(整理)基本函数求导公式

合集下载

函数求导公式大全

函数求导公式大全

函数求导公式大全函数的导数是微积分中一个非常重要的概念,它描述了函数在某一点处的变化率。

求导公式是求函数导数的工具,通过掌握各种函数的求导公式,可以更快捷地求解导数,解决实际问题。

本文将介绍常见的函数求导公式,希望能够帮助大家更好地理解和掌握函数的导数计算。

1. 常数函数的求导公式。

常数函数的导数等于0,即对于常数c,其导数为f'(x)=0。

2. 幂函数的求导公式。

幂函数的求导公式为,若f(x)=x^n,则f'(x)=nx^(n-1),其中n为任意实数。

3. 指数函数的求导公式。

指数函数的求导公式为,若f(x)=a^x,则f'(x)=a^xlna,其中a为常数且a>0。

4. 对数函数的求导公式。

对数函数的求导公式为,若f(x)=lnx,则f'(x)=1/x。

5. 三角函数的求导公式。

(1)正弦函数的求导公式为,f'(x)=cosx。

(2)余弦函数的求导公式为,f'(x)=-sinx。

(3)正切函数的求导公式为,f'(x)=sec^2x。

(4)余切函数的求导公式为,f'(x)=-csc^2x。

6. 反三角函数的求导公式。

(1)反正弦函数的求导公式为,f'(x)=1/√(1-x^2)。

(2)反余弦函数的求导公式为,f'(x)=-1/√(1-x^2)。

(3)反正切函数的求导公式为,f'(x)=1/(1+x^2)。

(4)反余切函数的求导公式为,f'(x)=-1/(1+x^2)。

7. 复合函数的求导公式。

复合函数的求导使用链式法则,若y=f(u)和u=g(x),则y=f(g(x)),其导数为f'(u)g'(x)。

8. 高阶导数的求导公式。

高阶导数是指对函数的导数再求导数,常用的高阶导数求导公式包括幂函数、指数函数、对数函数和三角函数的高阶导数求导公式。

9. 隐函数的求导公式。

隐函数是指由x和y的关系式所确定的函数,其导数的求导公式需要使用隐函数求导法。

16个基本导数公式推导过程

16个基本导数公式推导过程

16个基本导数公式推导过程推导过程如下:1.常数函数:f(x)=c求导结果:f'(x)=0。

证明过程:由导数定义可得,当函数为常数时,无论x取任何值,函数的增量都为0,即f(x + Δx) - f(x) = 0。

所以,f'(x) =lim(Δx→0) [f(x + Δx) - f(x)] / Δx = 0。

2.幂函数:f(x)=x^n,其中n为正整数。

求导结果:f'(x) = nx^(n-1)。

证明过程:利用定义求导。

计算f(x + Δx) = (x + Δx)^n与f(x) = x^n的差值,然后除以Δx,当Δx趋于0时求极限。

利用二项式展开,可以得出f'(x) = nx^(n-1)。

3.指数函数:f(x)=e^x。

求导结果:f'(x)=e^x。

证明过程:由指数函数的性质可知,e^0 = 1,且(d(e^x)/dx) = e^x。

因此,可以据此推导出f'(x) = e^x。

4. 对数函数:f(x) = ln(x)。

求导结果:f'(x)=1/x。

证明过程:由导数定义可得f'(x) = lim(Δx→0) [ln(x + Δx) - ln(x)] / Δx。

利用对数的性质,将差值化简为ln((x + Δx)/x),再除以Δx并取极限,最终得出f'(x) = 1/x。

5. 正弦函数:f(x) = sin(x)。

求导结果:f'(x) = cos(x)。

证明过程:利用极限定义求导。

计算f(x + Δx) - f(x) = sin(x + Δx) - sin(x),然后除以Δx并取极限。

应用三角函数的合角公式并利用三角恒等式可得f'(x) = cos(x)。

6. 余弦函数:f(x) = cos(x)。

求导结果:f'(x) = -sin(x)。

证明过程:同样应用极限定义。

计算f(x + Δx) - f(x) = cos(x + Δx) - cos(x),然后除以Δx并取极限。

常用的基本求导公式

常用的基本求导公式

常用的基本求导公式1. 乘法法则(Product Rule):如果y = u(x)v(x),其中u(x)和v(x)是关于x的函数,则y' = u'v + uv'。

2. 商法则(Quotient Rule):如果y = u(x)/v(x),其中u(x)和v(x)是关于x的函数,则y' = (u'v - uv')/v²。

3. 链式法则(Chain Rule):如果y=f(g(x)),其中g(x)是关于x的函数,f(u)是关于u的函数,则y'=f'(g(x))*g'(x)。

4.幂函数法则:如果y=xⁿ,其中n为常数,则y'=n*xⁿ⁻¹。

5.指数函数法则:如果y = aˣ,其中a为常数,x为变量,则y' = ln(a) * aˣ。

6.对数函数法则:如果y = logₐ(x),其中a为常数,x为变量,则y' = (1/ln(a)) * (1/x)。

7.反三角函数法则:(1) 如果y = sin⁻¹(x),则y' = 1/√(1-x²)。

(2) 如果y = cos⁻¹(x),则y' = -1/√(1-x²)。

(3) 如果y = tan⁻¹(x),则y' = 1/(1+x²)。

8.双曲函数法则:(1) 如果y = sinh(x),则y' = cosh(x)。

(2) 如果y = cosh(x),则y' = sinh(x)。

(3) 如果y = tanh(x),则y' = sech²(x)。

9.导数的性质:(1) 常数的导数为0,即d/dx(c) = 0。

(2) 变量的导数为1,即d/dx(x) = 1(3) 导数的线性性质,即d/dx(c₁f(x) + c₂g(x)) = c₁f'(x) +c₂g'(x),其中c₁和c₂为常数,f(x)和g(x)是关于x的函数。

基本函数求导公式

基本函数求导公式

基本函数求导公式在微积分中,求导是一个重要的概念,它用于计算一个函数在给定点的斜率或变化率。

求导公式是求导的基础,它提供了一种计算函数导数的方法。

本文将介绍一些常见的基本函数求导公式,帮助读者更好地理解和应用微积分知识。

1. 常数函数求导常数函数是指不随自变量变化而变化的函数。

对于常数函数来说,它的导数始终为零。

例如,设常数函数为 f(x) = 2,则它的导数为 f'(x) = 0。

2. 幂函数求导幂函数是指形如 f(x) = x^n 的函数,其中 n 是任意实数。

幂函数的求导公式如下:若 f(x) = x^n,则 f'(x) = n * x^(n-1)。

例如,设函数 f(x) = x^3,则它的导数为 f'(x) = 3 * x^(3-1) = 3 * x^2。

3. 指数函数求导指数函数是指形如 f(x) = a^x 的函数,其中 a 是大于 0 且不等于 1的实数。

指数函数的求导公式如下:若 f(x) = a^x,则 f'(x) = ln(a) * a^x。

其中 ln(a) 表示以自然对数 e 为底的对数。

例如,设函数 f(x) = 2^x,则它的导数为 f'(x) = ln(2) * 2^x。

4. 对数函数求导对数函数是指形如f(x) = logₐ(x) 的函数,其中 a 是大于 0 且不等于1 的实数。

对数函数的求导公式如下:若f(x) = logₐ(x),则 f'(x) = 1 / (x * ln(a))。

其中 ln(a) 表示以自然对数 e 为底的对数。

例如,设函数 f(x) = log₂(x),则它的导数为 f'(x) = 1 / (x * ln(2))。

5. 三角函数求导三角函数是指正弦函数、余弦函数、正切函数等函数。

以下是一些常见的三角函数求导公式:正弦函数的求导公式:d/dx(sin(x)) = cos(x)。

余弦函数的求导公式:d/dx(cos(x)) = -sin(x)。

常用求导积分公式及不定积分基本方法

常用求导积分公式及不定积分基本方法

常用求导积分公式及不定积分基本方法常用求导公式:1.一元函数求导公式:- 反函数求导法则:若y=f(u),则u=f^(-1)(y),则有(dy)/(dx) =1/(du/dy)- 常数乘法法则:若y=kf(x),则(dy)/(dx) = kf'(x)-基本初等函数求导法则:- 常数函数求导法则:若y=c,则(dy)/(dx) = 0- 幂函数求导法则:若y=x^n,则(dy)/(dx) = nx^(n-1)- 指数函数求导法则:若y=a^x,则(dy)/(dx) = (lna) * a^x- 对数函数求导法则:若y=loga(x),则(dy)/(dx) = 1 / (xlna)- 三角函数求导法则:若y=sin(x)、cos(x)、tan(x)、cot(x)、sec(x)、csc(x),则(dy)/(dx) = cos(x)、-sin(x)、sec^2(x)、-csc^2(x)、sec(x)tan(x)、-csc(x)cot(x),对应地还有反三角函数的求导公式- 反函数求导法则:若y=f^(-1)(x),则(dy)/(dx) = 1 / (dx/dy)-两个函数的和、差、积、商求导法则:- 和、差法则:若y=u+v,则(dy)/(dx) = (du)/(dx) + (dv)/(dx),若y=u-v,则(dy)/(dx) = (du)/(dx) - (dv)/(dx)- 积法则:若y=uv,则(dy)/(dx) = u(dv)/(dx) + v(du)/(dx)- 商法则:若y=u/v,则(dy)/(dx) = (v(du)/(dx) - u(dv)/(dx))/ v^22.多元函数求导公式:-偏导数:对多元函数,其对其中其中一个自变量求导,其它自变量当作常数,即得到偏导数-偏导函数的求导法则:对偏导函数重复使用一元函数求导公式常用不定积分基本方法:1.基本初等函数的不定积分法则:- 幂函数积分法则:∫x^n dx = (1/(n+1)) * x^(n+1) + C,其中n≠-1- 指数函数与对数函数积分法则:∫a^x dx = (1/lna) * a^x + C,∫(1/x) dx = ln,x, + C-三角函数与反三角函数积分法则:- ∫sin(x) dx = -cos(x) + C,∫cos(x) dx = sin(x) + C- ∫sec^2(x) dx = tan(x) + C,∫csc^2(x) dx = -cot(x) + C- ∫sec(x)tan(x) dx = sec(x) + C,∫csc(x)cot(x) dx = -csc(x) + C- ∫(1/√(1-x^2)) dx = arcsin(x) + C,∫(1/√(1+x^2)) dx = arctan(x) + C- 反函数的不定积分法则:若F'(x) = f(x),则∫f^(-1)(x) dx =x * f^(-1)(x) - F(f^(-1)(x)) + C-特殊函数的不定积分法则:包括指数函数幂倍积分法则、二次函数积分法则等2.基本不定积分运算:- 基本线性运算:若∫f(x) dx = F(x) + C₁,∫g(x) dx = G(x) +C₂,则∫(af(x) + bg(x)) dx = aF(x) + bG(x) + C₃,其中a、b为实数- 递推公式:若∫f(x) dx = F(x) + C,则∫f(x)Ⓓ(x) dx = FⒹ(x) - ∫FⒹ(x) fⒹd(x) dx + C3. 分部积分法:设u(x)和v(x)具有连续一阶导数,根据分部积分公式,有∫u(x)v(x) dx = u(x)v(x) - ∫v(x)uⒹ(x) dx4.换元积分法(含有待定变量):设y=f(u),u=g(x),当g(x)可导、f(u)的原函数可积时5.改线积分法:将不定积分中的自变量换成关于自变量的函数。

16基本初等函数的导数公式

16基本初等函数的导数公式

16个基本初等函数的求导公式(y:原函数;y':导函数)1、y=c,y'=0(c为常数) 。

2、y=x^μ,y'=μx^(μ-1)(μ为常数且μ≠0) 。

3、y=a^x,y'=a^x lna;y=e^x,y'=e^x 。

4、y=logax,y'=1/(xlna)(a>0且a≠1);y=lnx,y'=1/x 。

5、y=sinx,y'=cosx 。

6、y=cosx,y'=-sinx 。

7、y=tanx,y'=(secx)^2=1/(cosx)^2 。

8、y=cotx,y'=-(cscx)^2=-1/(sinx)^2 。

9、y=arcsinx,y'=1/√(1-x^2) 。

10、y=arccosx,y'=-1/√(1-x^2) 。

11、y=arctanx,y'=1/(1+x^2) 。

12、y=arccotx,y'=-1/(1+x^2) 。

13、y=shx,y'=ch x 。

14、y=chx,y'=sh x 。

15、y=thx,y'=1/(chx)^2 。

16、y=arshx,y'=1/√(1+x^2) 。

二、基本初等函数包括什么(1)常数函数y = c( c 为常数)(2)幂函数y = x^a( a 为常数)(3)指数函数y = a^x(a>0. a≠1)(4)对数函数y =log(a) x(a>0. a≠1.真数x>0)(5)三角函数以及反三角函数(如正弦函数:y =sinx反正弦函数:y =arcsin x等)基本初等函数,所谓初等函数就是由基本初等函数经过有些次的四则运算和复合而成的函数。

初等函数是由基本初等函数经过有限次的有理运算和复合而成的并且可用一个式子表示的函数。

基本初等函数和初等函数在其定义区间内均为连续函数。

不是初等函数的函数,称为非初等函数,如狄利克雷函数和黎曼函数。

求导基本公式16个

求导基本公式16个

求导基本公式16个求导作为微积分中的重要内容,是研究一个函数的变化率的方法之一。

求导的基本公式共有16个,包括常数函数、幂函数、指数函数、对数函数、三角函数等,每个公式都具有特定的求导规律。

首先,我们来看一下常数函数的求导规则。

对于一个常数函数C,无论x取什么值,导数都是0。

这是因为常数函数的图像是一条平行于x轴的直线,没有变化,所以导数为0。

接下来,我们来看幂函数的求导规则。

对于函数y=x^n,其中n是常数,x是自变量。

根据幂函数求导法则,导数等于常数乘以幂次数与自变量减1次幂的乘积,即dy/dx= n*x^(n-1)。

例如,对于函数y=x^2,我们可以得到dy/dx=2*x^(2-1)=2x,也就是说斜率等于2乘以自变量x的值。

然后,我们来看指数函数的求导规则。

对于函数y=a^x,其中a是常数,x是自变量。

根据指数函数求导法则,导数等于函数值乘以底数的自然对数e为底的对数,即dy/dx=a^x * ln(a)。

这意味着指数函数的斜率与自变量x的值和底数a的自然对数有关。

接下来,我们来看对数函数的求导规则。

对于函数y=log_a(x),其中a是常数且大于0且不等于1,x是自变量。

根据对数函数求导法则,导数等于自变量的导数除以自变量的自然对数为底的对数,即dy/dx=1/(x * ln(a))。

这意味着对数函数的斜率与自变量x的值和底数a的自然对数的倒数有关。

另外,我们还有三角函数的求导规则。

对于函数y=sin(x),根据三角函数求导法则,导数等于余弦函数,即dy/dx=cos(x)。

同理,对于函数y=cos(x),导数等于负的正弦函数,即dy/dx=-sin(x)。

对于函数y=tan(x),导数等于正切函数的平方加1,即dy/dx=sec^2(x)。

除了以上所述的基本公式,还有其他函数的求导规则,如双曲函数、反双曲函数等。

无论是哪种类型的函数,求导公式都遵循特定的规律,这些规律对于解决实际问题及应用微积分具有重要的指导意义。

求导公式归纳总结

求导公式归纳总结

求导公式归纳总结求导是微积分中的一个重要概念,它用于计算函数在某一点的变化率。

求导公式是求导过程中的基础工具,理解和掌握各种求导公式对于解决实际问题至关重要。

本文将对常见的求导公式进行归纳总结,以帮助读者更好地理解和应用求导知识。

一、基本求导公式1. 常数的导数为0:(c)' = 0,其中c为常数。

2. 变量的一次幂的导数为1:(x^n)' = nx^(n-1),其中n为正整数。

3. 常见函数的导数:a) 正弦函数的导数:(sinx)' = cosx;b) 余弦函数的导数:(cosx)' = -sinx;c) 指数函数的导数:(e^x)' = e^x;d) 对数函数的导数:(lnx)' = 1/x。

二、基本求导法则1. 常数倍法则:若f(x)可导,则(cf(x))' = cf'(x),其中c为常数。

2. 和差法则:若f(x)和g(x)可导,则(f(x)±g(x))' = f'(x)±g'(x)。

3. 乘积法则:设f(x)和g(x)可导,则(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)。

4. 商法则:设f(x)和g(x)可导,且g(x)≠0,则(f(x)/g(x))' = (f'(x)g(x) - f(x)g'(x))/[g(x)]^2。

三、复合函数的求导若y=f(g(x))是由两个函数复合而成的复合函数,即y=f(u)和u=g(x),则它们的求导公式如下:1. 外函数求导:先对外函数f(u)求导,然后乘以内函数g'(x),即dy/du · du/dx = dy/dx。

2. 内函数求导:令y=u,则dy/du就是外函数的导数。

然后对内函数u=g(x)求导,即du/dx。

四、三角函数的链式法则链式法则适用于由三角函数和其他函数复合而成的函数。

一般常用求导公式

一般常用求导公式

一般常用求导公式在微积分中,求导是一项重要的运算技巧。

为了便于计算和解决实际问题,人们总结出了一些常用的求导公式。

本文将介绍一般常用的求导公式,并通过例子来展示其具体应用。

一、常数函数求导公式对于常数函数y = C(C为常数),其导数为0。

这是因为常数函数的图像是一条水平直线,斜率为0。

二、幂函数求导公式1. 对于幂函数y = x^n (n为正整数),其导数为y' = nx^(n-1)。

例如,对于y = x^2,其导数为y' = 2x。

2. 对于幂函数y = a^x (a>0且a≠1),其导数为y' = a^x * ln(a)。

例如,对于y = e^x,其导数为y' = e^x。

三、指数函数求导公式对于指数函数y = a^x (a>0且a≠1),其导数为y' = a^x * ln(a)。

这点与幂函数的导数规律相同。

四、对数函数求导公式1. 对于自然对数函数y = ln(x),其导数为y' = 1/x。

例如,对于y = ln(x^2),其导数为y' = 1/(x^2) * 2x = 2/x。

2. 对于一般对数函数y = log_a(x) (a>0且a≠1),其导数为y' =1/(xln(a))。

例如,对于y = log_2(x),其导数为y' = 1/(xln(2))。

五、三角函数求导公式1. 对于正弦函数y = sin(x),其导数为y' = cos(x)。

例如,对于y =sin(2x),其导数为y' = cos(2x)。

2. 对于余弦函数y = cos(x),其导数为y' = -sin(x)。

例如,对于y = cos(2x),其导数为y' = -sin(2x)。

3. 对于正切函数y = tan(x),其导数为y' = sec^2(x)。

例如,对于y = tan(2x),其导数为y' = sec^2(2x)。

常用基本求导公式

常用基本求导公式

常用基本求导公式求导是微积分中的重要概念之一,对于学习微积分的同学们来说,熟悉并掌握常用的基本求导公式是非常必要的。

下面是对常用的基本求导公式进行总结:一、常数的导数:若c是常数,则有 d(c)/dx = 0二、幂函数的导数:若f(x) = x^n,其中n是常数,则有 d(f(x))/dx = nx^(n-1)三、指数函数的导数:若f(x) = a^x,其中a>0且a≠1,则有 d(f(x))/dx = ln(a) * a^x四、对数函数的导数:(1) 若f(x) = ln(x),则有 d(f(x))/dx = 1/x(2) 若f(x) = log_a(x),其中a>0且a≠1,则有 d(f(x))/dx = 1/(x ln(a))五、三角函数的导数:(1) 若f(x) = sin(x),则有 d(f(x))/dx = cos(x)(2) 若f(x) = cos(x),则有 d(f(x))/dx = -sin(x)(3) 若f(x) = tan(x),则有 d(f(x))/dx = sec^2(x)(4) 若f(x) = cot(x),则有 d(f(x))/dx = -csc^2(x)六、反三角函数的导数:(1) 若f(x) = arcsin(x),则有d(f(x))/dx = 1/√(1-x^2)(2) 若f(x) = arccos(x),则有 d(f(x))/dx = -1/√(1-x^2)(3) 若f(x) = arctan(x),则有 d(f(x))/dx = 1/(1+x^2)(4) 若f(x) = arccot(x),则有 d(f(x))/dx = -1/(1+x^2)七、复合函数的导数:若y = f(g(x)),其中y是复合函数,f和g是可导函数,则有dy/dx = d(f(g(x)))/dx = f'(g(x)) * g'(x)八、和、差、积、商的导数:(1)和差的导数:若f(x)和g(x)都是可导函数,则有d(f(x) ± g(x))/dx = f'(x) ± g'(x)(2)积的导数:若f(x)和g(x)都是可导函数,则有d(f(x) * g(x))/dx = f'(x) * g(x) + f(x) * g'(x)(3)商的导数:若f(x)和g(x)都是可导函数,并且g(x)≠0,则有d(f(x) / g(x))/dx = (f'(x) * g(x) - f(x) * g'(x)) / (g(x))^2九、链式法则:若y = f(u)和u = g(x)都是可导函数,则有 dy/dx =d(f(g(x)))/dx = f'(g(x)) * g'(x)十、反函数的导数:若y = f(x)是可导函数,则有 dx/dy = 1 / (dy/dx)这些是微积分中常用的基本求导公式,熟练掌握它们能够帮助我们快速计算函数的导数,进而应用于解决实际问题。

常用的基本求导公式

常用的基本求导公式

常用的基本求导公式求导是微积分中的基本运算,常用的基本求导公式包括常数求导法则、幂函数求导法则、指数函数与对数函数求导法则、三角函数与反三角函数求导法则、双曲函数与反双曲函数求导法则、复合函数求导法则等。

下面将详细介绍这些基本求导公式。

1.常数求导法则:若f(x)=C,其中C为常数,则f'(x)=0。

2.幂函数求导法则:若f(x)=x^n,其中n为常数,则f'(x)=nx^(n-1)。

3.指数函数与对数函数求导法则:(1) 若f(x)=a^x,其中a为常数且a>0且a≠1,则f'(x)=a^x *ln(a)。

(2) 若f(x)=log_a(x),其中a为常数且a>0且a≠1,则f'(x)=1/(x * ln(a))。

4.三角函数与反三角函数求导法则:(1) 若f(x)=sin(x),则f'(x)=cos(x)。

(2) 若f(x)=cos(x),则f'(x)=-sin(x)。

(3) 若f(x)=tan(x),则f'(x)=sec^2(x)。

(4) 若f(x)=cot(x),则f'(x)=-csc^2(x)。

(5) 若f(x)=sec(x),则f'(x)=sec(x) * tan(x)。

(6) 若f(x)=csc(x),则f'(x)=-csc(x) * cot(x)。

5.双曲函数与反双曲函数求导法则:(1) 若f(x)=sinh(x),则f'(x)=cosh(x)。

(2) 若f(x)=cosh(x),则f'(x)=sinh(x)。

(3) 若f(x)=tanh(x),则f'(x)=sech^2(x)。

(4) 若f(x)=coth(x),则f'(x)=-csch^2(x)。

(5) 若f(x)=sech(x),则f'(x)=-sech(x) * tanh(x)。

(6) 若f(x)=csch(x),则f'(x)=-csch(x) * coth(x)。

所有求导函数公式

所有求导函数公式

所有求导函数公式求导是微积分中的一项重要内容,用来计算函数在某一点的斜率或变化率。

在求导过程中,需要掌握一系列的求导函数公式,下面是一些常见的求导函数公式及其拓展:1. 常数函数 f(x) = c,其中 c 是常数。

求导结果为 f'(x) = 0。

这是因为常数函数在任意点上的斜率为0。

2. 幂函数 f(x) = x^n,其中 n 是实数。

根据幂函数的求导规则,求导结果为 f'(x) = nx^(n-1)。

例如,对于函数 f(x) = x^2,求导结果为 f'(x) = 2x。

3. 指数函数 f(x) = a^x,其中 a 是大于0且不等于1的实数。

根据指数函数的求导规则,求导结果为 f'(x) = a^x * ln(a)。

其中ln(a) 表示以 e 为底的对数。

4. 对数函数 f(x) = log_a(x),其中 a 是大于0且不等于1的实数。

根据对数函数的求导规则,求导结果为 f'(x) = 1 / (x * ln(a))。

5. 指数对数函数 f(x) = a^x * ln(bx + c),其中 a、b、c 是常数。

根据复合函数求导的链式法则,求导结果为 f'(x) = a^x * (ln(a) + b / (bx + c))。

6. 三角函数 f(x) = sin(x),求导结果为 f'(x) = cos(x)。

同样地,cos(x) 的导数为 -sin(x)。

其他三角函数的求导公式如下:- cos(x) 的导数为 -sin(x)- tan(x) 的导数为 sec^2(x)- cot(x) 的导数为 -csc^2(x)- sec(x) 的导数为 sec(x) * tan(x)- csc(x) 的导数为 -csc(x) * cot(x)7. 反三角函数 f(x) = arcsin(x),求导结果为 f'(x) = 1 / √(1 - x^2)。

16个基本导数公式详解

16个基本导数公式详解

16个基本导数公式详解在微积分中,导数是一个基本的概念。

它描述了函数在给定点的变化率。

了解导数的基本公式对于求解微积分问题是至关重要的。

在本文中,我们将详细讨论16个基本导数公式,每个公式都将包含定义、求导法则和常见的具体例子。

1.常数函数的导数:定义:如果函数$f(x)$是一个常数,则$f'(x)=0$。

求导法则:常数的导数是0。

例如:对于函数$f(x)=5$,它的导数$f'(x)=0$。

2.幂函数的导数:定义:对于函数 $f(x)=x^n$,其中 $n$ 是一个正整数,则$f'(x)=nx^{n-1}$。

求导法则:对于幂函数,使用幂函数的指数作为系数,然后将指数减1例如:对于函数$f(x)=x^2$,它的导数$f'(x)=2x$。

3.指数函数的导数:定义:对于函数 $f(x)=a^x$,其中 $a$ 是一个正常数且 $a \neq 1$,则 $f'(x)=a^x \ln(a)$。

求导法则:对于指数函数,使用指数和常数的乘积,并且乘以自然对数的底数。

例如:对于函数 $f(x)=2^x$,它的导数 $f'(x)=2^x \ln(2)$。

4.对数函数的导数:定义:对于函数 $f(x)=\log_a(x)$,其中 $a$ 是一个正常数且 $a\neq 1$,则 $f'(x)=\frac{1}{x \ln(a)}$。

求导法则:对于对数函数,使用1除以输入的自变量乘以自然对数的底数。

例如:对于函数 $f(x)=\log_2(x)$,它的导数 $f'(x)=\frac{1}{x\ln(2)}$。

5.正弦函数的导数:定义:对于函数 $f(x)=\sin(x)$,则 $f'(x)=\cos(x)$。

求导法则:正弦函数的导数是余弦函数。

例如:对于函数 $f(x)=\sin(2x)$,它的导数 $f'(x)=2\cos(2x)$。

6.余弦函数的导数:定义:对于函数 $f(x)=\cos(x)$,则 $f'(x)=-\sin(x)$。

14个导数公式

14个导数公式

14个导数公式导数是微积分的基本概念之一,用于描述函数在某一点处的变化率。

在微积分中,导数有许多重要的公式和性质。

本文将介绍14个常用的导数公式,帮助读者更好地理解和应用导数。

一、常数的导数公式对于常数函数f(x) = C,其中C为常数,则其导数恒为0。

这是因为常数函数在任意一点的变化率为0,即斜率为0。

二、幂函数的导数公式对于幂函数f(x) = x^n,其中n为实数,则其导数为f'(x) = nx^(n-1)。

这个公式可以用来求解多项式函数的导数。

三、指数函数的导数公式对于指数函数f(x) = a^x,其中a为正实数且不等于1,则其导数为f'(x) = a^x * ln(a)。

这个公式是指数函数求导的基本规律。

四、对数函数的导数公式对于对数函数f(x) = log_a(x),其中a为正实数且不等于1,则其导数为f'(x) = 1 / (x * ln(a))。

这个公式是对数函数求导的基本规律。

五、三角函数的导数公式对于三角函数f(x) = sin(x),其导数为f'(x) = cos(x)。

对于f(x) = cos(x),其导数为f'(x) = -sin(x)。

这是三角函数求导的基本规律。

六、反三角函数的导数公式对于反三角函数f(x) = arcsin(x),其导数为f'(x) = 1 / √(1 - x^2)。

对于f(x) = arccos(x),其导数为f'(x) = -1 / √(1 - x^2)。

这些公式是反三角函数求导的基本规律。

七、双曲函数的导数公式对于双曲函数f(x) = sinh(x),其导数为f'(x) = cosh(x)。

对于f(x) = cosh(x),其导数为f'(x) = sinh(x)。

这是双曲函数求导的基本规律。

八、反双曲函数的导数公式对于反双曲函数f(x) = arcsinh(x),其导数为f'(x) = 1 / √(x^2 + 1)。

16个基本导数公式

16个基本导数公式

16个基本导数公式导数是微积分中重要的概念之一,它描述了函数在特定点的局部变化率。

在求导过程中,我们需要掌握一些基本的导数公式,这些公式可以用于求取各种类型函数的导数。

下面,我将介绍16个基本的导数公式,并对每个公式进行详细解释。

总字数超过1200字。

1.常数函数的导数:若f(x)=c,其中c为常数,则f'(x)=0。

常数函数在任何点处的导数都为0,因为它没有变化。

2.幂函数的导数:若f(x)=x^n,其中n为正整数,则f'(x)=n*x^(n-1)。

幂函数的导数可以通过将指数乘以常数并减一,得到新的指数。

3. 指数函数的导数:若f(x) = a^x,其中a为正实数且不等于1,则f'(x) = a^x * ln(a)。

指数函数的导数等于函数值乘以常数ln(a)。

4. 对数函数的导数:若f(x) = ln(x),则f'(x) = 1/x。

对数函数的导数等于导数的倒数。

5. 三角函数的导数:(1) 若f(x) = sin(x),则f'(x) = cos(x);(2) 若f(x) = cos(x),则f'(x) = -sin(x);(3) 若f(x) = tan(x),则f'(x) = sec^2(x)。

三角函数的导数可以通过观察函数的变化规律得到。

6. 反三角函数的导数:(1) 若f(x) = arcsin(x),则f'(x) =1/√(1 - x^2);(2) 若f(x) = arccos(x),则f'(x) = -1/√(1 - x^2);(3) 若f(x) = arctan(x),则f'(x) = 1/(1 + x^2)。

反三角函数的导数可以通过求导的逆运算得到。

7.求和函数的导数:若f(x)=u(x)+v(x),其中u(x)和v(x)都是可导函数,则f'(x)=u'(x)+v'(x)。

求和函数的导数等于各个函数的导数的和。

导数的基本公式14个

导数的基本公式14个

导数的基本公式14个目录1、f'(x)=lim(h->0)[(f(x+h)-f(x))/h]2、f(x)=a的导数, f'(x)=0, a为常数3、f(x)=x^n的导数, f'(x)=nx^(n-1), n为正整数4、f(x)=x^a的导数, f'(x)=ax^(a-1), a为实数5、f(x)=a^x的导数, f'(x)=a^xlna, a>0且a不等于16、f(x)=e^x的导数, f'(x)=e^x7、f(x)=log_a x的导数, f'(x)=1/(xlna), a>0且a不等于18、f(x)=lnx的导数, f'(x)=1/x9、(sinx)'=cosx10、(cosx)'=-sinx11、(tanx)'=(secx)^212、(cotx)'=-(cscx)^213、(secx)'=secxtanx14、(cscx)'=-cscxcotx15、(arcsinx)'=1/根号(1-x^2)16、(arccosx)'=-1/根号(1-x^2)17、(arctanx)'=1/(1+x^2)18、(arccotx)'=-1/(1+x^2)19、(f+g)'=f'+g'20、(f-g)'=f'-g'21、(fg)'=f'g+fg'22、(f/g)'=(f'g-fg')/g^223、(1/f)'=-f'/f^224、(f^(-1)(x))'=1/f'(y)常见导数公式4个基本求导公式可以分成三类。

第一类是导数的定义公式,即差商的极限. 再用这个公式推出17个基本初等函数的求导公式,这就是第二类。

最后一类是导数的四则运算法则和复合函数的导数法则以及反函数的导数法则,利用这些公式就可以推出所有可导的初等函数的导数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本初等函数求导公式(1) 0)(='C (2) 1)(-='μμμx x(3) x x cos )(sin ='(4) x x sin )(cos -='(5)x x 2sec )(tan =' (6)x x 2csc )(cot -=' (7) x x x tan sec )(sec ='(8) x x x cot csc )(csc -='(9)a a a xx ln )(=' (10) (e )e xx '=(11)a x x a ln 1)(log ='(12)x x 1)(ln =',(13)211)(arcsin x x -=' (14)211)(arccos x x --=' (15)21(arctan )1x x '=+(16)21(arccot )1x x '=-+函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则(1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数)(3) v u v u uv '+'=')((4) 2v v u v u v u '-'='⎪⎭⎫ ⎝⎛反函数求导法则若函数)(y x ϕ=在某区间y I 内可导、单调且0)(≠'y ϕ,则它的反函数)(x f y =在对应区间xI 内也可导,且)(1)(y x f ϕ'=' 或 dy dx dx dy 1=复合函数求导法则设)(u f y =,而)(x u ϕ=且)(u f 及)(x ϕ都可导,则复合函数)]([x f y ϕ=的导数为dy dy du dx du dx =或()()y f u x ϕ'''=2. 双曲函数与反双曲函数的导数.双曲函数与反双曲函数都是初等函数,它们的导数都可以用前面的求导公式和求导法则求出.可以推出下表列出的公式:在第二章第六节中我们已经提出了隐函数的概念,并且指出了不经过显化直接由方程),(y x f =0 (1) 求它所确定的隐函数的方法。

现在介绍隐函数存在定理,并根据多元复合函数的求导法来导出隐函数的导数公式.隐函数存在定理 1 设函数),(y x F 在点),(00y x P 的某一邻域内具有连续的偏导数,且0),(00=y x F ,,),(00≠y x F y ,则方程),(y x F =0在点),(00y x 的某一邻域内恒能唯一确定一个单值连续且具有连续导数的函数)(x f y =,它满足条件)(00x f y =,并有y x F F dx dy-= (2)公式(2)就是隐函数的求导公式这个定理我们不证。

现仅就公式(2)作如下推导。

将方程(1)所确定的函数)(x f y =代入,得恒等式0))(,(≡x f x F ,其左端可以看作是x 的一个复合函数,求这个函数的全导数,由于恒等式两端求导后仍然恒等,即得,0=∂∂+∂∂dx dy y F x F由于yF 连续,且),(00≠y x F y ,所以存在(x 0,y 0)的一个邻域,在这个邻域内≠y F ,于是得.y x F F dx dy-=如果),(y x F 的二阶偏导数也都连续,我们可以把等式(2)的两端看作x 的复合函数而再一次求导,即得dxdy F F y F F x dx y d y x y x ⎪⎪⎭⎫ ⎝⎛-∂∂+⎪⎪⎭⎫ ⎝⎛-∂∂=22.232222yx yy y x xy y xx y x yx yy y xy y xyz y xx F F F F F F F F F F F F F F F F F F F F +--=⎪⎪⎭⎫⎝⎛-----=例1 验证方程0122=-+y x 在点(0,1)的某一邻域内能唯一确定一个单值且有连续导数、当x =0时,1=y 的隐函数)(x f y =,并求这函数的一阶和二阶导数在x =0的值。

解 设=),(y x F 122-+y x ,则y F x F y x 2,2==,02)1,0(,0)1,0(≠==y F F .因此由定理1可知,方程0122=-+y x 在点(0,1)的某邻域内能唯一确定一个单值且有连续导数、当x =0时,1=y 的隐函数)(x f y =。

下面求这函数的一阶和二阶导数y x F F dx dy -==y x -, 0==x dx dy ;22dx y d =,1)(332222y y x y y y xx y y y x y -=+-=---='--122-==x dx y d 。

隐函数存在定理还可以推广到多元函数.既然一个二元方程(1)可以确定一个一元隐函数,那末一个三元方程F (z y x ,,)=0 (3)就有可能确定一个二元隐函数。

与定理1一样,我们同样可以由三元函数F (z y x ,,)的性质来断定由方程F (z y x ,,)=0所确定的二元函数z =),(y x 的存在,以及这个函数的性质。

这就是下面的定理。

隐函数存在定理 2 设函数F (z y x ,,)在点),,(000z y x P 的某一邻域内具有连续的偏导数,且0),,(000=z y x F ,0),,(000≠z y x F z ,则方程F (z y x ,,)=0在点),,(000z y x 的某一邻域内恒能唯一确定一个单值连续且具有连续偏导数的函数),(y x f z =,它满足条件),(000y x f z =,并有x z ∂∂=z x F F -,y z ∂∂=z yF F -. (4)这个定理我们不证.与定理1类似,仅就公式(4)作如下推导. 由于 F (y x ,, f ),(y x )≡0,将上式两端分别对x 和y 求导,应用复合函数求导法则得x F +z F x z∂∂=0, y F+z F y z ∂∂=0。

因为z F 连续,且0),,(000≠z y x F z ,所以存在点),,(000z y x 的一个邻域,在这个邻域内z F ≠0,于是得x z ∂∂=z x F F -,y z ∂∂=z yF F -。

例2例3 设04222=-++z z y x ,求.22x z∂∂解 设F (z y x ,,) =z z y x 4222-++,则x F =2x , z F =42-z .应用公式(4),得x z ∂∂=z x-2。

再一次x 对求偏导数,得22x z ∂∂2)2()2(z xz x z -∂∂+-=.)2()2()2(2)2(3222z x z z z x x z -+-=-⎪⎭⎫⎝⎛-+-=二、方程组的情形下面我们将隐函数存在定理作另一方面的推广。

我们不仅增加方程中变量的个数。

而且增加方程的个数,例如,考虑方程组⎩⎨⎧==.0),,,(,0),,,(z u y x G v u y x F (5)这时,在四个变量中,一般只能有两个变量独立变化,因此方程组(5)就有可能确定两个二元函数。

在这种情形下,我们可以由函数F 、G 的性质来断定由方程组(5)所确定的两个二元函数的存在,以及它们的性质。

我们有下面的定理。

隐函数存在定理3 设函数),,,(v u y x F 、),,,(v u y x G 在点),,,(00000v u y x P 的某一邻域内具有对各个变量的连续偏导数,又0),,,(0000=v u y x F ,0),,,(0000=v u y x G ,且偏导数所组成的函数行列式(或称雅可比(Jacobi)式):=J ),(),(v u G F ∂∂=v G u Gv F uF∂∂∂∂∂∂∂∂在点),,,(00000v u y x P 不等于零,则方程组0),,,(=v u y x F ,0),,,(=v u y x G 在点),,,(0000v u y x 的某一邻域内恒能唯一确定一组单值连续且具有连续偏导数的函数),(),,(y x v v y x u u ==,它满足条件),(),,(000000u x v v y x u u ==,并有x u∂∂-=),(),(1v x G F J ∂∂-=,v u v u v xv x G G F F G G F Fx v∂∂-=),(),(1x u G F J ∂∂-=,vuv u x ux u G G F F G G F F (6)y u ∂∂-=),(),(1v y G F J ∂∂-=,v vvu v yvy G G F F G G F Fy v ∂∂-=J 1),(),(y u G F ∂∂-=.u y uy u v uv F F G G F F G G这个定理我们不证.例4 设1,0=+=-xv yu yv xu ,求x u ∂∂,y u ∂∂,x v ∂∂和y v∂∂.解 此题可直接利用公式(6),但也可依照推导公式(6)的方法来求解。

下面我们利用后一种方法来做。

将所给方程的两边对x 求导并移项,得⎪⎩⎪⎨⎧-=∂∂+∂∂-=∂∂-∂∂.,v x v x x u y u x v y x ux在22≠+=-=y x xyy x J 的条件下,.,2222yx xv yu xy y x v y ux x v y x yv xu xy y x x v y u x u +-=---=∂∂++-=----=∂∂将所给方程的两边对y 求导,用同样方法在022≠+=y x J 的条件下可得,22y x yu xv y u +-=∂∂ .22y x yv xu y v ++-=∂∂。

相关文档
最新文档