数学家欧拉的故事ppt

合集下载

数学家欧拉的故事ppt

数学家欧拉的故事ppt

05
CATALOGUE
欧拉的其他方面
欧拉的宗教信仰
欧拉是一位虔诚的基督教徒,他相信上帝是世界万物的创造 者和主宰。他经常在著作中引用圣经和神学的观点来解释数 学原理和宇宙的奥秘。
欧拉认为数学和宗教都是探索真理和赞美上帝的方式,两者 之间有许多相通之处。他曾表示,数学和宗教都是人类智慧 的结晶,可以相互补充和启发。
“数学界的莎士比亚”。
02
CATALOGUEБайду номын сангаас
欧拉的重要数学贡献
欧拉在数论领域的贡献
总结词
欧拉在数论领域做出了卓越的贡献,他引入了新的概念和方法,推动了数论的 发展。
详细描述
欧拉在数论领域的研究涉及到了许多重要的概念和定理,如欧拉定理、欧拉函 数、欧拉乘积等。他的工作为数论的发展奠定了坚实的基础,对后世产生了深 远的影响。
他经常参加各种社交活动和学术交流,与各界人士交流思想,分享学术成果。他的社交生活不仅丰富了他的精神世界,也拓 宽了他的学术视野。
THANKS
感谢观看
欧拉在几何学领域的贡献
总结词
欧拉在几何学领域的研究涉及到了图形和空间的基本性质,他的工作为几何学的 发展做出了重要的贡献。
详细描述
欧拉在几何学领域的研究主要集中在图形的性质和分类上,他引入了许多新的概 念和方法,如欧拉公式、欧拉路径等。这些概念和方法在几何学中有着广泛的应 用,对几何学的发展产生了深远的影响。
欧拉的教育思想影响了后来的数学教 育,他提倡的实用主义和问题解决的 方法对现代数学教育产生了深远的影 响。
04
CATALOGUE
欧拉的个性与人格魅力
欧拉的勤奋与毅力
欧拉从小就展现出对数学的浓厚兴趣,他刻苦钻研,勤奋努力,不断挑战 自我。

【高中数学课件】欧拉公式1 ppt课件

【高中数学课件】欧拉公式1 ppt课件
欧拉公式及其应用
欧拉著名的数学家,瑞士人,大部分时间在俄国和法
国度过.他17岁获得硕士学位,早年在数学天才贝努 里赏识下开始学习数学,毕业后研究数学,是数学史 上最高产的作家.在世发表论文700多篇,去世后还 留下100多篇待发表.其论著几乎涉及所有数学分 支.他首先使用f(x)表示函数,首先用∑表示连加,首 先用i表示虚数单位.在立体几何中多面体研究中,首 先发现并证明欧拉公式.
练习
1、(1)一个简单多面体的各面都是三角形,证明它的顶点 数V和面数F有F=2V-4的关系.
(2)若简单多面体的各面都是四边形,则它的顶点数V 和面数F又有怎样的关系?
F=V- 2
2、 简单多面体的每个面都是五边形,且每个顶点的一端都 有三条棱,求这个多面体的面数和棱数.
F=12 E=30
小结
2(m-2) ·1800+(V-m) ·3600=(V-2) ·3600
∴(E-F)·3600= (V-2) ·3600
V+F-E=2 欧拉公式
欧拉公式的应用
例1 1996年的诺贝尔化学奖授予对发现C60有重大贡献的
三位科学家.C60是有60 个C原子组成的分子,它结构为简 单多面体形状.这个多面体有60个顶点,从每个顶点都引出 3条棱,各面的形状分别为五边形或六边形两种.计算C60分 子中形状为五边形和六边形的面各有多少?
欧拉公式
V+F-E=2
空间问题平面化
猜想
证 明
作业 P68 阅读材料
应用
讨论
问题1: (1)数出下列四个多面体的顶点数V、面数F、棱数E 并填表
(1)
(2)
图形编号 (1)
顶点数V 4
(2)
8ቤተ መጻሕፍቲ ባይዱ

高一数学欧拉公式(PPT)5-3

高一数学欧拉公式(PPT)5-3
欧拉
著名的数学家,瑞士人,大部分时间在俄国和法 国度过.他16岁获得硕士学位,早年在数学天才贝努 里赏识下开始学习数学,毕业后研究数学,是数学史 上最高产的作家.在世发表论文700多篇,去世后还 留下100多篇待发表.其论著几乎涉及所有数学分 支.他首先使用f(x)表示函数,首先用∑表示连加,首 先用i表示虚数单位.在立体几何中多面体研究中,首 先发现并证明欧拉公式.
讨论
问题1: (2)数出下列四个多面体的顶点数V、面数F、棱数E 并填表
(5)
图形编号 (5) (7) (6)
顶点数V 5 16
7
面数F 5 16
8Leabharlann (8)棱数E 8 32 12
简单多面体 V+F-E=2(欧拉公式)
欧拉公式
长,家庭教师和家长,店员和店主)。 【宾服】ī〈书〉动服从;归附。 【宾服】ī?〈方〉动佩服:你说的那个理,俺不~。 【宾馆】ī名招待来宾住宿的地 方。现指较大而设施好的旅馆。 【宾客】ī名客人(总称):迎接八方~。 【宾朋】ī名宾客;朋友:~满座。 【宾语】ī名动词的一种连带成分,一般在动词 后边,用来回答“谁?”或“什么?”例如“我找; / 笔趣阁小说网;厂长”的“厂长”,“他开拖拉机”的“拖拉机”,“接受批 评”的“批评”,“他说他不知道”的“他不知道”。有时候一个动词可以带两个宾语,如“教我们化学”的“我们”和“化学”。 【宾至如归】īī客人到 了这里就像回到自己的家一样,形容旅馆、饭馆等招待周到。 【宾主】ī名客人和主人:~双方进行了友好的会谈。 【彬】ī①[彬彬](īī)〈书〉形文雅的 样子:~有礼|文质~。②(ī)名姓。 【傧】(儐)ī[傧相](ī)名①古代称接引宾客的人,也指赞礼的人。②举行婚礼时陪伴新郎新娘的人:男~| 女~。 【斌】ī同“彬”。 【滨】(濱)ī①水边;近水的地方:海~|湖~|湘江之~。②靠近(水边):~海|~江。③(ī)名姓。 【缤】(繽)ī[缤 纷](ī)〈书〉形繁多而凌乱:五彩~|落英(花)~。 【槟】(檳、梹)ī[槟子](ī?)名①槟子树,花红的一种,果实比苹果小,红色,熟后转紫红, 味酸甜带涩。②这种植物的果实。 【镔】(鑌)ī[镔铁](ī)名精炼的铁。 【濒】(瀕)ī①紧靠(水边):~湖|东~大海。②临近;接近:~危|~行。 【濒绝】ī动濒临灭绝或绝迹:~物种。 【濒临】ī动紧接;临近:我国~太平洋|精神~崩溃的边缘。 【濒死】ī动临近死亡:从~状态下抢救过来。 【濒危】 ī动接近危险的境地,指人病重将死或物种临近灭绝:病人~|~动物。 【濒于】ī动临近;接近(用于坏的遭遇):~危境|~绝望|~破产。 【豳】ī古地 名,在今陕西彬县、旬邑一带。也作邠。 【摈】(擯)〈书〉抛弃;排除:~诸门外|~而不用。 【摈斥】动排斥:~异己。 【摈除】动排除;抛弃:~

欧拉简介PPT课件

欧拉简介PPT课件

对线性代数和矩阵理论做出了 重大贡献,包括行列式的性质 与算法、线性方程组的解法等。
推动了符号代数的发展,使得 代数学从几何学中独立出来。
几何学方面创新观点
提出了“欧拉公式”,揭示了多面体 的顶点数、棱数、面数之间的数量关 系。
对解析几何和微分几何的发展做出了 重要贡献,包括曲线和曲面的表示、 性质和应用等。
1 2
组合数学与计算机科学融合
随着计算机科学的发展,组合数学在计算机科学 中的应用越来越广泛,如算法设计、数据结构等。
组合数学与其他学科交叉
组合数学正逐渐与其他学科进行交叉融合,形成 新的研究领域,如生物信息学、量子计算等。
3
组合数学研究方法的创新
随着数学理论的不断发展,组合数学的研究方法 也在不断创新,如代数方法、几何方法、概率方 法等。
编程语言选择
根据实际需求选择合适的编程语言, 如Python、MATLAB等。
算法设计与实现
针对具体问题设计相应的算法,并编 写程序实现自动化计算。
数据处理与可视化
对计算结果进行数据处理和可视化展 示,以便更好地分析和理解问题。
程序调试与优化
对程序进行调试和优化,提高计算效 率和准确性。
06 欧拉精神传承与当代价值 体现
物理学及其他领域成就
力学
研究了刚体运动和弹性 力学,提出了欧拉-拉格
朗日方程。
光学
对光的传播和反射进行 了深入研究,提出了光
的波动理论。
天文学
研究了行星运动和月球 轨道,提出了三体问题
的特殊解。
音乐理论
对音乐理论也有研究, 提出了音乐中的“欧拉
数”。
欧拉对后世影响
对数学的影响
欧拉的数学研究为后世数学家提供了 重要的思想和工具,对现代数学的发 展产生了深远影响。

欧拉公式PPT课件

欧拉公式PPT课件
信号处理
物理学
ห้องสมุดไป่ตู้工程学
在物理学中,欧拉公式用于描写波动、振动和波动方程的解。
在电气工程、控制系统等领域,欧拉公式用于分析交流电和交流信号的特性。
03
02
01
03
CHAPTER
欧拉公式的证明
通过解析几何的方法,利用向量和复数的几何意义,推导欧拉公式。
解析几何法
利用三角函数的周期性和对称性,通过三角恒等式推导出欧拉公式。
在量子力学中,波函数是描写粒子状态的重要工具。通过波函数的模平方,可以计算出粒子在某个位置出现的概率。欧拉公式在量子力学中的波函数计算中发挥了重要的作用,它可以将复指数函数转化为三角函数,使得波函数的计算变得更加简单和准确。
总结词:欧拉公式在量子力学中的波函数计算中发挥了关键的作用,使得波函数的计算更加准确和高效。
05
CHAPTER
欧拉公式的应用实例
VS
傅里叶变换是信号处理和通讯领域中的重要工具,它可以将时间域的信号转换为频域的信号,从而更好地分析信号的特性和频率成分。欧拉公式在傅里叶变换中扮演着关键的角色,它提供了将复指数函数转化为三角函数的方法,使得傅里叶变换的计算变得简单和高效。
总结词:欧拉公式在傅里叶变换中的应用使得信号处理和通讯领域的研究更加便利和高效。
三角函数法
利用幂级数的性质和运算规则,通过幂级数展开式推导出欧拉公式。
幂级数法
通过代数运算和恒等变换,利用复数的代数情势和性质,推导欧拉公式。
代数法
利用微积分的基本定理和性质,通过微积分运算推导出欧拉公式。
微积分法
利用矩阵的运算规则和性质,通过矩阵变换推导出欧拉公式。
矩阵法
通过几何图形和空间向量的性质,利用几何图形变换和向量运算,推导欧拉公式。

《高一数学欧拉公式》课件

《高一数学欧拉公式》课件
《高一数学欧拉公式》 PPT课件
数学欧拉公式是高一数学的重要内容之一,介绍了公式的形式和含义,以及 它在数学研究和实际应用中的重要性。
导入欧拉公式数学欧拉公 Nhomakorabea是由瑞士数学家 欧拉提出的一种重要数学公式, 具有广泛的应用价值。
带来的启示
欧拉公式不仅仅是一个公式, 更是对数学思维的启示和对实 际应用的指导。
欧拉公式对数学学习的推进
通过学习和理解欧拉公式,可以提 高数学学习的效果和兴趣。
欧拉公式对数学研究的促进
欧拉公式的研究推动了数学领域的 发展,激发了更多的数学研究兴趣。
参考
欧拉公式的相关文献
相关学术论文和研究报告
数学学科发展的相关书籍
维能力,提升数学问题的解决能力。
3
欧拉公式对实际应用的启示
欧拉公式的应用不仅限于数学领域,还可以
欧拉公式在其他领域的应用
4
启发人们在实际问题中进行创新和思考。
除了数学领域,欧拉公式还被广泛应用于物 理学、工程学和计算机科学等其他领域。
研究对象
如何使用欧拉公式研究问题
通过欧拉公式的运用,可以解决 复杂的数学问题,如数列和级数 的求和等。
研究对象
通过欧拉公式,我们可以研究 一些复杂的数学问题和实际应 用中的现象。
欧拉公式
1 介绍欧拉公式
2 公式的形式
欧拉公式被认为是数学中最美丽的公式之一,它 连接了数学中的五个重要常数。
欧拉公式的形式为:e^(πi) + 1 = 0,其中e是自然 对数的底,π是圆周率,i是虚数单位。
3 公式的含义
4 公式的证明
欧拉公式表明了数学中不同的数学常数之间的奇 妙关系,展示了数学的美妙和深奥。
欧拉公式的证明是数学中的一大经典问题,需要 运用其他数学知识和技巧进行推导。

数学家的故事PPT课件

数学家的故事PPT课件
计算与模拟
数学家利用计算方法和计算机技术,进行数值计算和模拟实验, 为实际问题的解决提供有力支持。
数学与其他学科的交叉融合
数学与物理学
数学家与物理学家密切合作,共同推动了微积分、微分方程等数 学分支的发展,为物理学研究提供了强大的数学工具。
数学与计算机科学
计算机科学的发展离不开数学的支持,如算法设计、数据结构、密 码学等领域都涉及大量的数学知识。
为金融产品的设计和风险管理提供了科学依据。
03
生物医学
数学家在生物医学领域发挥着越来越重要的作用,他们利用数学模型和
算法分析生物数据,揭示生命现象背后的数学规律。
未来数学的发展趋势与前景
数据科学
随着大数据时代的到来,数据科学已经成为数学领域的一个重要分支。未来数学将更加 注重对海量数据的处理和分析,挖掘数据背后的潜在价值。
佩雷尔曼与庞加莱猜想
俄罗斯数学家佩雷尔曼通过发表三篇预印本论文,成功解决了困扰数学界已久的庞加莱猜 想。他拒绝接受菲尔兹奖和百万美元奖金的举动,更是引起了广泛的关注和讨论。
04
数学家的思维方式与方法
数学思维的特征
1 2
抽象性
数学家善于从具体事物中抽象出一般规律和本质 特征,运用概念、判断和推理等思维形式进行思 考。
逻辑性
数学思维具有严密的逻辑性,遵循一定的思维规 则和推理步骤,确保思维的正确性和有效性。
3
创造性
数学家在解决问题时,常常需要打破常规,提出 新的思路和方法,具有高度的创造性。
数学方法的应用
建模
数学家通过建立数学模型,将现实问题转化为数学问题,利用数 学方法进行分析和解决。
推理与证明
数学家运用逻辑推理和数学证明,验证数学命题的真伪,推动数 学理论的发展。

《欧拉的简介》课件

《欧拉的简介》课件

详细描述
欧拉是多面体研究的先驱之一,他研究了多面体的顶点数、 面数和棱数之间的关系,并得出了欧拉公式。此外,他还研 究了曲线和曲面的几何性质,为几何学的发展做出了重要贡 献。
欧拉在数论上的贡献
总结词
欧拉在数论领域的研究涉及多个方面,包括素数、同余方程和代数数论等。
详细描述
欧拉是素数理论的重要人物之一,他研究了素数的分布规律和性质,得出了许多 重要的结论。此外,他还研究了同余方程和代数数论等领域,为数论的发展做出 了重要贡献。
议。
欧拉的经济学研究成果不仅在当时具有 重要的意义,而且对现代经济学的发展 产生了深远的影响。他的货币理论和贸 易政策建议至今仍然被广泛地应用于经
济实践中。
04
欧拉的哲学思想
欧拉的数学哲学思想
数学是一门严谨的演绎科学
欧拉认为数学是通过逻辑推理和演绎证明来揭示自然规律 的学科,因此数学必须建立在严谨的逻辑基础上。
欧拉为人谦逊低调,从不炫耀自己的 成就和荣誉,他认为一个人的价值不 应该取决于外在的评价和荣誉。
乐观向上
欧拉在困境中始终保持乐观向上的态 度,他认为人生虽然充满挑战和困难 ,但只要保持积极心态就能克服一切 。
05
欧拉的学术传承
欧拉的学生和继承人
01
欧拉的学生包括:约瑟夫·路易斯· 拉格朗日、丹尼尔·伯努利和皮埃 尔·西蒙·拉普拉斯等。
时他也认为理论推导和演绎推理在科学研究中具有不可替代的作用。
02
科学的实用性和功利性
欧拉认为科学研究应该以实用性和功利性为目标,为人类的生产和生活
服务。
03
科学的普遍性和统一性
欧拉认为自然规律是普遍存在的,各种科学理论之间存在内在联系,应

【高中数学课件】欧拉公式1 ppt课件

【高中数学课件】欧拉公式1 ppt课件

思考2:设多面体的F个面分别是n1,n2, ···,nF边形,各个面的内角总和是多
少?
(n1-2)
·1800+
(n2-2)
·1800+···+
(nF-2)
·1800=(n1+n2+···+nF-2F)·1800
思考3: n1+n2+···+nF和多面体的棱数E有什么关系
n1+n2+···+nF =2E
∴(E-F)·3600= (V-2) ·3600
V+F-E=2 欧拉公式
欧拉公式的应用
例1 1996年的诺贝尔化学奖授予对发现C60有重大贡献的
三位科学家.C60是有60 个C原子组成的分子,它结构为简 单多面体形状.这个多面体有60个顶点,从每个顶点都引出 3条棱,各面的形状分别为五边形或六边形两种.计算C60分 子中形状为五边形和六边形的面各有多少?
讨论 问题2:如何证明欧拉公式
E1
A1
B
D1 C
11D
E A
C B
压缩成 平面图形
D
E
E1 A1
A
D1 C1 C
B1
B
∴所有面的内角和=(E-F)·3600
思考4:设平面图形中最大多边形(即多边形ABCDE)是m边形,则它和它 内部的全体多边形的内角总和是多少?
2(m-2) ·1800+(V-m) ·3600=(V-2) ·3600
欧拉公式
V+F-E=2
空间问题平面化
猜想
证 明
作业 P68 阅读材料
应用
E1
A1
B
D1 C

欧拉(Leonhard Euler )的故事

欧拉(Leonhard Euler )的故事

欧拉(Leonhard Euler )的故事!欧拉(Leonhard Euler 公元1707-1783年)1707年出生在瑞士的巴塞尔(Basel)城,13岁就进巴塞尔大学读书,得到当时最有名的数学家约翰·伯努利(Johann Bernoulli,1667-1748年)的精心指导.欧拉渊博的知识,无穷无尽的创作精力和空前丰富的著作,都是令人惊叹不已的!他从19岁开始发表论文,直到76岁,半个多世纪写下了浩如烟海的书籍和论文.到今几乎每一个数学领域都可以看到欧拉的名字,从初等几何的欧拉线,多面体的欧拉定理,立体解析几何的欧拉变换公式,四次方程的欧拉解法到数论中的欧拉函数,微分方程的欧拉方程,级数论的欧拉常数,变分学的欧拉方程,复变函数的欧拉公式等等,数也数不清.他对数学分析的贡献更独具匠心,《无穷小分析引论》一书便是他划时代的代表作,当时数学家们称他为"分析学的化身".欧拉是科学史上最多产的一位杰出的数学家,据统计他那不倦的一生,共写下了886本书籍和论文,其中分析、代数、数论占40%,几何占18%,物理和力学占28%,天文学占11%,弹道学、航海学、建筑学等占3%,彼得堡科学院为了整理他的著作,足足忙碌了四十七年.欧拉著作的惊人多产并不是偶然的,他可以在任何不良的环境中工作,他常常抱着孩子在膝上完成论文,也不顾孩子在旁边喧哗.他那顽强的毅力和孜孜不倦的治学精神,使他在双目失明以后,也没有停止对数学的研究,在失明后的17年间,他还口述了几本书和400篇左右的论文.19世纪伟大数学家高斯(Gauss,1777-1855年)曾说:"研究欧拉的著作永远是了解数学的最好方法." 欧拉的父亲保罗·欧拉(Paul Euler)也是一个数学家,原希望小欧拉学神学,同时教他一点教学.由于小欧拉的才人和异常勤奋的精神,又受到约翰·伯努利的赏识和特殊指导,当他在19岁时写了一篇关于船桅的论文,获得巴黎科学院的奖的奖金后,他的父亲就不再反对他攻读数学了.1725年约翰·伯努利的儿子丹尼尔·伯努利赴俄国,并向沙皇喀德林一世推荐了欧拉,这样,在1727年5月17日欧拉来到了彼得堡.1733年,年仅26岁的欧拉担任了彼得堡科学院数学教授.1735年,欧拉解决了一个天文学的难题(计算慧星轨道),这个问题经几个著名数学家几个月的努力才得到解决,而欧拉却用自己发明的方法,三天便完成了.然而过度的工作使他得了眼病,并且不幸右眼失明了,这时他才28岁.1741年欧拉应普鲁士彼德烈大帝的邀请,到柏林担任科学院物理数学所所长,直到1766年,后来在沙皇喀德林二世的诚恳敦聘下重回彼得堡,不料没有多久,左眼视力衰退,最后完全失明.不幸的事情接踵而来,1771年彼得堡的大火灾殃及欧拉住宅,带病而失明的64岁的欧拉被围困在大火中,虽然他被别人从火海中救了出来,但他的书房和大量研究成果全部化为灰烬了.沉重的打击,仍然没有使欧拉倒下,他发誓要把损失夺回来.在他完全失明之前,还能朦胧地看见东西,他抓紧这最后的时刻,在一块大黑板上疾书他发现的公式,然后口述其内容,由他的学生特别是大儿子A·欧拉(数学家和物理学家)笔录.欧拉完全失明以后,仍然以惊人的毅力与黑暗搏斗,凭着记忆和心算进行研究,直到逝世,竟达17年之久.欧拉的记忆力和心算能力是罕见的,他能够复述年青时代笔记的内容,心算并不限于简单的运算,高等数学一样可以用心算去完成.有一个例子足以说明他的本领,欧拉的两个学生把一个复杂的收敛级数的17项加起来,算到第50位数字,两人相差一个单位,欧拉为了确定究竟谁对,用心算进行全部运算,最后把错误找了出来.欧拉在失明的17年中;还解决了使牛顿头痛的月离问题和很多复杂的分析问题.欧拉的风格是很高的,拉格朗日是稍后于欧拉的大数学家,从19岁起和欧拉通信,讨论等周问题的一般解法,这引起变分法的诞生.等周问题是欧拉多年来苦心考虑的问题,拉格朗日的解法,博得欧拉的热烈赞扬,1759年10月2日欧拉在回信中盛称拉格朗日的成就,并谦虚地压下自己在这方面较不成熟的作品暂不发表,使年青的拉格朗日的工作得以发表和流传,并赢得巨大的声誉.他晚年的时候,欧洲所有的数学家都把他当作老师,著名数学家拉普拉斯(Laplace)曾说过:"欧拉是我们的导师." 欧拉充沛的精力保持到最后一刻,1783年9月18日下午,欧拉为了庆祝他计算气球上升定律的成功,请朋友们吃饭,那时天王星刚发现不久,欧拉写出了计算天王星轨道的要领,还和他的孙子逗笑,喝完茶后,突然疾病发作,烟斗从手中落下,口里喃喃地说:"我死了",欧拉终于"停止了生命和计算".欧拉的一生,是为数学发展而奋斗的一生,他那杰出的智慧,顽强的毅力,孜孜不倦的奋斗精神和高尚的科学道德,永远是值得我们学习的.[欧拉还创设了许多数学符号,例如π(1736年),I(1777年),e(1748年),sin和cos(1748年),tg(1753年),△x(1755年),Σ(1755年),f(x)(1734)。

欧拉公式PPT课件

欧拉公式PPT课件
热力学
在热力学中,欧拉公式被用来描述热量的传递和扩散,以及热力学 系统的状态变化。
电磁学
在电磁学中,欧拉公式可以用来描述电磁场的变化和分布,例如电 势、电场强度等。
在工程领域的应用
01
02
03
控制系统
在控制系统中,欧拉公式 被用来描述系统的稳定性 和性能,以及设计控制器 。
信号处理
在信号处理中,欧拉公式 被用来进行频谱分析和滤 波,以及处理图像和音频 等信号。
总结欧拉公式的要点与贡献
01
02
03
统一了复数域中的指数函数和三 角函数
揭示了复数和实数之间的内在联 系
为解决许多数学问题提供了新的 思路和方法
展望未来在数学、物理等领域的应用前景
在数学领域的应用前景
在物理领域的应用前景
复分析:欧拉公式是复分析中重要的工具之一,可以用于 研究函数的性质和解决某些复杂的积分问题。
CHAPTER 03
欧拉公式的证明
利用泰勒级数展开证明
总结词:直观明了
详细描述:将函数进行泰勒级数展开,得到无限项之和,通过比较级数的各项系数,可以直观地证明 欧拉公式。
利用复数证明
总结词:巧妙简洁
详细描述:利用复数形式的欧拉公式,通过证明复数形式的恒等式,得到欧拉公式的正确性。这种方法需要一定的复数基础 知识。
导数的基本性质包括
和差、积、商、幂函数的导数公式; 常见函数的导数;高阶导数的计算。
积分的基本性质包括
不定积分与定积分的计算;原函数与 微分的概念及其应用;反常积分的计 算。
欧拉公式的推导过程
基于复数的定义和三角函数的定义,通过引入虚数单位i,利用复数的四则运算和 三角函数的性质,推导出欧拉公式e^(ix)=cos(x)+i*sin(x)。

数学家的故事PPT幻灯片

数学家的故事PPT幻灯片
数十年间,华罗庚共发表 了152篇重要的数学论文, 出版了9部数学著作、11本 数学科普著作。他还被选 为科学院的国外院士和第 三9 世界科学家的院士。
名言语录
1.任何一个人,都要必须养成自学的习惯,即使是 今天在学校的学生,也要养成自学的习惯,因为迟 早总要离开学校的! 2.自学,就是一种独立学习,独立思考的能力。行 路,还是要靠行路人自己。 3.在寻求真理的长征中,惟有学 习,不断地学习,勤奋地学习, 有创造性地学习,才能越重山, 跨峻岭。 4.时间是由分秒积成的,善于利用 零星时间的人,才会做出更大的成 1绩0 来。
该原理在西方直到17世纪才由意大利数学家卡瓦列 利发现,比祖暅晚一千一百多年。
4
3、赵爽
赵爽,数学家。东汉末至三国时代吴国人。约生活于公元3 世纪初。他的主要贡献是约在222年深入研究了《周髀》, 该书是我国最古老的天文学著作,唐初改名为《周髀算经》 该书写了序言,并作了详细注释。该书简明扼要地总结出 中国古代勾股算术的深奥原理。
12
图书馆资料员
1953年(20岁)毕业于厦门 大学。
陈景润为了能直接阅读外国 资料,掌握最新信息,在继 续学习英语的同时,又攻读 了俄语、德语、法语、日语、 意大利语和西班牙语。13稿件Fra bibliotek缘(1956年)
陈景润(1933生)
14
华罗庚(1910生)
伟大成就
1966年33岁攻克了世界著名数学难题“哥德巴赫猜想” 中的(1+2)。这一结果国际上誉为“陈氏定理”,被广 泛征引。 1978年45岁获得中国自然科学奖一等奖。 1978年和1982年两次收到国际数学家大会请他作报告 的邀请。 1996年(63岁)逝世。
5
4、华罗庚
华罗庚(1910 -1985),国际数 学大师,中国科学院院士,是中 国解析数论、矩阵几何学、典型 群、自安函数论等多方面研究的 创始人和开拓者。他为中国数学 的发展作出了无与伦比的贡献。 被誉为“中国现代数学之父”, “被列为芝加哥科学技术博物馆 中当今世界88位数学伟人之一。 美国著名数学史家贝特曼著文称: “华罗庚是中国的爱因斯坦,足 6够成为全世界所有著名科学院的

欧拉的故事

欧拉的故事

有奖问答
十三岁的欧拉考入了哪所大 学?
巴塞尔大学
欧拉生于什么家庭?
牧师家庭
欧拉死在那里?
俄国圣彼得堡
听了欧拉的话,父亲为什么 摇头?
父亲听了直摇头,心想:"世界上哪有这样 便宜的事情
欧拉பைடு நூலகம்故事
欧拉1707年4月15日生于瑞士巴塞尔,1783年
9月18日卒于俄国圣彼得堡。他生于牧师家庭。 15岁在巴塞尔大学获学士学位,翌年得硕士学 位。欧拉这个时期在微分方程、曲面微分几何 以及其他数学领域的研究都是开创性的。1766 年他又回到了圣彼得堡。

欧拉帮助爸爸放羊,成了一个牧童。他一面放羊,一面读书。 他读的书中,有不少数学书。


小欧拉见父亲同意了,站起身来,跑到准备动工的羊 圈旁。他以一个木桩为中心,将原来的40米边长截短, 缩短到25米。父亲着急了,说:"那怎么成呢?那怎 么成呢?这个羊圈太小了,太小了。"小欧拉也不回 答,跑到另一条边上,将原来15米的边长延长,又增 加了10米,变成了25米。经这样一改,原来计划中 的羊圈变成了一个25米边长的正方形。然后,小欧拉 很自信地对爸爸说:"现在,篱笆也够了,面积也够 了。"

小欧拉却向父亲说,不用缩小羊圈,也不用担心每头 羊的领地会小于原来的计划。他有办法。父亲不相信 小欧拉会有办法,听了没有理他。小欧拉急了,大声 说,只有稍稍移动一下羊圈的桩子就行了。 父亲听了直摇头,心想:"世界上哪有这样便宜的事 情?"但是,小欧拉却坚持说,他一定能两全齐美。 父亲终于同意让儿子试试看。
父亲照着小欧拉设计的羊圈扎上了篱笆,100
米长的篱笆真的够了,不多不少,全部用光。 面积也足够了,而且还稍稍大了一些。父亲心 里感到非常高兴。孩子比自己聪明,真会动脑 筋,将来一定大有出息。

中外数学家名人故事ppt

中外数学家名人故事ppt


华罗庚辍学期间,帮父亲打理小店铺。为了抽出时间学

习,他经常早起。隔壁邻居早起磨豆腐的时候,华罗庚已经点

着油灯在看书了。伏天的晚上,他很少到外面去乘凉,而是在 蚊子嗡嗡叫的小店里学习。严冬,他常常把砚台放在脚炉上,
一边磨墨一边用毛笔蘸着墨汁做习题。每逢年节,华罗庚也
不去亲戚家里串门,埋头在家里读书。


华罗庚的志气与行径,几乎没有人能够理解。华罗庚和全 世界无数的杰出人才一样,困难愈多,克服困难的决心也愈坚。

他克服了常人难以想象的困难与阻力。不断前进,这倒反而 锻炼了他。没有时间,养成了他早起,善于利用零碎时间,善
于心算的习惯。没有书,养成了他勤于动手,勤于独立思考的
习惯。这种习惯一直保持到他的晚年。

欧几里得的名声越来越大,以致连亚历山大国王也想

赶时髦,学点几何学。于是,国王便把欧几里得请进王宫, 讲授几何学。谁知刚学了 一点,国王就显得很不耐烦,

觉得太吃力了。国王问欧几里得:“学习几何学,有没 有便当一点的途径。一学就会?”

欧几里得笑道:“陛下,很抱歉,在学习科学的时 候,国王与普通百姓是一样的。科学上没有专供国
青 命先生还说上一番好话,以“步青”为名,将来定可“平步 青云,光宗耀祖”。

名字毕竟不是“功名利禄”的天梯。正当同龄人纷
纷背起书包上学的时候,苏祖善交给儿子的却是一条牛鞭。
事 从此,苏步青头戴一顶父亲编的大竹笠,身穿一套母亲手缝
的粗布衣,赤脚骑上牛背,鞭子一挥,来到卧牛山下,带溪溪
边。苏步青家养的是头大水牛,膘壮力大,从不把又矮又小
白天,华罗庚就帮助他的父亲在小杂货店里干活与站柜台。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
莱昂哈德·欧拉:瑞士数学家
1707年4月15日出生于瑞士, 欧拉是人类最杰出的数学家之一。 他是数学史上最多产的数学家, 写了大量的论文,和经典的数学著 作。许多数学分支中经常见到以他 的名字命名的重要常数、公式和定 理。 欧拉不但为数学作出贡献,在 物理学领域也广有建树,涉及建筑 学、弹道学、航海学等。 欧拉被称为“是所有人的老 师”。
学过奥数的小朋友都知道“七桥问 题”,可是你知道七桥问题是谁最先解 决的吗? 对了,就是欧拉。数学上这类问题 称为拓扑学,对计算机、微电子技术的 发展起到了非常重时, 欧拉不幸一支眼睛失明,过了30年以后, 他的另一只眼睛也失明了。在他双目失明 以后,也没有停止过数学研究。他以惊人 的毅力和坚韧不拔的精神继续工作着,在 他双目失明至逝世的十七年间,还口述著 作了几本书和400篇左右的论文。
欧拉到底出了多少著 作:太多了,到现在为止 也没有精确地统计。
谷歌公司为纪念欧拉诞辰306周年,特意更改了图标
谢谢!
相关文档
最新文档