在点F 右侧.记,AFG CQG △△的面积为12,S S .(I)求p的值及抛物线的标准方程;(Ⅱ)求12SS的最小值及此时点G的坐标.21.【来源】2019年高考真题——数学(浙江卷)设等差数列{a n}的前n项和为S n,34a=,43a S=,数列{b n}满足:对每个12,,,n n n n n nn S b S b S b*++∈+++N成等比数列.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)记,,2nnnac nb*=∈N证明:12+2,.nc c c n n*++<∈N22.【来源】2019年高考真题——数学(浙江卷)如图,已知三棱柱ABC-A1B1C1,平面A1AC1C⊥平面ABC,90ABC∠=︒,1130,,,BAC A A AC AC E F∠=︒==分别是AC,A1B1的中点.(I)证明:EF⊥BC;(Ⅱ)求直线EF与平面A1BC所成角的余弦值.23.【来源】2019年高考真题——数学(浙江卷)设函数()sin ,f x x x =∈R .(I )已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值; (Ⅱ)求函数22[()][()]124y f x f x ππ=+++ 的值域. 24.【来源】2019年高考真题——数学(浙江卷)设01a <<,则随机变量X 的分布列是:则当a 在(0,1)内增大时( ) A. D (X )增大 B. D (X )减小 C. D (X )先增大后减小D. D (X )先减小后增大25.【来源】2019年高考真题——理科数学(北京卷)已知数列{a n },从中选取第i 1项、第i 2项、…、第i m 项(i 1<i 2<…<i m ),若12m i i i a a a <<⋅⋅⋅<,则称新数列12m i i i a a a ⋅⋅⋅,,,为{a n }的长度为m 的递增子列.规定:数列{a n }的任意一项都是{a n }的长度为1的递增子列.(Ⅰ)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;(Ⅱ)已知数列{a n }的长度为p 的递增子列的末项的最小值为0m a ,长度为q 的递增子列的末项的最小值为0n a .若p <q ,求证:0m a <0n a ;(Ⅲ)设无穷数列{a n }的各项均为正整数,且任意两项均不相等.若{a n }的长度为s 的递增子列末项的最小值为2s –1,且长度为s 末项为2s –1的递增子列恰有2s -1个(s =1,2,…),求数列{a n }的通项公式.26.【来源】2019年高考真题——理科数学(北京卷)已知函数321()4f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程;(Ⅱ)当[2,4]x ∈-时,求证:6()x f x x -≤≤;(Ⅲ)设()|()()|()F x f x x a a =-+∈R ,记F (x )在区间[-2,4]上的最大值为M (a ),当M (a )最小时,求a 的值.27.【来源】2019年高考真题——理科数学(北京卷)已知抛物线C :x 2=−2py 经过点(2,−1). (Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.28.【来源】2019年高考真题——理科数学(北京卷)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月A ,B 两种支付方式都使用的概率; (Ⅱ)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,求X 的分布列和数学期望;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由. 29.【来源】2019年高考真题——理科数学(北京卷)如图,在四棱锥P –ABCD 中,PA ⊥平面ABCD ,AD ⊥CD ,AD ∥BC ,PA =AD =CD =2,BC =3.E 为PD 的中点,点F 在PC 上,且13PF PC =.(Ⅰ)求证:CD⊥平面PAD;(Ⅱ)求二面角F–AE–P的余弦值;(Ⅲ)设点G在PB上,且23PGPB=.判断直线AG是否在平面AEF内,说明理由.30.【来源】2019年高考真题——理科数学(北京卷)在△ABC中,a=3,b−c=2,cos B=12 -.(Ⅰ)求b,c的值;(Ⅱ)求sin(B–C)的值.试卷答案1. A 【分析】本题综合性较强,注重重要知识、基础知识、运算求解能力、分类讨论思想的考查.本题从确定不动点出发,通过研究选项得解.【详解】选项B :不动点满足2211042x x x ⎛⎫-+=-= ⎪⎝⎭时,如图,若1110,,22n a a a ⎛⎫=∈< ⎪⎝⎭,排除如图,若a 为不动点12则12n a = 选项C :不动点满足22192024x x x ⎛⎫--=--= ⎪⎝⎭,不动点为ax 12-,令2a =,则210n a =<,排除选项D :不动点满足221174024x x x ⎛⎫--=--= ⎪⎝⎭,不动点为1712x =±,令1712a =,则171102n a =±<,排除. 选项A :证明:当12b =时,2222132431113117,,12224216a a a a a a =+≥=+≥=+≥≥, 处理一:可依次迭代到10a ; 处理二:当4n ≥时,221112n n n a a a +=+≥≥,则117117171161616log 2log log 2n n n n a a a -++>⇒>则12117(4)16n na n -+⎛⎫≥≥ ⎪⎝⎭,则626410217164646311114710161616216a ⨯⎛⎫⎛⎫≥=+=++⨯+⋯⋯>++> ⎪ ⎪⎝⎭⎝⎭.故选A【点睛】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a 的可能取值,利用“排除法”求解. 2. D 【分析】本题综合性较强,注重重要知识、基础知识、运算求解能力、分类讨论思想及数形结合思想的考查.研究函数方程的方法较为灵活,通常需要结合函数的图象加以分析. 【详解】原题可转化为()y f x =与y ax b =+,有三个交点.当BC AP λ=时,2()(1)()(1)f x x a x a x a x '=-++=--,且(0)0,(0)f f a ='=,则(1)当1a ≤-时,如图()y f x =与y ax b =+不可能有三个交点(实际上有一个),排除A ,B(2)当1a >-时,分三种情况,如图()y f x =与y ax b =+若有三个交点,则0b <,答案选D下面证明:1a >-时,BC AP λ=时3211()()(1)32F x f x ax b x a x b =--=-+-,2()(1)((1))F x x a x x x a '=-+=-+,则(0)0 ,(+1)<0F >F a ,才能保证至少有两个零点,即310(1)6b a >>-+,若另一零点在0<【点睛】遇到此类问题,不少考生会一筹莫展.由于方程中涉及,a b 两个参数,故按“一元化”想法,逐步分类讨论,这一过程中有可能分类不全面、不彻底.. 3. B 【分析】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半.【详解】方法1:如图G 为AC 中点,V 在底面ABC 的投影为O ,则P 在底面投影D 在线段AO 上,过D 作DE 垂直AE ,易得//PE VG ,过P 作//PF AC 交VG 于F ,过D 作//DH AC ,交BG 于H ,则,,BPF PBD PED α=∠β=∠γ=∠,则cos cos PF EG DH BD PB PB PB PB α===<=β,即αβ>,tan tan PD PDED BDγ=>=β,即γ>β,综上所述,答案为B.方法2:由最小角定理βα<,记V AB C --的平面角为γ'(显然γ'=γ) 由最大角定理β<γ'=γ,故选B.法2:(特殊位置)取V ABC -为正四面体,P 为VA 中点,易得333222cos sin sin α=⇒α=β=γ=B. 【点睛】常规解法下易出现的错误有,不能正确作图得出各种角.未能想到利用“特殊位置法”,寻求简便解法. 4. D【分析】本题通过讨论a 的不同取值情况,分别讨论本题指数函数、对数函数的图象和,结合选项,判断得出正确结论.题目不难,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当01a <<时,函数xy a =过定点(0,1)且单调递减,则函数1xy a =过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,0)2且单调递减,D 选项符合;当1a >时,函数x y a =过定点(0,1)且单调递增,则函数1x y a=过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,02)且单调递增,各选项均不符合.综上,选D.【点睛】易出现的错误有,一是指数函数、对数函数的图象和性质掌握不熟,导致判断失误;二是不能通过讨论a 的不同取值范围,认识函数的单调性. 5.A 【分析】本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法”,通过特取,a b的值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立,综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件.【点睛】易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取,a b 的值,从假设情况下推出合理结果或矛盾结果. 6. B【分析】本题首先根据三视图,还原得到几何体—棱柱,根据题目给定的数据,计算几何体的体积.常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查.【详解】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为264633616222++⎛⎫⨯+⨯⨯=⎪⎝⎭. 【点睛】易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心算.7. C 【分析】本题是简单线性规划问题的基本题型,根据“画、移、解”等步骤可得解.题目难度不大题,注重了基础知识、基本技能的考查.【详解】在平面直角坐标系内画出题中的不等式组表示的平面区域为以(-1,1),(1,-1),(2,2)为顶点的三角形区域(包含边界),由图易得当目标函数=3+2z x y 经过平面区域的点(2,2)时,=3+2z x y 取最大值max 322210z =⨯+⨯=.【点睛】解答此类问题,要求作图要准确,观察要仔细.往往由于由于作图欠准确而影响答案的准确程度,也有可能在解方程组的过程中出错. 8. C 【分析】本题根据双曲线的渐近线方程可求得1a b ==,进一步可得离心率.容易题,注重了双曲线基础知识、基本计算能力的考查.【详解】因为双曲线的渐近线为0x y ±=,所以==1a b ,则c ==的离心率ce a==【点睛】理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误. 9. A 【分析】本题借根据交集、补集的定义可得.容易题,注重了基础知识、基本计算能力的考查. 【详解】={1,3}U C A -,则(){1}U C A B =-【点睛】易于理解集补集的概念、交集概念有误. 10.0 【分析】本题主要考查平面向量的应用,题目难度较大.从引入“基向量”入手,简化模的表现形式,利用转化与化归思想将问题逐步简化. 【详解】()()12345613562456AB BC CD DA AC BD AB ADλ+λ+λ+λ+λ+λ=λ-λ+λ-λ+λ-λ+λ+λ要使123456AB BC CD DA AC BD λ+λ+λ+λ+λ+λ的最小,只需要135562460λ-λ+λ-λ=λ-λ+λ+λ=,此时只需要取1234561,1,1,1,1,1λ=λ=-λ=λ=λ=λ=此时123456min0AB BC CD DA AC BDλ+λ+λ+λ+λ+λ=等号成立当且仅当1356,,λ-λλ-λ均非负或者均非正,并且2456,,λ-λλ+λ均非负或者均非正。
高考理科数学等差数列复习资料
① ②
2020/5/23
23
• • •
由②得d=2a1,代入①有 解当得a1=a01=时0或 ,d=a 10(舍49 . 去).
a
2 1
4 9
a
,
1
• 因此, • 故数列{aa1n}的49,通d项公89.式为
a n 4 9 (n 1 )? 8 9 4 9 (2 n 1 )(n N * ).
2020/5/23
Sn,S3n-S2n成 等差数列
.
;Sn,S2n-
• 五、a,b的等差中项为
ab .
2
2020/5/23
6
• 1.等差数列{an}中,已知 an=33,则n=C( )
a1
1 3
, a2+a5=4,
• A. 48
B. 49
• C. 50
D. 51
•
由已知解得公差
• 再由通项公式得
d 2,
•
解得n=50.故选C.
• 假设存在符合题意的项,则由an=bm,
2020/5/23
33
• 可得a1+d(n-1)=a1+ d (m-1),
• 所以 1 (m-1)=n-1,2 • 即m=22n-1. • 由m,n都是正整数可得此式成立.
• 故数列{an}中的任一项an一定在数列 {bn}中.
2020/5/23
34
• 【点评:】一个数列为等差数列的充要条件 可 以 是 : ① an+1-an=d ; ② an=an+b ; ③ Sn=an2+bn(Sn 是 前 n 项 和 ) ; ④ an+2+an=2an+1. 判 断 一 项 a 是 否 为 某 数 列 {an}的项,就是方程an=a是否有对应的正 整数解.
高考数学理科二轮复习专题四数列推与证明第1讲等差数列与等比数列专题突破讲义文
第 1 讲等差数列与等比数列1.等差、等比数列基本量和性的考是高考点,常以小形式出.2.数列乞降及数列与函数、不等式的合是高考考的要点,考剖析、解决的合能力.点一等差数列、等比数列的运算1.通公式等差数列:等比数列:2.乞降公式等差数列:等比数列:a n= a1+ (n- 1)d;a n= a1·q n-1.S n=n a1+ a n= na1+n n- 1d;22S n=a1 1- q n a1- a n q(q≠ 1).1- q=1- q3.性若 m+ n= p+ q,在等差数列中a m+ a n= a p+ a q;在等比数列中a m·a n= a p·a q.例 1 (1)(2017 届江西大附中、川一中考)已知数列{ a n},{ b n}足 b n=log 2a n, n∈N*,此中 { b n}是等差数列,且 a9 a2 009= 4, b + b + b +⋯+ b等于() 123 2 017A .2 016B. 2 0172 017C. log22 017 D.2答案B分析由可得log 2a9+log 2a2 009= 2,即 b9+ b2 009= 2,由等差数列的通的性,可得b9+ b2 009=b1+ b2 017= 2,2 017 b1+ b2 017所以 b1+ b2+ b3+⋯+ b2 017==2 017,故 B.(2)(2017 届四川省成都市诊疗性检测 )在等比数列 { a n } 中,已知 a 3= 6, a 3+ a 5+a 7= 78,则 a 5 等于 ( )A .12B .18C . 24D .36答案 B分析因为 a 3+ a 5+ a 7= a 3+ a 3q 2+ a 3q 4= 6(q 4+ q 2+ 1)= 78,得 q 4+ q 2- 12= 0,得 q 2= 3 或 q 2=- 4(舍去 ) ,则 a 5= a 3q 2= 6×3=18,应选 B.思想升华在进行等差 (比 )数列项与和的运算时,若条件和结论间的联系不显然,则均可化成对于 a 1 和 d(q)的方程组求解,但要注意消元法及整体计算,以减少计算量.追踪操练 1 (1)(2017 ·河北省曲周县第一中学模拟 ) 设等差数列 { a n } 的前 n 项和为 S n ,若 S 4=- 4, S 6= 6,则 S 5 等于 ( )A .0B .- 2C .4D .1 答案A4a 1+ 4×32 d =- 4,a 1=- 4,分析由题设可得?6×5d = 2,6a 1+2 d =6则 S 5=- 4×5+5×42 ×2= 0,应选 A.n的公比为- 2,则 ln (a2 0172- ln (a 2 016)2= ________.(2)(2017 届长沙一模 )等比数列 { a } )答案 ln 2分析 ln (a 2 017)2 -ln (a 2 016)2= lna 2 017 2= lnq 2= ln 2.a 2 016热门二 等差数列、等比数列的判断与证明数列 { a n } 是等差数列或等比数列的证明方法(1) 证明数列 { a n } 是等差数列的两种基本方法:①利用定义,证明 a n + 1- a n (n ∈ N * )为一常数;②利用等差中项,即证明2a n = a n - 1+ a n + 1(n ≥ 2).(2) 证明 { a n } 是等比数列的两种基本方法a n + 1*①利用定义,证明a n (n ∈ N ) 为一常数;②利用等比中项,即证明 a n 2= a n - 1a n +1 (n ≥ 2).例 2 (2017 届东北三省三校联考 )已知数列 { a n } 知足 a 1= 3, a n + 1= 2a n - n + 1,数列 { b n } 知足b 1= 2, b n +1= b n + a n - n.(1) 明: { a n -n} 等比数列;a n - n(2) 数列 { c n } 足 c n = b n + 1 b n + 1+ 1 ,求数列 { c n } 的前 n 和 T n .(1) 明∵ a n +1= 2a n - n +1,∴ a n +1 -(n + 1)= 2(a n - n), 又 a 1- 1= 2,∴ { a n - n} 是以 2 首 , 2 公比的等比数列.(2) 解 由 (1)知 a n - n = (a 1- 1) ·2n -1 =2n ,∵ b n +1 =b n + a n - n ,∴ b n + 1- b n = 2n ,1b 2 -b 1 =2 , ⋯ ,b n -b n -1= 2n -1,n -12·1- 2n累加获得 b n = 2+=2 (n ≥ 2).当 n = 1 , b 1= 2,∴ b n = 2n ,a n - n ∴c n =b n + 1 b n +1+ 1n2=2n+1 2n +1+ 1= n11+ 1- n +1+ 1.2 2 11∴ T n = 3-2n +1+ 1.思 升 (1) 判断一个数列是等差 (比 )数列,也能够利用通 公式及前n 和公式, 但不可以作明方法.a n +12(2) a n = q 和 a n = a n - 1a n + 1(n ≥ 2)都是数列 { a n } 等比数列的必需不充足条件,判断 要看各能否 零.追踪演 2 (2017 届吉林省 白山市模 )在数列 { an} 中, f(n) =a n ,且 f(n) 足 f(n +1) -2f(n)= 2n (n ∈N * ),且 a 1= 1. (1)b =a n, 明:数列 { b n } 等差数列;n2n -1(2) 求数列 { a n } 的前 n 和 S n . (1) 明 由已知得 a n + 1= 2a n + 2n ,得 b + =a n +12a n +2na nn= n= - + 1=b + 1,n 12 22n 1n∴ b n +1 -b n = 1, 又 a 1= 1,∴ b 1= 1,∴ {bn} 是首1,公差 1 的等差数列.(2) 解a nn -1由 (1)知, b n = n - 1= n ,∴ a n =n ·2.2∴ S n = 1+ 2·21+3·22+⋯ + n ·2n -1,两 乘以2,得2S n = 1·21+ 2·22+ ⋯ + (n -1) ·2n -1+ n ·2n ,两式相减得- S n = 1+21+ 22+ ⋯ + 2n - 1- n ·2n= 2n - 1- n ·2n = (1-n)2 n -1, ∴ S n = (n - 1) ·2n + 1.点三 等差数列、等比数列的 合解决等差数列、等比数列的 合 ,要从两个数列的特点下手,理清它 的关系;数列与不等式、函数、方程的交 ,能够 合数列的 性、最 求解.例3已知等差数列{ a n } 的公差 -1,且 a 2 +a 7+ a 12=- 6.(1) 求数列 { a n } 的通 公式a n 与前n 和S n ;(2) 将数列{ a n } 的前4 抽去此中一 后, 剩下三 按本来 序恰 等比数列{ b n } 的前3 ,{ b n } 的前 n 和 T n ,若存在 m ∈ N * ,使 随意 n ∈ N * , 有 S n <T m +λ恒建立,求 数 λ的取 范 .解 (1)由 a 2+ a 7+ a 12=- 6,得 a 7=- 2,∴ a 1= 4,∴ a n = 5- n ,进而 S n =n 9- n.2(2) 由 意知 b 1=4, b 2= 2, b 3= 1,等比数列 { b n } 的公比 q , q =b 2=1,b 1 24 1- 1 m21 m∴ T m = 1=81-2 ,1- 2∵1m随 m 增添而减,2∴ { T m} 增数列,得4≤T m<8.又 S n=n 9-n=-1(n2- 9n) 22=-12n-922-814,故 (S n) max= S4= S5= 10,若存在 m∈N*,使随意n∈N*有 S n<T m+λ,10<8 +λ,得λ>2. 即数λ的取范 (2 ,+∞).思升(1)等差数列与等比数列交的,常用“基本量法”求解,但有灵巧地运用性,可使运算便.(2) 数列的或前n 和能够看作对于n 的函数,而后利用函数的性求解数列.(3)数列中的恒建立能够通分别参数,通求数列的域求解.追踪演 3 (2017 ·北京 )已知等差数列 { a n} 和等比数列 { b n} 足 a1= b1= 1, a2+ a4= 10, b2b4=a5.(1)求{ a n} 的通公式;(2)乞降: b1+ b3+ b5+⋯+ b2n-1.解 (1)等差数列 { a n } 的公差 d.因 a2+ a4= 10,所以 2a1+ 4d= 10,解得 d=2,所以 a n=2n- 1.(2)等比数列 { b n} 的公比 q,因 b2b4= a5,所以 b21q4= 9,解得 q2= 3,所以 b2n-1= b1q2 n-2= 3n-1.n2n- 13 -1进而 b1+ b3+ b5+⋯+ b2n-1=1+ 3+ 3 +⋯+ 3=.真体1. (2017 ·全国Ⅰ改 ) S n等差数列 { a n } 的前 n 和.若 a4+ a5= 24,S6= 48, { a n} 的公差________.答案4分析{ a n} 的公差d,a4+ a5=24,a1+ 3d + a1+ 4d = 24,6×5由得S6= 48,6a1+2d= 48,2. (2017 ·浙江改编 )已知等差数列 { a n } 的公差为 d ,前 n 项和为S n ,则 “d > 0”是“S 4+S 6> 2S 5”的 ________条件.答案 充要分析方法一 ∵数列 { a n } 是公差为 d 的等差数列,∴ S 4= 4a 1+ 6d , S 5= 5a 1+ 10d ,S 6= 6a 1+ 15d ,∴ S 4+ S 6= 10a 1+21d,2S 5= 10a 1+ 20d. 若 d > 0,则 21d > 20d,10a 1+ 21d > 10a 1+ 20d , 即 S 4+ S 6> 2S 5.若 S 4+ S 6> 2S 5,则 10a 1+ 21d >10a 1+ 20d ,即 21d >20d ,∴ d > 0.∴ “d > 0”是“S 4+ S 6> 2S 5”的充要条件. 方法二∵ S 4+ S 6> 2S 5? S 4+ S 4+ a 5+ a 6> 2(S 4+ a 5)? a 6> a 5? a 5+ d >a 5? d > 0.∴ “d > 0”是“S 4+ S 6> 2S 5”的充要条件.3.(2017 北·京 )若等差数列 { a n } 和等比数列 { b n } 知足 a 1= b 1=- 1,a 4=b 4=8,则a 2= ________.b 2答案1分析设等差数列 { a n } 的公差为 d ,等比数列 { b n } 的公比为 q ,则由 a 4= a 1+ 3d ,得 d = a 4 - a 1= 8- - 1 = 3,3 3由 b 4= b 1q 3,得 q 3=b 4= 8=- 8,∴ q =- 2.b 1 - 1∴a 2= a 1+ d = -1+ 3= 1. b 2 b 1 q -1×- 24. (2017 ·江苏 )等比数列 { a n } 的各项均为实数,其前 n 项和为 S n ,已知 S 3= 7, S 6= 63,则 a 84 4 = ________.答案 32分析设 { a n } 的首项为 a 1,公比为 q ,a 1 1-q 3=7,a 1= 1,则1- q4a 1 1-q 6解得4 =63,q = 2,1-q 4175所以 a 8=4×2 =2 =32.1.设等差数列 { a n} 的前 n 项和为 S n,且 a1 >0,a3+ a10>0, a6 a7<0,则知足 S n>0 的最大自然数n 的值为 ()A .6B . 7C. 12 D .13押题依照等差数列的性质和前n 项和是数列最基本的知识点,也是高考的热门,能够考察学生灵巧变换的能力.答案C分析∵ a1>0 , a6a7<0,∴ a6>0,a7<0,等差数列的公差小于零,又a3+ a10=a1+a12>0,a1+a13=2a7<0,∴ S12>0, S13<0,∴知足 S n>0 的最大自然数n 的值为 12.2. (2017 ·安庆模拟 )等比数列 { a n} 中, a3- 3a2= 2,且 5a4为 12a3和 2a5的等差中项,则{ a n} 的公比等于 ()A.3B.2或 3C.2D.6押题依照等差数列、等比数列的综合问题可反应知识运用的综合性和灵巧性,是高考出题的要点.答案C分析设公比为 q,5a4为 12a3和 2a5的等差中项,可得2,10a4= 12a3+ 2a5,10a3q=12a3+ 2a3q得 10q=12+ 2q2,解得 q= 2 或 3.又 a3- 3a2=2,所以有 a2q- 3a2= 2,所以有 q= 2,应选 C. 3.已知各项都为正数的等比数列{ a n} 知足 a7= a6+ 2a5,存在两项a m, a n使得a m·a n= 4a1,则1+4的最小值为 () m n 35A. 2B. 3254C. 6D.3押题依照此题在数列、方程、不等式的交汇处命题,综合考察学生应用数学的能力,是高考命题的方向.答案A分析由 a7= a6+ 2a5,得 a1 q6=a1 q5+2a1q4,整理得 q2- q- 2= 0,解得 q= 2 或 q=- 1(不合题意,舍去 ),又由a m·a n=4a1,得 a m a n=16a12,即 a12 2m+ n-2= 16a12,即有 m+ n- 2=4,亦即 m+ n= 6,那么1411+4 m+= (m+ n)n n6m=1 4m n+ 5124m n3,6+≥n·+5 =2 n m6m当且仅当4m= n ,即n mn= 2m= 4 时获得最小值32.4.定义在 (-∞, 0)∪ (0,+∞)上的函数f(x),假如对于随意给定的等比数列{ a n} , { f(a n)} 还是等比数列,则称f(x)为“保等比数列函数”.现有定义在(-∞, 0)∪ (0,+∞)上的以下函数:① f( x)= x2;② f(x)= 2x;③ f(x)=|x|;④ f(x)= ln|x|.则此中是“保等比数列函数”的f(x)的序号为()A .①②B.③④C.①③D.②④押题依照先定义一个新数列,而后要求依据定义的条件推测这个新数列的一些性质或许判断一个数列能否属于这种数列的问题是最近几年来高考取渐渐盛行的一类问题,这种问题一般形式新奇,难度不大,常给人耳目一新的感觉.答案C分析由等比数列性质得,a n a n+2= a n2+1.22222① f( a n )f(a n+2)= a n a n+2=(a n+1) = f (a n+1);② f( a n)f(a n+2)=2a n2a n 22a n a n 222a n 1= f2 (a n+1);③ f( a n )f(a n+2)=|a n a n+2|=22|a n+1 | = f(a n+1);④ f( a n n +2n n+ 2|≠a+12=f2(a n+1)f(a)= ln|a|ln|a(ln||)).应选 C.A 组专题通关1. (2017 ·河南省息县第一高级中学阶段测试)已知等差数列 { a n } 知足 a1+ a2=- 1, a3= 4,则a4+ a5等于 ()A .17B.16C. 15 D .14答案A分析设等差数列公差为d,2a1+ d=- 1,a1=- 2,则有解得a1+ 2d= 4,d= 3,所以 a4+ a5= 2a1+ 7d= 2×(-2) +7×3= 17,应选 A.2. (2017 ·河北省衡水中学三 )已知 { a n } 是等比数列,且a 2+a 6= 3, a 6+ a 10= 12, a 8+ a 12等于 ( )A .12 2B . 24C . 24 2D . 48答案Ba 6+a 10a 2 q 4+ a 6q 44122分析 a 2+ a 6=a 2+ a 6 = q = 3 = 4, q = 2,a 8+ a 12= a 6q 2+ a 10q 2= q 2(a 6+ a 10)= 2×12=24, 故 B.3.(2017 全·国Ⅲ )等差数列 { a n } 的首 1,公差不0.若 a 2,a 3,a 6 成等比数列, { a n } 的前6 和 ()A .-24B .-3C .3D .8答案A分析由已知条件可得 a 1= 1,d ≠0,由 a 23= a 2a 6,可得 (1+ 2d)2= (1+ d)(1 + 5d),解得 d =- 2.所以 S 6= 6×1+6×5×- 2=- 24.2故 A.4.(2017 届三湘名校教育 盟 考 )一个等比数列的前三 的2,最后三 的 4,且所有 的 64, 数列的 数是 ()A .13B .12C .11D .10 答案B分析等比数列 { a n } ,其前 nT n ,由已知得 a 1a 2a 3= 2,a n a n - 1a n - 2= 4,可得 (a 1 a n )3= 2×4,a 1 a n =2,∵ T n = a 1a 2⋯ a n ,∴ T 2n = (a 1 a 2 ⋯a n )2= (a 1a n )( a 2a n -1 ) ⋯(a n a 1)= ( a 1 a n )n = 2n = 642= 212, ∴ n = 12.5.(2017 届福建省福州文博中学期中) 《九章算 》 中的 “两鼠穿 ”是我国数学的古典名 :“今有垣厚若干尺,两鼠 穿,大鼠日一尺,小鼠也日一尺.大鼠日自倍,小鼠日自半. 何日相遇,各穿几何?” 意是:有两只老鼠从 的两 打洞穿 .大老鼠第一天 一尺,此后每日加倍;小老鼠第一天也 一尺,此后每日减半,假如 足 厚,S n 前n 天两只老鼠打洞 度之和,S 5等于 ()1515A .3116B . 321615 1 C . 3316 D . 262答案 B分析大老鼠、小老鼠每日打洞进度分别组成等比数列{ a n } ,{ b n } ,公比分别为 2,1,首项都21 5为 1,所以 S 5=1×1-25+ 1×1- 2= 3215.应选 B.1- 21161- 26. (2017 届河南省高中毕业年级考前展望 )在等差数列 { a n } 中, d>0, S n 是它的前 n 项和,若 a 1+ a =a 4,且 a 与 a 6 的等比中项为 4,则 S =________.22 28答案46a 1+3d分析2a 1+ d = 2 ,由题意,得a 1+ d a 1+ 5d = 16,a 1= 1,1 8×7 3解得2则 S 8=38× +2× =46.22d =2,7.(2017 届三湘名校教育结盟联考 )已知正项等差数列 { a n } 的前 n 项和为 S n ,S 10= 40,则 a 3·a 8的最大值为 ______.答案 16分析S =10 a 1+a 10= 40? a + a = a + a = 8,10211038a 3+ a 8 282a 3·a 8≤== 16,22当且仅当 a 3= a 8= 4 时 “= ”建立.8.(2017 届内蒙古包头十校联考)设 S n是数列 { a n } 的前 n 项和,且 a 1=- 1,a n+1= S n ,则 S n =S n +1__________.1 答案 - n分析a n+1= S n ? a n + 1= S n S n + 1? S n + 1- S n = S n S n + 1,整理为 1 -1=1,即 1 - 1=- 1,即数S n +1S n S n +1 S n +1 S n列 1是以- 1 为首项,- 1 为公差的等差数列,S n所以1 =- 1+ (n - 1) ·(- 1)=- n ,即 S nS n =- 1.n9. (2017 ·北京市石景山区月考 )在数列 { a n } 中, a 1= 1,a n ·a n + 1=- 2(n = 1,2,3, ⋯),那么a 8=________.答案- 21, n 奇数,分析由数列的 推公式,可得a n =- 2, n 偶数,据此可得 a 8=- 2.10. (2017 ·国Ⅰ全 )S n 等比数列 { a n } 的前 n 和.已知 S 2 = 2, S 3=- 6.(1) 求{ a n } 的通 公式;(2) 求 S n ,并判断 S n + 1, S n , S n +2 能否成等差数列.解 (1) { a n } 的公比 q ,由 可得a 1 1+ q = 2,2a 1 1+ q + q =- 6, 解得 q =- 2, a 1=- 2.故 { a n } 的通 公式a n = (- 2)n .(2) 由(1) 可得S n = a 1 1- q n =- 2+ (- 1)n 2n + 1. 1- q 3 3因为 S + + S + =- 4+ (- 1)n 2n +3- 2n +2n 2n 133= 2 -2+ - 1n2n +1 = 2S n ,33故 S n + 1,S n , S n + 2 成等差数列.B能力提升11.(2017 安·徽省蚌埠市教课 量)数列 { a n } 是以 a 首 ,b 公比的等比数列, 数列 { b n }足 b n = 1+a 1+ a 2+ ⋯ +a n (n =1,2, ⋯),数列 { c n } 足 c n = 2+ b 1+ b 2+⋯ + b n (n = 1,2,⋯),若 {cn} 等比数列,a +b 等于 ( )A. 2 B .3C. 5D .6答案 B分析 由 意知,当b = 1 , {c n } 不是等比数列,nana所以 b ≠1由.a n = abn -1, b n = 1 +a 1- b= 1 +- ab,得 c n = 2 + 1+n -1- b1- b1- b 1- banab 1- b + aab n +1b 1- b-, 要 使{ c n }等比数列,必有1- b ·= 2 1- b2 +n +1- b 2 1- b1- bab2- 1- b 2= 0,a = 1,1- b + a得a +b = 3,应选 B.=0, b = 2,1- b12. (2017 届吉林省吉林市一般中学调研 )艾萨克 ·牛顿 (1643 年 1 月 4 日- 1727 年 3 月 31 日 )英国皇家学会会长,英国有名物理学家,同时在数学上也有很多优秀贡献,牛顿用 “作切线 ”的方法求函数f(x) 的零点时给出一个数列{ x n }+= x -f x n,我们把该数列称为牛顿数知足 x n 1nf ′x n列.假如函数2 1,2,数列 { x n } 为牛顿数列,设 a n =lnx n - 2 f(x) =ax + bx + c(a>0) 有两个零点x n - ,1已知 a 1= 2,x n >2,则 { a n } 的通项公式 a n = ________. 答案 2n分析 ∵ 函数 f(x)= ax 2+ bx + c(a>0)有两个零点1,2,a +b +c = 0, c =2a , ∴解得4a + 2b + c = 0,b =- 3a.∴ f( x)= ax 2-3ax + 2a ,则 f ′(x)= 2ax - 3a.则 x n + 1= x n -ax 2n -3ax n + 2a2ax n - 3a= x n -x n 2- 3x n + 2 x n 2- 22x n - 3=,2x n - 32x n -2-2x n + 1- 22x n - 32x n - 3- 1x n 2- 2- 2 2x n - 3x n - 2 2= x n 2- 2- 2x n -3 = x n - 1 ,则数列 a n 是以 2 为公比的等比数列,又∵a 1= 2 ,∴ 数列 { a n } 是以 2 为首项,以 2 为公比的等比数列,则 a n = 2·2n -1=2n .n -1*.设数列 { a n } 的前 n 项 13.(2017 届石家庄模拟 )已知等比数列 { a n } 知足 a n +1+ a n = 3·2 ,n ∈ N 和为 S n ,若不等式 S n n - 2 对全部 n ∈ N * 恒建立,则实数 k 的取值范围为 ______ .>ka答案 (- ∞, 2]分析n -1,得 a 2+a 1= 3, a 3+ a 2= 6,设数列 { a n } 的首项为 a 1,公比为 q ,则由 a n +1 +a n =3·2所以 q =a 3+a 2 n -1,S n = 1- 2n n- 1.因为不等式= 2,所以 2a 1+ a 1= 3,即 a 1= 1,所以 a n = 2=2a 2+a 11- 2*nn -1 - 2,解得 k ≤2.S n >ka n - 2 对全部 n ∈ N 恒建立,即 2 - 1>k ·214. (2017 届江西潭一中月考n n, a=(a1,10)等差数列 { a } 的前 n 和 S1),b= (1, a) ,若a·b=24,且S11=143,数列{ b n}的前n和T n,且足2a n-1=λT-n(a1- 1)(n∈N* ).(1) 求数列 { a n} 的通公式及数列1的前 n 和 M n;a n a n+1(2)能否存在非零数λ,使得数列 { b n} 等比数列?并明原因.解 (1)数列 { a n} 的公差 d,由 a=(a1,1), b=(1,a10), a·b=24,得 a1+ a10= 24,又 S11= 143,解得 a1= 3,d= 2,所以数列的通公式是a n= 2n+ 1(n∈N* ),所以1=11-1,a n a n+1 2 2n+ 12n+ 3所以M n=11-111+⋯ +1-1 2+-2n+ 335572n+1=n.6n+9(2) 因2a n-1=λT-n(a1- 1)(n∈N* ),且 a1= 3,可得T=4n26+,当 n=1 , b =;nλ λ1λ当 n≥2 , b n= T n-T n-1=3·4n-1,此有b n= 4,若 { b n} 是等比数列,有b2=4,而 b1=6,λb n-1b1λb2=12,相互相矛盾,故不存在非零数λ使数列 { b n} 等比数列.λ。
高考理科数学总复习第五章 第二节 等差数列及其前n项和
的项数m使得Sn取得最
即时应用
1.已知在等差数列{an}中,a4+a5+a6=15,则 a1+a2+a3+… +a9=___4_5____.
因为{an}为等差数列,a4+a5+a6=15,所以3a5=15,解得a5= 5,a1+a2+a3+…+a9=a1+2a9×9=2a52×9=9a5=9×5=45.
主干知识 自主排查
1.等差数列的概念 (1)如果一个数列从第 2 项起,每一项与它的前一项的差等 于 同一个常数 ,那么这个数列就叫做等差数列,这个常数叫 做等差数列的 公差 ,公差通常用字母 d 表示. 数学语言表达式:an+1-an=d(n∈N*,d 为常数),或 an-an-1 =d(n≥2,d 为常数). (2)若 a,Aa,+bb成等差数列,则 A 叫做 a,b 的等差中项, 且 A= 2 .
4.等差数列的前 n 项和公式与函数的关系
Sn=d2n2+a1-d2n. 数列{an}是等差数列⇔Sn=An2+Bn(A,B 为常数). 5.等差数列的前 n 项和的最值 在等差数列{an}中,a1>0,d<0,则 Sn 存在最 大 值;若 a1<0, d>0,则 Sn 存在最 小 值.
方法技巧
等差数列的判定与证明方法
即时应用
1.设数列{an}的通项公式为 an=2n-10(n∈N*),则|a1|+|a2|+… +|a15|=__1_3_0____.
由 an=2n-10(n∈N*)知{an}是以-8 为首项,2 为公差的等差 数列,又由 an=2n-10≥0,得 n≥5,∴当 n≤5 时,an≤0, 当 n>5 时,an>0,∴|a1|+|a2|+…+|a15|=-(a1+a2+a3+a4) +(a5+a6+…+a15)=20+110=130.
高考理科数学知识点归纳
高考理科数学知识点归纳各个科目都有自己的学习方法,但其实都是万变不离其中的,基本离不开背、记,练,数学作为最烧脑的科目之一,也是一样的。
下面是作者给大家整理的一些高考理科数学的知识点,期望对大家有所帮助。
高考理科数学重要知识点总结1.数列的定义按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以显现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个肯定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,明显数列与数集有本质的区分.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合.2.数列的分类(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列.(2)依照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列.3.数列的通项公式数列是按一定次序排列的一列数,其内涵的本质属性是肯定这一列数的规律,这个规律通常是用式子f(n)来表示的,这两个通项公式情势上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在情势上,又不一定是的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能肯定的,通项公式更非.如:数列1,2,3,4,…,由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要根据数列的构成规律,多视察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循.再强调对于数列通项公式的知道注意以下几点:(1)数列的通项公式实际上是一个以正整数集N.或它的有限子集{1,2,…,n}为定义域的函数的表达式.(2)如果知道了数列的通项公式,那么顺次用1,2,3,…去替换公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可判定某数是否是某数列中的一项,如果是的话,是第几项.(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.如2的不足近似值,精确到1,0.1,0.01,0.001,0.0001,…所构成的数列1,1.4,1.41,1.414,1.4142,…就没有通项公式.(4)有的数列的通项公式,情势上不一定是的,正如举例中的:(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不.4.数列的图象对于数列4,5,6,7,8,9,10每一项的序号与这一项有下面的对应关系:这就是说,上面可以看成是一个序号集合到另一个数的集合的映照.因此,从映照、函数的观点看,数列可以看作是一个定义域为正整集N.(或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大顺次取值时,对应的一列函数值.这里的函数是一种特别的函数,它的自变量只能取正整数.由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式.数列是一种特别的函数,数列是可以用图象直观地表示的.数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为方便起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的变化情形,但不精确.高考理科数学备考知识点二倍角公式二倍角的正弦、余弦和正切公式(升幂缩角公式)sin2α=2sinαcosαcos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan2α=2tanα/[1-tan^2(α)]半角公式半角的正弦、余弦和正切公式(降幂扩角公式)sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)万能公式sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]万能公式推导附推导:sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α)).......,(由于cos^2(α)+sin^2(α)=1)再把.分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))然后用α/2代替α即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第10讲
核 心 知 识 聚 焦
等差数列、等比数列教
体验高考
6. [2013· 广东卷改编] 若 1⑥ 等比数列{an}满足 a2a4= , 2 则 a1a32a5=________.
主干知识 ⇒ 等比数列项的性 质 关键词:等比数列、 项的性质,如⑥.
[答案]
1 4
2 1 a1a5=a2a4=a3 = ,所以
①
⇒ 等差数列的概 念与通项 关键词:等差数 列、通项公式,如 ①.
[答案] 35 [解析] 根据等差数列的定义可知,a1+b1,a3+b3, a5+b5也是等差数列.
返回目录
第10讲
核 心 知 识 聚 焦
等差数列、等比数列教
体验高考
2.[2012· 辽宁卷改编] 在 等 差 数 列 {an} 中 , 已 知 a4+a8=16② , 则 a2 + a10 = ________.
专题四
数
列
第10讲 第11讲
等差数列、等比数列 数列求和及数列的简单应用
核 心 知 识 聚 焦 命 题 考 向 探 究 命 题 立 意 追 溯
返回目录
第10讲 等差数列、等比数列 教
核 心 知 识 聚 焦
第10讲 等差数列、等比数列教 主干知识
1.[2012· 江西卷改编] 设 体验高考 数 列 {an} , {bn} 都 是 等差数列 ,若 a1+b1=7,a3 + b3 = 21 , 则 a5 + b5 = ________.
[解析]
2
12 1 a1a3 a5= = . 2 4
2
返回目录
第10讲
核 心 知 识 聚 焦
等差数列、等比数列教
体验高考
7. [2013· 全国卷改编] 已 知数列 {an}满足 3an + 1 +an = 4 0 , a2 = - 3 , 则 {an} 的 前10项和⑦ 等于________.
主干知识
返回目录
第10讲
核 心 知 识 聚 焦
等差数列、等比数列教
体验高考
5 . [2013· 江西卷改编] 等比数列 x, 3x+3, 6x+6, „ 的第四项等于________.
⑤
主干知识 ⇒ 等比数列概念 与通项 关键词:等比数 列、通项公式,如 ④⑤.
[答案] -24
[解析] 由(3x+3)2=x(6x+6)得 x=-1 或 x=-3. 当 x=-1 时,x,3x+3,6x+6 分别为-1,0,0,不 能构成等比数列,所以舍去;当 x=-3 时,x,3x+3, 6x+6 分别为-3,-6,-12,且构成等比数列,则可求出 第四个数为-24.
⇒ 等比数列求和公 式 关键词:等比数列、 和,如⑦.
[答案]
3(1-3
-10
)
返回目录
第10讲
核 心 知 识 聚 焦
等差数列、等比数列教
[解析] 由 3an+1+an=0,得 an≠0(否则 a2=0) an+1 1 1 且 =-3,所以数列{an}是公比为-3的等比数列, an 代入 a2 可得 a1=4, 110 4×1--3 110 故 S10= =3×1- =3(1-3-10). 1 3 1+ 3
主干知识 ⇒ 等差数列求和公 式 关键词:等差数列、 和,如③.
[答案] 80 [解析] 由已知可得a1=-1,d=2, 所以S10=-10+10×9=80.
返回目录
第10讲
核 心 知 识 聚 焦
等差数列、等比数列教
体验高考
4 . [2013· 新课标全国卷 改编] 若数列{an}的前 n 项和 2 1 Sn = an + , 则 {an} 的 3 3 通项公式④ 是 an=________.
主干知识
⇒ 等差数列项的性 质 关键词:等差数列、 项的性质,如②.
[答案] 16 [解析] a2+a10=a4+a8=16.
返回目录
第10讲
核 心 知 识 聚 焦
等差数列、等比数列教
体验高考
3.[2012· 重庆卷改编] 在 等差数列 {an} 中, a2 = 1 , a4 = 5 ,则 {an} 的 前10项和③ S10 =________.
主干知识 ⇒ 等比数列概念 与通项 关键词:等比数 列、通项公式,如 ④⑤.
[答案]
(-2)n
-1
返回目录
第10讲
核 心 知 识 聚 焦
等差数列、等比数列教
2 1 [解析] 因为 Sn=3an+3①, 2 1 所以 Sn-1=3an-1+3(n≥2)②, 2 2 ①-②得 an= an- an-1(n≥2),即 an=-2an-1(n≥2), 3 3 2 1 又因为 S1=a1= a1+ ⇒a1=1, 所以数列{an}是以 1 为首项, 3 3 -2 为公比的等比数列,所以 an=(-2)n-1.
[答案] B
返回目录
第10讲
等差数列、等比数列教
[解析] 因为 an+1=an,所以 an=a1.又因为 bn+1+cn+1=
命 题 考 向 探 究
1 1 (b +c )+an= (bn+cn)+a1, 2 n n 2 1 所以 bn+1+cn+1-2a1=2(bn+cn-2a1), 1 所以 bn+cn-2a1= n(b1+c1-2a1),又因为 b1+c1-2a1=0, 2 所以 bn+cn=2a1,故△AnBnCn 中边 BnCn 的长度不变,另外两 1 边 AnBn,AnCn 的和不变.因为 bn+1-cn+1=- (bn-cn), 2 1n-1 且 b1-c1>0,所以 bn-cn=-2 (b1-c1),当 n→+∞时, bn→cn,也就是 AnCn→AnBn,所以△AnBnCn 中 BnCn 边上的高随 着 n 的增大而增大. 设△AnBnCn 中 BnCn 边上的高为 hn, 则{hn} 1 单调递增,所以 Sn=2a1hn 是增函数.答案为 B.
返回目录
第10讲
等差数列、等比数列教
—— 基础知识必备 ——
返回目录
第10讲
等差数列、等比数列教
►
考向一
数列的一问题
考向:数列的性质(单调性、最值),数列的通项与前n项 和的关系等.
命 题 考 向 探 究
返回目录
第10讲
等差数列、等比数列教
例 1
[2013· 新课标全国卷Ⅰ] 设△AnBnCn 的三边长分
别为 an,bn,cn,△AnBnCn 的面积为 Sn,n=1 ,2,3,„. cn+an bn+an 若 b1>c1, b1+c1=2a1, an+1=an, bn+1= , cn+1= , 2 2
命 题 考 向 探 究
则(
) A. {Sn}为递减数列 B.{Sn}为递增数列 C.{S2n-1}为递增数列,{S2n}为递减数列 D.{S2n-1}为递减数列,{S2n}为递增数列