数字积分插补原理

合集下载

第三四象限数字积分法插补计算报告

第三四象限数字积分法插补计算报告

第三四象限直线插补计算1. 引言随着微电子技术,计算机技术的发展,数控机床的性能不断完善,其应用范围也不断增大。

而数控技术作为数控机床的关键技术,越来越得到更多高校的重视。

2.数字积分法直线插补原理设将要加工的直线XOY 平面内第一象限直线OE ,如图.一所示,直线起点在坐标原点,终点为E (Xe ,Ye )。

同样,假设坐标值均为以脉冲当量为单位的整数。

图.一若此时刀具在两坐标轴上的进给速度分量分别是Vx ,Vy ,则刀具在X 轴,Y 轴方向上位移增量分别是△X = Vx △t 式一a△ Y = Vy △t 式一b由图.一 所示的几何关系可得V/OE=Vx/Xe=Vy/Ye=K (常数) 式二将式二中的Vx ,Vy 分别代入式一 可得:△X = KXe △t 式三a△ Y = KYe △t 式三b可见刀具由原点O 走向E 的过程,可以看作式每经过一个单位时间间隔△t ,就分别以增量[KXe],[ KYe]同时在两个坐标轴累加的结果。

也可以这样认为,数字积分法插补实际上就是利用速度分量,进行数字积分来确定刀具在各坐标轴上位置的过程,即XO当取△ti=“1”(一个单位时间间隔)则X = nKXe 式五aY = nKYe 式五b设经过n 次累加后,刀具正好到达终点E(Xe,Ye),则要求式五中常量满足 下式nK=1 式六n 是累加次数必须取整数,所有K 取小数。

为了保证每次分配给坐标轴的进给脉冲不超过一个单位,则△ X=KXe<1 式七a△ Y=KYe<1 式七b上式中Xe ,Ye 的最大允许值受系统中相应寄存器容量的限制。

现假设寄存器 为N 位则容量为2N ,对应存储的最大允许数字量为(2N - 1)将其带入式七得 K<=1/(2N - 1) 式八现不妨取 K =1/2N 式九显然它满足式七,式八的约束条件,再将K 值代入式六可得累加次数为 n =2N 式十如果将n ,K,值代入式五则动点坐标为X = nKXe =Xe 式十一aY = nKYe =Ye 式十一b根据以上分析,在进行直线插补时,先开辟两个被积函数寄存器Jvx ,Jvy 分别存放终点坐标值Xe ,Ye ,还有两个余数寄存器Jrx ,Jry 。

数字积分插补原理

数字积分插补原理

ΔX,ΔY同时溢出 JE=0,插补结束
加工轨迹如下:
Y 6 5 4 3 2 1
O 1 2
A( 2 , 6 )
X
(三)数字积分圆弧插补 如图所示,设加工半径为R的第一象限逆时针圆弧AB, 坐标原点定在圆心上,A(Xo,Yo)为圆弧起点,B(Xe,Ye) 为圆弧终点,Pi(Xi,Yi)为加工动点。 Y B(Xe,Ye) Pi(Xi,Yi) A(Xo,Yo)
插补计算过程如下
累加 次数 (Δt) X积分器 Y积分器 终点 JVx JRx 溢出 JVy JRy 溢出 计数器 JE ΔX ΔY
备注 初始状态 第一次累加
0 1
101 000 101 101
2 3 4 5 6 7 8
101 010 101 111 101 100 101 001 101 110 011 010 1 101 011 1 011 101 101 000 1 011 000 1
m
由该式可知:mK = 1,即 m= 1/K 这样,经过m次累加后,X、 Y坐标分别到达终点,而溢出 脉冲总数即为: X=Xe Y=Ye O
A(Xe,Ye) V Vy
Vx
X
确定K的取值: 根据每次增量ΔX、ΔY不大于1,以保证每次分配的进给 脉冲不超过1,即需满足: ΔX=K Xe≤1 ΔY=K Ye≤1 其中Xe、Ye的最大允许值受被积函数寄存器容量的限制。 n 假定寄存器有n位,则Xe、Ye的最大允许值为2 – 1。 n 若取K=1/2 、则必定满足: n n K Xe = 2 – 1 / 2 <1 n n K Ye = 2 – 1 / 2 <1 由此可定,动点从原点到达终点的累加次数为: n m=1/K=2
例:插补第一象限直线OA,起点为O( 0 , 0 ) ,终点为 A ( 5 , 3 )。取被积函数寄存器分别为JVx, JVy,余数寄存 器分别为JRx 、JRy ,终点计数器为 JE,且都是三位 二进制寄存器。试写出插补计算过程并绘制轨迹。 Y 3 2 1 O 1 2 3 4 5 X A( 5 , 3 )

数字积分法

数字积分法

101 +)001
110
101 +)110 ① 011
101 +) 011 ① 000
经过23 = 8次累加完成积分运算,因为有5次溢出,所以 积分值等于5。
(二)数字积分直线插补
如图:直线段OA,起点位于原点,终点为A(Xe,Ye),东电 沿X、Y坐标移动的速度为Vx、Vy,则动点沿X、Y坐 标移动的微小增量为:
Y
3
A( 5 , 3 )
2 1
O 1 2 34 5
X
插补计算过程如下
累加 次数 (Δt)
X积分器
Y积分器 终点
JVx JRx
溢出 ΔX
JVy
JRy
溢出 计数器 ΔY JE
0 101 000 011 000
000
备注 初始状态
1 101 101 011 011
111 第一次累加
2 101 010 1 011 110
(一)数字积分的基本原理
如图:从时刻t=0到t,函数Y=f(t)曲线所包围的面积可表
示为:S=∫ 0f(t)dt t
Y
若将0~t的时间划分成时间
间隔为Δt的有限区间,当Δt
Y=f(t)
足够小时,可得公式:
S=∫
tf0(t)dt
=
n-1 ∑ Yi Δt
i=0
Yo
即积分运算可用一系列微小
O
矩形面积累加求和来近似。
Δt
tT
若Δt取最小基本单位“1”,则上式可简化为:
n-1 S=∑ Yi (累加求和公式或矩形公式)
i=0
这种累加求和运算,即积分运算可用数字积分器来实现,
被积函数寄存器
存放Y值

数控中DDA插补的原理详解

数控中DDA插补的原理详解

xe
=
vx
对于直线函数来说, VX和Vy是常数,则下式 成立
vx v y = =k xe ye
k-比例系数
在△t 时间内,X、Y位移增量的参数方程为
∆x = v x ⋅ ∆t = k ⋅ xe ⋅ ∆t ∆y = v y ⋅ ∆t = k ⋅ ye ⋅ ∆t
位移量为
x = ∫ k xe dt = ∑ k xe ∆t
4、直线插补
加工线段OA, 是两个坐标轴方向的分速度, 加工线段OA,VX和VY是两个坐标轴方向的分速度, OA 方向微小增量为△ 设X、Y方向微小增量为△X、△Y 则 △ X = V X. △ t △ Y = V y. △ t 而 X e= V X. t 1 Y e= V y. t 2 ye v y t 2 所以 = xe v x t1 因为t 同时到达) 因为t 1= t 2 (同时到达) 所以 ye v y
§8.3
1、基本概念
数字积分法
采用积分运算实现插补,又称DDA法。 DDA(Digital Differential Analyzer)
2、优点
易于实现多维插补和原有系统多个坐标轴 联动的扩充,尤其多坐标联动的数控系统
3、数字积分器的工作原理
函数 x=f(t), 曲线下面0 曲线下面0到t 的面积

i =1


NOTE: NOTE: 插补开始时, x=0, y=0; 1)插补开始时,∑x=0,∑y=0; 被积函数寄存器分别寄存X 一直不变) 被积函数寄存器分别寄存Xe和Ye(一直不变) 插补开始后,每隔一个时间间隔△ 2)插补开始后,每隔一个时间间隔△t ,被 积函数的内容与各自的累加器中的内容相加 一次, 一次,相加后溢出的脉冲做为驱动相应坐标 轴的进给脉冲, 余数仍寄存在累加器中。 轴的进给脉冲,而余数仍寄存在累加器中。 被积函数寄存器中的数可用二进制位表示: 3)被积函数寄存器中的数可用二进制位表示: 由高到低), 2n-1、……20。(由高到低),也可用十进制 2 。(由高到低),也可用十进制 数表示。 数表示。 4)当累加出现>2N项时,则表示溢出脉冲。 当累加出现>2 项时,则表示溢出脉冲。

数字积分法

数字积分法

累加次数 m
JVX
JRX(∑xe) △x
(存xe )
0
1000(8)
0
0
1
2
JVY
JRY
△y
(存ye) (∑ye)
0110(6)
0
0
9.5 数控机床的插补原理
累加次数 m
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
JVX(存xe ) 1000
JRX(∑xe)
0 1000 0000 1000 0000 1000 0000 1000 0000 1000 0000 1000 0000 1000 0000 1000 0000
9.5 数控机床的插补原理
1. 概述 2. 逐点比较法 3. 数字积分法
9.5 数控机床的插补原理
3. 数字积分法 数字积分法又称数字微分分析器(Digital
Differential Analyzer,简称DDA),利用数字积分的 原理,计算刀具沿坐标轴的位移,使刀具沿所加工的 轨迹运动。 采用数字积分法进行插补的优点:
9.5 数控机床的插补原理
m必须是整数,所以k为小数。选取k时考虑△x、
△y≤1,保证坐标轴上每次分配的进给脉冲不超过1个
单位(一般为1个脉冲当量)。
xe
m
(kxe )t
i 1
m
mkxet
取△t=1
ye
(kye )t
i 1
mkyet
xe mkxe
ye
mk ye
x y
k xe k ye
△x
JVY(存ye) JRY(∑ye)
△y
0
0110
0
0

5.3 数字积分法插补原理

5.3 数字积分法插补原理

主讲人:罗福源原理利用数字积分的原理,计算各坐标轴的位移,形成插补轨迹。

在计算机里,积分即是求和,也就是累加。

那么加数是什么?是微位移(Δx、Δy、......),因此数字积分法又称为DDA法,(Digital Differential Analyzer),即数字微分分析器法。

特点允许多个坐标轴同时输出脉冲。

优点运算速度快、脉冲分配均匀,易于实现多坐标联动。

X Δx01234取微位移Δx(<1个脉冲当量)进行累加运算。

随着累加次数逐渐增加,对应动点的x坐标也不断增大。

当完成若干次累加后,位移之和已经超出1个脉冲当量。

此时,利用这个溢出信号让数控系统向x坐标轴发出一个控制脉冲,使之产生一个脉冲当量的位移。

如此不断累加,每当位移之和超出1个脉冲当量,就向x 坐标轴发出一个控制脉冲,直至到达终点,插补结束。

保证Δx 与Δy 符合斜率关系即可:DDA法直线插补e ex y x y =∆∆⎪⎪⎩⎪⎪⎨⎧<=∆<=∆11m y y m x x e e设经累加m 次到达终点,则若取m =2n ,(n 为累加器位数),则易于计算机实现。

因为Δx=x e •2-n 与x e 相比,只是小数点位置不同,不影响累加运算后的有效数位与溢出的判别。

这样,把对Δx 、Δy的累加转变为对x e 与y e 的累加。

Y XA(x e ,y e )Δx2ΔxΔy 2Δy OX -Y平面第一象限直线DDA插补器的示意图:Δt Y轴溢出脉冲X轴溢出脉冲+Y 积分累加器J RYX积分累加器J RX被积函数寄存器J VX (x e )+控制脉冲被积函数寄存器J VY (y e )其它象限的直线DDA插补,参照前述逐点比较法,对终点坐标进行取绝对值并按实际方向进给即可。

累加次数m JVX(存xe)JRX(∑xe)△x JVY(存ye)JRY(∑ye)△y0100000011000 11000001100 20000111000 31000000101 40000110000 51000011100 60000101001 71000010100 80000100001 91000001100 100000111000 111000000101 120000110000 131000011100 140000101001 151000010000 160000100001A (8,6)插补轨迹理想轨迹8756123456O1234YX以第一象限逆圆弧为例V yV x VARYOXP (x i ,y j )B (x e ,y e )DDA法圆弧插补222x y R+=等式两边同时对时间参数t 求导,可得220dx dy x dy dxx y dt dt dt dty+=⇒=-由此可导出第一象限逆圆弧加工时动点沿坐标轴方向的速度分量为=x j y i dx V ky ky dt dy V kx kx dt ⎧==--⎪⎪⎨⎪===⎪⎩在一个单位时间Δt 内,X 和Y 方向上的移动距离微小增量Δ x 、Δ y 为:⎪⎩⎪⎨⎧∆=∆=∆∆=∆=∆tkx t V y t ky t V x i y j x -⎪⎩⎪⎨⎧=∆=∆=∆=∆n --n22--i i j j x t kx y y t ky x 令Δt =1,取k=2-n ,得:插补时寄存的是动点坐标x i 或y j ,是变量。

数字积分法插补

数字积分法插补

数字积分法插补前面提到过数字积分法插补是脉冲增量插补的一种,它是用数字积分的方法计算刀具沿各坐标轴的移动量,从而使刀具沿着设定的曲线运动。

实现数字积分插补计算的装置称为数字积分器,或数字微分器(Digital Differential Analyzer, DDA),数字积分器可以用软件来实现。

数字积分器具有运算速度快,脉冲分配均匀,可以实现一次、二次曲线的插补和各种函数运算,而且易于实现多坐标联动,但传统的DDA 插补法也有速度调节不方便,插补精度需要采取一定措施才能满足要求的缺点,不过目前CNC 数控系统中多采用软件实现DDA 插补时,可以很容易克服以上缺点,所以DDA 插补是目前使用范围很广的一种插补方法。

它的基本原理可以用图4.1所示的函数积分表示,从微分几何概念来看,从时刻0到时刻t 求函数y=f(t)曲线所包围的面积时,可用积分公式: (4.1)如果将0~t 的时间划分成时间间隔为Δt 的有限区间,当Δt 足够小时,可得近似公式:(4.2)式中y i-1为t=t i-1时f(t)的值,此公式说明:积分可以用数的累加来近似代替,其几何意义就是用一系列小矩形面积之和来近似表示函数f(t)下面的面积,t y d t f S ni i t t ∆==∑⎰=-110)(⎰=t t d t f S 0)(如果在数字运算时,用取Δt 为基本单位“1”,则4.2式可以简化为:∑=-=n i i y S 11(4.3)如果系统的基本单位Δt 设置得足够小,那么就可以满足我们所需要的精度。

一般地,每个坐标方向需要一个被积函数寄存器和一个累加器,它的工作过程可用图4.2表示:图 4.2 一个坐标方向上的积分器示意图Fig 4.2 Sketch of DDA in one coordinate direction图4.1 数字积分原理Fig 4.1 Principle of DDA被积函数寄存器用以存放坐标值f(t),累加器也称余数寄存器用于存放坐标的累加值。

dda数字积分插补算法

dda数字积分插补算法

dda数字积分插补算法DDA(Digital Differential Analyzer)数字积分插补算法是计算机图形学中常用的一种直线段插值算法。

它的主要作用是根据给定的两个端点坐标,通过在直线上等间距采样的方式,计算出直线上各个点的坐标值,从而实现直线的平滑插值。

DDA算法的基本思想是利用直线的斜率来逐步逼近直线的路径,从而计算出直线上各个点的坐标。

具体步骤如下:1. 计算出直线的斜率k,即直线在x轴上的单位增量Δx与在y轴上的单位增量Δy的比例:k = Δy / Δx。

2. 选择直线上两个端点中x值较小的一个作为起始点,并以其坐标值(x0,y0)作为起始值。

3. 将起始点的坐标值作为当前点的坐标值,并将其绘制到屏幕上。

4. 通过递增x坐标值的方式,计算出下一个点的y坐标值,即y = y0 + k。

5. 将下一个点的坐标值(x0+1,y)作为当前点的坐标值,并将其绘制到屏幕上。

6. 重复步骤4和步骤5,直到达到直线的结束点。

通过以上步骤,可以得到直线上各个点的坐标值,从而实现直线的平滑插值。

DDA算法的优点是计算简单、速度快,适用于直线斜率变化不大的情况。

但由于采用等间距采样的方式,可能导致插值结果与实际直线存在误差。

为了更好地理解DDA算法的原理,下面以一个具体的例子来说明。

假设有两个端点坐标分别为(2,2)和(8,5),我们来计算出直线上各个点的坐标。

计算出直线的斜率k = (5-2) / (8-2) = 3/6 = 1/2。

然后,选择起始点(2,2)作为起始值,并将其绘制到屏幕上。

接下来,通过递增x坐标值的方式,依次计算出下一个点的y坐标值。

根据步骤4,我们可以得到以下结果:x | y--------2 | 23 | 2 + 1/2 = 2.54 | 2.5 + 1/2 = 35 | 3 + 1/2 = 3.56 | 3.5 + 1/2 = 47 | 4 + 1/2 = 4.58 | 4.5 + 1/2 = 5我们得到直线上各个点的坐标值为(2,2)、(3,2.5)、(4,3)、(5,3.5)、(6,4)、(7,4.5)和(8,5)。

简述数字积分法进行插补运算的基本原理

简述数字积分法进行插补运算的基本原理

5 2・
பைடு நூலகம்
科技论 坛
筒述 数字积分 法进 行插 补运算 的基 本原理
杨方 明 王 昊
( 河北农业大 学机 电工程 学院, 河北 保定 0 7 1 0 0 0 )
摘 要: 数 字积分法 , 也称 D D A法 , 它是建 立在数 字积分 器基础上 的一种插补 算法 , 可 实现 多坐标联动 与空 间曲线的插补 , 在数控 系统 中得到广泛的应用。主要描述数 字积分法的基本原理 , 为初学者提供原理方 法的基本认 知理 解。 关键词 : 数 字积 分 法 ; 累加 ; 直线插补 ; 圆弧 插 补 S
结 束 语 总 的来说 , 数字积分法就是用累加的方法实现积分 的过 程。主 要 由被积 函数寄存器 与累加 器完成运算 , 运算过程 中 , 累加 、 溢出、
f=l
h. △ £
进给 、 终 点判别循环进行 , 直到插补结束。
参 考 文 献
取△ l 后 , 上 式 变 为f : z k
1 数字 积 分 法基 本 原 理 数字积分法类似微积 分的基本 思想 , 即无 限细分 与无 限求 和的 y ∑ y 思想 。 如图 1 所示 , 求 函数 y - f ( t ) 在 区间[ t o , t 0 的定积分 , 转换为几何关 矗 系就是求 函数在该区间内与 t 轴所 围成的面积
△t= '
由上式可得 l 口 I l ,A y=k y 。 ,A x=l 口 c 。 为使每次的进给脉冲不多于一个脉冲 , 必须满足 A y <l ,△ x <1 ,
即 k y 叠《I ,k x l< l 。而 y ・ 、x ・ 的值受寄存器容量限制 ,
若 寄存器为 N位寄存器 , 则其最大值为 2 N—l 。

第三节 数字积分法插补

第三节  数字积分法插补

第三节 数字积分法插补一、数字积分法的基本原理数字积分法又称数字微分分析法(Digital Differential Analyzer )。

这种插补方法可以实现一次、二次、甚至高次曲线的插补,也可以实现多坐标联动控制。

只要输入不多的几个数据,就能加工出圆弧等形状较为复杂的轮廓曲线。

作直线插补时,脉冲分配也较均匀。

从几何概念上来说,函数)(t f y =的积分运算就是求函数曲线所包围的面积S (图3-10所示)。

图3-10 函数)(t f y =的积分S=⎰tydt 0(3-9)此面积可以看作是许多长方形小面积之和,长方形的宽为自变量t ∆,高为纵坐标i y 。

则 S=⎰tydt 0=t y ni i ∆∑=0(3-10)这种近似积分法称为矩形积分法,该公式又称为矩形公式。

数学运算时,如果取t ∆=1,即一个脉冲当量,可以简化为:S=∑=ni iy(3-11)由此,函数的积分运算变成了变量求和运算。

如果所选取的脉冲当量足够小,则用求和运算来代替积分运算所引起的误差一般不会超过容许的数值。

二、DDA 直线插补 1.DDA 直线插补原理图3-11 直线插补设xy 平面内直线OA ,起点(0,0),终点为(e x ,e y ),如图3-11所示。

若以匀速V 沿OA 位移,则V 可分为动点在x 轴和y 轴方向的两个速度x V 、y V ,根据前述积分原理计算公式,在x 轴和y 轴方向上微小位移增量x ∆、y ∆应为⎩⎨⎧∆=∆∆=∆t V y tV x y x (3-12) 对于直线函数来说,x V 、y V ,V 和L 满足下式⎪⎪⎩⎪⎪⎨⎧==L y VV Lx V V e y e x 从而有⎩⎨⎧==e yex ky V kx V (3-13) 其中:LVk =因此坐标轴的位移增量为⎩⎨⎧∆=∆∆=∆tky y tkx x e e (3-14) 各坐标轴的位移量为⎪⎪⎩⎪⎪⎨⎧∆==∆==⎰∑⎰∑==tn i e e t n i e e ty k dt ky y t x k dt kx x 0101(3-15) 所以,动点从原点走向终点的过程,可以看作是各坐标轴每经过一个单位时间间隔t ∆,分别以增量e kx 、e ky 同时累加的过程。

二数字积分法插补

二数字积分法插补

ΔX=VxΔt
Y
ΔY=VyΔt
若动点沿OA匀速移动, V、
Vx、Vy均为常数,则有:
V
=
Vx
Vy =
=K
OA Xe Ye
成立。
O
A(Xe,Ye)
V Vy
Vx
X
因而可以得到坐标微小位移增量为:
ΔX=VxΔt=KXeΔt
ΔY=VyΔt =KYeΔt 所以,可以把动点从原点
走向终点的过程看作X、Y Y 坐标每经过一个单位时间
二、数字积分法插补
数字积分法又称数字微分分析器(Digital Differential Analyzer,简称DDA)。采用该方法进行插补,具有运算 速度快,逻辑功能强,脉冲分配均匀等特点,且只输 入很少的数据,就能加工出直线、圆弧等较复杂的曲 线轨迹,精度也能满足要求。因此,该方法在数控系 统中得到广泛的应用。
如图所示,设加工半径为R的第一象限逆时针圆弧AB, 坐标原点定在圆心上,A(Xo,Yo)为圆弧起点,B(Xe,Ye) 为圆弧终点,Pi(Xi,Yi)为加工动点。
011 ΔX,ΔY同时无溢出
6 010 100 110 100 1 010
ΔY溢出
7 010 110 110 010 1 001
ΔY溢出
ΔX,ΔY同时溢出
8 010 000 1 110 000 1 000 JE=0,插补结束
加工轨迹如下:
Y
6
A( 2 , 6 )
5 4
3
2
1
O 12
X
(三)数字积分圆弧插补
被积函数寄存器
存放Y值
Δt +
ΔY 累加器(余数寄存器)
被积函数寄存器与累加器相加的计算方法:

数控课程设计(数字积分法第二象限逆圆插补)

数控课程设计(数字积分法第二象限逆圆插补)

数字积分法第二象限逆圆插补程序设计1.课程设计的目的(1) 了解连续轨迹控制数控系统的组成原理。

(2) 掌握数字积分插补的基本原理。

(3) 掌握数字积分插补的软件实现方法。

2、课程设计的任务数字积分法又称数字微分分析法DDA(Digital Differential Analyzer)。

数字积分法具有运算速度快、脉冲分配均匀、易于实现多坐标联动及描绘平面各种函数曲线的特点,应用比较广泛。

其缺点是速度调节不便,插补精度需要采取一定措施才能满足要求。

由于计算机有较强的计算功能和灵活性,采用软件插补时,上述缺点易于克服。

本次课程设计具体要求如下:(1)数字积分法插补基本原理(2)数字积分法插补软件流程图(3)算法描述,编写算法程序清单3、课程设计报告内容3.1.设计方案的论证插补运算就是运用特定的算法对工件加工轨迹进行运算并根据运算结果向相应的坐标发出运动指令的过程。

插补运算可以采用数控系统硬件或数控系统软件来完成。

硬件插补器:速度快,但缺乏柔性,调整和修改都困难。

软件插补器:速度慢,但柔性高,调整和修改都很方便。

早期硬件数控系统:采用由数字逻辑电路组成的硬件插补器;CNC系统:采用软件插补器,或软件、硬件相结合的插补方式。

方案一:采用逐点比较法插补。

逐点比较法的基本原理是被控对象在按要求的轨迹运动时,每走一步都要与规定的轨迹进行比较,由此结果决定下一步移动的方向。

逐点比较法既可以作圆弧插补又可以作直线插补。

这种算法的特点是,运算直观,插补误差小于一个脉冲当量,输出脉冲均匀,而且输出脉冲速度变化小,调节方便,因此在两坐标数控机床中应用较为普遍。

方案二:数字积分法插补。

又称为微分分析法。

这种方法可实现一次、二次、甚至高次曲线的插补,也可以实现多坐标联动控制。

只要输入不多的几个数据,就能加工出圆弧等形状较为复杂的轮廓曲线。

作直线插补时,脉冲分配也较均匀。

方案三:数据采样插补。

数据采样插补实际上是一种粗插补过程,它所产生的微小线段仍然比较大,必须进一步对其密化(即精插补)。

数字积分法插补原理

数字积分法插补原理
数字积分法插补原理
本单元学习目标
掌握数字积分法插补基本原理 掌握数字积分直线插补运算过程、特点及其应用 掌握数字积分圆弧插补运算过程、特点及其应用 理解改进数字积分插补质量的措施
3单元 数字积分法插补原理
一 基本原理
数字积分法又称数字积分分析法DDA(Digital differential Analyzer), 简称积分器,是在数字积分器的基础上建立起来的一种插补算法。具 有逻辑能力强的特点,可实现一次、两次甚至高次曲线插补,易于实 现多坐标联动。只需输入不多的几个数据,就能加工圆弧等形状较为 复杂的轮廓曲线。直线插补时脉冲较均匀。并具有运算速度快,应用 广泛等特点。
i 1
i 1
3单元 数字积分法插补原理
二 直线插补
设在平面中有一直线OA,其起点坐标为坐标原点O,终点坐为 A(xe , ye ) ,则该 直线的方程为 y y e x ,将方程化为对时间t的参数方程,再求积分可得:
xe
x K xedt
y K yedt
上式积分用累加的形式近似表达为:
n
x Kxe ti
过程中,被积函数值必须由累加器的溢出来修改。圆弧插补x
轴累加器初值存入轴起点坐标 y 0 ,y轴累加器初值存入x轴起
点坐标 x 0 。
3单元 数字积分法插补原理
四 改进DDA插补质量的措施
3单元 数字积分法插补原理
四 改进DDA插补质量的措施
3单元 数字积分法插补原理
3单元 数字积分法插补原理 掌握数字积分圆弧插补运算过程、特点及其应用
3单元 数字积分法插补原理
二 直线插补
表 2-7 DDA 直线插补运算过程
累加次数 m
x 被积函数 寄存器

第八讲 插补算法-直线数字积分

第八讲 插补算法-直线数字积分

插补过程
Y: 10101010 X: 11011010
插补过程
Y: 10101010 X: 11011010
插补过程
Y: 10101010 X: 11011010
插补过程
Y: 10101010 X: 11011010
插补过程
Y: 10101010 X: 11011010
插补过程
Y: 10101010 X: 11011010
4
坐标轴的进给速度由数控系统发给进给系统的脉冲频率确定,V=kf; Vx = k fx,Vy = k fy; Vx :Vy = fx:fy = Xe :Ye;
直线插补问题可等效为获取定比脉冲的问题。
和尚打水的故事
从前有座山,山上有座庙,庙里有 一个胖和尚和一个瘦和尚,因路途
遥远、每天早上胖和尚和瘦和尚相
直线插补解决了,圆弧呢?
课后思考!
容量为8
010 10
010 10
溢出的过程
5 + 基准脉冲 8+4 7+5 7 4 4 + 4+4 8+0 4 0
Y轴进给系统 X轴进给系统
容量为8
1010 010
1010 010
溢出的过程
5 + 基准脉冲 4+5 8+1 4 1 4 + 0+4 4 0
Y轴进给系统 X轴进给系统
容量为8
11010 1010
01010 1010
溢出的过程
5 + 基准脉冲 1+5 6 1 4 + 4+4 8+0 4 0
Y轴进给系统 X轴进给系统
容量为8
பைடு நூலகம்

第1章数字积分法插补(DDA)

第1章数字积分法插补(DDA)

可用两个积分器来完成平面直线的插补计算, 其被积函数寄存器的函数值分别为 和 。 对二进制数 ,在 N 位寄存器中存放 与存 放 的数字大小是相同的,仅仅只要认为 后者的小数点在最高位的前面。因此,进行数 字积分法的直线插补计算时,应分别对终点 和终点 进行累加,累加器每溢出一个脉冲, 则控制机床在相应的坐标轴上进给一个脉冲当 量。当累加 次后, x 轴和 y 轴所走的步 数正好等于各轴的终点坐标。
• 积分运算的原理图如图所示,它由一个被积函数寄 存器 ,一个累加器 ( 又称余数寄存器 ) 和一个 全加器 构成。每当出现一个 信号,便将被积函 数寄存器 中的 值与累加器中的值累加一次。若累加 器 的容量作为一个单位面积值,则在累加过程中累 加器 的累加和超过累加器 的容量时,累加器便溢出 一个脉冲,此脉冲即为一个单位面积值,累加结束 后,累加器 总的溢出脉冲数即为所求面积积分的近 似值。 • 其中积分运算原理图累加次数取决于寄存器的位数。
数字积分法插补速度影响的解释 • 当被加工直线较短,而寄存器和累加 器的位数较长时,就出现累加多次才 产生一个溢出脉冲的现象,此时进给 速度就会很慢,从而影响生产率。
二、数字积分法的直线插补
如图所ቤተ መጻሕፍቲ ባይዱ,设直线 oA 为第一象限的直线,起点为坐标原 点 o(0 , 0) ,终点坐标为 A ,该直线的方程式为:
将上式化为以时间 t 为参量的参数方程: 对上两式取微分得: 求上两式在 o 到 A 区间的定积分得 :
式中 和 分别对应起点和终点的时间。上式即为用 数字积分法求 x 和 y 在区间 的定积分,积分值 即为由 o 到 d 的坐标增量。因积分起点为坐标原点 O,所以此坐标增量即为终点坐标。 将上式用累加和代替积分式得: 若取 为一个脉冲时间间隔,即 =1,则: ,则kn=1,k=1/n。 选择 k 时应使每次增量均小于 1 ,以使在各坐标轴 每次分配进给脉冲时不超过一个脉冲 ( 即每次增量 只移动一个脉冲当量 )。

数字积分插补法直线插补

数字积分插补法直线插补

数控原理与系统课程设计课题名称:数字积分插补法直线插补专业:班级:姓名:指导老师:数控原理与系统课程设计任务书班级姓名学号课程设计的目的1)了解连续轨迹控制数控系统的组成原理。

2) 掌握数字积分插补的基本原理。

3)掌握数字积分插补的软件实现方法。

二、课程设计的任务数字积分法又称数字微分分析法DDA(Digital Differential Analyzer)。

数字积分法具有运算速度快、脉冲分配均匀、易于实现多坐标联动及描绘平面各种函数曲线的特点,应用比较广泛。

其缺点是速度调节不便,插补精度需要采取一定措施才能满足要求。

由于计算机有较强的计算功能和灵活性,采用软件插补时,上述缺点易于克服。

本次课程设计具体要求如下:1)数字积分插补法基本原理2)数字积分插补法插补软件流程图3)算法描述(逐点比较法算法在VB中的具体实现)4)编写算法程序清单5)软件运行仿真效果二、课程设计报告要求1)按课程设计任务5点要求为标题,编写课程设计报告,最后加一点:此次课程设计小结(包括设计过程中所碰到的问题、解决办法以及有关设计体会等)。

2)字数在3000字左右。

3)仿真软件一份。

三、学生分组学 生 姓 名数控原理与系统课程设计说明书一、数字积分法直线插补的基本原理数字积分法是利用数字积分的方法,计算刀具沿各坐标轴的位移,使得刀具沿着所加工的轮廓曲线运动利用数字积分原理构成的插补装置称为数字积分器,又称数字微分分析器(Digital Differential Analyzer ),简称DDA 。

数字积分器插补的最大优点在于容易实现多坐标轴的联动插补、能够描述空间直线及平面各种函数曲线等。

因此,数字积分法插补在轮廓数控系统中得到广泛的应用。

从几何角度来看,积分运算就是求出函数Y = f (t )曲线与横轴所围成的面积,从t =t 0到t n 时刻,函数Y= f (t )的积分值可表述为⎰⎰==n n tt t t dt )t (Ydt S 00f如果进一步将t ∈[t 0,t n ]的时间区划分为若干个等间隔Δt 的小区间,当Δt 足够小时,函数Y 的积分可用下式近似表示t Y Ydt S n i i tt n ∆∑⎰-=≈=1在几何上就是用一系列的小矩形面积之和来近似表示函数f (t )以下的积分面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
010 001
无溢出 1 000 ∆X∆Y同时溢出
,Y到终点停止迭代
∆X溢出修正Xi
插补计算过程如下:
累加 次数 (∆t) Y终 X积分器 X终 Y积分器 JVx JRy 溢出 点计 Jvy JRx 溢出 点计 数器 (Yi) ∆X 数器 (Xi) ∆Y
备注
∆X溢出修正Xi
12 101 001 1 001 010 001 13 101 110 001 001 14 101 011 1 0001 2 3 4 5
000 000 000 000 000 000 001 001 001 001 010 010 010 100 011
101 101 000 101 101 101 101 101 010 101 101 111 101 101 100 101 101 001
1
101 101 100
∆X,∆Y同时溢出 JE=0,插补结束
101 000 1
011 000
加工轨迹如下: Y 3 2 1 O 1 2 3 4 5 X A( 5 , 3 )
作业: 插补第一象限直线OA,起点为O( 0 , 0 ) ,终点为 A ( 2 , 6 )。取被积函数寄存器分别为JVx, JVy,余数寄存 器分别为JRx 、JRy ,终点计数器为 JE,且都是三位 二进制寄存器。试写出插补计算过程并绘制轨迹。 Y A( 2 , 6 ) 6 5 4 3 2 1 O 1 2 X
Pi(Xi,Yi) A(Xo,Yo)
Y = 1/2 ∑Xi
i=1
n m
O
X
由 X = 1/2 n ∑Yi
i=1
m
Y = 1/2 ∑Xi
i=1
n m
可看出,用DDA法进行圆弧插补时,是对加工 动点的坐 标Xi和Yi的值分别进行累加,若积分累加器有溢出, 则相应坐标轴进给一步,则圆弧积分插补器如图所示:
例:插补第一象限直线OA,起点为O( 0 , 0 ) ,终点为 A ( 5 , 3 )。取被积函数寄存器分别为JVx, JVy,余数寄存 器分别为JRx 、JRy ,终点计数器为 JE,且都是三位 二进制寄存器。试写出插补计算过程并绘制轨迹。 Y 3 2 1 O 1 2 3 4 5 X A( 5 , 3 )
如图所示,可以得到: V Vx Vy = = =K R Yi Xi 即Vx=K Yi,Vy=K Xi 因而可以得到坐标微小位移增量为: ∆X=Vx∆t=KYi∆t V Vy ∆Y=Vy∆t =KXi∆t 设∆t=1,K=1/2 n 则有:Y B(Xe,Ye) X = 1/2 ∑Yi
i=1
n
m
Vx R
(一)数字积分的基本原理 如图:从时刻t=0到t,函数Y=f(t)曲线所包围的面积可表 示为:S=∫ 0 f(t)dt Y t 若将0~t的时间划分成时间 Y=f(t) 间隔为∆t的有限区间,当∆t 足够小时,可得公式: Yo n-1 0 S=∫ tf(t)dt = ∑ Yi ∆t
i=0
即积分运算可用一系列微小 矩形面积累加求和来近似。
圆弧积分插补器: J Vx(Y)(被积函数寄存器) + ∆t J Ry(累加器) J Rx(累加器) + J Vy(X)(被积函数寄存器)
x、y坐标函数寄存器初 始时置入圆弧起点坐 X0 ,Y0
X轴溢出脉冲 ∆X ∆Y Y轴溢出脉冲
终点判别条件:
N= xe-x0 + ye-y0 且当 x= xe-x0 或 y = ye-y0 时
因而可以得到坐标微小位移增量为: ∆X=Vx∆t=KXe∆t ∆Y=Vy∆t =KYe∆t 所以,可以把动点从原点 走向终点的过程看作X、Y Y 坐标每经过一个单位时间 间隔以K Xe、 K Ye进行累加 的过程,则可得直线积分插补 V 近似表达式为: m X= ∑ (K Xe)∆t
i=1 m
A(Xe,Ye)
无溢出
∆X溢出修正Xi X到达终点。结 束插补。
插补计算过程如下:
累加 次数 (∆t) X积分器 Y积分器 终点 JVx JRx 溢出 JVy JRy 溢出 计数器 JE ∆X ∆Y
备注
0 1 2 3 4 5 6 7 8
010 000 010 010 010 100 010 110 010 000 1 010 010 010 100 010 110 010 000 1
110 110 110 110 110 110 110 110
000 110 100 1 010 1 000 1 110 100 1 010 1 1
000 初始状态 111 第一次累加 110 JRy有进位, ∆Y溢出 101 JRy有进位, ∆Y溢出 100 ∆X,∆Y同时溢出 011 ∆X,∆Y同时无溢出 ∆Y溢出 010 ∆Y溢出 001 000
+ ∆Y
累加器(余数寄存器)
被积函数寄存器与累加器相加的计算方法: 例:被积函数寄存器与累加器均为3位寄存器,被积函数 为5,求累加过程。 101 101 101 101 +)000 +)101 +)010 +)111 101 111 ① 010 ① 100 101 +) 100 ① 001
3
101 +)001 110
第一次累加
∆Y ∆Y溢出,修正Yi , Yi
1 1
100 ∆X,∆Y无溢出 011 ∆Y溢出修正Yi 010
∆Y溢出修正Yi
插补计算过程如下:
累加 次数 (∆t) Y终 X积分器 X终 Y积分器 JVx JRy 溢出 点计 Jvy JRx 溢出 点计 数器 (Yi) ∆X 数器 (Xi) ∆Y
备注
O ∆t
t T
若∆t取最小基本单位“1”,则上式可简化为: n-1 S=∑ Yi
i=0
(累加求和公式或矩形公式)
这种累加求和运算,即积分运算可用数字积分器来实现, 被积函数寄存器 ∆t 存放Y值
+ ∆Y
累加器(余数寄存器)
若求曲线与坐标轴所包围的面积,求解过程如下: 被积函数寄存器用以存放Y值,每当∆t 出现一次,被积函 数寄存器中的Y值就与累加器中的数值相加一次,并将 累加结果存于累加器中,如果累加器的容量为一个单 位面积,则在累加过程中,每超过一个单位面积,累 加器就有溢出。当累加次数达到累加器的容量时,所 产生的溢出总数就是要求的总面积,即积分值。 被积函数寄存器 ∆t 存放Y值
Vy X
Y= ∑ (K Ye)∆t
i=1
O
Vx
由此可以得到直线插补的数字积分插补器: J Vx(K Xe)(被积函数寄存器) + ∆t J Rx(累加器) J Ry(累加器) + J Vy(K Ye)(被积函数寄存器) ∆Y Y轴溢出脉冲 X轴溢出脉冲 ∆X
设经过m次累加,X、Y坐标分别达到终点,则有: m X= i=1 (K Xe)∆t =KmXe =Xe ∑ Y= ∑ (K Ye)∆t = KmYe = Ye i=1 Y 由该式可知:mK = 1,即 m= 1/K 这样,经过m次累加后,X、 Y坐标分别到达终点,而溢出 脉冲总数即为: X=Xe Y=Ye O A(Xe,Ye) V Vy Vx X
∆X,∆Y同时溢出 JE=0,插补结束
110 000
加工轨迹如下:
Y 6 5 4 3 2 1 O 1 2
A( 2 , 6 )
X
(三)数字积分圆弧插补 如图所示,设加工半径为R的第一象限逆时针圆弧AB, 坐标原点定在圆心上,A(Xo,Yo)为圆弧起点,B(Xe,Ye) 为圆弧终点,Pi(Xi,Yi)为加工动点。 Y B(Xe,Ye) Pi(Xi,Yi) A(Xo,Yo) O X
无溢出
∆X∆Y同时溢出 ,修正Xi,Yi
101 101 110 011 111 011 010 1 100 101 011 100 100 8 100 110 100 100 111 9 100 010 1 011 100 011 101 011 10 101 111 011 011 11 101 100 1 010 011 6 7 010
101 +)110 ① 011
101 +) 011 ① 000
经过2 = 8次累加完成积分运算,因为有5次溢出,所以 积分值等于5。
(二)数字积分直线插补 如图:直线段OA,起点位于原点,终点为A(Xe,Ye),刀具 沿X、Y坐标移动的速度为Vx、Vy,则动点沿X、Y坐 标移动的微小增量为: ∆X=Vx∆t Y ∆Y=Vy∆t A(Xe,Ye) 若动点沿OA匀速移动, V、 Vx、Vy均为常数,则有: V V = Vx Vy = =K Vy OA Xe Ye 成立。 O Vx X
二、数字积分法插补
数字积分法又称数字微分分析器(Digital Differential Analyzer,简称DDA)。采用该方法进行插补,具有运算 速度快,逻辑功能强,脉冲分配均匀等特点,且只输 入很少的数据,就能加工出直线、圆弧等较复杂的曲 线轨迹,精度也能满足要求。因此,该方法在数控系 统中得到广泛的应用。
011 011 011 011 011 011 011 011
000 011 110 001 1 100 111 010 1 101 1
000 初始状态 111 第一次累加 110 JRx有进位, ∆X溢出 101 JRy有进位, ∆Y溢出 ∆X溢出 100 011 ∆X溢出 ∆Y溢出 010 ∆X溢出 001 000
m
确定K的取值: 根据每次增量∆X、∆Y不大于1,以保证每次分配的进给 脉冲不超过1,即需满足: ∆X=K Xe≤1 ∆Y=K Ye≤1 其中Xe、Ye的最大允许值受被积函数寄存器容量的限制。 n 假定寄存器有n位,则Xe、Ye的最大允许值为2 – 1。 n 若取K=1/2 、则必定满足: n n K Xe = 2 – 1 / 2 <1 n n K Ye = 2 – 1 / 2 <1 由此可定,动点从原点到达终点的累加次数为: n m=1/K=2
相关文档
最新文档