平面向量及其应用单元测验试卷doc
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、多选题1.题目文件丢失!
2.下列说法中错误的为( )
A .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是
5,3⎛⎫-+∞ ⎪⎝⎭
B .向量1(2,3)e =-,213,24e ⎛⎫
=-
⎪⎝⎭
不能作为平面内所有向量的一组基底 C .若//a b ,则a 在b 方向上的投影为||a
D .非零向量a 和b 满足||||||a b a b ==-,则a 与a b +的夹角为60° 3.下列说法中正确的是( )
A .对于向量,,a b c ,有()()
a b c a b c ⋅⋅=⋅⋅
B .向量()11,2e =-,()25,7e =能作为所在平面内的一组基底
C .设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0m n ⋅<”的充分而不必要条件
D .在ABC 中,设D 是BC 边上一点,且满足2CD DB =,CD AB AC λμ=+,则
0λμ+=
4.已知ABC 的三个角A ,B ,C 的对边分别为a ,b ,c ,若cos cos A b
B a
=,则该三角形的形状是( ) A .等腰三角形
B .直角三角形
C .等腰直角三角形
D .等腰或直角三角形
5.在ABC 中,a ,b ,c 分别是内角A ,B ,C 2sin c A =,且
02
C <<
π
,4b =,则以下说法正确的是( )
A .3
C π
=
B .若72
c =
,则1cos 7B =
C .若sin 2cos sin A B C =,则ABC 是等边三角形
D .若ABC 的面积是4
6.设a ,b ,c 是任意的非零向量,且它们相互不共线,给出下列选项,其中正确的有( )
A .()
a c
b
c a b c ⋅-⋅=-⋅
B .()
()
b c a c a b ⋅⋅-⋅⋅与c 不垂直 C .a b a b -<-
D .(
)()
22
323294a b a b a b +⋅-=-
7.在ABC 中,AB =1AC =,6
B π
=,则角A 的可能取值为( )
A .
6
π B .
3
π C .
23
π D .
2
π 8.在ABC 中,内角,,A B C 所对的边分别为,,a b c .根据下列条件解三角形,其中有两解的是( )
A .10,45,70b A C ==︒=︒
B .45,48,60b c B ===︒
C .14,16,45a b A ===︒
D .7,5,80a b A ===︒
9.以下关于正弦定理或其变形正确的有( ) A .在ABC 中,a :b :c =sin A :sin B :sin C B .在ABC 中,若sin 2A =sin 2B ,则a =b
C .在ABC 中,若sin A >sin B ,则A >B ,若A >B ,则sin A >sin B 都成立
D .在ABC 中,
sin sin sin +=+a b c
A B C
10.下列结论正确的是( )
A .已知a 是非零向量,b c ≠,若a b a c ⋅=⋅,则a ⊥(-b c )
B .向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为60°,则a 在b 上的投影向量为
12
b C .点P 在△ABC 所在的平面内,满足0PA PB PC ++=,则点P 是△ABC 的外心 D .以(1,1),(2,3),(5,﹣1),(6,1)为顶点的四边形是一个矩形 11.下列各式中,结果为零向量的是( ) A .AB MB BO OM +++ B .AB BC CA ++ C .OA OC BO CO +++ D .AB AC BD CD -+-
12.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则下列结论中正确的是
( )
A .若a b >,则sin sin A
B >
B .若sin 2sin 2A B =,则AB
C 是等腰三角形 C .若cos cos a B b A c -=,则ABC 是直角三角形
D .若2220a b c +->,则ABC 是锐角三角形
13.已知a 、b 是任意两个向量,下列条件能判定向量a 与b 平行的是( ) A .a b =
B .a b =
C .a 与b 的方向相反
D .a 与b 都是单位向量
14.在下列结论中,正确的有( )
A .若两个向量相等,则它们的起点和终点分别重合
B .平行向量又称为共线向量
C .两个相等向量的模相等
D .两个相反向量的模相等
15.某人在A 处向正东方向走xkm 后到达B 处,他向右转150°,然后朝新方向走3km 到达C
处,,那么x 的值为( )
A B .C .D .3
二、平面向量及其应用选择题
16.已知ABC 的面积为30,且12
cos 13
A =,则A
B A
C ⋅等于( ) A .72
B .144
C .150
D .300
17.已知ABC 所在平面内的一点P 满足20PA PB PC ++=,则
::PAB PAC PBC S S S =△△△( )
A .1∶2∶3
B .1∶2∶1
C .2∶1∶1
D .1∶1∶2
18.已知两不共线的向量()cos ,sin a αα=,()cos ,sin b ββ=,则下列说法一定正确的是( )
A .a 与b 的夹角为αβ-
B .a b ⋅的最大值为1
C .2a b +≤
D .()()
a b a b +⊥-
19.O 为ABC ∆内一点内角A 、B 、C 所对的边分别为a 、b 、c ,已知
0a OA b OB c OC ⋅+⋅+⋅=,且tan tan tan 0A OA B OB C OC ⋅+⋅+⋅=,若a =边BC 所对的ABC ∆外接圆的劣弧长为( ) A .
23
π B .
43
π C .
6
π D .
3
π 20.下列说法中说法正确的有( )
①零向量与任一向量平行;②若//a b ,则()a b R λλ=∈;
③()()a b c a b c ⋅⋅=⋅⋅④||||||a b a b +≥+;⑤若0AB BC CA ++=,则A ,B ,C 为一个三角形的三个顶点;⑥一个平面内只有一对不共线的向量可作为表示该平面内所有向量的基底; A .①④
B .①②④
C .①②⑤
D .③⑥
21.已知在四边形ABCD 中, 2, 4,53AB a b BC a b CD a b =--=+=+,则四边形
ABCD 的形状是( )
A .矩形
B .梯形
C .平行四边形
D .以上都不对
22.ABC ∆内有一点O ,满足3450OA OB OC ++=,则OBC ∆与ABC ∆的面积之比为
( ) A .1:4
B .4:5
C .2:3
D .3:5