2019年中考数学专题复习 几何最值问题
2019届中考数学综合题型专题复习卷:最值问题

最值问题
1.对于实数 a,b,定义符号 min{a,b},其意义为:当 a≥b 时,min{a,b}=b;当 a<b 时,min{a,b}=a.例如:
min={2,–1}=–1,若关于 x 的函数 y=min{2x–1,–x+3},则该函数的最大值为( )
A.
B.1 C.
D.
【答案】D
2.在平面直角坐标系内,以原点 O 为圆心,1 为半径作圆,点 P 在直线
⊥AB,垂足为点 F,连接 AC,OC,则下列结论正确的是______.(写出所有正确结论的序号)
①
;
②扇形 OBC 的面积为 π;
③△OCF∽△OEC; ④若点 P 为线段 OA 上一动点,则 AP•OP 有最大值 20.25.
【答案】①③④. 30.如图,等腰△ABC 的底边 BC=20,面积为 120,点 F 在边 BC 上,且 BF=3FC,EG 是腰 AC 的垂直平分线,若点 D 在 EG 上运动,则△CDF 周长的最小值为__.
A.3 B.4 C.5 D.6 【答案】C 23.如图,∠AOB=60°,点 P 是∠AOB 内的定点且 OP= ,若点 M、N 分别是射线 OA、OB 上异于点 O 的动点, 则△PMN 周长的最小值是( )
A.
B.
C.6 D.3
【答案】D
24.如图,直线
与 x 轴、y 轴分别交于 A、B 两点,点 P 是以 C(﹣1,0)为圆心,1 为半径的圆上一点,
半径的⊙C 上,Q 是 AP 的中点,已知 OQ 长的最大值为 ,则 k 的值为( )
A.
B.
C.
D.
【答案】C
22.已知抛物线 y= x2+1 具有如下性质:该抛物线上任意一点到定点 F(0,2)的距离与到 x 轴的距离始终相等,
中考数学专题复习几何最值问题

中考数学专题复习几何最值问题(总2页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除【典例1】如图,在矩形ABCD 中,AB =4,AD =6,E 是AB 边的中点,F 是线段BC 边上的动点,将△EBF 沿EF 所在直线折叠得到△EB′F ,连结B′D ,则B′D 的最小值是( ).A . B.6 C.D.4【思路探究】根据E 为AB 中点,BE =B′E 可知,点A 、B 、B′在以点E 为圆心,AE 长为半径的圆上,D 、E 为定点,B′是动点,当E 、B′、D 三点共线时,B′D 的长最小,此时B′D =DE -EB′,问题得解.【解析】∵AE =BE ,BE =B′E ,由圆的定义可知,A 、B 、B′在以点E 为圆心,AB 长为直径的圆上,如图所示. B′D 的长最小值= DE -EB′=22=.故选A .【启示】此题属于动点(B′)到一定点(E )的距离为定值(“定点定长”),联想到以E 为圆心,EB′为半径的定圆,当点D 到圆上的最小距离为点D 到圆心的距离-圆的半径.当然此题也可借助三角形三边关系解决,如B D DE B E ''≤-,当且仅当点E 、B′、D 三点共线时,等号成立.【典例2】如图,E 、F 是正方形ABCD 的边AD 上两个动点,满足AE =DF ,连接CF 交BD 于点G ,连结BE 交AG 于点H ,若正方形的边长是2,则线段DH 长度的最小值是 .【思路探究】根据正方形的轴对称性易得∠AHB =90°,故点H 在以AB 为直径的圆上.取AB 中点O ,当D 、H 、O 三点共线时,DH 的值最小,此时DH =OD -OH ,问题得解.【解析】由△ABE ≌△DCF ,得∠ABE =∠DCF ,根据正方形的轴对称性,可得∠DCF =∠DAG ,∠ABE =∠DAG ,所以∠AHB =90°,故点H 在以AB 为直径的圆弧上.取AB 中点O ,OD 交⊙O 于点H ,此时DH 最小,∵OH =112AB =,OD ,∴DH 的最小值为OD -OH 1.【启示】此题属于动点是斜边为定值的直角三角形的直角顶点,联想到直径所对圆周角为直角(定弦定角),故点H在以AB为直径的圆上,点D在圆外,DH的最小值为DO-OH.当然此题也可利用DH OD OH≤-的基本模型解决.【针对训练】1.如图,在△ABC中,∠ACB=90°,AC=2,BC=1,点A,C分别在x轴,y 轴上,当点A在x轴正半轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点O的最大距离为().B C.1+.3A.2.如图,在矩形ABCD中,AB=4,BC=6,E是矩形内部的一个动点,且AE⊥BE,则线段CE的最小值为().B. C. D.4A.323.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P、Q分别是边BC和半圆上的运点,连接PQ,则PQ长的最大值与最小值的和是().A.6B.1C.9D.3224.如图,AC=3,BC=5,且∠BAC=90°,D为AC上一动点,以AD为直径作圆,连接BD交圆于E点,连CE,则CE的最小值为().16 A.213+ C.5 D.13- B.29 5.如图,已知正方形ABCD的边长为2,E是BC边上的动点,BF⊥AE交CD 于点F,垂足为G,连结CG,则CG的最小值为().A.1 B1 C1 D16.如图,△ABC、△EFG是边长为2的等边三角形,点D是边BC、EF的中点,直线AG、FG相交于点M,当△EFG绕点D旋转时,线段BM长的最小值是A.2 B1 C D1 7.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连结A′C,则A′C长度的最小值是 .8.(2017威海)如图,△ABC为等边三角形,AB=2,若点P为△ABC内一动点,且满足∠PAB=∠ACP,则线段PB长度的最小值为.。
初中数学专题04几何最值存在性问题(解析版)

专题四几何最值的存在性问题【考题研究】在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。
从历年的中考数学压轴题型分析来看,经常会考查到距离或者两条线段和差最值得问题,并且这部分题目在中考中失分率很高,应该引起我们的重视。
几何最值问题再教材中虽然没有进行专题讲解,到却给了我们很多解题模型,因此在专题复习时进行压轴训练是必要的。
【解题攻略】最值问题是一类综合性较强的问题,而线段和(差)问题,要归归于几何模型:(1)归于“两点之间的连线中,线段最短”凡属于求“变动的两线段之和的最小值”时,大都应用这一模型.(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型.两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1).三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2).两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,P A与PB的差的最大值就是AB,此时点P在AB的延长线上,即P′.解决线段和差的最值问题,有时候求函数的最值更方便,建立一次函数或者二次函数求解最值问题.【解题类型及其思路】解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。
【典例指引】类型一【确定线段(或线段的和,差)的最值或确定点的坐标】【典例指引1】(2018·天津中考模拟)如图,在平面直角坐标系中,长方形OABC的顶点A、C分别在x轴、y轴的正半轴上.点B的坐标为(8,4),将该长方形沿OB翻折,点A的对应点为点D,OD与BC交于点E.(I)证明:EO=EB;(Ⅱ)点P是直线OB上的任意一点,且△OPC是等腰三角形,求满足条件的点P的坐标;(Ⅲ)点M是OB上任意一点,点N是OA上任意一点,若存在这样的点M、N,使得AM+MN最小,请直接写出这个最小值.【答案】(I)证明见解析;(Ⅱ)P的坐标为(4,2)或(55,455)或P(﹣55,﹣455)或(165,85);(Ⅲ)325.【解析】分析:(Ⅰ)由折叠得到∠DOB=∠AOB,再由BC∥OA得到∠OBC=∠AOB,即∠OBC=∠DOB,即可;(Ⅱ)设出点P坐标,分三种情况讨论计算即可;(Ⅲ)根据题意判断出过点D作OA的垂线交OB于M,OA于N,求出DN即可.详解:(Ⅰ)∵将该长方形沿OB翻折,点A的对应点为点D,OD与BC交于点E,∴∠DOB=∠AOB,∵BC∥OA,∴∠OBC=∠AOB,∴∠OBC=∠DOB,∴EO=EB;(Ⅱ)∵点B的坐标为(8,4),∴直线OB解析式为y=12 x,∵点P是直线OB上的任意一点,∴设P(a,12 a).∵O(0,0),C(0,4),∴OC=4,PO2=a2+(12a)2=54a2,PC2=a2+(4-12a)2.当△OPC是等腰三角形时,可分三种情况进行讨论:①如果PO=PC,那么PO2=PC2,则54a2=a2+(4-12a)2,解得a=4,即P(4,2);②如果PO=OC,那么PO2=OC2,则54a2=16,解得a=±855,即P(855,455)或P(-855,-455);③如果PC=OC时,那么PC2=OC2,则a2+(4-12a)2=16,解得a=0(舍),或a=165,即P(165,85);故满足条件的点P的坐标为(4,2)或(855,455)或P(-855,-455)或(165,85);(Ⅲ)如图,过点D作OA的垂线交OB于M,交OA于N,此时的M,N是AM+MN的最小值的位置,求出DN就是AM+MN的最小值.由(1)有,EO=EB,∵长方形OABC的顶点A,C分别在x轴、y轴的正半轴上,点B的坐标为(8,4),设OE=x,则DE=8-x,在Rt△BDE中,BD=4,根据勾股定理得,DB2+DE2=BE2,∴16+(8-x)2=x2,∴x=5,∴BE=5,∴CE=3,∴DE=3,BE=5,BD=4,∵S△BDE=12DE×BD=12BE×DG,∴DG=12=5 DE BDBE⨯,由题意有,GN=OC=4,∴DN=DG+GN=125+4=325.即:AM+MN的最小值为325.点睛:此题是四边形综合题,主要考查了矩形的性质,折叠的性质,勾股定理,等腰三角形的性质,极值的确定,进行分类讨论与方程思想是解本题的关键.【举一反三】(2020·云南初三)如图,抛物线y=ax2+bx+3经过点B(﹣1,0),C(2,3),抛物线与y轴的焦点A,与x轴的另一个焦点为D,点M为线段AD上的一动点,设点M的横坐标为t.(1)求抛物线的表达式;(2)过点M作y轴的平行线,交抛物线于点P,设线段PM的长为1,当t为何值时,1的长最大,并求最大值;(先根据题目画图,再计算)(3)在(2)的条件下,当t为何值时,△P AD的面积最大?并求最大值;(4)在(2)的条件下,是否存在点P,使△P AD为直角三角形?若存在,直接写出t的值;若不存在,说明理由.【答案】(1)y=﹣x2+2x+3;(2)当t=32时,l有最大值,l最大=94;(3)t=32时,△P AD的面积的最大值为278;(4)t 15 +.【解析】试题分析:(1)利用待定系数法即可解决问题;(2)易知直线AD解析式为y=-x+3,设M点横坐标为m,则P(t,-t2+2t+3),M(t,-t+3),可得l=-t2+2t+3-(-t+3)=-t2+3t=-(t-32)2+94,利用二次函数的性质即可解决问题;(3)由S△P AD=12×PM×(x D-x A)=32PM,推出PM的值最大时,△P AD的面积最大;(4)如图设AD的中点为K,设P(t,-t2+2t+3).由△P AD是直角三角形,推出PK=12AD,可得(t-32)2+(-t2+2t+3-32)2=14×18,解方程即可解决问题;试题解析:(1)把点B(﹣1,0),C(2,3)代入y=ax2+bx+3,则有30 4233 a ba b-+=⎧⎨++=⎩,解得12ab=-⎧⎨=⎩,∴抛物线的解析式为y=﹣x2+2x+3.(2)在y=﹣x2+2x+3中,令y=0可得0=﹣x2+2x+3,解得x=﹣1或x=3,∴D(3,0),且A(0,3),∴直线AD解析式为y=﹣x+3,设M点横坐标为m,则P(t,﹣t2+2t+3),M(t,﹣t+3),∵0<t<3,∴点M在第一象限内,∴l=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t=﹣(t﹣32)2+94,∴当t=32时,l有最大值,l最大=94;(3)∵S△P AD=12×PM×(x D﹣x A)=32PM,∴PM的值最大时,△P AD的面积中点,最大值=32×94=278.∴t=32时,△P AD的面积的最大值为278.(4)如图设AD的中点为K,设P(t,﹣t2+2t+3).∵△P AD 是直角三角形,∴PK =12AD , ∴(t ﹣32)2+(﹣t 2+2t +3﹣32)2=14×18, 整理得t (t ﹣3)(t 2﹣t ﹣1)=0, 解得t =0或3或15±, ∵点P 在第一象限, ∴t =1+5. 类型二 【确定三角形、四边形的周长的最值或符合条件的点的坐标】【典例指引2】(2020·重庆初三期末)如图,抛物线2y ax bx =+(0a >)与双曲线ky x=相交于点A 、B ,已知点A 坐标()1,4,点B 在第三象限内,且AOB ∆的面积为3(O 为坐标原点).(1)求实数a 、b 、k 的值;(2)在该抛物线的对称轴上是否存在点P 使得POB ∆为等腰三角形?若存在请求出所有的P 点的坐标,若不存在请说明理由.(3)在坐标系内有一个点M ,恰使得MA MB MO ==,现要求在y 轴上找出点Q 使得BQM ∆的周长最小,请求出M 的坐标和BQM ∆周长的最小值.【答案】(1)13a b =⎧⎨=⎩,4k =;(2)存在,1 1.5,2P ⎛-- ⎝⎭,2 1.5,2P ⎛⎫- ⎪ ⎪⎝⎭,3 1.5,22P ⎛--- ⎝⎭,4 1.5,2P ⎛-- ⎝⎭,()5 1.5,0.5P --;(3)12【解析】 【分析】(1)由点A 在双曲线上,可得k 的值,进而得出双曲线的解析式.设4,B m m ⎛⎫⎪⎝⎭(0m <),过A 作AP ⊥x 轴于P ,BQ ⊥y 轴于Q ,直线BQ 和直线AP 相交于点M .根据AOB AMB AOP QOB OPMQ S S S S S ∆∆∆∆=---矩形=3解方程即可得出k 的值,从而得出点B 的坐标,把A 、B 的坐标代入抛物线的解析式即可得到结论; (2)抛物线对称轴为 1.5x =-,设()1.5,P y -,则可得出2PO ;2OB ;2PB .然后分三种情况讨论即可; (3)设M (x ,y ).由MO =MA =MB ,可求出M 的坐标.作B 关于y 轴的对称点B '.连接B 'M 交y 轴于Q .此时△BQM 的周长最小.用两点间的距离公式计算即可. 【详解】(1)由()1,4A 知:k =xy =1×4=4, ∴4y x=. 设4,B m m ⎛⎫⎪⎝⎭(0m <). 过A 作AP ⊥x 轴于P ,BQ ⊥y 轴于Q ,直线BQ 和直线AP 相交于点M ,则S △AOP =S △BOQ =2.AOB AMB AOP QOB OPMQ S S S S S ∆∆∆∆=---矩形()()14414102AOP QOB m S S m m ∆∆⎛⎫⎛⎫=---+-⨯- ⎪ ⎪⎝⎭⎝⎭242224m m m ⎛⎫⎛⎫=--+--- ⎪ ⎪⎝⎭⎝⎭22m m=- 令:223m m-=, 整理得:22320m m +-=, 解得:112m =,22m =-. ∵m <0, ∴m =-2, 故()2,2B --.把A 、B 带入2y ax bx =+2424a ba b -=-⎧⎨=+⎩解出:13a b =⎧⎨=⎩,∴23y x x =+.(2)223( 1.5) 2.25y x x x =+=+- ∴抛物线23y x x =+的对称轴为 1.5x =-.设()1.5,P y -,则2294PO y =+,28OB =,()22124PB y =++.∵△POB 为等腰三角形, ∴分三种情况讨论: ①22PO OB =,即2984y +=,解得:2y =±,∴1 1.5,P ⎛- ⎝⎭,2P ⎛- ⎝⎭;②22PB OB =,即()21284y ++=,解得:22y =-±,∴3 1.5,2P ⎛-- ⎝⎭,4 1.5,2P ⎛-- ⎝⎭;③22PB OP =,即()2219244y y ++=+,解得:0.5y =- ∴()5 1.5,0.5P --; (3)设(),M x y .∵()1,4A ,()2,2B --,()0,0O ,∴222MO x y =+,()()22214MA x y =-+-,()()22222MB x y =+++.∵MO MA MB ==,∴()()()()222222221422x y x y x y x y ⎧+=-+-⎪⎨+=+++⎪⎩ 解得:11272x y ⎧=-⎪⎪⎨⎪=⎪⎩,∴117,22M ⎛⎫-⎪⎝⎭. 作B 关于y 轴的对称点B '坐标为:(2,-2). 连接B 'M 交y 轴于Q .此时△BQM 的周长最小.BQM C MQ BQ MB ∆=++MQ QB MB '=++=MB '+MB222211711722222222⎛⎫⎛⎫⎛⎫⎛⎫=--+++-+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()13461702=+.【名师点睛】本题是二次函数综合题.考查了用待定系数法求二次函数的解析式、二次函数的性质、轴对称-最值问题等.第(1)问的关键是割补法;第(2)问的关键是分类讨论;第(3)问的关键是求出M 的坐标. 【举一反三】(2019·重庆实验外国语学校初三)如图1,已知抛物线y =﹣23384x +x +3与x 轴交于A 和B 两点,(点A 在点B 的左侧),与y 轴交于点C . (1)求出直线BC 的解析式.(2)M 为线段BC 上方抛物线上一动点,过M 作x 轴的垂线交BC 于H ,过M 作MQ ⊥BC 于Q ,求出△MHQ 周长最大值并求出此时M 的坐标;当△MHQ 的周长最大时在对称轴上找一点R ,使|AR ﹣MR |最大,求出此时R 的坐标.(3)T 为线段BC 上一动点,将△OCT 沿边OT 翻折得到△OC ′T ,是否存在点T 使△OC ′T 与△OBC 的重叠部分为直角三角形,若存在请求出BT 的长,若不存在,请说明理由.【答案】(1)y =﹣34x +3;(2)R (1,92);(3)BT =2或BT =165.【解析】 【分析】(1)由已知可求A (﹣2,0),B (4,0),C (0,3),即可求BC 的解析式;(2)由已知可得∠QMH =∠CBO ,则有QH =34QM ,MH =54MQ ,所以△MHQ 周长=3QM ,则求△MHQ周长的最大值,即为求QM 的最大值;设M (m ,233384m m -++),过点M 与BC 直线垂直的直线解析式为243733812y x m m =--+,交点22972721,35025200100Q m m m m ⎛⎫+--+ ⎪⎝⎭,可求出()23=410MQ m m -+,当m =2时,MQ 有最大值65;函数的对称轴为x =1,作点M 关于对称轴的对称点M '(0,3),连接AM '与对称轴交于点R ,此时|AR ﹣MR |=|AR ﹣M 'R |=AM ',|AR ﹣MR |的最大值为AM ';求出AM '的直线解析式为332y x =+,则可求912R ⎛⎫⎪⎝⎭,; (3)有两种情况:当TC '∥OC 时,GO ⊥TC ';当OT ⊥BC 时,分别求解即可. 【详解】解:(1)令y =0,即2333084x x -++=,解得122,4x x =-=, ∵点A 在点B 的左侧 ∴A (﹣2,0),B (4,0), 令x =0解得y =3, ∴C (0,3),设BC 所在直线的解析式为y =kx +3, 将B 点坐标代入解得k =34- ∴BC 的解析式为y =-34x +3;(2)∵MQ ⊥BC ,M 作x 轴, ∴∠QMH =∠CBO , ∴tan ∠QMH =tan ∠CBO =34, ∴QH =34QM ,MH =54MQ ,∴△MHQ 周长=MQ +QH +MH =34QM +QM +54MQ =3QM ,则求△MHQ 周长的最大值,即为求QM 的最大值; 设M (m ,233384m m -++), 过点M 与BC 直线垂直的直线解析式为243733812y x m m =--+, 直线BC 与其垂线相交的交点22972721,35025200100Q m m m m ⎛⎫+--+ ⎪⎝⎭,∴()23=410MQ m m -+, ∴当m =2时,MQ 有最大值65, ∴△MHQ 周长的最大值为185,此时M (2,3), 函数的对称轴为x =1,作点M 关于对称轴的对称点M '(0,3),连接AM '与对称轴交于点R ,此时|AR ﹣MR |=|AR ﹣M 'R |=AM ', ∴|AR ﹣MR |的最大值为AM '; ∵AM '的直线解析式为y =32x +3, ∴R (1,92); (3)①当TC '∥OC 时,GO ⊥TC ', ∵△OCT ≌△OTC ', ∴3412=55OG ⨯=, ∴12655T ⎛⎫⎪⎝⎭, ∴BT =2;②当OT⊥BC时,过点T作TH⊥x轴,OT=125,∵∠BOT=∠BCO,∴3=1255cOo BOTHs∠=,∴OH=36 25,∴36482525 T⎛⎫ ⎪⎝⎭,∴BT=165;综上所述:BT=2或BT=165.【点睛】本题是一道综合题,考查了二次函数一次函数和三角形相关的知识,能够充分调动所学知识是解题的关键. 类型三【确定三角形、四边形的面积最值或符合条件的点的坐标】【典例指引3】(2019·甘肃中考真题)如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y轴交于点C.(1)求二次函数的解析式;(2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点A、B、P、F为顶点的四边形为平行四边形,求点P的坐标;(3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD面积的最大值及此时点E的坐标.【答案】(1)y=x2﹣4x+3;(2)点P(4,3)或(0,3)或(2,﹣1);(3)最大值为94,E(32,﹣34).【解析】【分析】(1)用交点式函数表达式,即可求解;(2)分当AB为平行四边形一条边、对角线,两种情况,分别求解即可;(3)利用S四边形AEBD=12AB(y D﹣y E),即可求解.【详解】解:(1)用交点式函数表达式得:y=(x﹣1)(x﹣3)=x2﹣4x+3;故二次函数表达式为:y=x2﹣4x+3;(2)①当AB为平行四边形一条边时,如图1,则AB=PE=2,则点P坐标为(4,3),当点P在对称轴左侧时,即点C的位置,点A、B、P、F为顶点的四边形为平行四边形,故:点P(4,3)或(0,3);②当AB是四边形的对角线时,如图2,AB中点坐标为(2,0)设点P的横坐标为m,点F的横坐标为2,其中点坐标为:22m+,即:22m+=2,解得:m=2,故点P(2,﹣1);故:点P(4,3)或(0,3)或(2,﹣1);(3)直线BC的表达式为:y=﹣x+3,设点E坐标为(x,x2﹣4x+3),则点D(x,﹣x+3),S四边形AEBD=12AB(y D﹣y E)=﹣x+3﹣x2+4x﹣3=﹣x2+3x,∵﹣1<0,故四边形AEBD面积有最大值,当x=32,其最大值为94,此时点E(32,﹣34).【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.【举一反三】(2019·内蒙古中考真题)如图,在平面直角坐标系中,已知抛物线22(0)y ax bx a =++≠与x 轴交于()1,0A -),()3,0B 两点,与y 轴交于点C ,连接BC .(1)求该抛物线的解析式,并写出它的对称轴;(2)点D 为抛物线对称轴上一点,连接CD BD 、,若DCB CBD ∠=∠,求点D 的坐标;(3)已知()1,1F ,若(),E x y 是抛物线上一个动点(其中12x <<),连接CE CF EF 、、,求CEF ∆面积的最大值及此时点E 的坐标.(4)若点N 为抛物线对称轴上一点,抛物线上是否存在点M ,使得以,,,B C M N 为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.【答案】(1)224233y x x =-++,对称轴1x =;(2)11,4D ⎛⎫ ⎪⎝⎭;(3)面积有最大值是4948,755,424E ⎛⎫⎪⎝⎭;(4)存在点M 使得以,,,B C M N 为顶点的四边形是平行四边形,()2,2M或104,3M ⎛⎫-⎪⎝⎭或102,3M ⎛⎫-- ⎪⎝⎭.【解析】 【分析】(1)将点A (-1,0),B (3,0)代入y =ax 2+bx +2即可;(2)过点D 作DG ⊥y 轴于G ,作DH ⊥x 轴于H ,设点D (1,y ),在Rt △CGD 中,CD 2=CG 2+GD 2=(2-y )2+1,在Rt △BHD 中,BD 2=BH 2+HD 2=4+y 2,可以证明CD =BD ,即可求y 的值;(3)过点E 作EQ ⊥y 轴于点Q ,过点F 作直线FR ⊥y 轴于R ,过点E 作FP ⊥FR 于P ,证明四边形QRPE是矩形,根据S △CEF =S 矩形QRPE -S △CRF -S △EFP ,代入边即可;(4)根据平行四边形对边平行且相等的性质可以得到存在点M 使得以B ,C ,M ,N 为顶点的四边形是平行四边形,点M (2,2)或M (4,- 103)或M (-2,-103); 【详解】解:(1)将点()()1,0,3,0A B -代入22y ax bx =++,可得24,33a b =-=, 224233y x x ∴=-++;∴对称轴1x =;(2)如图1:过点D 作DG y ⊥轴于G ,作DH x ⊥轴于H ,设点()1,D y ,()()0,2,3,0C B Q ,∴在Rt CGD ∆中,()222221CD CG GD y =+=-+, ∴在Rt BHD ∆中,22224BD BH HD y =+=+,在BCD ∆中,DCB CBD ∠=∠QCD BD ∴=,22CD BD ∴=()22214y y ∴-+=+ 14y ∴=,11,4D ⎛⎫∴ ⎪⎝⎭; (3)如图2:过点E 作EQ y ⊥轴于点Q ,过点F 作直线FR y ⊥轴于R ,过点E 作FP FR ⊥于P ,90EQR QRP RPE ︒∴∠=∠=∠=, ∴四边形QRPE 是矩形,CEF CRF EFP QRPE S S S S ∆∆∆=--Q 矩形,()()(),,0,2,1,1E x y C F Q ,111•222CEF S EQ QR EQ QC CR RF FP EP ∴=⋅-⨯⋅-⋅-V()()()()111121111222CEF S x y x y x y ∆∴=----⨯⨯---224233y x x =-++Q ,21736CEF S x x ∆∴=-+∴当74x =时,面积有最大值是4948,此时755,424E ⎛⎫⎪⎝⎭; (4)存在点M 使得以,,,B C M N 为顶点的四边形是平行四边形, 设()()1,,,N n M x y ,①四边形CMNB 是平行四边形时,1322x+=2x ∴=-102,3M ⎛⎫∴-- ⎪⎝⎭②四边形CNBM 时平行四边形时,3122x +=2x ∴=, ()2,2M ∴;③四边形CNNB 时平行四边形时,1322x+=, 4x ∴=,104,3M ⎛⎫∴- ⎪⎝⎭;综上所述:()2,2M 或104,3M ⎛⎫- ⎪⎝⎭或102,3M ⎛⎫--⎪⎝⎭; 【点睛】本题考查了待定系数法求二次函数解析式,二次函数的图象及性质,勾股定理,平行四边形的判定与性质,及分类讨论的数学思想.熟练掌握二次函数的性质、灵活运用勾股定理求边长、掌握平行四边形的判定方法是解题的关键.【新题训练】1.如图,直线y =5x +5交x 轴于点A ,交y 轴于点C ,过A ,C 两点的二次函数y =ax 2+4x +c 的图象交x 轴于另一点B .(1)求二次函数的表达式;(2)连接BC ,点N 是线段BC 上的动点,作ND ⊥x 轴交二次函数的图象于点D ,求线段ND 长度的最大值; (3)若点H 为二次函数y =ax 2+4x +c 图象的顶点,点M (4,m )是该二次函数图象上一点,在x 轴,y 轴上分别找点F ,E ,使四边形HEFM 的周长最小,求出点F 、E 的坐标.【答案】(1) y=-x2+4x+5;(2);(3) F (,0),E(0,).【解析】【分析】(1)先根据坐标轴上点的坐标特征由一次函数的表达式求出A,C两点的坐标,再根据待定系数法可求二次函数的表达式;(2)根据坐标轴上点的坐标特征由二次函数的表达式求出B点的坐标,根据待定系数法可求一次函数BC 的表达式,设ND的长为d,N点的横坐标为n,则N点的纵坐标为-n+5,D点的坐标为D(n,-n2+4n+5),根据两点间的距离公式和二次函数的最值计算可求线段ND长度的最大值;(3)由题意可得二次函数的顶点坐标为H(2,9),点M的坐标为M(4,5),作点H(2,9)关于y轴的对称点H1,可得点H1的坐标,作点M(4,5)关于x轴的对称点HM1,可得点M1的坐标连结H1M1分别交x轴于点F,y轴于点E,可得H1M1+HM的长度是四边形HEFM的最小周长,再根据待定系数法可求直线H1M1解析式,根据坐标轴上点的坐标特征可求点F、E的坐标.【详解】解:(1)∵直线y=5x+5交x轴于点A,交y轴于点C,∴A(-1,0),C(0,5),∵二次函数y=ax2+4x+c的图象过A,C两点,∴,解得,∴二次函数的表达式为y=-x2+4x+5;(2)如解图①,第2题解图①∵点B是二次函数的图象与x轴的交点,∴由二次函数的表达式为y=-x2+4x+5得,点B的坐标B(5,0),设直线BC解析式为y=kx+b,∵直线BC过点B(5,0),C(0,5),∴,解得,∴直线BC解析式为y=-x+5,设ND的长为d,N点的横坐标为n,则N点的坐标为(n,-n+5),D点的坐标为(n,-n2+4n+5),则d=|-n2+4n+5-(-n+5)|,由题意可知:-n2+4n+5>-n+5,∴d=-n2+4n+5-(-n+5)=-n2+5n=-(n-)2+,∴当n=时,线段ND长度的最大值是;(3)∵点M(4,m)在抛物线y=-x2+4x+5上,∴m=5,∴M(4,5).∵抛物线y=-x2+4x+5=-(x-2)2+9,∴顶点坐标为H(2,9),如解图②,作点H(2,9)关于y轴的对称点H1,则点H1的坐标为H1(-2,9);作点M(4,5)关于x轴的对称点M1,则点M1的坐标为M1(4,-5),连接H1M1分别交x轴于点F,y轴于点E,∴H1M1+HM的长度是四边形HEFM的最小周长,则点F,E即为所求的点.设直线H1M1的函数表达式为y=mx+n,∵直线H1M1过点H1(-2,9),M1(4,-5),∴,解得,∴y=-x+,∴当x=0时,y=,即点E坐标为(0,),当y=0时,x=,即点F坐标为(,0),故所求点F,E的坐标分别为(,0),(0,).2.(2019·江苏中考真题)如图,已知等边△ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合),直线l是经过点P的一条直线,把△ABC沿直线l折叠,点B的对应点是点B’.(1)如图1,当PB=4时,若点B’恰好在AC边上,则AB’的长度为_____;(2)如图2,当PB=5时,若直线l//AC,则BB’的长度为;(3)如图3,点P在AB边上运动过程中,若直线l始终垂直于AC,△ACB’的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当PB=6时,在直线l变化过程中,求△ACB’面积的最大值.【答案】(1)4;(2)(3)面积不变,S△ACB’=(4)【解析】【分析】(1)证明△APB′是等边三角形即可解决问题;(2)如图2中,设直线l交BC于点E,连接B B′交PE于O,证明△PEB是等边三角形,求出OB即可解决问题;(3)如图3中,结论:面积不变,证明B B′//AC即可;(4)如图4中,当PB′⊥AC时,△ACB′的面积最大,设直线PB′交AC于点E,求出B′E即可解决问题.【详解】(1)如图1,∵△ABC为等边三角形,∴∠A=60°,AB=BC=CA=8,∵PB=4,∴PB′=PB=P A=4,∵∠A=60°,∴△APB′是等边三角形,∴AB′=AP=4,故答案为4;(2)如图2,设直线l交BC于点E,连接B B′交PE于O,∵PE∥AC,∴∠BPE=∠A=60°,∠BEP=∠C=60°,∴△PEB是等边三角形,∵PB=5,B、B′关于PE对称,∴BB′⊥PE,BB′=2OB,∴OB=PB·sin60°,∴BB,故答案为(3)如图3,结论:面积不变.过点B作BE⊥AC于E,则有BE=AB·sin60°=3843⨯=,∴S△ABC=1184322AC BE=⨯⨯g=163,∵B、B′关于直线l对称,∴BB′⊥直线l,∵直线l⊥AC,∴AC//BB′,∴S△ACB’=S△ABC=163;(4)如图4,当B′P⊥AC时,△ACB′的面积最大,设直线PB′交AC于E,在Rt△APE中,P A=2,∠P AE=60°,∴PE=P A·sin60°=3,∴B′E=B′P+PE=6+3,∴S△ACB最大值=12×(6+3)×8=24+43.【点睛】本题是几何变换综合题,考查了等边三角形的判定与性质,轴对称变换,解直角三角形,平行线的判定与性质等知识,理解题意,熟练掌握和灵活运用相关知识是解题的关键.3.(2019·湖南中考真题)如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y轴的正半轴上随之上下移动.(1)当∠OAD=30°时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为212时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值.【答案】(1)点C的坐标为(2,3;(2)OA=2;(3)OC的最大值为8,cos∠OAD 5.【解析】【分析】(1)作CE⊥y轴,先证∠CDE=∠OAD=30°得CE=12CD=2,DE2223CD CE-=OAD=30°知OD=12AD=3,从而得出点C坐标;(2)先求出S△DCM=6,结合S四边形OMCD=212知S△ODM=92,S△OAD=9,设OA=x、OD=y,据此知x2+y2=36,12xy=9,得出x2+y2=2xy,即x=y,代入x2+y2=36求得x的值,从而得出答案;(3)由M为AD的中点,知OM=3,CM=5,由OC≤OM+CM=8知当O、M、C三点在同一直线时,OC有最大值8,连接OC,则此时OC与AD的交点为M,ON⊥AD,证△CMD∽△OMN得CD DM CM ON MN OM==,据此求得MN=95,ON=125,AN=AM﹣MN=65,再由OA22ON AN+cos∠OAD=ANOA可得答案.【详解】(1)如图1,过点C作CE⊥y轴于点E,∵矩形ABCD中,CD⊥AD,∴∠CDE+∠ADO=90°,又∵∠OAD+∠ADO=90°,∴∠CDE=∠OAD=30°,∴在Rt△CED中,CE=12CD=2,DE22CD CE=3,在Rt△OAD中,∠OAD=30°,∴OD=12AD=3,∴点C的坐标为(2,3);(2)∵M为AD的中点,∴DM=3,S△DCM=6,又S四边形OMCD=212,∴S△ODM=92,∴S△OAD=9,设OA=x、OD=y,则x2+y2=36,12xy=9,∴x2+y2=2xy,即x=y,将x=y代入x2+y2=36得x2=18,解得x=2(负值舍去),∴OA=2;(3)OC的最大值为8,如图2,M为AD的中点,∴OM=3,CM22CD DM+5,∴OC≤OM+CM=8,当O、M、C三点在同一直线时,OC有最大值8,连接OC,则此时OC与AD的交点为M,过点O作ON⊥AD,垂足为N,∵∠CDM=∠ONM=90°,∠CMD=∠OMN,∴△CMD∽△OMN,∴CD DM CMON MN OM==,即4353ON MN==,解得MN=95,ON=125,∴AN=AM﹣MN=65,在Rt△OAN中,OA2265 5ON AN+=,∴cos∠OAD=5 ANOA=.【点睛】本题是四边形的综合问题,解题的关键是掌握矩形的性质、勾股定理、相似三角形的判定与性质等知识点.4.(2018·江苏中考真题)如图,在平面直角坐标系中,一次函数y=﹣23x+4的图象与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O 停止运动,点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=13秒时,点Q的坐标是;(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.【答案】(1)(4,0);(2)①当0<t≤1时,S =334t2;②当1<t≤43时,S =﹣394t2+18t;③当43<t≤2时,S =﹣3t2+12;(3)OT+PT的最小值为32【解析】【分析】(1)先确定出点A的坐标,进而求出AP,利用对称性即可得出结论;(2)分三种情况,①利用正方形的面积减去三角形的面积,②利用矩形的面积减去三角形的面积,③利用梯形的面积,即可得出结论;(3)先确定出点T的运动轨迹,进而找出OT+PT最小时的点T的位置,即可得出结论.【详解】(1)令y=0,∴﹣23x+4=0,∴x=6,∴A(6,0),当t=13秒时,AP=3×13=1,∴OP=OA﹣AP=5,∴P(5,0),由对称性得,Q(4,0);(2)当点Q在原点O时,OQ=6,∴AP=12OQ=3,∴t=3÷3=1,①当0<t≤1时,如图1,令x=0,∴y=4,∴B(0,4),∴OB=4,∵A(6,0),∴OA=6,在Rt△AOB中,tan∠OAB=2=3 OBOA,由运动知,AP=3t,∴P(6﹣3t,0),∴Q(6﹣6t,0),∴PQ=AP=3t,∵四边形PQMN是正方形,∴MN∥OA,PN=PQ=3t,在Rt△APD中,tan∠OAB=233 PD PDAP t==,∴PD=2t,∴DN=t,∵MN∥OA∴∠DCN=∠OAB,∴tan∠DCN=23 DN tCN CN==,∴CN=32t,∴S=S正方形PQMN﹣S△CDN=(3t)2﹣12t×32t=334t2;②当1<t≤43时,如图2,同①的方法得,DN=t,CN=32t,∴S=S矩形OENP﹣S△CDN=3t×(6﹣3t)﹣12t×32t=﹣394t2+18t;③当43<t≤2时,如图3,S=S梯形OBDP=12(2t+4)(6﹣3t)=﹣3t2+12;(3)如图4,由运动知,P(6-3t,0),Q(6-6t,0),∴M(6-6t,3t),∵T是正方形PQMN的对角线交点,∴T(6-93,22t t),∴点T是直线y=-13x+2上的一段线段,(-3≤x<6),同理:点N是直线AG:y=-x+6上的一段线段,(0≤x≤6),∴G(0,6),∴OG=6,∵A(6,0),∴AG2,在Rt△ABG中,OA=6=OG,∴∠OAG=45°,∵PN⊥x轴,∴∠APN=90°,∴∠ANP=45°,∴∠TNA=90°,即:TN⊥AG,∵T 正方形PQMN 的对角线的交点, ∴TN =TP , ∴OT +TP =OT +TN ,∴点O ,T ,N 在同一条直线上(点Q 与点O 重合时),且ON ⊥AG 时,OT +TN 最小, 即:OT +TN 最小,∵S △OAG =12OA ×OG =12AG ×ON , ∴ON =OA OGAGn =32. 即:OT +PT 的最小值为32【点睛】此题是一次函数综合题,主要考查了正方形的面积,梯形,三角形的面积公式,正方形的性质,勾股定理,锐角三角函数,用分类讨论的思想解决问题是解本题的关键,找出点T 的位置是解本题(3)的难点.5.(2020·江苏初三期末)已知二次函数223y x x =--+的图象和x 轴交于点A 、B ,与y 轴交于点C ,点P 是直线AC 上方的抛物线上的动点.(1)求直线AC 的解析式.(2)当P 是抛物线顶点时,求APC ∆面积. (3)在P 点运动过程中,求APC ∆面积的最大值. 【答案】(1)3y x =+;(2)3;(3)APC ∆面积的最大值为278. 【解析】 【分析】(1)由题意分别将x =0、y =0代入二次函数解析式中求出点C 、A 的坐标,再根据点A 、C 的坐标利用待定系数法即可求出直线AC 的解析式;(2)由题意先根据二次函数解析式求出顶点P ,进而利用割补法求APC ∆面积;(3)根据题意过点P 作PE y P 轴交AC 于点E 并设点P 的坐标为()2,23m m m --+(30m -<<),则点E的坐标为(),3+m m 进而进行分析. 【详解】解:(1) 分别将x =0、y =0代入二次函数解析式中求出点C 、A 的坐标为()0,3C ;()30A -,; 将()0,3C ;()30A -,代入223y x x =--+,得到直线AC 的解析式为3y x =+. (2)由223y x x =--+,将其化为顶点式为2(1)4y x =-++,可知顶点P 为(1,4)-, 如图P 为顶点时连接PC 并延长交x 轴于点G ,则有S APC S APG S ACG =-V V V ,将P 点和C 点代入求出PC 的解析式为3y x =-+,解得G 为(3,0), 所有S APC S APG S ACG =-V V V 11646312922=⨯⨯-⨯⨯=-=3;(3)过点P 作PE y P 轴交AC 于点E .设点P 的坐标为()2,23m m m --+(30m -<<),则点E 的坐标为(),3+m m ∴()2233PE m m m =--+-+2239324m m m ⎛⎫=--=-++ ⎪⎝⎭, 当32m =-时,PE 取最大值,最大值为94.∵()1322APC C A S PE x x PE ∆=⋅-=,∴APC ∆面积的最大值为278. 【点睛】本题考查待定系数法求一次函数解析式、二次函数图象上点的坐标特征、等腰三角形的性质、二次函数的性质以及解二元一次方程组,解题的关键是利用待定系数法求出直线解析式以及利用二次函数的性质进行综合分析.6.(2020·江苏初三期末)如图,抛物线265y ax x =+-交x 轴于A 、B 两点,交y 轴于点C ,点B 的坐标为()5,0,直线5y x =-经过点B 、C .(1)求抛物线的函数表达式;(2)点P 是直线BC 上方抛物线上的一动点,求BCP ∆面积S 的最大值并求出此时点P 的坐标; (3)过点A 的直线交直线BC 于点M ,连接AC ,当直线AM 与直线BC 的一个夹角等于ACB ∠的3倍时,请直接写出点M 的坐标.【答案】(1)265y x x =-+-;(2)1258S =,点P 坐标为515,24⎛⎫ ⎪⎝⎭;(3)点M 的坐标为7837,2323⎛⎫-⎪⎝⎭, 6055,2323⎛⎫- ⎪⎝⎭【解析】 【分析】(1)利用B (5,0)用待定系数法求抛物线解析式; (2)作PQ ∥y 轴交BC 于Q ,根据12PBC S PQ OB ∆=⋅求解即可; (3)作∠CAN =∠NAM 1=∠ACB ,则∠A M 1B =3∠ACB , 则∆ NAM 1∽∆ A C M 1,通过相似的性质来求点M 1的坐标;作AD ⊥BC 于D ,作M 1关于AD 的对称点M 2, 则∠A M 2C =3∠ACB ,根据对称点坐标特点可求M 2的坐标. 【详解】(1)把()5,0B 代入265y ax x =+-得253050a +-= 1a =-.∴265y x x =-+-;(2)作PQ ∥y 轴交BC 于Q ,设点()2,65P x x x -+-,则∵()5,0B∴OB =5, ∵Q 在BC 上,∴Q 的坐标为(x ,x -5),∴PQ =2(65)(5)x x x -+---=25x x -+, ∴12PBC S PQ OB ∆=⋅ =21(5)52x x -+⨯ =252522x x -+∴当52x =时,S 有最大值,最大值为1258S =,∴点P 坐标为515,24⎛⎫⎪⎝⎭. (3)如图1,作∠CAN =∠NAM 1=∠ACB ,则∠A M 1B =3∠ACB ,∵∠CAN =∠NAM 1, ∴AN =CN ,∵265y x x =-+-=-(x -1)(x -5),∴A 的坐标为(1,0),C 的坐标为(0,-5), 设N 的坐标为(a ,a -5),则∴2222(1)(5)(55)a a a a -+-=+-+,∴a =136, ∴N 的坐标为(136,176-), ∴AN 2=221317(1)()66-+-=16918,AC 2=26,∴22169113182636 ANAC=⨯=,∵∠NAM1=∠ACB,∠N M1A=∠C M1A,∴∆NAM1∽∆A C M1,∴11AMANAC CM=,∴21211336AMCM=,设M1的坐标为(b,b-5),则∴222236[(1)(5)]13[(55)]b b b b-+-=+-+,∴b1=7823,b2=6(不合题意,舍去),∴M1的坐标为7837(,)2323-,如图2,作AD⊥BC于D,作M1关于AD的对称点M2, 则∠A M2C=3∠ACB,易知∆ADB是等腰直角三角形,可得点D的坐标是(3,-2),∴M2横坐标=7860232323⨯-=,M2纵坐标=37552(2)()2323⨯---=-,∴M2的坐标是6055(,)2323-,综上所述,点M的坐标是7837(,)2323-或6055(,)2323-.【点睛】本题考查了二次函数与几何图形的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质及相似三角形的判定与性质,会运用分类讨论的思想解决数学问题.7.(2019·石家庄市第四十一中学初三)如图,在平面直角坐标系中,抛物线y=x(x﹣b)﹣与y轴相交于A点,与x轴相交于B、C两点,且点C在点B的右侧,设抛物线的顶点为P.(1)若点B与点C关于直线x=1对称,求b的值;(2)若OB=OA,求△BCP的面积;(3)当﹣1≤x≤1时,该抛物线上最高点与最低点纵坐标的差为h,求出h与b的关系;若h有最大值或最小值,直接写出这个最大值或最小值.【答案】(1)2(2)(3)h存在最小值,最小值为1【解析】【分析】(1)由点B与点C关于直线x=1对称,可得出抛物线的对称轴为直线x=1,再利用二次函数的性质可求出b值;(2)利用二次函数图象上点的坐标特征可求出点A的坐标,结合OA=OB可得出点B的坐标,由点B的坐标利用待定系数法可求出抛物线的解析式,由抛物线的解析式利用二次函数图象上点的坐标特征可求出点C的坐标,利用配方法可求出点P的坐标,再利用三角形的面积公式即可求出△BCP的面积;(3)分b≥2,0≤b<2,﹣2<b<0和b≤﹣2四种情况考虑,利用二次函数图象上点的坐标特征结合二次函数的图象找出h关于b的关系式,再找出h的最值即可得出结论.【详解】解:(1)∵点B与点C关于直线x=1对称,y=x(x﹣b)﹣=x2﹣bx﹣,∴﹣=1,解得:b=2.(2)当x=0时,y=x2﹣bx﹣=﹣,∴点A的坐标为(0,﹣).又∵OB=OA,∴点B的坐标为(﹣,0).将B(﹣,0)代入y=x2﹣bx﹣,得:0=+b﹣,解得:b=,∴抛物线的解析式为y=x2﹣x﹣.∵y=x2﹣x﹣=(x﹣)2﹣,∴点P的坐标为(,﹣).当y=0时,x2﹣x﹣=0,解得:x1=﹣,x2=1,∴点C的坐标为(1,0).∴S△BCP=×[1﹣(﹣)]×|﹣|=.(3)y=x2﹣bx﹣=(x﹣)2﹣﹣.当≥1,即b≥2时,如图1所示,y最大=b+,y最小=﹣b+,∴h=2b;当0≤<1,即0≤b<2时,如图2所示,y最大=b+,y最小=﹣﹣,∴h=1+b+=(1+)2;当﹣1<<0,﹣2<b<0时,如图3所示y最大=﹣b,y最小=﹣﹣,∴h=1﹣b+=(1﹣)2;当≤﹣1,即b≤﹣2时,如图4所示,y最大=﹣b+,y最小=b+,h=﹣2b.综上所述:h=,h存在最小值,最小值为1.【点睛】本题考查了二次函数的性质、二次函数图象上点的坐标特征、待定系数法求二次函数解析式、三角形的面积、二次函数图象以及二次函数的最值,解题的关键是:(1)利用二次函数的性质,求出b的值;(2)利用二次函数图象上的坐标特征及配方法,求出点B,C,P的坐标;(3)分b≥2,0≤b<2,﹣2<b<0和b≤﹣2四种情况,找出h关于b的关系式.8.(2020·江西初三期中)如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.。
2019中考数学专题复习《二次函数与线段最值问题》含解析

2019中考数学专题复习二次函数与线段最值问题含解析二次函数与线段最值问题一.填空题1.如图,P是抛物线y=﹣x2+x+2在第一象限上的点,过点P分别向x轴和y轴引垂线,垂足分别为A,B,则四边形OAPB周长的最大值为 .二.解答题2.已知函数y=(m+2)x2+kx+n.(1)若此函数为一次函数;①m,k,n的取值范围;②当﹣2≤x≤1时,0≤y≤3,求此函数关系式;③当﹣2≤x≤3时,求此函数的最大值和最小值(用含k,n的代数式表示);(2)若m=﹣1,n=2,当﹣2≤x≤2时,此函数有最小值﹣4,求实数k的值.3.如图,二次函数y=﹣x2+2(m﹣2)x+3的图象与x、y轴交于A、B、C三点,其中A(3,0),抛物线的顶点为D.(1)求m的值及顶点D的坐标;(2)当a≤x≤b时,函数y的最小值为,最大值为4,求a,b应满足的条件;(3)在y轴右侧的抛物线上是否存在点P,使得三角形PDC是等腰三角形?如果存在,求出符合条件的点P的坐标;如果不存在,请说明理由.4.已知点A(t,1)为函数y=ax2+bx+4(a,b为常数,且a≠0)与y=x图象的交点.(1)求t;(2)若函数y=ax2+bx+4的图象与x轴只有一个交点,求a,b;(3)若1≤a≤2,设当x≤2时,函数y=ax2+bx+4的最大值为m,最小值为n,求m﹣n的最小值.5.已知y关于x的函数y=nx2﹣2(m+1)x+m+3(1)若m=n=﹣1时,当﹣1≤x≤3时,求函数的最大值和最小值;(2)若n=1,当m取何值时,抛物线顶点最高?(3)若n=2m>0,对于任意m的值,当x<k时,y随x的增大而减小,求k的最大整数;(4)若m=2n≠0,求抛物线与x轴两个交点之间的最短距离.6.如图,二次函数y=﹣x2+2(m﹣2)x+3的图象与x,y轴交于A,B,C三点,其中A(3,0),抛物线的顶点为D.(1)求m的值及顶点D的坐标.(2)连接AD,CD,CA,求△ACD外接圆圆心E的坐标和半径;(3)当x≤n时,函数y所取得的最大值为4,最小值为1,求n的取值范围.7.如图,抛物线y=ax2+bx+2与x轴交于A、B两点,点A的坐标为(﹣1,0),抛物线的对称轴为直线.点M为线段AB上一点,过M作x轴的垂线交抛物线于P,交过点A的直线y=﹣x+n于点C.(1)求直线AC及抛物线的解析式;(2)若,求PC的长;(3)过P作PQ∥AB交抛物线于点Q,过Q作QN⊥x轴于N,若点P在Q左侧,矩形PMNQ的周长记为d,求d的最大值.8.如图,抛物线y=ax2+bx+2与x轴交于A、B两点,点A的坐标为(﹣1,0),抛物线的对称轴为直线x=1.5,点M为线段AB上一点,过M作x轴的垂线交抛物线于P,交过点A的直线y=﹣x+n于点C.(1)求直线AC及抛物线的解析式;(2)M位于线段AB的什么位置时,PC最长,并求出此时P点的坐标;(3)若在(2)的条件下,在x轴上方的抛物线上是否存在点Q,使,求点Q的坐标.9.如图,抛物线y=﹣x2﹣2x+3 的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PMNQ的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F 作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.10.如图,抛物线y=﹣x2+bx+c的图象交x轴于A(﹣2,0),B(1,0)两点.(1)求抛物线的解析式;(2)点M为线段AB上一点(点M不与点A,B重合),过点M作x轴的垂线,与抛物线交于点P,过点P作PC∥AB交抛物线于点C,过点C作CD⊥x轴于点D.若点P在点C的左边,当矩形PCDM的周长最大时,求点M的坐标;(3)在(2)的条件下,当矩形PCDM的周长最大时,连接AC,我们把一条抛物线与直线AC的交点称为该抛物线的“恒定点”,将(1)中的抛物线平移,使其平移后的顶点为(n,2n),若平移后的抛物线总有“恒定点”,请直接写出n的取值范围.11.如图,在平面直角坐标系中,抛物线y x2x+2与x轴交于B、C两点(点B 在点C的左侧),与y轴交于点A,抛物线的顶点为D.(1)填空:点A的坐标为( , ),点B的坐标为( , ),点C的坐标为( , ),点D的坐标为( , );(2)点P是线段BC上的动点(点P不与点B、C重合)①过点P作x轴的垂线交抛物线于点E,若PE=PC,求点E的坐标;②在①的条件下,点F是坐标轴上的点,且点F到EA和ED的距离相等,请直接写出线段EF的长;③若点Q是线段AB上的动点(点Q不与点A、B重合),点R是线段AC上的动点(点R不与点A、C重合),请直接写出△PQR周长的最小值.12.如图,抛物线与直线相交于A,B两点,若点A在x轴上,点B的坐标是(2,4),抛物线与x轴另一交点为D,并且△ABD的面积为6,直线AB与y轴的交点的坐标为(0,2).点P是线段AB(不与A,B重合)上的一个动点,过点P作x轴的垂线,交抛物线与点Q.(1)分别求出抛物线与直线的解析式;(2)求线段PQ长度的最大值;(3)当PQ取得最大值时,在抛物线上是否存在M、N两点(点M的横坐标小于N的横坐标),使得P、D、M、N为顶点的四边形是平行四边形?若存在,求出MN的坐标;若不存在,请说明理由.13.如图,抛物线y x2x﹣4与x轴交于A,B两点(点B在点A的右侧),与y轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.(1)求点A,B,C的坐标.(2)当点P在线段OB上运动时,直线l分别交BD于点M,求线段MQ长度的最大值.(3)当点P在线段EB上运动时,是否存在点Q,使△BDQ为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.(4)当点P在线段EB上运动时,直线l与菱形BDEC的某一边交于点S,是否存在m 值,使得点C、Q、S、D为顶点的四边形是平行四边形?如果存在,请直接写出m值,不存在,说明理由.14.如图,已知二次函数y=﹣x2﹣2x+3的图象交x轴于A、B两点(A在B左边),交y 轴于C点.(1)求A、B、C三点的坐标和直线AC的解析式;(2)点P是直线AC上方抛物线上一动点(不与A,C重合),过点P作x轴平行线交直线AC于M点,求线段PM的最大值.15.(1)如图,已知二次函数y=﹣x2+2x+3的图象交x轴于A,B两点(A在B左边),直线y=x+1过点A,与抛物线交于点C,点P是直线AC上方抛物线上一动点(不与A,C重合),过点P作y轴平行线交直线AC于Q点,求线段PQ的最大值.(2)在(1)条件下,过点P作y轴垂线交直线AC于Q点,求线段PQ的最大值.16.如图1,抛物线y=﹣x2﹣4x+5与x轴交于点A、B两点,与y轴交于点C,点D为抛物线的顶点.(1)求直线AC的解析式及顶点D的坐标;(2)连接CD,点P是直线AC上方抛物线上一动点(不与点A、C重合),过P作PE∥x轴交直线AC于点E,作PF∥CD交直线AC于点F,当线段PE+PF取最大值时,在抛物线对称轴上找一点L,在y轴上找一点K,连接OL,LK,PK,求线段OL+LK+PK的最小值,并求出此时点L的坐标.(3)如图2,点M(﹣2,﹣1)为抛物线对称轴上一点,点N(2,7)为直线AC上一点,点G为直线AC与抛物线对称轴的交点,连接MN,AM.点H是线段MN上的一个动点,连接GH,将△MGH沿GH翻折得到△M′GH(点M的对称点为M′),问是否存在点H,使得△M′GH与△NGH重合部分的图形为直角三角形,若存在,请求出NH的长,若不存在,请说明理由.17.如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与A重合),过点P作PD∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)当D在线段AC上运动时,求点P在运动的过程中线段PD长度的最大值;(3)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由.18.如图,在平面直角坐标系xOy中,直线y x交x轴于点A,交y轴于点B,经过点A的抛物线y x2+bx+c交直线AB另一点D,且点D到y轴的距离为8.(1)求抛物线解析式;(2)点P是直线AD上方的抛物线上一动点,(不与点A、D重合),过点P作PE⊥AD于E,过点P作PF∥y轴交AD于F,设△PEF的周长为L,点P的横坐标为m,求L与m的函数关系式,并直接写出自变量m的取值范围;(3)在图(2)的条件下,当L最大时,连接PD.将△PED沿射线PE方向平移,点P、E、F的对应点分别为Q、M、N,当△QMN的顶点M在抛物线上时,求M点的横坐标,并判断此时点N是否在直线PF上.(参考公式:二次函数y=ax2+bx+c(c≠0).当x时,y最大(小)值)19.如图,已知抛物线y=ax2+bx+c(a≠0)过点A(3,0),B(1,0),且与y轴交于点C(0,﹣3),点P是抛物线AC间上一动点,从点C沿抛物线向点A运动(点P 与A、C不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)当△ADP是直角三角形时,直接写出点P的坐标;(3)求线段PD的最大值,并求最大值时P点的坐标;(4)在问题(3)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.20.已知二次函数y=ax2+bx+c与x轴只有一个交点,且系数a、b满足条件:.(1)求y=ax2+bx+c解析式;(2)将y=ax2+bx+c向右平移一个单位,再向下平移一个单位得到函数y=mx2+nx+k,该函数交y轴于点C,交x轴于A、B(点A在点B的右侧),点P是该抛物线上一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.当△ADP是直角三角形时,求点P的坐标;(3)在问题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.21.已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P 作PD∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)△APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;(4)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由.22.如图1,抛物线y=﹣x2+bx+c经过点A(2,0),B(0,2),与x轴交于另一点C.(1)求抛物线的解析式及点C的坐标;(2)点P是抛物线y=﹣x2+bx+c在第一象限上的点,过点P分别向x轴、y轴作垂线,垂足分别为D,E,求四边形ODPE的周长的最大值;(3)如图2,点P是抛物线y=﹣x2+bx+c在第一象限上的点,过点P作PN⊥x轴,垂足为N,交AB于M,连接PB,PA.设点P的横坐标为t,当△ABP的面积等于△ABC面积的时,求t的值.23.如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点,与y轴交于点C,三个交点的坐标分别为A(﹣1,0),B(3,0),C(0,3).(1)求抛物线的解析式及顶点D的坐标;(2)若P为线段BD上的一个动点,过点P作PM⊥x轴于点M,求四边形PMAC面积的最大值和此时P点的坐标;(3)若点P是抛物线在第一象限上的一个动点,过点P作PQ∥AC交x轴于点Q.当点P的坐标为 时,四边形PQAC是平行四边形;(直接写出结果,不写求解过程).24.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线1与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,设P点的横坐标为m.①求线段PE长度的最大值;②点P将线段AC分割成长、短两条线段PA、PC,如果较长线段与AC之比等于,则称P为线段AC的“黄金分割点”,请直接写出使得P为线段AC黄金分割点的m的值.25.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE 长度的最大值;(3)点G抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.26.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE 长度的最大值.27.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,(不与A、C重合),过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值,并直接写出△ACE面积的最大值;(3)点G为抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的F点坐标;如果不存在,请说明理由.28.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,当点P运动到什么位置时,△ACE的面积最大?求出此时P点的坐标和S△ACE的最大值;(3)点G是抛物线上的动点,在x轴上是否存在点F,使以A、C、F、G为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的F点坐标;如果不存在,请说明理由.29.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点.求线段PE 长度的最大值;(3)若点G是抛物线上的动点,点F是x轴上的动点,判断有几个位置能使以点A、C、F、G为顶点的四边形为平行四边形,直接写出相应的点F的坐标.30.如图,抛物线y=﹣x2﹣2x+3与x轴交A、B两点(A点在B点右侧),直线l与抛物线交于A、C两点,其中C点的横坐标为﹣2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)若点P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求当点P坐标为多少时,线段PE长度有最大值,最大值是多少?(3)点G是抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.二次函数与线段最值问题参考答案与试题解析一.填空题1.如图,P是抛物线y=﹣x2+x+2在第一象限上的点,过点P分别向x轴和y轴引垂线,垂足分别为A,B,则四边形OAPB周长的最大值为 6 .【考点】H5:二次函数图象上点的坐标特征.【分析】设P(x,y)(2>x>0,y>0),根据矩形的周长公式得到C=﹣2(x﹣1)2+6.根据二次函数的性质来求最值即可.【解答】解:∵y=﹣x2+x+2,∴当y=0时,﹣x2+x+2=0即﹣(x﹣2)(x+1)=0,解得x=2或x=﹣1故设P(x,y)(2>x>0,y>0),∴C=2(x+y)=2(x﹣x2+x+2)=﹣2(x﹣1)2+6.∴当x=1时,C最大值=6,.即四边形OAPB周长的最大值为6.故答案是:6.【点评】本题考查了二次函数的最值,二次函数图象上点的坐标特征.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.本题采用了配方法.二.解答题2.已知函数y=(m+2)x2+kx+n.(1)若此函数为一次函数;①m,k,n的取值范围;②当﹣2≤x≤1时,0≤y≤3,求此函数关系式;③当﹣2≤x≤3时,求此函数的最大值和最小值(用含k,n的代数式表示);(2)若m=﹣1,n=2,当﹣2≤x≤2时,此函数有最小值﹣4,求实数k的值.【考点】F5:一次函数的性质;H7:二次函数的最值.【分析】(1)①根据二次项系数为0,一次项系数不为0,常数项为任意实数解答即可;②根据k>0,k<0时x、y的对应关系确定直线经过的点的坐标,求出解析式;③根据一次函数的性质即增减性解答即可;(2)把m=﹣1,n=2代入关系式,得到二次函数解析式,确定对称轴,顶点坐标,分情况讨论求出k的值.【解答】解:(1)①m=﹣2,k≠0,n为任意实数;②当k>0时,直线经过(﹣2,0)(1,3),函数关系式为:y=x+2当k<0时,直线经过(﹣2,3)(1,0),函数关系式为:y=﹣x+1③当k>0时,x=﹣2,y有最小值为﹣2k+nx=3时,y有最大值为3k+n当k<0时,x=﹣2,y有最大值为﹣2k+nx=3时,y有最小值为3k+n(2)若m=﹣1,n=2时,二次函数为y=x2+kx+2对称轴为x,当2,即k≥4时,把x=﹣2,y=﹣4代入关系式得:k=5当﹣22,即﹣4<k<4时,把x,y=﹣4代入关系式得:k=±2(不合题意)当2,即k≤﹣4时,把x=2,y=﹣4代入关系式得:k=﹣5.所以实数k的值为±5.【点评】本题考查了一次函数的概念、一次函数的性质、一次函数最值的应用以及二次函数的性质,综合性较强,需要学生灵活运用性质,把握一次函数的增减性和二次函数的增减性,解答题目.3.如图,二次函数y=﹣x2+2(m﹣2)x+3的图象与x、y轴交于A、B、C三点,其中A(3,0),抛物线的顶点为D.(1)求m的值及顶点D的坐标;(2)当a≤x≤b时,函数y的最小值为,最大值为4,求a,b应满足的条件;(3)在y轴右侧的抛物线上是否存在点P,使得三角形PDC是等腰三角形?如果存在,求出符合条件的点P的坐标;如果不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)先把A(3,0)代入y=﹣x2+2(m﹣2)x+3,得到关于m的方程,解方程求出m的值,再利用配方法将二次函数写成顶点式,即可求出顶点D的坐标;(2)先把y=1代入y=﹣x2+2x+3,得到方程1x2+2x+3,解方程求出x1,x2,再利用二次函数的性质结合图象即可得出a,b应满足的条件;(3)先求出二次函数与y轴交点C的坐标,当三角形PDC是等腰三角形时,分三种情况进行讨论:①当DC=DP时,易求点P坐标为(2,3);②当PC=PD时,过点D 作x轴的平行线,交y轴于点H,过点P作PM⊥y轴于点M,PN⊥DH于点N.由HD=HC,PC=PD,根据线段垂直平分线的判定与等腰三角形的性质得出HP平分∠MHN,再由线段垂直平分线的性质得出PM=PN.设P(m,﹣m2+2m+3),则m=4﹣(﹣m2+2m+3),解方程求出m的值,得出点P的坐标为或;③当CD=CP时,不符合题意.【解答】解:(1)把A(3,0)代入y=﹣x2+2(m﹣2)x+3,得﹣9+6(m﹣2)+3=0,解得m=3.则二次函数为y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4);(2)把y=1代入y=﹣x2+2x+3,得1x2+2x+3,解得x1,x2,结合图象知a≤1.当a时,1≤b,当a≤1时,b;(3)x=0时,y=3,所以点C坐标为(0,3).当三角形PDC是等腰三角形时,分三种情况:①如图1,当DC=DP时,∵点P与点C关于抛物线的对称轴x=1对称,∴点P坐标为(2,3);②如图2,当PC=PD时,过点D作x轴的平行线,交y轴于点H,过点P作PM⊥y 轴于点M,PN⊥DH于点N.∵HD=HC=1,PC=PD,∴HP是线段CD的垂直平分线.∵HD=HC,HP⊥CD,∴HP平分∠MHN,∵PM⊥y轴于点M,PN⊥DH于点N,∴PM=PN.设P(m,﹣m2+2m+3),则m=4﹣(﹣m2+2m+3),解得m,∴P的坐标为或;③如图3,当CD=CP时,点P在y轴左侧,不符合题意.综上所述,所求点P的坐标为(2,3)或或.【点评】本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求二次函数的解析式,抛物线顶点坐标的求法,二次函数的性质,线段垂直平分线的判定与性质,等腰三角形的性质,综合性较强,难度适中.利用数形结合、分类讨论及方程思想是解题的关键.4.已知点A(t,1)为函数y=ax2+bx+4(a,b为常数,且a≠0)与y=x图象的交点.(1)求t;(2)若函数y=ax2+bx+4的图象与x轴只有一个交点,求a,b;(3)若1≤a≤2,设当x≤2时,函数y=ax2+bx+4的最大值为m,最小值为n,求m﹣n的最小值.【考点】H7:二次函数的最值;HA:抛物线与x轴的交点.【分析】(1)把A(t,1)代入y=x即可得到结论;(2)根据题意得方程组,解方程组即可得到结论;(3)把A(1,1)代入y=ax2+bx+4得,b=﹣3﹣a,得到y=ax2﹣(a+3)x+4的对称轴为直线x,根据1≤a≤2,得到对称轴的取值范围x≤2,当x时,得到m,当x=2时,得到n,即可得到结论.【解答】解:(1)把A(t,1)代入y=x得t=1;(2)∵y=ax2+bx+4的图象与x轴只有一个交点,∴,∴或;(3)把A(1,1)代入y=ax2+bx+4得,b=﹣3﹣a,∴y=ax2﹣(a+3)x+4=a(x)2,∴对称轴为直线x,∵1≤a≤2,∴x2,∵x≤2,∴当x时,y=ax2+bx+4的最大值为m,当x=2时,n,∴m﹣n,∵1≤a≤2,∴当a=2时,m﹣n的值最小,即m﹣n的最小值.【点评】本题考查了抛物线与x轴的交点,二次函数的最值,正确的理解题意是解题的关键.5.已知y关于x的函数y=nx2﹣2(m+1)x+m+3(1)若m=n=﹣1时,当﹣1≤x≤3时,求函数的最大值和最小值;(2)若n=1,当m取何值时,抛物线顶点最高?(3)若n=2m>0,对于任意m的值,当x<k时,y随x的增大而减小,求k的最大整数;(4)若m=2n≠0,求抛物线与x轴两个交点之间的最短距离.【考点】H3:二次函数的性质;H7:二次函数的最值;HA:抛物线与x轴的交点.【分析】(1)利用待定系数法即可解决问题;(2)构建二次函数,利用二次函数的性质即可解决问题;(3)抛物线的解析式为y=2mx2﹣2(m+1)x+m+3,对称轴x,因为对于任意m的值,当x<k时,y随x的增大而减小,所以k,由此即可解决问题;(4)构建二次函数,利用二次函数的性质,解决最值问题;【解答】解:(1)当m=n=﹣1时,函数解析式为y=﹣x2+2,顶点坐标为(0,2),函数最大值为2,∵﹣1≤x≤3,x=﹣1时,y=1,x=3时,y=﹣7.∴函数的最大值为2和最小值为﹣7.(2)n=1时,函数解析式为y=x2﹣2(m+1)x+m+3,∵顶点的纵坐标m2﹣m+2,∵﹣1<0,∴m时,抛物线顶点的纵坐标最大,顶点最高.(3)∵n=2m,∴抛物线的解析式为y=2mx2﹣2(m+1)x+m+3,对称轴x,∵对于任意m的值,当x<k时,y随x的增大而减小,∴k,∴k的最大整数为0.(4)∵m=2n,∴抛物线的解析式为y=nx2﹣2(2n+1)x+2n+3,设抛物线与x轴的交点为(x1,0)和(x2,0),则|x1﹣x2|,∴当时,抛物线与x轴两个交点之间的距离最短,最小值为.【点评】本题考查抛物线与x轴的交点、二次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建二次函数解决最值问题,所以中考常考题型.6.如图,二次函数y=﹣x2+2(m﹣2)x+3的图象与x,y轴交于A,B,C三点,其中A(3,0),抛物线的顶点为D.(1)求m的值及顶点D的坐标.(2)连接AD,CD,CA,求△ACD外接圆圆心E的坐标和半径;(3)当x≤n时,函数y所取得的最大值为4,最小值为1,求n的取值范围.【考点】HF:二次函数综合题.【分析】(1)把A点坐标代入可求得m的值,可求得二次函数解析式,化为顶点式可求得D的坐标;(2)利用两点间的距离公式可求得AC、CD、AD,可知△ACD为直角三角形,AD为斜边,可知E为AC的中点,可求得E的坐标及半径;(3)当x时,可求得y=1,且当x=1时y=4,根据二次函数的对称性可求得n的范围.【解答】解:(1)∵抛物线过A点,∴代入二次函数解析式可得﹣9+6(m﹣2)+3=0,解得m=3,∴二次函数为y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D为(1,4);(2)由(1)可求得C坐标为(0,3),∴AC3,CD,AD2,∴AC2+CD2=AD2,∴△ACD为直角三角形,∴E为AD的中点,∴E点坐标为(2,2),外接圆的半径r AD;(3)当x时,y=1,当x=1时,y=4,∴当x≤1时,1y≤4,根据二次函数的对称性可知当1≤x时,1y≤4,∴1≤n.【点评】本题主要考查待定系数法求函数解析式及二次函数的顶点坐标、增减性、及直角三角形的判定等知识的综合应用.在(1)中掌握点的坐标满足函数的解析式是解题的关键,在(2)中判定出△ACD为直角三角形是解题的关键,在(3)中利用二次函数的对称性,结合二次函数在对称轴两侧的增减性可确定出n的范围.本题难度不大,注重基础知识的综合,较易得分.7.如图,抛物线y=ax2+bx+2与x轴交于A、B两点,点A的坐标为(﹣1,0),抛物线的对称轴为直线.点M为线段AB上一点,过M作x轴的垂线交抛物线于P,交过点A的直线y=﹣x+n于点C.(1)求直线AC及抛物线的解析式;(2)若,求PC的长;(3)过P作PQ∥AB交抛物线于点Q,过Q作QN⊥x轴于N,若点P在Q左侧,矩形PMNQ的周长记为d,求d的最大值.【考点】HF:二次函数综合题.【分析】(1)将A(﹣1,0)代入y=﹣x+n,运用待定系数法求出直线AC的解析式;根据抛物线的对称轴为x,把点A的坐标代入y=ax2+bx+2,组成关于a、b的二元一次方程组,求解即可得到抛物线的解析式;(2)设M点横坐标为m,则P(m,m2m+2),C(m,﹣m﹣1),得出PMm2m+2,PC m2m+3.由PM,得到m2m+2,即m2=3m+1,m,进而求出PC;(3)设M点横坐标为m,则PM m2m+2,MN=2(m)=3﹣2m,矩形PMNQ的周长d=﹣m2﹣m+10,将﹣m2﹣m+10配方,根据二次函数的性质,即可得出矩形PMNQ的周长的最大值.【解答】解:(1)∵直线y=﹣x+n过点A(﹣1,0),∴0=1+n,解得n=﹣1,∴直线AC的解析式为y=﹣x﹣1;∵抛物线y=ax2+bx+2的对称轴为直线x,经过点A(﹣1,0),∴,解得.∴抛物线的解析式是:y x2x+2;(2)如图,设M点横坐标为m,则P点坐标为(m,m2m+2),C点坐标为(m,﹣m﹣1).∵点M为线段AB上一点,∴﹣1<m<4.∴PM m2m+2,PC=(m2m+2)﹣(﹣m﹣1)m2m+3.∵PM,∴m2m+2,整理,得m2﹣3m﹣1=0,∴m2=3m+1,m,∴PC m2m+3(3m+1)m+3=m,∴当m时,PC;(3)设M点横坐标为m,则PM m2m+2,MN=2(m)=3﹣2m,∴矩形PMNQ的周长d=2(PM+MN)=2(m2m+2+3﹣2m)=﹣m2﹣m+10.∵﹣m2﹣m+10=﹣(m)2,∴当m时,d有最大值.【点评】本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求一次函数、二次函数的解析式,平行于坐标轴上的两点之间的距离,矩形的性质,一元二次方程的解法,二次函数最值的求法,综合性较强,难度适中.运用数形结合、方程思想是解题的关键.8.如图,抛物线y=ax2+bx+2与x轴交于A、B两点,点A的坐标为(﹣1,0),抛物线的对称轴为直线x=1.5,点M为线段AB上一点,过M作x轴的垂线交抛物线于P,交过点A的直线y=﹣x+n于点C.(1)求直线AC及抛物线的解析式;(2)M位于线段AB的什么位置时,PC最长,并求出此时P点的坐标;(3)若在(2)的条件下,在x轴上方的抛物线上是否存在点Q,使,求点Q的坐标.【考点】HF:二次函数综合题.【分析】(1)将A(﹣1,0)代入y=﹣x+n,运用待定系数法求出直线AC的解析式;根据抛物线的对称轴为x,把点A的坐标代入y=ax2+bx+2,组成关于a、b的二元一次方程组,求解即可得到抛物线的解析式;(2)设M点横坐标为m,则P(m,m2m+2),C(m,﹣m﹣1),得出PMm2m+2,化成顶点式即可;(3)根据抛物线的对称轴和A的坐标,求得B的坐标,求得AB,从而求得三角形APB的面积,进而求得三角形ABQ的面积,得出Q的纵坐标,把纵坐标代入抛物线的解析式即可求得横坐标,从而求得Q的坐标.【解答】解:(1)∵直线y=﹣x+n过点A(﹣1,0),∴0=1+n,解得n=﹣1,∴直线AC的解析式为y=﹣x﹣1;∵抛物线y=ax2+bx+2的对称轴为直线x,经过点A(﹣1,0),∴,解得.∴抛物线的解析式是:y x2x+2;(2)如图,设M点横坐标为m,则P点坐标为(m,m2m+2),C点坐标为(m,﹣m﹣1).∵点M为线段AB上一点,∴﹣1<m<4.∴PC=(m2m+2)﹣(﹣m﹣1)m2m+3.∵PC m2m+3(m)2,所以,当m时,PC最长,此时P(,),AM;(3)存在;∵抛物线y=ax2+bx+2的对称轴为直线x,经过点A(﹣1,0),∴B(4,0)∴AB=5,∵S△APB AB•PM5,∵,∴S△ABQ,设Q点纵坐标为n,∵S△ABQ AB•n,∴n,(或n这样计算比较方便),∴x2x+2,解得:x或x,∴Q(,)或(,)【点评】本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求一次函数、二次函数的解析式,平行于坐标轴上的两点之间的距离,一元二次方程的解法,二次函数最值的求法,综合性较强,难度适中.运用数形结合、方程思想是解题的关键.9.如图,抛物线y=﹣x2﹣2x+3 的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PMNQ的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F 作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.【考点】HF:二次函数综合题.【专题】153:代数几何综合题;16:压轴题.。
中考数学几何最值问题题型梳理

中考数学几何最值问题题型梳理专题1 单线段最值之单动点型例题.如图,矩形ABCD 中,4AB =,6BC =,点P 是矩形ABCD 内一动点,且∆∆=PAB PCD S S ,则PC PD +的最小值为_____.【解析】ABCD 为矩形,AB DC ∴= 又=PAB PCD S S∴点P 到AB 的距离与到CD 的距离相等,即点P 线段AD 垂直平分线MN 上, 连接AC ,交MN 与点P ,此时PC PD +的值最小,且PC PD AC +=====巩固1.如图,等腰Rt △ABC 中,斜边AB 的长为2,O 为AB 的中点,P 为AC 边上的动点,OQ ⊥OP 交BC 于点Q ,M 为PQ 的中点,当点P 从点A 运动到点C 时,点M 所经过的路线长为( )ABC .1D .2【解析】连接OC ,作PE ⊥AB 于E ,MH ⊥AB 于H ,QF ⊥AB 于F ,如图,∵△ACB 为到等腰直角三角形,∴AC =BC=2AB,∠A =∠B =45°, ∵O 为AB 的中点,∴OC ⊥AB ,OC 平分∠ACB ,OC =OA =OB =1,∴∠OCB =45°, ∵∠POQ =90°,∠COA =90°,∴∠AOP =∠COQ ,在Rt △AOP 和△COQ 中,A OCQ AO COAOP COQ ∠=∠=∠=∠⎧⎪⎨⎪⎩,∴Rt △AOP ≌△COQ ,∴AP =CQ , 易得△APE 和△BFQ 都为等腰直角三角形,∴PE=2AP=2CQ ,QF2BQ , ∴PE +QF=2,CQ +BQ,=2BC=2∵M 点为PQ 的中点, ∴MH 为梯形PEFQ 的中位线,∴MH =12,PE +QF ,=12,即点M 到AB 的距离为12, 而CO =1,∴点M 的运动路线为△ABC 的中位线,∴当点P 从点A 运动到点C 时,点M 所经过的路线长=12AB =1,选C , 巩固2.如图,在平面内,线段AB =6,P 为线段AB 上的动点,三角形纸片CDE 的边CD 所在的直线与线段AB 垂直相交于点P ,且满足PC =P A .若点P 沿AB 方向从点A 运动到点B ,则点E 运动的路径长为______,【解析】如图,由题意可知点C运动的路径为线段AC′,点E运动的路径为EE′,由平移的性质可知AC′=EE′,在Rt,ABC′中,易知AB=BC′=6,∠ABC′=90°,,EE′=AC巩固3.如图,等边三角形ABC的边长为4,点D是直线AB上一点.将线段CD绕点D顺时针旋转60°得到线段DE,连结BE.(1)若点D在AB边上(不与A,B重合)请依题意补全图并证明AD=BE;(2)连接AE,当AE的长最小时,求CD的长.【解析】(1)补全图形如图1所示,AD=BE,理由如下:∵∵ABC是等边三角形,∵AB=BC=AC,∠A=∠B=60°,由旋转的性质得:∠ACB=∠DCE=60°,CD=CE,∵∠ACD=∠BCE,∵∵ACD≌∵BCE(S A S),∵AD=BE.(2)如图2,过点A作AF⊥EB交EB延长线于点F.∵∵ACD≌∵BCE,∵∠CBE=∠A=60°,∵点E的运动轨迹是直线BE,根据垂线段最短可知:当点E与F重合时,AE的值最小,此时CD=CE=CF,∵∠ACB=∠CBE=60°,∵AC∥EF,又∵AF⊥BE,∵AF⊥AC,在Rt∵ACF中,∵CF∵CD=CF=.例题.如图,点D 在半圆O 上,半径5OB =,4=AD ,点C 在弧BD 上移动,连接AC ,作DH AC ⊥,垂足为H ,连接BH ,点C 在移动的过程中,BH 的最小值是______.【解析】如图,设AD 的中点为点E ,则114222EA ED AD ===⨯= 由题意得,点H 的运动轨迹在以点E 为圆心,EA 为半径的圆上由点与圆的位置关系得:连接BE ,与圆E 交于点H ,此时BH 取得最小值,2EH = 连接BDAB 为半圆O 的直径,90ADB ∴∠=︒BD ∴===BE ∴===2BH BE EH ∴=-=巩固1.如图,长方形ABCD 中,AB =6,BC =4,在长方形的内部以CD 边为斜边任意作Rt ∵CDE ,连接AE ,则线段AE 长的最小值是_____.【解析】如图,点E '在以点F 为圆心,DF 为半径的圆上运动,当A ,E ,F 三点共线时,AE 值最小,DF =12×6=3,在长方形ABCD 中,AD =BC =4,由勾股定理得:AF . ∵EF =12CD =12×6=3,∵AE =AF ﹣EF =5﹣3=2,即线段AE 长的最小值是2.巩固3.如图,Rt ABC △中,AB BC ⊥,6AB =,4BC =,P 是ABC △内部的一个动点,且满足90PAB PBA ︒∠+∠=,则线段CP 长的最小值为________.【解析】∵∠P AB +∠PBA =90°,∵∠APB =90°,∵点P 在以AB 为直径的弧上(P 在∵ABC 内),设以AB 为直径的圆心为点O ,如图,接OC ,交∵O 于点P ,此时的PC 最短∵AB =6,∵OB =3,∵BC =4,∵5OC ==,∵PC =5-3=2巩固4.如图,在Rt ABC ∆中,90︒∠=C ,4AC =,3BC =,点O 是AB 的三等分点,半圆O 与AC 相切,M ,N 分别是BC 与半圆弧上的动点,则MN 的最小值和最大值之和是( )A .5B .6C .7D .8【解析】如图,设∵O 与AC 相切于点D ,连接OD ,作OP BC ⊥垂足为P 交∵O 于F , 此时垂线段OP 最短,PF 最小值为OP OF -,∵4AC =,3BC =,∵5AB =,∵90OPB ︒∠=,∵OP AC ∥∵点O 是AB 的三等分点,∵210533OB =⨯=,23OP OB AC AB ==,∵83OP =, ∵∵O 与AC 相切于点D ,∵OD AC ⊥,∵OD BC ∥,∵13OD OA BC AB ==,∵1OD =, ∵MN 最小值为85133OP OF -=-=, 如图,当N 在AB 边上时,M 与B 重合时,MN 经过圆心,经过圆心的弦最长, MN 最大值1013133=+=,513+=633,∵MN 长的最大值与最小值的和是6.选B . 巩固5.如下图所示,在矩形纸片ABCD 中,2AB =,3AD =,点E 是AB 的中点,点F 是AD 边上的一个动点,将AEF 沿EF 所在直线翻折,得到'A EF △,则'A C 的长的最小值是( )A .2B .3C 1D 1【解析】以点E 为圆心,AE 长度为半径作圆,连接CE ,当点'A 在线段CE 上时,A'C 的长取最小值,如图所示,根据折叠可知:112A'E AE AB ===.在Rt BCE △中,112BE AB ==,3BC =,90B ∠=,CE ∴,A'C ∴的最小值1CE A'E =-=.选D .技法1:借助直角三角形斜边上的中线例题1.如图,在∵ABC 中,∠C =90°,AC =4,BC =2,点A 、C 分别在x 轴、y 轴上,当点A在x 轴上运动时,点C 随之在y 轴上运动,在运动过程中,点B 到原点的最大距离是( )A .6B .C .D .【解析】如图,取CA 的中点D ,连接OD 、BD ,则OD =CD =AC =×4=2,由勾股定理得,BD ==2,当O 、D 、B 三点共线时点B 到原点的距离最大,所以,点B 到原点的最大距离是2+2.技法2:借助三角形两边之和大于第三边,两边之差小于第三边例题2.如图,已知等边三角形ABC 边长为A 、B 分别在平面直角坐标系的x 轴负半轴、轴的正半轴上滑动,点C 在第四象限,连接OC ,则线段OC 长的最小值是( )A 1B .3C .3D 【解析】如图所示:过点C 作CE ⊥AB 于点E ,连接OE ,∵∵ABC 是等边三角形,∵CE =AC ×si n 60°=3=,AE =BE ,∵∠AOB =90°,∵EO 12=AB =∵EC -OE ≥OC , ∵当点C ,O ,E 在一条直线上,此时OC 最短,故OC 的最小值为:OC =CE ﹣EO =3B .巩固1.如图,∠MON =90°,矩形ABCD 的顶点A 、B 分别在边OM 、ON 上,当B 在边ON 上运动时,A 随之在OM 上运动,矩形ABCD 的形状保持不变,其中AB =4,BC =2.运动过程中点D 到点O 的最大距离是______.【解析】如图,取AB 的中点E ,连接OE 、DE 、OD ,∵OD ≤OE +DE ,∵当O 、D 、E 三点共线时,点D 到点O 的距离最大,此时,∵AB =4,BC =2,∵OE =AE =12AB =2,DE=∵OD 的最大值为,巩固2.如图,在Rt ABC ∆中,90ACB ∠=,将ABC ∆绕顶点C 逆时针旋转得到'',A B C M ∆是BC 的中点,N 是''A B 的中点,连接MN ,若4,60BC ABC =∠=︒,则线段MN 的最大值为( )A .4B .8C .D .6【解析】连接CN ,∵将ABC ∆绕顶点C 逆时针旋转得到''A B C ∆,∵''=90A CB ACB ∠=∠︒,''460'B C BC A B C ABC ==∠=∠=︒,,∵'30A ∠=︒,''8A B =,∵N 是''A B 的中点,∵1''42CN A B ==, ∵在△CMN 中,MN <CM +CN ,当且仅当M ,C ,N 三点共线时,MN =CM +CN =6, ∵线段MN 的最大值为6.选D .技法3:借助构建全等图形例题3.如图,在∵ABC 中,∠ACB =90°,∠A =30°,AB =5,点P 是AC 上的动点,连接BP ,以BP 为边作等边∵BPQ ,连接CQ ,则点P 在运动过程中,线段CQ 长度的最小值是______.【解析】如图,取AB 的中点E ,连接CE ,PE .∵∠ACB =90°,∠A =30°,∵∠CBE =60°, ∵BE =AE ,∵CE =BE =AE ,∵∵BCE 是等边三角形,∵BC =BE ,∵∠PBQ =∠CBE =60°, ∵∠QBC =∠PBE ,∵QB =PB ,CB =EB ,∵∵QBC ≌∵PBE (S A S ),∵QC =PE ,∵当EP ⊥AC 时,QC 的值最小,在Rt ∵AEP 中,∵AE =52,∠A =30°,∵PE =12AE =54,∵CQ 的最小值为54.巩固4.如图,边长为12的等边三角形ABC 中,M 是高CH 所在直线上的一个动点,连结MB ,将线段BM 绕点B 逆时针旋转60°得到BN ,连结HN .则在点M 运动过程中,线段HN 长度的最小值是( )A .6B .3C .2D .1.5【解析】如图,取BC 的中点G ,连接M G ,∵旋转角为60°,∵∠MBH +∠HBN =60°, 又∵∠MBH +∠MBC =∠ABC =60°,∵∠HBN =∠G BM ,∵CH 是等边∵ABC 的对称轴,∵HB =12AB ,∵HB =B G ,又∵MB 旋转到BN ,∵BM =BN , 在∵MB G 和∵NBH 中,BG BH MBG NBH MB NB =⎧⎪∠=∠⎨⎪=⎩,∵∵MB G ≌∵NBH (S A S ),∵M G=NH ,根据垂线段最短,当M G ⊥CH 时,M G 最短,即HN 最短,此时∠BCH =12×60°=30°,C G=12AB =12×12=6,∵M G=12C G=12×6=3,∵HN =3;选B . 技法4:借助中位线例题4.如图,在等腰直角∆ABC 中,斜边AB 的长度为 8,以AC 为直径作圆,点P 为半圆上的动点,连接BP ,取BP 的中点M ,则CM 的最小值为( )A. B.CD.【解析】连接AP 、CP ,分别取AB 、BC 的中点E 、F ,连接EF 、EM 和FM ,,EM 、FM 和EF 分别是,ABP 、,CBP 和,ABC 的中位线,EM ∥AP ,FM ∥CP ,EF ∥AC ,EF =12AC ,,∠EFC =180°-∠ACB =90° ,AC 为直径,,∠APC =90°,即AP ⊥CP ,,EM ⊥MF ,即∠EMF =90°,点M 的运动轨迹为以EF 为直径的半圆上,取EF 的中点O ,连接OC ,点O即为半圆的圆心,当O 、M 、C 共线时,CM 最小,如图所示,CM 最小为CM 1的长,,等腰直角∆ABC 中,斜边 AB 的长度为 8,,AC =BC AB =,EF =12AC =FC =12BC =,OM 1=OF =12EF根据勾股定理可得OC =,CM 1=OC -OM 1即CM ,选C .巩固5.如图,抛物线2119y x =-与x 轴交于A B ,两点,D 是以点()0,4C 为圆心,1为半径的圆上的动点,E 是线段AD 的中点,连接,OE BD ,则线段OE 的最小值是( )A .2B .2C .52D .3 【解析】∵2119y x =-,∵当0y =时,21019x =-,解得:=3x ±, ∵A 点与B 点坐标分别为:(3-,0),(3,0),即:AO =BO =3,∵O 点为AB 的中点,又∵圆心C 坐标为(0,4),∵OC =4,∵BC 长度5=,∵O 点为AB 的中点,E 点为AD 的中点,∵OE 为∵ABD 的中位线,即:OE =12BD , ∵D 点是圆上的动点,由图可知,BD 最小值即为BC 长减去圆的半径,∵BD 的最小值为4,∵OE =12BD =2,即OE 的最小值为2,选A . 专题2 单线段最值之双动点型技法1借助等量代换实现转化例题1.如图,ABC ∆中,90B ︒∠=,4AB =,3BC =,点D 是AC 上的任意一点,过点D 作DE AB ⊥于点E ,DF BC ⊥于点F ,连接EF ,则EF 的最小值是_________.【解析】连接BD ,90,B DE AB DF BC ︒∠=⊥⊥,∴四边形BEDF 是矩形。
2019年中考数学一轮复习 第八章 专题拓展 8.3 几何最值问题课件真题考点复习解析

.
答案 2-1
解析 延长CB至L,使BL=DN, 则Rt△ABL≌Rt△ADN,故AL=AN, ∵CM+CN+MN=2,CD+CB=CM+CN+DN+MB=1+1=2, ∴MN=DN+MB,又DN=BL,∴MN=BL+BM=ML,
AN AL,
在△AMN和△AML中,
A
M
∴ △A MA,MN≌△AML,
AB OA
∴ 4 =C D ,∴CD=1 6 .
54
5
∴S△PAB的最大值= 1
2
×5× 1 6
5
=1
,故2 1 选C.
2
2.(2016山东东营,14,3分)如图,在Rt△ABC中,∠B=90°,AB=4,BC>AB,点D在BC上,以AC为对角
线的所有平行四边形ADCE中,DE的最小值是
.
答案 4 解析 ∵四边形ADCE是平行四边形,∴AE∥DC.易知当DE⊥BC时,DE最短,此时DE=AB=4.
腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,设旋转角为α(0°<α≤180°),记直线BD1与CE
1的交点为P.
(1)如图1,当α=90°时,线段BD1的长等于
,线段CE1的长等于
;(直接填写结果)
(2)如图2,当α=135°时,求证:BD1=CE1,且BD1⊥CE1;
(3)①设BC的中点为M,则线段PM的长为
∴z≥2 -2,当且仅当x=y=2- 时等号成立,
2
2
此时S△AMN=S△AML=
1 2
ML·AB=1
2
z.
因此,当z=2 2-2,x=y=2- 时2 ,S△AMN取到最小值 -1.2
2019年中考数学复习 动点最值问题压轴题 考点突破训练(有答案)

2019年中考数学复习 动点、最值问题压轴题考点突破训练一、选择题1. 如图,已知菱形ABCD 的周长为16,面积为83,E 为AB 的中点,若P 为对角线BD 上一动点,则EP +AP 的最小值为( )A .2 3B .2 5C . 3D . 52. 如图,直线y =23x +4与x 轴,y 轴分别交于点A 和点B ,点C ,D 分别为线段AB ,OB的中点,点P 为OA 上一动点,当PC +PD 值最小时,点P 的坐标为( ) A .(-3,0) B .(-6,0)C.(-32,0) D .(-52,0)3. 如图,在Rt △ABC 中,∠C =90°,AC =6 cm ,BC =2 cm ,点P 在边AC 上,从点A 向点C 移动,点Q 在边CB 上,从点C 向点B 移动.若点P ,Q 均以1 cm/s 的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ ,则线段PQ 的最小值是( ) A .20 cm B .18 cm C .2 5 cm D .3 2 cm4. 已知抛物线y =14x 2+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x轴的距离始终相等,如图,点M 的坐标为(3,3),P 是抛物线y =14x 2+1上一个动点,则△PMF 周长的最小值是( ) A .3 B .4 C .5 D .65. 如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,AD 平分∠CAB ,交BC 于D 点,E ,F 分别是AD ,AC 上的动点,则CE +EF 的最小值为( ) A.403 B.154 C.245D .66. 如图,点A(a ,3),B(b ,1)都在双曲线y =3x 上,点C ,D 分别是x 轴,y 轴上的动点,则四边形ABCD 周长的最小值为( ) A .5 2 B .6 2 C .210+2 2 D .8 27. 如图,在△ABC 中,∠C =90°,AB =10cm ,BC =8cm ,点P 从点A 沿AC 向点C 以1 cm/s 的速度运动,同时点Q 从点C 沿CB 向点B 以2 cm/s 的速度运动(点Q 运动到点B 停止),求在运动过程中,四边形PABQ 的面积最小值为( )A .19 cm 2B .16 cm 2C .15 cm 2D .12 cm 2二、填空题8. 如图,△ABC 为等边三角形,AB =2.若P 为△ABC 内一动点,且满足∠PAB =∠ACP ,则线段PB 长度的最小值为______________.9. 如图,在△AOB 中,∠O =90°,AO =8 cm ,BO =6 cm ,点C 从A 点出发,在边AO 上以2 cm/s 的速度向O 点运动,与此同时,点D 从点B 出发,在边BO 上以1.5 cm/s 的速度向O 点运动,过OC 的中点E 作CD 的垂线EF ,则当点C 运动了__________s 时,以C 点为圆心,1.5 cm 为半径的圆与直线EF 相切.10. 如图,在Rt △ABC 中,BC =2,∠BAC =30°,斜边AB 的两个端点分别在相互垂直的射线OM ,ON 上滑动,下列结论:①若C ,O 两点关于AB 对称,则OA =23; ②C ,O 两点距离的最大值为4; ③若AB 平分CO ,则AB ⊥CO ; ④斜边AB 的中点D 运动路径的长为π2;其中正确的是______________.(填序号)11. 如图,在平面直角坐标系中,已知点A,B的坐标分别为(8,0),(0,23),C是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D出发,沿DC向点C匀速运动,过点P作x轴的垂线,垂足为E,连接BP,EC.当BP所在直线与EC所在直线第一次垂直时,点P的坐标为________________.12. 如图,在△ABC中,AB=BC=8,AO=BO,点M是射线CO上的一个动点,∠AOC =60°,则当△ABM为直角三角形时,AM的长为_____________________.13. 如图,将直线y=-x沿y轴向下平移后的直线恰好经过点A(2,-4),且与y轴交于点B,在x轴上存在一点P使得PA+PB的值最小,则点P的坐标为________________.14. 在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P,Q也随之移动.若限定点P,Q 分别在AB,AD边上移动,则点A′在BC边上可移动的最大距离为________.三、解答题15. 在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,求PF2+PG2的最小值。
中考数学专题复习-例说线段的最值问题 (共62张)

MA MD 1 AD 1,FDM 60. 2
A
N
B
解答过程:
F M D 3 0 , F D = 1 M D = 1 .
2
2
FM =MD cos30= 3 . 2
MC = FM 2+CF 2 = 7.
A 'C = M C M A ' = 7 1.
FD
C
M
A‘'
A
N
B
小结:
“关联三角形”的另外两条边尽可能长度已知(或 可求),再利用三角形三边关系求解,线段取得最值时 ,“关联三角形”不存在(三顶点共线).
解答过程:
连接OC交e O于点P,此时PC最小. 在RtBCO中, Q BC=4,OB=3, OC=5,PC=OC OP=2. 即PC最小值为2.
小结:
此道作业题构造“辅助圆”的突破口在于发现动点与 两定点连线的夹角为确定值;若点P在△ABC外部,则CP 长存在最大值;若∠APB为非直角时,则作△ABP的外接 圆,此时AB为非直径的弦.
'
2
2
2
在 R t C D D '中 ,
C D '= C D 2 D D '2 3 2 4 2 5 , 即 PC PD的 最 小 值 为 5.
小结:
1. 本题从形的角度得到点P的位置,再从数的角度计算 出点P的坐标,进而得到最小值.这正是体现了数形结合 的重要性.
典型例题2:
D
C
M
A‘'
,52
),B(4,m)两点,点P是线段AB上异于A,B的动点
,过点P作PC⊥x轴于点D,交抛物线于点C.
(1)求抛物线的表达式.
y
中考数学微专题4 几何最值问题

1.了解解决几何最值问题中的相关几何性质; 2.应用轨迹法、构图法、寻找隐圆等方法解决几何最值问 题.
几何最值问题多出现在中考填空或选择的最后一题,此类题 目涉及知识面广,对综合解题能力要求较高,能否抓准几何 特征,找到点的运动轨迹是解题关键.
解法总结:
①两定异侧,共线和最小(模型1) 当定点A与定点B在直线l的异侧,直线l上有一动点P,画出点P,使得 AP +PB 的值最小. L = AP+PB ≥ AB ,当A、P、B共线时 Lmin = AB 根据:①“两点之间线段最短”;②“三角形两边之和大于第三边”. ②两定同侧,共线差最大(模型2) 当定点A与定点B在直线l的同侧,直线l上有一动点P,画出点P,使得 |AP-PB|值最大. L = |AP-PB|≤AB ,当A、P、B共线时 Lmax= AB . 根据: “三角形两边之差小于第三边”.
2.如图,圆柱形玻璃杯,高为14 cm,底面周长为16 cm, 在杯内离杯底3 cm的点C处有一滴蜂蜜,此时一只蚂蚁 正好在外壁,离杯上沿4 cm与蜂蜜相对的点A处,则蚂 蚁到达蜂蜜的最短路程为__cm.
解:把图的半个侧面展开为矩形 EFGH,如下图所示: 作点 A 关于 EH 的对称点 A′,连接 A′C 交 EH 于 P,作 CD⊥EF 于 D,则 A′P =AP, A′E=AE=4,DF=CG=3,蚂蚁到达蜂蜜的最短路程为 AP+PC=A′P+PC= A′C, ∵EF=14, ∴DE=EF-DF=14-3=11, ∴A′D=A′E+DE=15, 又∵圆柱形玻璃杯底面周长为 16, ∴CD=8,
解:∵抛物线对称轴是线段CD的垂直平分线, ∴QC=QD, 由三角形的三边关系,|BQ-CQ|<CB, ∴点B、C、Q三点共线时,
中考数学几何复习---最值系列之胡不归问题

中考数学几何复习--最值系列之“胡不归”问题在前面的最值问题中往往都是求某个线段最值或者形如P A +PB 最值,除此之外我们还可能会遇上形如“P A +kPB ”这样的式子的最值,此类式子一般可以分为两类问题:(1)胡不归问题;(2)阿氏圆.本文简单介绍“胡不归”模型.【故事介绍】从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家.根据“两点之间线段最短”,虽然从他此刻位置A 到家B 之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭.邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?…”(“胡”同“何”)而如果先沿着驿道AC 先走一段,再走砂石地,会不会更早些到家?2驿道【模型建立】如图,一动点P 在直线MN 外的运动速度为V 1,在直线MN 上运动的速度为V 2,且V 1<V 2,A 、B 为定点,点C 在直线MN 上,确定点C 的位置使21AC BCV V +的值最小.2M【问题分析】121121=V AC BC BC AC V V V V ⎛⎫++ ⎪⎝⎭,记12V k V =, 即求BC +kAC 的最小值.【问题解决】构造射线AD使得sin∠DAN=k,CH/AC=k,CH=kAC.M将问题转化为求BC+CH最小值,过B点作BH⊥AD交MN于点C,交AD于H点,此时BC+CH取到最小值,即BC+kAC最小.M【模型总结】在求形如“P A+kPB”的式子的最值问题中,关键是构造与kPB相等的线段,将“P A+kPB”型问题转化为“P A+PC”型.而这里的PB必须是一条方向不变的线段,方能构造定角利用三角函数得到kPB的等线段.【长沙中考】如图,△ABC 中,AB =AC =10,tan A =2,BE ⊥AC 于点E ,D 是线段BE 上的一个动点,则CD 的最小值是_______.ABCDE【分析】本题关键在于处理”,考虑tan A =2,△ABE三边之比为1:2sin ∠,故作DH ⊥AB 交AB 于H点,则DH =. HEDCBAABCDEH问题转化为CD +DH 最小值,故C 、D 、H共线时值最小,此时CD DH CH BE +===.【小结】本题简单在于题目已经将BA 线作出来,只需分析角度的三角函数值,作出垂线DH ,即可解决问题,若稍作改变,将图形改造如下:EDCB则需自行构造α,如下图,这一步正是解决“胡不归”问题关键所在.αsin α5HEDC BAEDCB【南通中考】如图,平行四边形ABCD 中,∠DAB =60°,AB =6,BC =2,P 为边CD 上的一动点,则PB 的最小值等于________.ABCDP【分析】考虑如何构造”,已知∠A =60°,且sin60°,故延长AD ,作PH ⊥AD 延长线于H 点,即可得PH =,将问题转化为:求PB +PH 最小值. M HPDCBA当B 、P 、H 三点共线时,可得PB +PH 取到最小值,即BH 的长,解直角△ABH 即可得BH 长.ABCDPH M【成都中考】如图,已知抛物线()()248ky x x =+-(k 为常数,且k >0)与x 轴从左至右依次交于A ,B 两点,与y 轴交于点C ,经过点B的直线y b =+与抛物线的另一交点为D . (1)若点D 的横坐标为-5,求抛物线的函数表达式;(2)在(1)的条件下,设F 为线段BD 上一点(不含端点),连接AF ,一动点M 从点A 出发,沿线段AF以每秒1个单位的速度运动到F ,再沿线段FD 以每秒2个单位的速度运动到D 后停止,当点F 的坐标是多少时,点M 在整个运动过程中用时最少?【分析】第一小问代点坐标,求解析式即可,此处我们直接写答案:A (y =+,D 点坐标为(-,故抛物线解析式为)()24y x x +-,化简为:2y =点M 运动的时间为12AF DF ⎛⎫+ ⎪⎝⎭,即求12AF DF ⎛⎫+ ⎪⎝⎭的最小值.接下来问题便是如何构造2DF,考虑BD 与x 轴夹角为30°,且DF 方向不变,故过点D 作DM ∥x 轴,过点F 作FH ⊥DM 交DM 于H 点,则任意位置均有FH =2DF. 当A 、F 、H 共线时取到最小值,根据A 、D 两点坐标可得结果.【重庆中考】抛物线2y x =x 轴交于点A ,B (点A 在点B 的左边),与y 轴交于点C .点P 是直线AC 上方抛物线上一点,PF ⊥x 轴于点F ,PF 与线段AC 交于点E ;将线段OB 沿x 轴左右平移,线段OB 的对应线段是O 1B 1,当12PE EC +的值最大时,求四边形PO 1B 1C 周长的最小值,并求出对应的点O 1的坐标.(为突出问题,删去了两个小问)【分析】根据抛物线解析式得A ()-、B )、C (,直线AC的解析式为:y =+知AC 与x 轴夹角为30°. 根据题意考虑,P 在何处时,PE +2EC取到最大值.过点E 作EH ⊥y 轴交y 轴于H 点,则∠CEH =30°,故CH =2EC,问题转化为PE +CH 何时取到最小值.考虑到PE 于CH并无公共端点,故用代数法计算,设2,P m ⎛- ⎝,则E m ⎛+ ⎝,H ⎛ ⎝,2PE =-,CH =,22=PE CH m +=+sin ABE ∠=当P点坐标为(-时,取到最小值,故确定P 、C 、求四边形面积最小值,运用将军饮马模型解题即可.。
2019中考数学专题复习(七) 函数与几何综合探究题

专题复习(七) 函数与几何综合探究题如图,对称轴为直线x =12的抛物线经过B(2,0),C(0,4)两点,抛物线与x 轴的另一交点为A.(1)求抛物线的解析式;【思路点拨】 已知对称轴,可设顶点式y =a(x -12)2+k ,然后将点B ,C 的坐标代入,解方程组即可得到抛物线的解析式.(一题多解)【答题示范】 解法一:∵抛物线的对称轴为直线x =12,∴设抛物线的解析式为y =a(x -12)2+k(a ≠0).∵抛物线经过点B(2,0),C(0,4), ∴⎩⎨⎧94a +k =0,14a +k =4,解得⎩⎪⎨⎪⎧a =-2,k =92.∴抛物线的解析式为y =-2(x -12)2+92,即y =-2x 2+2x +4.解法二:∵抛物线的对称轴为直线x =12,A ,B 两点关于直线x =12对称且B(2,0),∴A(-1,0).∴设抛物线的解析式为y =a(x +1)(x -2)(a ≠0). ∵抛物线经过点C(0,4), ∴-2a =4,解得a =-2.∴抛物线的解析式为y =-2(x +1)(x -2), 即y =-2x 2+2x +4.解法三:设抛物线的解析式为y =ax 2+bx +c(a ≠0). ∵抛物线的对称轴为直线x =12且经过点B(2,0),C(0,4),∴⎩⎪⎨⎪⎧-b 2a =12,4a +2b +c =0,c =4,解得⎩⎪⎨⎪⎧a =-2,b =2,c =4.∴抛物线的解析式为y =-2x 2+2x +4. 方法指导二次函数的解析式的确定:1.确定二次函数的解析式一般用待定系数法,由于二次函数解析式有三个待定系数a ,b ,c(a ,h ,k 或a ,x 1,x 2),因而确定二次函数的解析式需要已知三个独立的条件:(1)已知抛物线上任意三个点的坐标时,选用一般式,即y =ax 2+bx +c(a ≠0);(2)已知抛物线的顶点坐标和另外一点的坐标时,选用顶点式,即y =a(x -h)2+k(a ≠0);(3)已知抛物线与x 轴的两个交点(或横坐标x 1,x 2)时,选用交点式,即y =a(x -x 1)(x -x 2)(a ≠0). 2.用待定系数法求二次函数解析式的步骤: (1)设二次函数的解析式;(2)根据已知条件,得到关于待定系数的方程(组);(3)解方程(组),求出待定系数的值,从而写出函数的解析式.(2)若点P 为第一象限内抛物线上一点,设四边形COBP 的面积为S ,求S 的最大值;【思路点拨】 先设点P 的坐标,再利用割补法将四边形COBP 的面积表示成几个容易计算的图形面积的和差,然后根据二次函数的性质求最值.(一题多解)【答题示范】 解法一:如图1,连接BC ,过点P 作PF ⊥x 轴于点F ,交BC 于点E.图1设直线BC 的解析式为y =dx +t(d ≠0). ∵直线经过点B(2,0),C(0,4),∴⎩⎪⎨⎪⎧2d +t =0,t =4,解得⎩⎪⎨⎪⎧d =-2,t =4. ∴直线BC 的解析式为y =-2x +4. ∵P 为第一象限内抛物线上一点,设P 点坐标为(n ,-2n 2+2n +4)(0<n<2), 则E 点坐标为(n ,-2n +4).∴PE =PF -EF =|-2n 2+2n +4|-|-2n +4|=-2n 2+2n +4+2n -4=-2n 2+4n. ∵S △BPC =S △BPE +S △CPE =12PE·BF +12PE·OF =12PE·(BF +OF)=12PE·OB =-2n 2+4n.∴S =S △BPC +S △OCB =-2n 2+4n +4=-2(n -1)2+6.∴当n =1时,S 最大=6.解法二:①当点P 位于点C 下方时,如图2, 过点P 作PE ⊥y 轴于E.图2∵P 为第一象限内抛物线上一点, 设P 点坐标为(n ,-2n 2+2n +4), 则E 点坐标为(0,-2n 2+2n +4),∴PE =n ,CE =4+2n 2-2n -4=2n 2-2n. ∵S △PEC =12n(2n 2-2n)=n 3-n 2,S 四边形OBPE =12(n +2)(-2n 2+2n +4)=-n 3-n 2+4n +4,∴S =S △PEC +S 四边形OBPE =n 3-n 2-n 3-n 2+4n +4=-2n 2+4n +4=-2(n -1)2+6. ∴当n =1时,S 最大=6;②当点P 位于点C 上方时,过P′作P′H ⊥OB 于H.同①可设P′(m ,-2m 2+2m +4),则H(m ,0). ∴P′H =-2m 2+2m +4,BH =2-m. ∴S =S 四边形OCP ′H +S △P ′HB=12(4-2m 2+2m +4)·m +12(2-m )·(-2m 2+2m +4) =-2m 2+4m +4 =-2(m -1)2+6.∴当m =1时,S 最大 =6. 综上可知,S 的最大值为6. 方法指导1.探究面积最值的存在性:第(2)问是与抛物线有关的三角形或四边形,抛物线三角形就是三角形的三个顶点都在抛物线上,同样,抛物线四边形就是四边形的四个顶点都在抛物线上,要求三角形或四边形的面积的最大值或最小值.K解决这类问题的基本步骤:(1)首先要确定所求三角形或四边形面积最值,可设动点运动的时间t 或动点的坐标(t ,at 2+bt +c);(2)①求三角形面积最值时要用含t 的代数式表示出三角形的底和高,此时就应先证明涉及底和高的三角形与已知线段长度的三角形相似,从而求得用含t 的代数式表示的底和高;②求四边形的面积最值时,常用到的方法是利用割补法将四边形分成两个三角形,从而利用三角形的方法求得用含t的代数式表示的线段;(3)用含有未知数的代数式表示出图形的面积;(4)用二次函数的知识来求最大值或最小值.(如P206T1(3)、P206T2(2)、P208T3(2)2.探究面积等量关系的存在性问题:对于图形的运动产生的相等关系问题,解答时应认真审题,仔细研究图形,分析动点的运动状态及运动过程,解题过程的一般步骤:(1)弄清其取值范围,画出符合条件的图形;(2)确定其存在的情况有几种,然后分别求解,在求解计算中一般由函数关系式设出图形的动点坐标并结合作辅助线,画出所求面积为定值的三角形;(3)过动点作有关三角形的高或平行于x轴、y轴的辅助线,利用面积公式或三角形相似求出有关线段长度或面积的代数式,列方程求解,再根据实际问题确定方程的解是否符合题意,从而证得面积等量关系的存在性.(如P206T2(3))3.探究线段最值问题:无论是线段和的最小值或是周长的最小值,还有两条线段差的最大值等,解决这类问题最基本的定理就是“两点之间线段最短”,最常见的基本图形就是“将军饮马问题”,即已知一条直线和直线同旁的两个点,要在直线上找一点,使得这两个点与这点连接的线段之和最小,解决问题的方法就是通过轴对称作出对称点来解决.(如P203T1(3),P203T2(3),P208T1(2),P209T2(2)),(3)若M是线段BC上一动点,在x轴上是否存在这样的点Q,使△MQC为等腰三角形且△MQB为直角三角形?若存在,求出Q点坐标;若不存在,请说明理由.【思路点拨】在探究同时存在两个结论时,通常先假设一个结论成立,然后探究另一个结论是否也成立,方法一般也不唯一,详见解答中的一题多解.【答题示范】存在点Q,使△MQC为等腰三角形且△MQB为直角三角形.理由如下:分以下两种情况:图3 (ⅰ)解法一:如图3所示:当∠BQM=90°时,∵∠CMQ>90°,∴只能CM=MQ.由(2)的解法一得:直线BC的解析式为y=-2x+4.设M点坐标为(m,-2m+4)(0<m<2),则Q点坐标为(m,0),MQ=-2m+4,OQ=m,BQ=2-m. 在Rt△OBC中,BC=OB2+OC2=22+42=2 5.∵MQ∥OC,∴△BMQ∽△BCO.∴BMBC=BQBO,即BM25=2-m2.∴BM=25-5m.∴CM=BC-BM=25-(25-5m)=5m.∵CM=MQ,∴-2m+4=5m,m=45+2=45-8.∴Q(45-8,0).解法二:由(2)的解法一得:直线BC的解析式为y=-2x+4.设M(m,-2m+4)(0<m<2),则MQ=-2m+4,OQ=m,BQ=2-m.在Rt△OBC中,BC=OB2+OC2=2 5.在Rt△MBQ中,BM=MQ2+BQ2=(-2m+4)2+(2-m)2=5|m-2|=5(2-m)=25-5m. ∴CM=BC-BM=25-(25-5m)=5m.∵CM=MQ,∴-2m+4=5m,m=45+2=45-8.∴Q(45-8,0).解法三:如图4所示:当∠BQM=90°时,图4 ∵∠CMQ>90°,∴只能CM=MQ.由(2)的解法一得:直线BC的解析式为y=-2x+4.设M 点坐标为(m ,-2m +4)(0<m <2),过点M 作MD ⊥y 轴于点D , 则Q 点坐标为(m ,0),DM =m ,CD =4-(-2m +4)=2m ,BQ =2-m . 在Rt △CDM 中,CM =CD 2+DM 2=5m . ∴CM =MQ =5m . ∵tan ∠CBO =OCOB=2,∴tan ∠MBQ =MQ BQ =2,即5m2-m=2.∴m =45-8.∴Q (45-8,0).(ⅱ)解法一:如图5所示:当∠QMB =90°时,图5∵∠CMQ =90°, ∴只能CM =MQ .过点M 作MN ⊥x 轴于点N ,设M (m ,-2m +4)(0<m <2), 则ON =m ,MN =-2m +4,NB =2-m . 由(ⅰ)得:BM =25-5m ,CM =5m . ∵∠QBM =∠OBC ,∠QMB =∠COB =90°, ∴Rt △BOC ∽Rt △BMQ . ∴BO BM =OC MQ ,即225-5m =4MQ . ∴MQ =2(25-5m )=45-25m . ∵CM =MQ ,CM =5m , ∴5m =45-25m . ∴m =43.∴M (43,43).∵MN ⊥x 轴于点N ,MQ ⊥BC , ∠QMN +∠NMB =90°,∠NMB +∠NBM =90°, ∴∠QMN =∠MBN .又∵∠BNM =∠MNQ =90°, ∴Rt △BNM ∽Rt △MNQ . ∴BN MN =NMNQ ,即2-4343=43NQ. ∴NQ =83.∴OQ =NQ -ON =83-43=43.∴Q (-43,0).解法二:如图6所示:当∠QMB =90°时,图6∵∠CMQ =90°, ∴只能CM =MQ .设M 点坐标为(m ,-2m +4)(0<m <2). 在Rt △COB 和Rt △QMB 中, ∵tan ∠CBO =tan ∠MBQ =OC OB =42=2,又∵tan ∠MBQ =MQBM,由(ⅰ)知BM =25-5m ,MQ =CM =5m . ∴tan ∠MBQ =MQ BM =5m25-5m =2.∴5m =45-25m . ∴m =43.∴M (43,43).此时,BM =25-5m =235,MQ =43 5.∴BQ =BM 2+MQ 2=1009=103. ∴OQ =BQ -OB =103-2=43.∴Q (-43,0).综上所述,满足条件的点Q 的坐标为(45-8,0)或(-43,0).方法指导1.在解答直角三角形的存在性问题时,具体方法如下: (1)先假设结论成立,根据直角顶点的不确定性,分情况讨论;(2)找点:当所给定长未说明是直角三角形的斜边还是直角边时,需分情况讨论,具体方法如下:①当定长为直角三角形的直角边时,分别以定长的某一端点作定长的垂线,与坐标轴或抛物线有交点时,此交点即为符合条件的点;②当定长为直角三角形的斜边时,以此定长为直径作圆,圆弧与所求点满足条件的坐标轴或抛物线有交点时,此交点即为符合条件的点;(3)计算:把图形中的点坐标用含有自变量的代数式表示出来,从而表示出三角形的各边(表示线段时,还要注意代数式的符号),再利用相似三角形的性质得出比例式,或者利用勾股定理进行计算,或者利用三角函数建立方程求点的坐标.(如P207T2(2)②)2.除了探究直角三角形外,还常常探究等腰三角形的存在性,这个和直角三角形的方法类似:(1)假设结论成立;(2)找点:当所给定长未说明是等腰三角形的底还是腰时,需分情况讨论,具体方法如下:①当定长为腰时,找已知直线或抛物线上满足条件的点时,以定长的某一端点为圆心,以定长为半径画弧,若所画弧与坐标轴或抛物线有交点且交点不是定长的另一端点时,交点即为符合条件的点;②当定长为底边时,根据尺规作图作出定长的垂直平分线,若作出的垂直平分线与坐标轴或抛物线有交点,则交点即为所求的点,若作出的垂直平分线与坐标轴或抛物线无交点,则满足条件的点不存在;以上方法即可找出所有符合条件的点;(3)计算:在求点的坐标时,大多时候利用相似三角形求解,如果图形中没有相似三角形,可以通过添加辅助线构造直角三角形,有时也可利用直角三角形的性质进行求解.(如P207T1(3),P208T3(3))如图,直线y=2x+2与x轴交于点A,与y轴交于点B,把△AOB沿y轴翻折,点A落到点C,过点B的抛物线y=-x2+bx+c与直线BC交于点D(3,-4).(1)求直线BD和抛物线的解析式;【思路点拨】由直线y=2x+2可求出B点的坐标,把B,D两点代入y=-x2+bx+c中即可求出抛物线解析式,由B,D两点可求出直线BD的解析式.【答题示范】 ∵y =2x +2, ∴当x =0时,y =2. ∴B (0,2).∵当y =0时,x =-1, ∴A (-1,0).∵抛物线y =-x 2+bx +c 过点B (0,2),D (3,-4),∴⎩⎪⎨⎪⎧2=c ,-4=-9+3b +c .解得⎩⎪⎨⎪⎧b =1,c =2. ∴抛物线的解析式为y =-x 2+x +2.设直线BD 的解析式为y =kx +m ,由题意,得⎩⎪⎨⎪⎧m =2,-4=3k +m ,解得⎩⎪⎨⎪⎧k =-2,m =2. ∴直线BD 的解析式为y =-2x +2.(2)在第一象限内的抛物线上,是否存在点M ,作MN 垂直于x 轴,垂足为点N ,使得以M ,O ,N 为顶点的三角形与△BOC 相似?若存在,求出点M 的坐标;若不存在,请说明理由;【思路点拨】 与△BOC 相似的△MON ,只有两个直角顶点可以确定对应,所以要分两种情况讨论,再利用△MON 的两条直角边长恰好是点M 的坐标,与△BOC 的两直角边对应成比例,便可列出方程,求解即可,注意是否符合条件.【答题示范】 存在.由(1)知C (1,0),设M (a ,-a 2+a +2). ∵MN ⊥x 轴,∴∠BOC =∠MNO =90°,即点O 与点N 对应,可分两种情况讨论: ①如图1,当△BOC ∽△MNO 时,BO MN =OC NO .∴2-a 2+a +2=1a,解得a 1=1,a 2=-2(舍).∴M (1,2);②如图2,当△BOC ∽△ONM 时,BO ON =OCNM.∴2a =1-a 2+a +2,解得a 1=1+334,a 2=1-334(舍). ∴M (1+334,1+338).∴符合条件的点M 的坐标为(1,2)或(1+334,1+338).,方法指导探究三角形相似的存在性问题的一般思路:解答三角形相似的存在性问题时,要具备分类讨论的思想以及数形结合思想,要先找出三角形相似的分类标准,一般涉及动态问题要以静制动,动中求静,具体如下:(1)假设结论成立,分情况讨论.探究三角形相似时,往往没有明确指出两个三角形的对应顶点(尤其是以文字形式出现让证明两个三角形相似的题目),或者涉及动点问题,因动点问题中点的位置不确定,此时应考虑不同的对应关系,分情况讨论;(2)确定分类标准:在分类时,先要找出分类的标准,看两个相似三角形是否有对应相等的角,若有,找出对应相等的角后,再根据其他角进行分类讨论来确定相似三角形成立的条件;若没有,则分别按三种角对应来分类讨论;(3)建立关系式,并计算.由相似三角形列出相应的比例式,将比例式中的线段用所设点的坐标表示出来(其长度多借助勾股定理运算),整理可得一元一次方程或者一元二次方程,解方程可得字母的值,再通过计算得出相应的点的坐标.(如P208T(3)①,P210T1(2))(3)在直线BD 上方的抛物线上有一动点P ,过点P 作PH 垂直于x 轴,交直线BD 于点H ,是否存在点P ,使四边形BOHP 是平行四边形,若存在,求出点P 的坐标;若不存在,请说明理由.【思路点拨】 点P 在抛物线上,可设出点P 的坐标,从而可表示出点H 的坐标,因为作PH ⊥x 轴,所以可得PH ∥OB .要证四边形BOHP 是平行四边形,只需证PH =OB ,再利用PH 的长可列方程求出P 点的坐标.【答题示范】 存在.设P (t ,-t 2+t +2),H (t ,-2t +2).如图3, ∵四边形BOHP 是平行四边形, ∴BO =PH =2.∵PH=-t2+t+2+2t-2=-t2+3t.∴2=-t2+3t,解得t1=1,t2=2.当t=1时,P(1,2);当t=2时,P(2,0).∴存在点P(1,2)或(2,0),使四边形BOHP为平行四边形.方法指导在解答平行四边形的存在性问题时,具体方法如下:(1)假设结论成立;(2)探究平行四边形通常有两类,一类是已知两定点去求未知点的坐标,一类是已知给定的三点去求未知点的坐标.第一类,以两定点连线所成的线段作为要探究平行四边形的边或对角线,画出符合题意的平行四边形;第二类,分别以已知三个定点中的任意两个定点确定的线段为探究平行四边形的边或对角线,画出符合题意的平行四边形;(3)建立关系式,并计算.根据以上分类方法画出所有符合条件的图形后,可以利用平行四边形的性质进行计算,也可利用全等三角形、相似三角形或直角三角形的性质进行计算,要具体情况具体分析,有时也可以利用直线的解析式联立方程组,由方程组的解为交点坐标求解.(如P208T1(3))类型1探究线段最值问题1.(2018·永州)如图1,抛物线的顶点A的坐标为(1,4),抛物线与x轴相交于B,C两点,与y轴交于点E(0,3).(1)求抛物线的表达式;(2)已知点F(0,-3),在抛物线的对称轴上是否存在一点G,使得EG+FG最小,如果存在,求出点G的坐标;如果不存在,请说明理由;(3)如图2,连接AB,若点P是线段OE上的一动点,过点P作线段AB的垂线,分别与线段AB.抛物线相交于点M,N(点M,N都在抛物线对称轴的右侧),当MN最大时,求△PON的面积.图1图2解:(1)设抛物线的表达式为y=a(x-1)2+4,把(0,3)代入,得3=a(0-1)2+4,解得a=-1.∴抛物线的表达式为y=-(x-1)2+4=-x2+2x+3.(2)存在.作点E关于对称轴的对称点E′,连接E′F交对称轴于G,此时EG+FG的值最小.∵E(0,3),抛物线对称轴为直线x=1,∴E′(2,3).易得直线E′F的解析式为y=3x-3.当x=1时,y=3×1-3=0.∴G(1,0).(3)∵A(1,4),B(3,0),易得直线AB的解析式为y=-2x+6.过点N作NH⊥x轴于点H,交AB于点Q,设N(m,-m2+2m+3),则Q(m,-2m+6)(1≤m≤3).∴NQ=(-m2+2m+3)-(-2m+6)=-m2+4m-3.∵AD∥NH,∴∠DAB=∠NQM.∵∠ADB=∠QMN=90°,∴△QMN∽△ADB.∴QNMN=ABDB.∴-m2+4m-3MN=252.∴MN=-55(m-2)2+55.∵-55<0,∴当m=2时,MN有最大值.过点N作NG⊥y轴于点G,∵∠GPN=∠ABD,∠NGP=∠ADB=90°,∴△NGP∽△ADB.∴PGNG=BDAD=24=12.∴PG=12NG=12m.∴OP =OG -PG =-m 2+2m +3-12m =-m 2+32m +3.∴S △PON =12OP·GN =12(-m 2+32m +3)·m.当m =2时,S △PON =12×2(-4+3+3)=2.2.(2018·柳州)如图,抛物线y =ax 2+bx +c 与x 轴交于A(3,0),B 两点(点B 在点A 的左侧),与y 轴交于点C ,且OB =3OA =3OC ,∠OAC 的平分线AD 交y 轴于点D ,过点A 且垂直于AD 的直线l 交y 轴于点E ,点P 是x 轴下方抛物线上的一个动点,过点P 作PF ⊥x 轴,垂足为F ,交直线AD 于点H.(1)求抛物线的解析式;(2)设点P 的横坐标为m ,当FH =HP 时,求m 的值;(3)当直线PF 为抛物线的对称轴时,以点H 为圆心,12HC 为半径作⊙H ,点Q 为⊙H 上的一个动点,求14AQ +EQ 的最小值.解:(1)由题意,得A(3,0),B(-33,0),C(0,-3),设抛物线的解析式为y =a(x +33)(x -3), 把C(0,-3)代入得到a =13,∴抛物线的解析式为y =13x 2+233x -3.(2)在Rt △AOC 中,tan ∠OAC =OCOA=3, ∴∠OAC =60°.∵AD 平分∠OAC ,∴∠OAD =30°. ∴OD =OA·tan 30°=1.∴D(0,-1). ∴直线AD 的解析式为y =33x -1. 由题意,得P(m ,13m 2+233m -3),H(m ,33m -1),F(m ,0).∵FH =PH ,∴1-33m =33m -1-(13m 2+233m -3),解得m =-3或3(舍去). ∴当FH =HP 时,m 的值为- 3.(3)如图,∵PF 是对称轴,∴F(-3,0),H(-3,-2). ∵AH ⊥AE ,∴∠EAO =60°.EA =2OA =2 3. ∵C(0,-3),∴HC =(3)2+12=2,AH =2FH =4. ∴QH =12CH =1.在HA 上取一点K ,使得HK =14.AK =AH -HK =154. ∵HQ 2=1,HK·HA =1, ∴HQ 2=HK·HA ,可得△QHK ∽△AHQ. ∴KQ QA =HQ HA =14,即KQ =14AQ. ∴14AQ +QE =KQ +EQ. ∴当E ,Q ,K 共线时,14AQ +QE 的值最小,最小值为EK =AE 2+AK 2=(23)2+(154)2=4174.类型2 探究角度问题1.(2018·莱芜)如图,抛物线y =ax 2+bx +c 经过A(-1,0),B(4,0),C(0,3)三点,D 为直线BC 上方抛物线上一动点,DE ⊥BC 于点E.(1)求抛物线的函数表达式;(2)如图1,求线段DE 长度的最大值;(3)如图2,设AB 的中点为F ,连接CD ,CF ,是否存在点D,使得△CDE 中有一个角与∠CFO 相等?若存在,求点D 的横坐标;若不存在,请说明理由.图1 图2解:(1)由题意,得⎩⎪⎨⎪⎧a -b +c =0,16a +4b +c =0,c =3,解得⎩⎪⎨⎪⎧a =-34,b =94,c =3.∴抛物线的函数表达式为y =-34x 2+94x +3.(2)设直线BC 的解析式为y =kx +b ,由题意,得⎩⎪⎨⎪⎧4k +b =0,b =3,解得⎩⎪⎨⎪⎧k =-34,b =3.∴y =-34x +3.设D(a ,-34a 2+94a +3)(0<a <4),过点D 作DM ⊥x 轴交BC 于点M ,则M(a ,-34a +3),DM =(-34a 2+94a +3)-(-34a +3)=-34a 2+3a.∵∠DME =∠OCB ,∠DEM =∠BOC , ∴△DEM ∽△BOC.∴DE DM =BOBC.∵OB =4,OC =3,∴BC =5.∴DE =45DM.∴DE =-35a 2+125a =-35(a -2)2+125.∴当a =2时,DE 取最大值,最大值是125.(3)假设存在这样的点D ,使得△CDE 中有一个角与∠CFO 相等. ∵点F 为AB 的中点, ∴OF =32,tan ∠CFO =OCOF=2.过点B 作BG ⊥BC ,交CD 的延长线于点G ,过点G 作GH ⊥x 轴,垂足为H ,①若∠DCE =∠CFO ,∴tan ∠DCE =GBBC =2.∴BG =10.∵△GBH ∽BCO ,∴GH BO =HB OC =GBBC .∴GH =8,BH =6.∴G(10,8). 设直线CG 的解析式为y =k 1x +b 1,∴⎩⎪⎨⎪⎧b 1=3,10k 1+b 1=8,解得⎩⎪⎨⎪⎧k 1=12,b 1=3. ∴直线CG 的解析式为y =12x +3.∴⎩⎨⎧y =12x +3,y =-34x 2+94x +3,解得x =73或x =0(舍).②若∠CDE =∠CFO ,同理可得,BG =52,GH =2,BH =32,∴G(112,2).同理可得,直线CG 的解析式为y =-211x +3.∴⎩⎨⎧y =-211x +3,y =-34x 2+94x +3,解得x =10733或x =0(舍).综上所述,存在点D ,使得△CDE 中有一个角与∠CFO 相等,点D 的横坐标为73或10733.2.(2018·扬州)如图1,四边形OABC 是矩形,点A 的坐标为(3,0),点C 的坐标为(0,6),点P 从点O 出发,沿OA 以每秒1个单位长度的速度向点A 出发,同时点Q 从点A 出发,沿AB 以每秒2个单位长度的速度向点B 运动,当点P 与点A 重合时运动停止.设运动时间为t 秒.(1)当t =2时,线段PQ 的中点坐标为(52,2);(2)当△CBQ 与△PAQ 相似时,求t 的值;(3)当t =1时,抛物线y =x 2+bx +c 经过P ,Q 两点,与y 轴交于点M ,抛物线的顶点为K ,如图2所示,问该抛物线上是否存在点D ,使∠MQD =12∠MKQ ?若存在,求出所有满足条件的D 的坐标;若不存在,说明理由.图1 图2解:(2)如图1,∵当点P 与点A 重合时运动停止,且△PAQ 可以构成三角形,∴0<t <3. ∵四边形OABC 是矩形,∴∠B =∠PAQ =90°. ∴当△CBQ 与△PAQ 相似时,存在两种情况: ①当△PAQ ∽△QBC 时,PA AQ =QBBC .∴3-t 2t =6-2t 3.解得t 1=3(舍),t 2=34. ②当△PAQ ∽△CBQ 时,PA AQ =CB BQ .∴3-t 2t =36-2t .解得t =9±352. ∵0<t <3,∴x =9+352不符合题意,舍去.综上所述,当△CBQ 与△PAQ 相似时,t 的值是34或9-352.(3)当t =1时,P(1,0),Q(3,2),把P(1,0),Q(3,2)代入抛物线y =x 2+bx +c 中,得⎩⎪⎨⎪⎧1+b +c =0,9+3b +c =2,解得⎩⎪⎨⎪⎧b =-3,c =2. ∴抛物线解析式y =x 2-3x +2=(x -32)2-14.∴顶点K(32,-14).∵Q(3,2),M(0,2),∴MQ ∥x 轴.作抛物线对称轴,交MQ 于点E , ∴KM =KQ ,KE ⊥MQ. ∴∠MKE =∠QKE =12∠MKQ.如图2,∠MQD =12∠MKQ =∠QKE.设DQ 交y 轴于点H. ∵∠HMQ =∠QEK =90°,∴△KEQ ∽△QMH. ∴KE EQ =QM MH .∴2+1432=3MH. ∴MH =2.∴H(0,4).易得HQ 的解析式为y =-23x +4.则⎩⎪⎨⎪⎧y =-23x +4,y =x 2-3x +2,解得x 1=3(舍),x 2=-23.∴D(-23,409).同理,在M 的下方,y 轴上存在点H ,如图3,使∠HQM =12∠MKQ =∠QKE ,图3由对称性得,H(0,0),易得OQ 的解析式为y =23x.则⎩⎪⎨⎪⎧y =23x ,y =x 2-3x +2,解得x 1=3(舍),x 2=23.∴D(23,49).综上所述,点D 的坐标为(-23,409)或(23,49).类型3 探究面积问题1.(2018·菏泽)如图,在平面直角坐标系中,抛物线y =ax 2+bx -5交y 轴于点A ,交x 轴于点B(-5,0)和点C(1,0),过点A 作AD ∥x 轴交抛物线于点D.(1)求此抛物线的表达式;(2)点E 是抛物线上一点,且点E 关于x 轴的对称点在直线AD 上,求△EAD 的面积;(3)若点P 是直线AB 下方的抛物线上一动点,当点P 运动到某一位置时,△ABP 的面积最大,求出此时点P 的坐标和△ABP 的最大面积.解:(1)∵抛物线y =ax 2+bx -5交x 轴于点B(-5,0)和点C(1,0),∴⎩⎪⎨⎪⎧25a -5b -5=0.a +b -5=0, 解得⎩⎪⎨⎪⎧a =1,b =4.∴此抛物线的表达式是y =x 2+4x -5.(2)∵抛物线y =x 2+4x -5交y 轴于点A , ∴点A 的坐标为(0,-5).∵AD ∥x 轴,点E 是抛物线上一点,且点E 关于x 轴的对称点在直线AD 上, ∴点E 的纵坐标是5,点E 到AD 的距离是10. 当y =-5时,-5=x 2+4x -5,得x =0或x =-4. ∴点D 的坐标为(-4,-5).∴AD =4. ∴S △EAD =4×102=20.(3)设点P 的坐标为(p ,p 2+4p -5),设直线AB 的函数解析式为y =mx +n ,由题意,得⎩⎪⎨⎪⎧n =-5,-5m +n =0,解得⎩⎪⎨⎪⎧m =-1,n =-5. 即直线AB 的函数解析式为y =-x -5. 当x =p 时,y =-p -5.∵OB =5,∴S △ABP =(-p -5)-(p 2+4p -5)2·5=52[-(p +52)2+254].∵点P 是直线AB 下方的抛物线上一动点, ∴-5<p <0.∴当p =-52时,S 取得最大值,此时S =1258,点P 的坐标是(-52,-354).即点P 的坐标是(-52,-354)时,△ABP 的面积最大,此时△ABP 的面积是1258.2.(2018·内江)如图,已知抛物线y =ax 2+bx -3与x 轴交于点A(-3,0)和点B(1,0),交y 轴于点C ,过点C 作CD ∥x 轴,交抛物线于点D.(1)求抛物线的解析式;(2)若直线y =m(-3<m <0)与线段AD ,BD 分别交于G ,H 两点,过点G 作EG ⊥x 轴于点E ,过点H 作HF ⊥x 轴于点F ,求矩形GEFH 的最大面积;(3)若直线y =kx +1将四边形ABCD 分成左、右两个部分,面积分别为S 1,S 2,且S 1∶S 2=4∶5,求k 的值.备用图 解:(1)∵抛物线y =ax 2+bx -3与x 轴交于点A(-3,0)和点B(1,0),∴⎩⎪⎨⎪⎧9a -3b -3=0,a +b -3=0,解得⎩⎪⎨⎪⎧a =1,b =2. ∴抛物线的解析式为y =x 2+2x -3.(2)由(1)知,抛物线的解析式为y =x 2+2x -3, ∴C(0,-3).由x 2+2x -3=-3,得x =0或x =-2. ∴D(-2,-3).∵A(-3,0)和点B(1,0),∴直线AD 的解析式为y =-3x -9,直线BD 的解析式为y =x -1. ∵直线y =m(-3<m <0)与线段AD ,BD 分别交于G ,H 两点, ∴G(-13m -3,m),H(m +1,m).∴GH =m +1-(-13m -3)=43m +4.∴S 矩形GEFH =-m(43m +4)=-43(m 2+3m)=-43(m +32)2+3.∴当m =-32时,矩形GEFH 有最大面积为3.(3)∵A(-3,0),B(1,0),∴AB =4.∵C(0,-3),D(-2,-3),∴CD =2. ∴S 四边形ABCD =12×3×(4+2)=9.∵S 1∶S 2=4∶5,∴S 1=4.设直线y =kx +1与线段AB 相交于点M ,与线段CD 相交于点N , ∴M(-1k ,0),N(-4k ,-3).∴AM =-1k +3,DN =-4k +2.∴S 1=12(-1k +3-4k +2)×3=4.∴k =157.类型4 探究特殊三角形的存在性问题1.(2018·赤峰)已知抛物线y =-12x 2-32x 的图象如图所示:(1)将该抛物线向上平移2个单位长度,分别交x 轴于A ,B 两点,交y 轴于点C ,则平移后的解析式为y =-12x 2-32x +2;(2)判断△ABC 的形状,并说明理由;(3)在抛物线对称轴上是否存在一点P ,使得以A ,C ,P 为顶点的三角形是等腰三角形?若存在,求出点P 的坐标;若不存在,说明理由.解:(2)当y =0时,-12x 2-32x +2=0,解得x 1=-4,x 2=1,即B(-4,0),A(1,0).当x =0时,y =2,即C(0,2).AB =1-(-4)=5,AB 2=25,AC 2=(1-0)2+(0-2)2=5,BC 2=(-4-0)2+(0-2)2=20, ∵AC 2+BC 2=AB 2,∴△ABC 是直角三角形.(3)y =-12x 2-32x +2的对称轴是直线x =-32,设P(-32,n),AP 2=(1+32)2+n 2=254+n 2,CP 2=94+(2-n)2,AC 2=12+22=5,当AP =AC 时,AP 2=AC 2,254+n 2=5,方程无解; 当AP =CP 时,AP 2=CP 2,254+n 2=94+(2-n)2,解得n =0,即P 1(-32,0). 当AC =CP 时AC 2=CP 2,94+(2-n)2=5,解得n 1=2+112,n 2=2-112,P 2(-32,2+112),P 3(-32,2-112).综上所述:使得以A ,C ,P 为顶点的三角形是等腰三角形,点P 的坐标(-32,0),(-32,2+112),(-32,2-112).2.(2018·临沂)如图,在平面直角坐标系中,∠ACB =90°,OC =2OB ,tan ∠ABC =2,点B 的坐标为(1,0).抛物线y =-x 2+bx +c 经过A ,B 两点.(1)求抛物线的解析式;(2)点P 是直线AB 上方抛物线上的一点,过点P 作PD 垂直x 轴于点D ,交线段AB 于点E ,使PE =12DE.①求点P 的坐标;②在直线PD 上是否存在点M ,使△ABM 为直角三角形?若存在,求出符合条件的所有点M 的坐标;若不存在,请说明理由.解:(1)∵B(1,0), ∴OB =1.∵OC =2OB =2, ∴C(-2,0).在Rt △ABC 中,tan ∠ABC =2, ∴ACBC=2.∴AC =6.∴A(-2,6). 把A(-2,6)和B(1,0)代入y =-x 2+bx +c ,得⎩⎪⎨⎪⎧-4-2b +c =6,-1+b +c =0,解得⎩⎪⎨⎪⎧b =-3,c =4. ∴抛物线的解析式为y =-x 2-3x +4.(2)①∵A(-2,6),B(1,0),易得AB 的解析式为y =-2x +2. 设P(x ,-x 2-3x +4),则E(x ,-2x +2).∵PE =12DE ,∴-x 2-3x +4-(-2x +2)=12(-2x +2),解得x =1(舍)或-1.∴P(-1,6).②∵M 在直线PD 上,且P(-1,6),设M(-1,y), ∴AM 2=(-1+2)2+(y -6)2=1+(y -6)2. BM 2=(1+1)2+y 2=4+y 2. AB 2=(1+2)2+62=45. 分三种情况: i)当∠AMB =90°时,有AM 2+BM 2=AB 2, ∴1+(y -6)2+4+y 2=45,解得y =3±11. ∴M(-1,3+11)或(-1,3-11). ii)当∠ABM =90°时,有AB 2+BM 2=AM 2, ∴45+4+y 2=1+(y -6)2,解得y =-1. ∴M(-1,-1). iii)当∠BAM =90°时,有AM 2+AB 2=BM 2, ∴1+(y -6)2+45=4+y 2,解得y =132. ∴M(-1,132).综上所述,点M 的坐标为(-1,3+11)或(-1,3-11)或(-1,-1)或(-1,132).3.(2018·眉山)如图1,已知抛物线y =ax 2+bx +c 的图象经过点A(0,3),B(1,0),其对称轴为直线l :x =2,过点A 作AC ∥x 轴交抛物线于点C ,∠AOB 的平分线交线段AC 于点E ,点P 是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P 在直线OE 下方的抛物线上,连接PE ,PO ,当m 为何值时,四边形AOPE 面积最大,并求出其最大值;(3)如图2,F 是抛物线的对称轴l 上的一点,在抛物线上是否存在点P ,使△POF 成为以点P 为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.图1 图2解:(1)设抛物线与x 轴的另一个交点为D ,由对称性,得D(3,0). 设抛物线的解析式为y =a(x -1)(x -3). 把A(0,3)代入,得3=3a ,a =1. ∴抛物线的解析式为y =x 2-4x +3. (2)设P(m ,m 2-4m +3),∵OE 平分∠AOB ,∠AOB =90°,∴∠AOE =45°. ∴△AOE 是等腰直角三角形. ∴AE =OA =3.∴E(3,3). 易得OE 的解析式为y =x.过P 作PG ∥y 轴,交OE 于点G ,∴G(m ,m). ∴PG =m -(m 2-4m +3)=-m 2+5m -3.∴S 四边形AOPE =S △AOE +S △POE =12×3×3+12PG·AE =92+12×3×(-m 2+5m -3)=-32m 2+15m 2=-32(m -52)2+758.∵-32<0,∴当m =52时,S 有最大值是758.(3)当点P 在对称轴左侧时,过点P 作MN ⊥y 轴,交y 轴于点M ,交l 于点N , ∵△OPF 是等腰直角三角形,且OP =PF , 易得△OMP ≌△PNF ,∴OM =PN.∵P(m ,m 2-4m +3),则-m 2+4m -3=2-m , 解得m =5+52或5-52.∴P 的坐标为(5+52,5+12)或(5-52,1-52).当P 在对称轴右侧时,过P′作M′N′⊥x 轴于点N′,过F′作F′M′⊥M′N′于点M′,同理得,△ON′P′≌△P′M′F′,∴P′N′=F′M′. 则-m 2+4m -3=m -2,解得x =3+52或3-52;P′的坐标为(3+52,1-52)或(3-52,1+52).综上所述,点P 的坐标是:(5+52,5+12)或(5-52,1-52)或(3+52,1-52)或(3-52,1+52).类型5 探究特殊四边形存在性问题1.(2018·自贡)如图,抛物线y =ax 2+bx -3过A(1,0),B(-3,0),直线AD 交抛物线于点D ,点D 的横坐标为-2,点P(m ,n)是线段AD 上的动点.(1)求直线AD 及抛物线的解析式;(2)过点P 的直线垂直于x 轴,交抛物线于点Q ,求线段PQ 的长度l 与m 的关系式,m 为何值时,PQ 最长? (3)在平面内是否存在整点R(横、纵坐标都为整数),使得P ,Q ,D ,R 为顶点的四边形是平行四边形?若存在,直接写出点R 的坐标;若不存在,说明理由.解:(1)把A(1,0),B(-3,0)代入抛物线解析式,得⎩⎪⎨⎪⎧a +b -3=0,9a -3b -3=0.解得⎩⎪⎨⎪⎧a =1,b =2. ∴抛物线的解析式为y =x 2+2x -3.∴当x =-2时,y =-3,即D(-2,-3).设AD 的解析式为y =kx +b ,将A(1,0),D(-2,-3)代入,得⎩⎪⎨⎪⎧k +b =0,-2k +b =-3,解得⎩⎪⎨⎪⎧k =1,b =-1. ∴直线AD 的解析式为y =x -1.(2)设P 点坐标为(m ,m -1),Q(m ,m 2+2m -3), ∴l =(m -1)-(m 2+2m -3)=-(m +12)2+94.∴当m =-12时,l 最大=94,即PQ 长度最长为94.(3)由(2)可知,0<PQ ≤94.当PQ 为边时,DR ∥PQ 且DR =PQ.∵R 是整点,D(-2,-3),∴PQ 是正整数. ∴PQ =1或2.当PQ =1时,DR =1.此时点R 的横坐标为-2,纵坐标为-3+1=-2或-3-1=-4, ∴R(-2,-2)或R(-2,-4). 当PQ =2时,DR =2.此时点R 的横坐标为-2,纵坐标为-3+2=-1或-3-2=-5. ∴R(-2,-1)或R(-2,-5).当QR 为边时,QR ∥DP ,且QR =DP.设点R 的坐标为(n ,n +m 2+m -3),则QR 2=2(m -n)2. 又∵P(m ,m -1),D(-2,-3),∴PD 2=2(m +2)2.∴(m +2)2=(m -n)2,解得n =-2(不合题意,舍去)或n =2m +2. ∴点R 的坐标为(2m +2,m 2+3m -1). ∵R 是整点,-2<m <1,∴当m =-1时,点R 的坐标为(0,-3); 当m =0时,点R 的坐标为(2,-1).综上所述,存在满足R 的点,它的坐标为(-2,-2)或(-2,-4)或(-2,-1)或(-2,-5)或(0,-3)或(2,-1).2.(2018·齐齐哈尔)综合与探究如图1所示,直线y =x +c 与x 轴交于点A(-4,0),与y 轴交于点C ,抛物线y =-x 2+bx +c 经过点A ,C.(1)求抛物线的解析式;(2)点E 在抛物线的对称轴上,求CE +OE 的最小值;(3)如图2所示,M 是线段OA 的上一个动点,过点M 垂直于x 轴的直线与直线AC 和抛物线分别交于点P ,N.①若以C ,P ,N 为顶点的三角形与△APM 相似,则△CPN 的面积为92或4;②若点P 恰好是线段MN 的中点,点F 是直线AC 上一个动点,在坐标平面内是否存在点D ,使以点D ,F ,P ,M 为顶点的四边形是菱形?若存在,请直接写出点D 的坐标;若不存在,请说明理由.注:二次函数y =ax 2+bx +c(a ≠0)的顶点坐标为(-b 2a ,4ac -b24a)图1 图2解:(1)将A(-4,0)代入y =x +c ,∴c =4. 将A(-4,0)和c =4代入y =-x 2+bx +c , ∴b =-3.∴抛物线解析式为y =-x 2-3x +4.(2)作点C 关于抛物线的对称轴直线l 的对称点C′,连接OC′,交直线l 于点E.连接CE ,此时CE +OE 的值最小.∵抛物线对称轴为直线x =-32,∴CC′=3.由勾股定理,得OC′=5,∴CE +OE 的最小值为5. ②存在.设M 坐标为(a ,0),则N 为(a ,-a 2-3a +4). 则P 点坐标为(a ,-a 2-3a +42).把点P 坐标代入y =x +4.解得a 1=-4(舍去),a 2=-1,则P(-1,3).当PF =FM 时,点D 在PM 的垂直平分线上,则D(12,32).当PM =PF 时,由菱形性质得,点D 坐标为(-1+322,322)或(-1-322,-322).当MP =MF 时,M ,D 关于直线y =x +4对称,点D 坐标为(-4,3).类型6 探究全等、相似三角形的存在性问题1.(2018·衡阳)如图,已知直线y =-2x +4分别交x 轴,y 轴于点A ,B ,抛物线过A ,B 两点,点P 是线段AB 上一动点,过点P 作PC ⊥x 轴于点C ,交抛物线于点D.(1)若抛物线的解析式为y =-2x 2+2x +4,设其顶点为M ,其对称轴交AB 于点N. ①求点M ,N 的坐标;②是否存在点P ,使四边形MNPD 为菱形?并说明理由;(2)当点P 的横坐标为1时,是否存在这样的抛物线,使得以B ,P ,D 为顶点的三角形与△AOB 相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.解:(1)①如图1,图1∵y =-2x 2+2x +4=-2(x -12)2+92,∴顶点为M 的坐标为(12,92).当x =12时,y =-2×12+4=3,则点N 坐标为(12,3).②不存在.理由如下: MN =92-3=32.设P 点坐标为(m ,-2m +4),则D(m ,-2m 2+2m +4), ∴PD =-2m 2+2m +4-(-2m +4)=-2m 2+4m. ∵PD ∥MN ,当PD =MN 时,四边形MNPD 为平行四边形,即-2m 2+4m =32,解得m 1=12(舍去),m 2=32.此时P 点坐标为(32,1).∵PN =(12-32)2+(3-1)2=5,∴PN ≠MN. ∴平行四边形MNPD 不为菱形.∴不存在点P ,使四边形MNPD 为菱形. (2)存在.如图2,OB =4,OA =2,则AB =22+42=2 5.图2当x =1时,y =-2x +4=2,则P(1,2).∴PB =12+(2-4)2= 5.设抛物线的解析式为y =ax 2+bx +4.把A(2,0)代入,得4a +2b +4=0,解得b =-2a -2. ∴抛物线的解析式为y =ax 2-2(a +1)x +4.当x =1时,y =ax 2-2(a +1)x +4=a -2a -2+4=2-a ,则D(1,2-a). ∴PD =2-a -2=-a.∵DC ∥OB ,∴∠DPB =∠OBA.∴当PD BO =PB BA 时,△PDB ∽△BOA ,即-a 4=525,解得a =-2,此时抛物线解析式为y =-2x 2+2x +4.当PD BA =PB BO 时,△PDB ∽△BAO ,即-a 25=54,解得a =-52,此时抛物线解析式为y =-52x 2+3x +4. 综上所述,满足条件的抛物线的解析式为y =-2x 2+2x +4或y =-52x 2+3x +4.2.如图,抛物线y =ax 2+c(a ≠0)与y 轴交于点A ,与x 轴交于B ,C 两点(点C 在x 轴正半轴上),△ABC 为等腰直角三角形,且面积为4.现将抛物线沿BA 方向平移,平移后的抛物线经过点C 时,与x 轴的另一交点为E ,其顶点为F ,对称轴与x 轴的交点为H.(1)求a ,c 的值;(2)连接OF ,试判断△OEF 是否为等腰三角形,并说明理由;(3)现将一足够大的三角板的直角顶点Q 放在射线AF 或射线HF 上,一直角边始终过点E ,另一直角边与y 轴相交于点P ,是否存在这样的点Q ,使以点P ,Q ,E 为顶点的三角形与△POE 全等?若存在,求出点Q 的坐标;若不存在,请说明理由.图1 图2图3 图4。
中考专题复习——几何最值问题

中考数学专题复习—几何最值问题一、知识点睛在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为几何最值问题。
解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。
一般处理方法:常用定理:两点之间,线段最短(已知两个定点时)垂线段最短(已知一个定点、一条定直线时)三角形三边关系(已知两边长固定或其和、差固定时)二、考点剖析,分类探究(一)线段之和最小问题P A+PB 最小, 需转化, 使点在线异侧B l1. (2014年贵州南州)在如图所示的平面直角坐标系中,点P是直线y=x上的动点,A(1,0),B(2,0)是x轴上的两点,则PA+PB的最小值为_____ 。
(二)线段之差最大问题2.(2013年江苏省宿迁市)在平面直角坐标系xoy中,已知点A(0,1),B(1,2),点P在x轴上运动,当点P到A、B两点距离之差的绝对值最大时,点P的坐标是_____ 。
(三)应用垂线段最短求最值问题3.(2014年葫芦岛)如图,矩形ABCD中,点M是CD的中点,点P是AB上的一动点,若AD=1,AB=2,则PA+PB+PM的最小值是_____ 。
(四)图形周长最值问题4. (2015年盘锦)如图,菱形ABCD的边长为2,∠DAB=60°,E为BC的中点,在对角线AC上存在一点P,使△PBE的周长最小,则△PBE的周长的最小值为_____ 。
(五)表面展开最值问题5. 如图,一圆锥的底面半径为2,母线PB的长为6,D为PB的中点.一只蚂蚁从点A出发,沿着圆锥的侧面爬行到点D,则蚂蚁爬行的最短路程为_____ 。
(六)图形面积的最值问题6.(2014年湖北省十堰市)如图,扇形OAB中,∠AOB=60°,扇形半径为4,点C在弧AB上,CD⊥OA,垂足为点D,当△OCD的面积最大时,求图中阴影部分的面积。
中考数学专题复习37几何最值之费马点问题(全国通用解析版)

问题分析“费马点”指的是位于三角形内且到三角形三个顶点距高之和最短的点。
主要分为两种情况:(1)当三角形三个内角都小于120°的三角形.通常将某三角形绕点旋转60度.从而将“不等三爪图”中三条线段转化在同一条直线上.利用两点之间线段最短解决问题。
(2)当三角形有一个内角大于120°时.费马点就是此内角的顶点.费马点问题解题的核心技巧:旋转60° 构造等边三角形将“不等三爪图”中三条线段转化至同一直线上利用两点之间线段最短求解问题模型展示:如图.在△ABC内部找到一点P.使得PA+PB+PC的值最小.当点P满足△APB=△BPC=△CPA=120º.则PA+PB+PC的值最小.P点称为三角形的费马点.特别地.△ABC中.最大的角要小于120º.若最大的角大于或等于120º.此时费马点就是最大角的顶点A(这种情况一般不考.通常三角形的最大顶角都小于120°)费马点的性质:1.费马点到三角形三个顶点距离之和最小。
2.费马点连接三顶点所成的三夹角皆为120°。
最值解法:以△ABC任意一边为边向外作等边三角形.这条边所对两顶点的距离即为最小值。
证明过程:几何最值之费马点问题方法技巧将△APC 边以A 为顶点逆时针旋转60°.得到AQE.连接PQ.则△APQ 为等边三角形.PA=PQ 。
即PA+PB+PC=PQ+PB+PC.当B 、P 、Q 、E 四点共线时取得最小值BE【例1】如图.四边形 ABCD 是菱形.A B =6.且△ABC =60° .M 是菱形内任一点.连接AM .BM .CM .则AM +BM +CM 的最小值为________.【答案】63【详解】将△BMN 绕点B 顺时针旋转60度得到△BNE .△BM =BN .△MBN =△CBE =60°.△MN=BM△MC=NE△AM +MB +CM =AM +MN +NE .当A 、M 、N 、E 四点共线时取最小值AE .△AB =BC =BE =6.△ABH =△EBH =60°.△BH △AE .AH =EH .△BAH =30°.△BH =12AB =3.AH =3BH =33.△AE =2AH =63.故答案为63.题型精讲【例2】如图.四边形ABCD 是正方形.△ABE 是等边三角形.M 为对角线BD (不含B 点)上任意一点.将BM 绕点B 逆时针旋转60°得到BN.连接EN 、AM 、CM.(1)求证:△AMB△△ENB ;(2)△当M 点在何处时.AM +CM 的值最小; △当M 点在何处时.AM +BM +CM 的值最小.并说明理由;(3)当AM +BM +CM 的最小值为13 时.求正方形的边长.【答案】(1)△AMB△△ENB.证明略。
中考数学《几何中的最值问题》专项练习(附答案解析)

中考数学《几何中的最值问题》专项练习(附答案解析)一、单选题1.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M是曲线部分的最低点,则△ABC的面积是()A.12 B.24 C.36 D.482.将一张宽为4cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是()A.4cm2B.8cm2C.12cm2D.16cm23.如图,已知直线5-512y x与x轴、y轴分别交于B、C两点,点A是以D(0,2)为圆心,2为半径的⊙D上的一个动点,连接AC、AB,则△ABC面积的最小值是()A.30 B.29 C.28 D.274.如图,∠AOB=45°,点M、N分别在射线OA、OB上,MN=6,△OMN的面积为12,P是直线MN上的动点,点P关于OA对称的点为P1,点P关于OB对称点为P2,当点P在直线NM上运动时,△OP1P2的面积最小值为()A.6 B.8 C.12 D.185.如图,矩形ABCD中,AB=8,AD=4,E为边AD上一个动点,连接BE,取BE的中点G,点G 绕点E逆时针旋转90°得到点F,连接CF,则△CEF面积的最小值是()A.16 B.15 C.12 D.11二、填空题6.如图,在△ABC中,AB=AC,∠BAC=120°,点D为AB边上一点(不与点B重合),连接CD,将线段CD绕点D逆时针旋转90°,点C的对应点为E,连接BE.若AB=6,则△BDE面积的最大值为_________.7.如图,⊙O的直径为5,在⊙O上位于直径AB的异侧有定点C和动点P,已知BC:CA=4:3,点P在半圆弧AB上运动(不与A,B重合),过C作CP的垂线CD交PB的延长线于D点.则△PCD的面积最大为______________.8.已知AB为半圆的直径,AB=2,DA⊥AB,CB⊥AB,AD=1,BC=3,点P为半圆上的动点,则AD,AB,BC,CP,PD围成的图形的面积的最大值是_____.9.如图,在矩形ABCD中,∠ACB=30°,,点E是边BC上一动点(点E不与B,C重合),连接AE,AE的中垂线FG分别交AE于点F,交AC于点G,连接DG,GE.设AG=a,则点G到BC边的距离为_____(用含a的代数式表示),ADG的面积的最小值为_____.10.如图,直线AB交坐标轴于A(-2,0),B(0,-4),点P在抛物线1(2)(4)2y x x=--上,则△ABP面积的最小值为__________.三、解答题11.如图,已知抛物线23y ax bx =++与x 轴交于A 、B 两点,过点A 的直线l 与抛物线交于点C ,其中A 点的坐标是(1,0),C 点坐标是(4,3).(1)求抛物线的解析式;(2)抛物线的对称轴上是否存在点D ,使△BCD 的周长最小?若存在,求出点D 的坐标,若不存在,请说明理由;(3)点P 是抛物线上AC 下方的一个动点,是否存在点p ,使△PAC 的面积最大?若存在,求出点P 的坐标,若不存在,请说明理由.12.已知,如图,矩形ABCD 中,AD =6,DC =7,菱形EFGH 的三个顶点E ,G ,H 分别在矩形ABCD 的边AB ,CD ,AD 上,AH =2,连接CF .(1)当四边形EFGH 为正方形时,求DG 的长;(2)当DG =6时,求△FCG 的面积;(3)求△FCG 的面积的最小值.13.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点C ,且过点(2,3)D -.点P 、Q 是抛物线2y ax bx c =++上的动点.(1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求POD ∆面积的最大值.(3)直线OQ 与线段BC 相交于点E ,当OBE ∆与ABC ∆相似时,求点Q 的坐标.14.已知抛物线y =a (x ﹣1)2过点(3,4),D 为抛物线的顶点.(1)求抛物线的解析式;(2)若点B 、C 均在抛物线上,其中点B (0,1),且∠BDC =90°,求点C 的坐标:(3)如图,直线y =kx +1﹣k 与抛物线交于P 、Q 两点,∠PDQ =90°,求△PDQ 面积的最小值.15.如图,已知二次函数213222y x x =-++的图象交x 轴于A (-1,0),B (4,0),交y 轴于点C ,点P 是直线BC 上方抛物线上一动点(不与B ,C 重合),过点P 作PE ⊥BC ,PF ∥y 轴交BC 与F ,则△PEF 面积的最大值是___________.16.如图,已知点P 是∠AOB 内一点,过点P 的直线MN 分别交射线OA ,OB 于点M ,N ,将直线MN 绕点P 旋转,△MON 的形状与面积都随之变化.(1)请在图1中用尺规作出△MON ,使得△MON 是以OM 为斜边的直角三角形;(2)如图2,在OP 的延长线上截取PC =OP ,过点C 作CM ∥OB 交射线OA 于点M ,连接MP 并延长交OB 于点N .求证:OP 平分△MON 的面积;(3)小亮发现:在直线MN 旋转过程中,(2)中所作的△MON 的面积最小.请利用图2帮助小亮说明理由.17.如图,已知A ,B 是线段MN 上的两点,4MN =,1MA =,1MB >,以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M ,N 两点重合成一点C ,构成ABC ,设AB x =.(1)求x 的取值范围;(2)求ABC 面积的最大值.18.如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.19.问题提出(1)如图①,在Rt△ABC中,∠ABC=90°,AB=12,BC=16,则AC=;问题探究(2)如图②,在Rt△ABC中,∠ABC=90°,AC=10,点D是AC边上一点,且满足DA=DB,则CD=;问题解决(3)如图③,在Rt△ABC中,过点B作射线BP,将∠C折叠,折痕为EF,其中E为BC中点,点F在AC边上,点C的对应点落在BP上的点D处,连接ED、FD,若BC=8,求△BCD面积的最大值,及面积最大时∠BCD的度数.20.如图,已知边长为6的菱形ABCD 中,∠ABC =60°,点E ,F 分别为AB ,AD 边上的动点,满足BE AF =,连接EF 交AC 于点G ,CE 、CF 分别交BD 于点M ,N ,给出下列结论:①△CEF 是等边三角形;②∠DFC =∠EGC ; ③若BE =3,则BM =MN =DN ;④222EF BE DF =+; ⑤△ECF .其中所有正确结论的序号是______21.如图,抛物线2y ax bx c =++与坐标轴交于点()()()0, 31,03,0A B E --、、,点P 为抛物线上动点,设点P 的横坐标为t .(1)若点C 与点A 关于抛物线的对称轴对称,求C 点的坐标及抛物线的解析式;(2)若点P 在第四象限,连接PA PE 、及AE ,当t 为何值时,PAE ∆的面积最大?最大面积是多少?(3)是否存在点P ,使PAE ∆为以AE 为直角边的直角三角形,若存在,直接写出点P 的坐标;若不存在,请说明理由.22.如图,在平面直角坐标系xOy 中,抛物线y =ax 2﹣2ax ﹣3a (a <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),经过点A 的直线l :y =kx+b 与y 轴负半轴交于点C ,与抛物线的另一个交点为D ,且CD =4AC .(1)直接写出点A 的坐标,并求直线l 的函数表达式(其中k 、b 用含a 的式子表示);(2)点E 是直线l 上方的抛物线上的动点,若△ACE 的面积的最大值为54,求a 的值; (3)设P 是抛物线的对称轴上的一点,点Q 在抛物线上,当以点A 、D 、P 、Q 为顶点的四边形为矩形时,请直接写出点P 的坐标.23.如图1,抛物线2y x bx c =-++与x 轴交于A 、B 两点,与y 轴交于点C ,已知点B 坐标为(3,0),点C 坐标为(0,3).(1)求抛物线的表达式;(2)点P 为直线BC 上方抛物线上的一个动点,当PBC 的面积最大时,求点P 的坐标;(3)如图2,点M 为该抛物线的顶点,直线MD x ⊥轴于点D ,在直线MD 上是否存在点N ,使点N 到直线MC 的距离等于点N 到点A 的距离?若存在,求出点A 的坐标;若不存在,请说明理由.24.如图,已知边长为10的正方形ABCD E ,是BC 边上一动点(与B C 、不重合),连结AE G ,是BC 延长线上的点,过点E 作AE 的垂线交DCG ∠的角平分线于点F ,若FG BG ⊥.(1)求证:ABE EGF ∽△△; (2)若2EC =,求CEF △的面积;(3)请直接写出EC 为何值时,CEF △的面积最大.参考答案与解析一、单选题1.【答案】D【解答】由图2知,AB=BC=10,当BP⊥AC时,y的值最小,即△ABC中,BC边上的高为8(即此时BP=8),即可求解.【解答】解:由图2知,AB=BC=10,当BP⊥AC时,y的值最小,即△ABC中,BC边上的高为8(即此时BP=8),当y=8时,PC===6,△ABC的面积=×AC×BP=×8×12=48,故选:D.【点评】本题是运动型综合题,考查了动点问题的函数图象、解直角三角形、图形面积等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.2.【答案】B【分析】当AC⊥AB时,重叠三角形面积最小,此时△ABC是等腰直角三角形,面积为8cm2.【解答】解:如图,当AC⊥AB时,三角形面积最小,∵∠BAC=90°∠ACB=45°∴AB=AC=4cm,∴S△ABC =12×4×4=8cm2.故选:B.【点评】本题考查了折叠的性质,发现当AC⊥AB时,重叠三角形的面积最小是解决问题的关键.3.【答案】B【分析】过D作DM⊥BC于M,连接BD,则由三角形面积公式得,12BC×DM=12OB×CD,可得DM,可知圆D上点到直线5-512y x的最小距离,由此即可解决问题.【解答】过D作DM⊥BC于M,连接BD,如图,令0y =,则12x =,令0x =,则5y =-,∴B (12,0),C (0,-5),∴OB=12,OC=5,=, 则由三角形面积公式得,12BC ×DM=12OB ×CD , ∴DM=8413, ∴圆D 上点到直线5-512y x =的最小距离是845821313-=, ∴△ABC 面积的最小值是1581329213⨯⨯=. 故选:B .【点评】本题考查了一次函数的应用、勾股定理的应用、圆的有关性质,解此题的关键是求出圆上的点到直线BC 的最大距离以及最小距离.4.【答案】B【分析】连接OP ,过点O 作OH ⊥NM 交NM 的延长线于H .首先利用三角形的面积公式求出OH ,再证明△OP 1P 2是等腰直角三角形,OP 最小时,△OP 1P 2的面积最小.【解答】解:连接OP ,过点O 作OH ⊥NM 交NM 的延长线于H .∵S △OMN =12•MN •OH =12,MN =6,∴OH =4,∵点P 关于OA 对称的点为P 1,点P 关于OB 对称点为P 2,∴∠AOP =∠AOP 1,∠POB =∠P 2OB ,OP =OP 1=OP 2∵∠AOB =45°,∴∠P 1OP 2=2(∠POA+∠POB )=90°,∴△OP 1P 2是等腰直角三角形,∴OP =OP 1最小时,△OP 1P 2的面积最小,根据垂线段最短可知,OP 的最小值为4,∴△OP 1P 2的面积的最小值=12×4×4=8, 故选:B .【点评】本题考查轴对称,三角形的面积,垂线段最短等知识,解题的关键是证明△OP 1P 2是等腰直角三角形,属于中考常考题型.5.【答案】B【分析】过点F 作AD 的垂线交AD 的延长线于点H ,则△FEH ∽△EBA ,设AE=x ,可得出△CEF 面积与x 的函数关系式,再根据二次函数图象的性质求得最小值.【解答】解:过点F 作AD 的垂线交AD 的延长线于点H ,∵∠A=∠H=90°,∠FEB=90°,∴∠FEH=90°-∠BEA=∠EBA ,∴△FEH ∽△EBA ,∴ ,HF HE EF AE AB BE == G 为BE 的中点,1,2FE GE BE ∴==∴ 1,2HF HE EF AE AB BE === 设AE=x , ∵AB 8,4,AD ==∴HF 1,4,2x EH == ,DH AE x ∴==CEF DHFC CED EHF S S S S ∆∆∆∴=+-11111(8)8(4)422222x x x x =++⨯--⨯• 2141644x x x x =+--- 2116,4x x =-+ ∴当12124x -=-=⨯ 时,△CEF 面积的最小值1421615.4=⨯-+= 故选:B .【点评】本题通过构造K 形图,考查了相似三角形的判定与性质.建立△CEF 面积与AE 长度的函数关系式是解题的关键.二、填空题6.【答案】818【分析】作CM ⊥AB 于M ,EN ⊥AB 于N ,根据AAS证得EDN ≌DCM ,得出EN =DM ,然后解直角三角形求得AM =3,得到BM =9,设BD =x ,则EN =DM =9﹣x ,根据三角形面积公式得到S △BDE =12BD EN ⋅=12x (9﹣x )=﹣12(x ﹣4.5)2+818,根据二次函数的性质即可求得. 【解答】解:作CM ⊥AB 于M ,EN ⊥AB 于N ,∴∠EDN +∠DEN =90°,∵∠EDC =90°,∴∠EDN +∠CDM =90°,∴∠DEN =∠CDM , 在EDN 和DCM 中DEN CDM END DMC 90ED DC ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩∴EDN ≌DCM (AAS ),∴EN =DM ,∵∠BAC =120°,∴∠MAC =60°,∴∠ACM =30°,∴AM =12AC =12⨯6=3, ∴BM =AB +AM =6+3=9,设BD =x ,则EN =DM =9﹣x ,∴S △BDE =12BD EN ⋅=12x (9﹣x )=﹣12(x ﹣4.5)2+818, ∴当BD =4.5时,S △BDE 有最大值为818, 故答案为:818. 【点评】此题主要考查旋转综合题、全等三角形的判定及性质、直角三角形的性质和求最值,解题的关键是熟知全等三角形的判定与性质和利用二次函数求最值.7.【答案】503【分析】由圆周角定理可知A P ∠=∠,再由90ACB PCD ∠=∠=︒可证明~ACB PDC ,最后根据相似三角形对应边成比例,及已知条件BC :CA =4:3,结合三角形面积公式解题即可.【解答】AB 为直径,90ACB ∴∠=︒PC CD ⊥,90PCD ∴∠=︒又CAB CPD ∠=∠~ACB PDC ∴AC BC CP CD∴= BC :CA =4:3,43CD PC ∴= 当点P 在弧AB 上运动时,12PCD S PC CD =⋅△ 2142233PCD S PC PC PC ∴=⨯⋅= 当PC 最大时,PCD S 取得最大值而当PC 为直径时最大,22505=33PCD S ∴=⨯. 【点评】本题考查圆周角定理、三角形面积、相似三角形的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.8.【答案】【分析】五边形ABCDP 的面积=四边形ABCD 的面积﹣△CPD 的面积只要求出△CDP 面积的最小值,作EF//CD ,且与⊙O 相切于点P ,连接OP 延长OP 交AD 于H ,易知此时点P 到CD 的距离最小,此时△CDP 的面积最小.【解答】解:∵五边形ABCDP 的面积=四边形ABCD 的面积﹣△CPD 的面积,∴只要求出△CDP 面积的最小值,作EF//CD ,且与⊙O 相切于点P ,连接OP 延长OP 交AD 于H ,易知此时点P 到CD 的距离最小,此时△CDP 的面积最小,易知AD =,∵四边形ABCD 的面积=12(1+3)×2=4=12×1×1+12•AD •OH+12•1•3,∴OH ,∴PH ﹣11,∴△CAD 的面积最小值为2,∴五边形ABCDP 面积的最大值是4﹣(2)=.故答案为.【点评】本题主要考查了求解多边形的面积知识点,结合圆的切线的性质进行求解是解题的重要步骤.9.【答案】42a - 【分析】先根据直角三角形含30度角的性质和勾股定理得AB=2,AC=4,从而得CG 的长,作辅助线,构建矩形ABHM 和高线GM ,如图2,通过画图发现:当GE ⊥BC 时,AG 最小,即a 最小,可计算a 的值,从而得结论.【解答】∵四边形ABCD 是矩形,∴∠B=90°,∵∠ACB=30°,,∴AB=2,AC=4,∵AG=a ,∴CG=4a -,如图1,过G 作MH ⊥BC 于H ,交AD 于M ,Rt△CGH中,∠ACB=30°,∴GH=12CG=42a-,则点G到BC边的距离为42a-,∵HM⊥BC,AD∥BC,∴HM⊥AD,∴∠AMG=90°,∵∠B=∠BHM=90°,∴四边形ABHM是矩形,∴HM=AB=2,∴GM=2﹣GH=422a--=2a,∴S△ADG11222a AD MG=⋅=⨯=当a最小时,△ADG的面积最小,如图2,当GE⊥BC时,AG最小,即a最小,∵FG是AE的垂直平分线,∴AG=EG,∴42aa -=,∴43a =,∴△ADG 的面积的最小值为4233=,故答案为:42a -. 【点评】本题主要考查了垂直平分线的性质、矩形的判定和性质、含30度角的直角三角形的性质以及勾股定理,确定△ADG 的面积最小时点G 的位置是解答此题的关键.10.【答案】152【分析】根据直线AB 交坐标轴于A(-2,0),B(0,-4),计算得直线AB 解析式;平移直线AB 到直线CD ,直线CD 当抛物线相交并只有一个交点P 时,△ABP 面积为最小值,通过一元二次方程和抛物线的性质求得点P 坐标;再利用勾股定理逆定理,证明ABP △为直角三角形,从而计算得到△ABP 面积的最小值.【解答】设直线AB 为y kx b =+∵直线AB 交坐标轴于A(-2,0),B(0,-4)∴024k b b=-+⎧⎨-=⎩ ∴24k b =-⎧⎨=-⎩∴直线AB 为24y x =--如图,平移直线AB 到直线CD ,直线CD 为2y x p =-+当2y x p =-+与抛物线1(2)(4)2y x x =--相交并只有一个交点P 时,△ABP 面积为最小值∴()()21242y x p y x x =-+⎧⎪⎨=--⎪⎩∴22820x x p -+-= ∴()44820p ∆=--=∴72p =∴2210x x -+= ∴1x =将1x =代入1(2)(4)2y x x =--,得32y =∴31,2P ⎛⎫⎪⎝⎭∴()2223451224AP ⎛⎫=++= ⎪⎝⎭2231251424BP ⎛⎫=++=⎪⎝⎭2222420AB∴222AB AP BP +=∴ABP △为直角三角形,90BAP ∠=∴1115=2222ABP AB A S P ⨯=⨯=△ 即△ABP 面积的最小值为152故答案为:152. 【点评】本题考查了二次函数、一次函数、平移、一元二次方程、勾股定理逆定理的知识;解题的关键是熟练掌握二次函数、一次函数、平移、一元二次方程、勾股定理逆定理的性质,从而完成求解.三、解答题11.【答案】(1)抛物线y =x 2-4x +3;(2)D(2,1);(3)点P 的坐标为5(2,3)4- 【分析】(1)(1) 将A 、C 坐标代入即可;(2)由于BC 长度不变, 要周长最小, 就是让DB DC 最小, 而A 、B 关于对称轴对称, 所以AC 就是DB DC 的最小值, 此时D 点就是AC 与抛物线对称轴的交点; 【解答】解:(1)抛物线23y ax bx =++经过点(1,0)A ,点(4,3)C ,∴3016433a bab,解得14a b ==-⎧⎨⎩,所以,抛物线的解析式为243y x x =-+;(2)243(1)(3)yx xx x ,(3,0)∴B ,抛物线的对称轴为2x =;BC 长度不变,BDDC 最小时,BCD ∆的周长最小,A 、B 是关于抛物线对称轴对称的,∴当D 点为对称轴与AC 的交点时,BD DC +最小, 即BCD ∆的周长最小, 如图,∴21x yx ,解得:21x y =⎧⎨=⎩,(2,1)D ∴,∴抛物线对称轴上存在点(2,1)D ,使BCD ∆的周长最小;(3)存在,如图,设过点P 与直线AC 平行线的直线为y x m =+,联立243y x m yx x,消掉y 得,2530x x m ,2(5)41(3)0m ,解得:134m =-, 即134m =-时,点P 到AC 的距离最大,ACP ∆的面积最大, 此时52x =,5133244y , ∴点P 的坐标为5(2,3)4-,设过点P 的直线与x 轴交点为F ,则13(4F ,0), 139144AF, 直线AC 的解析式为1y x =-,45CAB ∴∠=︒,∴点F 到AC 的距离为9292sin 45428AF , 又223(41)32AC ,∴∆的最大面积127ACE=⨯=.28【点评】本题考查了二次函数综合题型,主要考查了待定系数法求二次函数解析式,待定系数法求一次函数解析式,利用轴对称确定最短路线问题,联立两函数解析式求交点坐标,利用平行线确定点到直线的最大距离问题,熟悉相关性质是解题的关键.12.【答案】(1)2‘(2)1;(3)(.【分析】(1)当四边形EFGH为正方形时,则易证AHE≌△DGH,则DG=AH=2;(2)过F作FM⊥DC,交DC延长线于M,连接GE,由于AB∥CD,可得∠AEG=∠MGE,同理有∠HEG=∠FGE,利用等式性质有∠AEH=∠MGF,再结合∠A=∠M=90°,HE=FG,可证△AHE≌△MFG,从而有FM=HA=2(即无论菱形EFGH如何变化,点F到直线CD的距离始终为定值2),进而可求三角形面积;=7-x,在△AHE中,AE≤AB=7,利用勾股定理可得HE2(3)先设DG=x,由第(2)小题得,S△FCG≤53,在Rt△DHG中,再利用勾股定理可得x2+16≤53,进而可求x,从而可得当时,△GCF的面积最小.【解答】解:(1)∵四边形EFGH为正方形,∴HG=HE,∠EAH=∠D=90°,∵∠DHG+∠AHE=90°,∠DHG+∠DGH=90°,∴∠DGH=∠AHE,∴△AHE≌△DGH(AAS),∴DG=AH=2;(2)过F作FM⊥DC,交DC延长线于M,连接GE,∵AB∥CD,∴∠AEG=∠MGE,∵HE∥GF,∴∠HEG=∠FGE , ∴∠AEH=∠MGF ,在△AHE 和△MFG 中,∠A=∠M=90°,HE=FG , ∴△AHE ≌△MFG (AAS ), ∴FM=HA=2,即无论菱形EFGH 如何变化,点F 到直线CD 的距离始终为定值2, 因此S △FCG =12×FM ×GC=12×2×(7-6)=1; (3)设DG=x ,则由(2)得,S △FCG =7-x , 在△AHE 中,AE ≤AB=7, ∴HE 2≤53, ∴x 2+16≤53,∴x∴S △FCG 的最小值为,此时,∴当时,△FCG 的面积最小为(.【点评】本题属于四边形综合题,考查了矩形、菱形的性质、全等三角形的判定和性质、勾股定理.解题的关键是学会添加常用辅助线,构造全等三角形解决问题. 13.【答案】(1)抛物线的表达式为:223y x x =--;(2)POD S ∆有最大值,当14m =时,其最大值为4916;(3) Q -或(或1122⎛⎫-+- ⎪ ⎪⎝⎭或1322⎛⎫-+ ⎪ ⎪⎝⎭. 【分析】(1)函数的表达式为:y=a (x+1)(x-3),将点D 坐标代入上式,即可求解;(2)设点()2,23P m m m --,求出32OG m =+,根据()12POD D P S OG x x ∆=⨯-1(32)(2)2m m =+-2132m m =-++,利用二次函数的性质即可求解;(3)分∠ACB=∠BOQ 、∠BAC=∠BOQ ,两种情况分别求解,通过角的关系,确定直线OQ 倾斜角,进而求解.【解答】解:(1)函数的表达式为:(1)(3)y a x x =+-,将点D 坐标代入上式并解得:1a =,故抛物线的表达式为:223y x x =--…①;(2)设直线PD 与y 轴交于点G ,设点()2,23P m m m --,将点P 、D 的坐标代入一次函数表达式:y sx t =+并解得,直线PD 的表达式为:32y mx m =--,则32OG m =+,()12POD D P S OG x x ∆=⨯-1(32)(2)2m m =+-2132m m =-++, ∵10-<,故POD S ∆有最大值,当14m =时,其最大值为4916; (3)∵3OB OC ==,∴45OCB OBC ︒∠=∠=,∵ABC OBE ∠=∠,故OBE ∆与ABC ∆相似时,分为两种情况:①当ACB BOQ ∠=∠时,4AB =,BC =,AC =, 过点A 作AH ⊥BC 与点H ,1122ABC S AH BC AB OC ∆=⨯⨯=⨯,解得:AH =, ∴CH则tan 2ACB ∠=,则直线OQ 的表达式为: 2 y x =-…②,联立①②并解得:x =故点Q -或(; ②BAC BOQ ∠=∠时,3tan 3tan 1OC BAC BOQ OA ∠====∠, 则直线OQ 的表达式为: 3 y x =-…③,联立①③并解得:12x -±=,故点1322Q ⎛-- ⎝⎭或⎝⎭;综上,点Q -或(或⎝⎭或⎝⎭. 【点评】本题考查的是二次函数综合运用,涉及到解直角三角形、三角形相似、面积的计算等,其中(3),要注意分类求解,避免遗漏.14.【答案】(1)y =(x ﹣1)2;(2)点C 的坐标为(2,1);(3)1 【分析】(1)将点(3,4)代入解析式求得a 的值即可;(2)设点C 的坐标为(x 0,y 0),其中y 0=(x 0﹣1)2,作CF ⊥x 轴,证△BDO ∽△DCF 得BO DFDO CF=,即1=00x 1y -=()01x 1-,据此求得x 0的值即可得;(3)过点D 作x 轴的垂线交直线PQ 于点G ,则DG =4,根据S △PDQ =12DG •MN 列出关于k 的等式求解可得.【解答】解:(1)将点(3,4)代入解析式,得:4a =4,解得:a =1,所以抛物线解析式为y =(x ﹣1)2; (2)由(1)知点D 坐标为(1,0), 设点C 的坐标为(x 0,y 0),(x 0>1、y 0>0), 则y 0=(x 0﹣1)2,如图1,过点C 作CF ⊥x 轴,∴∠BOD =∠DFC =90°,∠DCF+∠CDF =90°, ∵∠BDC =90°, ∴∠BDO+∠CDF =90°, ∴∠BDO =∠DCF , ∴△BDO ∽△DCF , ∴BO DFDO CF=, ∴1=00x 1y -=()01x 1-,解得:x 0=2,此时y 0=1, ∴点C 的坐标为(2,1).(3)设点P 的坐标为(x 1,y 1),点Q 为(x 2,y 2),(其中x 1<1<x 2,y 1>0,y 2>0), 如图2,分别过点P 、Q 作x 轴的垂线,垂足分别为M 、N , 由y=(x-1)2 ,y=kx+1-k ,得x 2﹣(2+k )x+k =0. ∴x 1+x 2=2+k ,x 1•x 2=k . ∴MN =|x 1﹣x 2|=|2﹣k|.则过点D 作x 轴的垂线交直线PQ 于点G ,则点G 的坐标为(1,1), 所以DG =1,∴S △PDQ =12DG •MN =12×1×|x 1﹣x 2|12|2﹣k|, ∴当k =0时,S △PDQ 取得最小值1.【点评】本题主要考查二次函数的综合问题,解题的关键是熟练掌握待定系数法求函数解析式、相似三角形的判定与性质及一元二次方程根与系数的关系等知识点.15.【答案】45【分析】先证明△PEF ∽△BOC,得出PE EF PF BO OC BC ==,再根据122y x =-+,得出关于x 的二次函数方程,根据顶点坐标公式,求得则△PEF 面积最大值.【解答】解:设213,222P x x x ⎛⎫-++⎪⎝⎭(0<x<4), 抛物线213222y x x =-++与y 轴交于C 点,故C(0,2),∵PF ∥y 轴,PE ⊥BC , ∴∠PFE=∠BCO, 又∵∠PEF=∠BOC=90°, ∴△PEF ∽△BOC, ∴PE EF PF BO OC BC== ,把B(4,0),C(0,2)代入直线BC 的解析式为122y x =-+, 点1,22F x x ⎛⎫-+ ⎪⎝⎭,∴221312(2)22222P F x PF y y x x x x =-=-++--+=-+,∴PE=BO ·PF BC =42212x x -+== , EF=OC ·PFBC=222211122(2)x x x x x x -+-+-== , ∴221(2)1225PEFx x SPE EF -=⋅= =2221(2)(2)42520x x x ⎡⎤-⎢⎥⎡⎤--+⎣⎦⎣⎦=, 当2x =时,PEF S △取值最大,∴PEF S △的最大值为244205=, 故答案为45. 【点评】本题考查了三角形的面积及相似三角形的判定与性质.熟练掌握相似三角形的判定与性质及用含x 的代数式表示出三角形的面积是解题的关键.16.【答案】(1)见解析;(2)见解析;(3)当点P 是MN 的中点时S △MON 最小.理由见解析. 【分析】(1)根据尺规作图,过P 点作PN ⊥OB 于N ,交OA 于点M ; (2)证明三角形全等得P 为MN 的中点,便可得到结论;(3)过点P 作另一条直线EF 交OA 、OB 于点E 、F ,设PF <PE ,与MC 交于于G ,证明△PGM ≌△PFN ,得△PGM 与△PFN 的面积相等,进而得S 四边形MOFG =S △MON . 便可得S △MON <S △EOF ,问题得以解决.【解答】(1)①在OB 下方取一点K ,②以P 为圆心,PK 长为半径画弧,与OB 交于C 、D 两点,③分别以C 、D 为圆心,大于12CD 长为半径画弧,两弧交于E 点, ④作直线PE ,分别与OA 、OB 交于点M 、N ,故△OMN 就是所求作的三角形;(2)∵CM ∥OB ,∴∠C =∠PON ,在△PCM 和△PON 中,C PON PC POCPH OPN ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△PCM ≌△PON (ASA ),∴PM =PN ,∴OP 平分△MON 的面积;(3)过点P 作另一条直线EF 交OA 、OB 于点E 、F ,设PF <PE ,与MC 交于于G ,∵CM ∥OB ,∴∠GMP =∠FNP ,在△PGM 和△PFM 中,PMG PNF PM PNMPG NPF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△PGM ≌△PFN (ASA ),∴S △PGM =S △PFN∴S 四边形MOFG =S △MON .∵S 四边形MOFG <S △EOF ,∴S △MON <S △EOF ,∴当点P 是MN 的中点时S △MON 最小.【点评】本题主要考查了图形的旋转性质,全等三角形的性质与判定,三角形的中线性质,关键证明三角形全等.17.【答案】(1)12x <<;(2)2. 【分析】(1)由旋转可得到AC=MA=x ,BC=BN=3-x ,利用三角形三边关系可求得x 的取值范围;(2)过点C 作CD ⊥AB 于D ,设CD=h ,利用勾股定理表示出AD 、BD ,再根据BD=AB-AD 列方程求出h 2,然后求出△ABC 的面积的平方,再根据二次函数的最值问题解答.【解答】解:(1)∵4MN =,1MA =,AB x =,∴413BN x x =--=-.由旋转的性质,得1MA AC ==,3BN BC x ==-,由三角形的三边关系,得31,31,x x x x --<⎧⎨-+>⎩①② 解不等式①得1x >,解不等式②得2x <,∴x 的取值范围是12x <<.(2)如图,过点C 作CD AB ⊥于点D ,设CD h =,由勾股定理,得AD =,BD ==, ∵BD AB AD =-,x =-34=-x ,两边平方整理,得()222832=x x h x -+-.∵ABC 的面积为1122AB CD xh ⋅=, ∴()2222113183222422S xh x x x ⎛⎫⎛⎫==-⨯-+=--+ ⎪ ⎪⎝⎭⎝⎭, ∴当32x =时,ABC 面积最大值的平方为12,∴ABC . 【点评】本题考查了旋转的性质,三角形的三边关系,勾股定理,二次函数的最值问题,(1)难点在于考虑利用三角形的三边关系列出不等式组,(2)难点在于求解利用勾股定理列出的无理方程.18.【答案】(1)PM =PN ,PM ⊥PN ;(2)△PMN 是等腰直角三角形.理由见解析;(3)S △PMN 最大=492. 【分析】(1)由已知易得BD CE =,利用三角形的中位线得出12PM CE =,12PN BD =,即可得出数量关系,再利用三角形的中位线得出//PM CE 得出DPM DCA ∠=∠,最后用互余即可得出位置关系;(2)先判断出ABD ACE ∆≅∆,得出BD CE =,同(1)的方法得出12PM BD =,12PN BD =,即可得出PM PN =,同(1)的方法由MPN DCE DCB DBC ACB ABC ∠=∠+∠+∠=∠+∠,即可得出结论;(3)方法1:先判断出MN 最大时,PMN ∆的面积最大,进而求出AN ,AM ,即可得出MN 最大AM AN =+,最后用面积公式即可得出结论.方法2:先判断出BD 最大时,PMN ∆的面积最大,而BD 最大是14AB AD +=,即可得出结论.【解答】解:(1)点P ,N 是BC ,CD 的中点,//PN BD ∴,12PN BD =, 点P ,M 是CD ,DE 的中点,//PM CE ∴,12PM CE =, AB AC =,AD AE =,BD CE ∴=,PM PN ∴=,//PN BD ,DPN ADC ∴∠=∠,//PM CE ,DPM DCA ∴∠=∠,90BAC ∠=︒,90ADC ACD ∴∠+∠=︒,90MPN DPM DPN DCA ADC ∴∠=∠+∠=∠+∠=︒,PM PN ∴⊥,故答案为:PM PN =,PM PN ⊥;(2)PMN ∆是等腰直角三角形.由旋转知,BAD CAE ∠=∠,AB AC =,AD AE =,()ABD ACE SAS ∴∆≅∆,ABD ACE ∴∠=∠,BD CE =, 利用三角形的中位线得,12PN BD =,12PM CE =,PM PN ∴=,PMN ∴∆是等腰三角形,同(1)的方法得,//PM CE ,DPM DCE ∴∠=∠,同(1)的方法得,//PN BD ,PNC DBC ∴∠=∠,DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠,MPN DPM DPN DCE DCB DBC ∴∠=∠+∠=∠+∠+∠BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠,90BAC ∠=︒,90ACB ABC ∴∠+∠=︒,90MPN ∴∠=︒,PMN ∴∆是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,PMN ∆是等腰直角三角形,MN ∴最大时,PMN ∆的面积最大,//DE BC ∴且DE 在顶点A 上面,MN ∴最大AM AN =+,连接AM ,AN ,在ADE ∆中,4AD AE ==,90DAE ∠=︒,AM ∴=在Rt ABC ∆中,10AB AC ==,AN =MN ∴=最大,22211114922242PMN S PM MN ∆∴==⨯=⨯=最大. 方法2:由(2)知,PMN ∆是等腰直角三角形,12PM PN BD ==, PM ∴最大时,PMN ∆面积最大,∴点D 在BA 的延长线上,14BD AB AD ∴=+=,7PM ∴=,2211497222PMN S PM ∆∴==⨯=最大. 【点评】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出12PM CE =,12PN BD =,解(2)的关键是判断出ABD ACE ∆≅∆,解(3)的关键是判断出MN 最大时,PMN ∆的面积最大.19.【答案】(1)20;(2)5;(3)S △BCD =16;∠BCD =45°【分析】(1)由勾股定理可求解;(2)由等腰三角形的性质可得∠A =∠DBA ,由余角的性质可得∠DBC =∠C ,可得DB =DC =AD =12AC =5; (3)由中点的性质和折叠的性质可得DE =EC =4,则当DE ⊥BC 时,S △BCD 有最大值,由三角形面积公式和等腰直角三角形的性质可求解.【解答】解:(1)∵∠ABC =90°,AB =12,BC =16,∴20AC ==,故答案为:20;(2)∵DA =DB ,∴∠A =∠DBA ,∵∠ABC =90°∴∠A +∠C =90°,∠ABD +∠DBC =90°,∴∠DBC =∠C ,∴DB=DC,∴DB=DC=AD=12AC=5,故答案为:5;(3)∵E为BC中点,BC=8,∴BE=EC=4,∵将∠C折叠,折痕为EF,∴DE=EC=4,当DE⊥BC时,S△BCD有最大值,S△BCD=12×BC×DE=12×8×4=16,此时∵DE⊥BC,DE=EC,∴∠BCD=45°.故答案为:S△BCD=16;∠BCD=45°.【点评】本题主要考查了勾股定理、直角三角形斜边中线问题以及三角形中的折叠问题;题目较为综合,其中熟练掌握定义定理是解题的关键.20.【答案】①②③⑤【分析】由“SAS”可证△BEC≌△AFC,可得CF=CE,∠BCE=∠ACF,可证△EFC是等边三角形,由三角形内角和定理可证∠DFC=∠EGC;由等边三角形的性质和菱形的性质可求MN=DN=BM=由勾股定理即可求解EF2=BE2+DF2不成立;由等边三角形的性质可得△ECF面积2,则当EC⊥AB时,△ECF【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD=6,∵AC=BC,∴AB=BC=CD=AD=AC,∴△ABC,△ACD是等边三角形,∴∠ABC=∠BAC=∠ACB=∠DAC=60°,∵AC=BC,∠ABC=∠DAC,AF=BE,∴△BEC≌△AFC(SAS)∴CF=CE,∠BCE=∠ACF,∴∠ECF =∠BCA =60°,∴△EFC 是等边三角形,故①正确;∵∠ECF =∠ACD =60°,∴∠ECG =∠FCD ,∵∠FEC =∠ADC =60°,∴∠DFC =∠EGC ,故②正确;若BE =3,菱形ABCD 的边长为6,∴点E 为AB 中点,点F 为AD 中点,∵四边形ABCD 是菱形,∴AC ⊥BD ,AO =CO ,BO =DO ,∠ABO =12∠ABC =30°,∴AO =12AB =3,BO =∴BD =,∵△ABC 是等边三角形,BE =AE =3,∴CE ⊥AB ,且∠ABO =30°,∴BE EM =3,BM =2EM ,∴BM =同理可得DN =∴MN =BD −BM −DN =∴BM =MN =DN ,故③正确;∵△BEC ≌△AFC ,∴AF =BE ,同理△ACE ≌△DCF ,∴AE =DF ,∵∠BAD ≠90°,∴EF 2=AE 2+AF 2不成立,∴EF 2=BE 2+DF 2不成立,故④错误,∵△ECF 是等边三角形,∴△ECF 2, ∴当EC ⊥AB 时,△ECF 面积有最小值,此时,EC =ECF 面积的最小值为4,故⑤正确; 故答案为:①②③⑤.【点评】本题是四边形综合题,考查菱形的性质,全等三角形的判定和性质,等边三角形的判定和性质,勾股定理等知识,熟练掌握性质定理是解题的关键.21.【答案】(1)223;y x x =--(2)当32t =时,S 有最大值278;(3)()()2,5,1,4-- 【分析】(1)根据抛物线上的对称点B 和E ,求出对称轴从而可求出C 点坐标.然后设出抛物线的交点式,再把点A 代入求出a 值即可求出抛物线的解析式;(2)过点P 作y 轴的平行线交AE 于点H ,分别根据抛物线和直线AE 的解析式表示出点P 和点H 的坐标,从而求出线段PH 的长,最后用含t 的式子表示∆APE 的面积,利用二次函数的性质求解;(3)根据两直线垂直时,它们的斜率之积为-1,可求得与直线AE 垂直的直线方程,最后联立方程组可求点P 的坐标.【解答】解:(1)抛物线2y ax bx c =++经过点()()1,03,0,B E -、∴抛物线的对称轴为1,x =点()0,3A -,点()2,3C -抛物线表达式为()()()23123,.y a x x a x x =-+=--33a ∴-=-,解得1,a =∴抛物线的表达式为223;y x x =--()2如图,过点P 作y 轴的平行线交AE 于点H由点,A E 的坐标得直线AE 的表达式为3,y x =-设点()2,23P t t t --,则(),3H t t -()()22213333273233222228PAES PH OE t t t t t t ∆⎛⎫∴=•=--++=-+=--+ ⎪⎝⎭ 当32t =时,S 有最大值278()3直线AE 表达式中的k 值为1,则与之垂直的直线表达式中的k 值为1-① 当90PEA ︒∠=时,直线PE 的表达式为1,y x b =-+将点E 的坐标代人并解得13b =,直线PE 的表达式为3,y x =-+联立得2233y x x y x ⎧=--⎨=-+⎩解得2x =-或3(不合题意,舍去)故点P 的坐标为()2,5-② 当90PAE ︒∠=时,直线PA 的表达式为2,y x b =-+将点A 的坐标代人并解得23b =,直线PE 的表达式为3,y x =--联立得2233y x x y x ⎧=--⎨=--⎩ 解得1x =或0(不合题意,舍去)故点()1,4P -综上,点P 的坐标为()2,5-或(1,-4)【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质;会利用待定系数法求二次函数解析式;会解一元二次方程;理解坐标与图形性质,记住两直线垂直时它们的斜率之积为-1;会利用分类讨论的思想解决数学问题.。
中考数学专题复习几何中的最值与定值问题公开课PPT课件

A
A
P
图(2-1) P
图(2-2)
P1
BC BC源自解:把△APB绕点A顺时针旋转600,使AB与AC重合,得△ACP1,连结 PP1,则△APP1是正三角形,PP1=AP=AP1=2,P1C=PB=3,当P、P1、 C不在一直线上时, PC<PP1+P1C=2+3=5,只有当P、P1、C在一直线 上时,PC之间的距离在到最大值,这个最大值是PP1+P1C=5。
例5. 如图,在ΔABC中,D、E分别是BC、
AB上的点,且∠1=∠2=∠3 ,如果ΔABC、
求Δ证E:BD的、最Δ小A值DC是的5周。长依次为m,m1,m2,
4
A
E
3
2
1
j
B
D
C
图(1-1)
课后练习
1.如图,在Rt△ABC中,∠ACB=90°,AC =BC=2,以BC为直径的半圆交AB于 点D,P是CD上的一个动点,连结AP, 则AP的最小值是_______.
例 3. 如图,在△ABC中,BC=5,AC=12, AB=13,在边AB、AC上分别取点D、E,使 线段DE将△ABC分成面积相等的两部分,试求 这样线段的最小长度.
例4.已知△XYZ是直角边长为1的等腰直角三角形 (∠Z=90°),它的三个顶点分别在等腰 Rt△ABC(∠C=90°)的三边上,求△ABC直角边长的 最大可能值.
D B
E
当C、A、E三点共线 时,CD的值最大。 CD的最大值是a+b.
A
图(6-1)
D
C
F E
k O
A
图 ( 6-2)
j
B
C
例2 如图,正方形ABCD的边长为1,•点P为边BC上任意 一点(可与点B或点C重合),分别过点B、C、D作射线AP 的垂线,•垂足分别为点B′、C′、D′.求BB′+CC′+DD′的 最大值和最小值.
2019中考数学专题复习资料--几何最值问题含答案

几何最值问题复习本内容全部需要在做讲义题目之前进行一、读一读下面的内容,想一想1.解决几何最值问题的理论依据①两点之间,线段最短(已知两个定点);②_______________(已知一个定点、一条定直线);③三角形三边关系(已知两边长固定或其和、差固定).2.几何最值问题常见的基本结构①利用几何变换进行转化——在右侧一栏中画出相关分析的辅助线,找到最终时刻点P的位置B BA AP l P l,异侧和最小求(P A+PB)minB BA AM N l M N lMN为固定线段长,求(AM+BN)minA AP l P lB B,同侧差最大求PB-P Amax②利用图形性质进行转化M AO 求ODDCB N max不变特征:Rt△AOB中,直角与斜边长均不变,取斜边中点进行分析.二、还原自己做最值问题的过程(从拿到题目读题开始),与下面小明的动作对标,补充或调整与自己不一样的地方.①研究背景图形,相关信息进行标注;②分析考查目标中的定点、动点及图形特征,利用几何变换或图形性质对问题进行分析;③封装常见的几何结构,当成一个整体处理,后期直接调用分析.三、根据最值问题做题的思考过程,思考最值问题跟存在性问题、动点问题在分析过程中有什么样的区别和联系,简要写一写你的看法.答:下面是小明的看法:①都需要分层对问题分析,一层层,一步步进行分析;②都需要研究基本图形,目标,条件,相关信息都需要有标注;③在画图分析时,都会使用与之有关的性质,判定,定理及公理.如存在性问题需要用四边形的判定;最值问题需要回到问题处理的理论依据.四、借助对上述问题的思考,做讲义的题目.几何最值问题(讲义)一、知识点睛解决几何最值问题的通常思路:1.分析定点、动点,寻找不变特征.2.若属于常见模型、结构,调用模型、结构解决问题;若不属于常见模型,结合所求目标,依据不变特征转化,借助基本定理解决问题.转化原则:尽量减少变量,向定点、定线段、定图形靠拢.二、精讲精练1.如图,在ABC中,AB=6,AC=8,BC=10,P为BC边上一动点,PE⊥AB于点E,PF⊥AC于点F.若M为EF的中点,则AM长度的最小值为____________.C BC CA EFE M D OB PC B A第1题图第2题图2.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D在BC边上,则以AC为对角线的所有□ADCE中,DE长度的最小值为_____________.3.若点D与点A(8,0),B(0,6),C(a,a)是一平行四边形的四个顶点,则CD长度的最小值为_____________.4.如图,已知AB=2,C是线段AB上任一点,分别以AC,BC为斜边,在AB的同侧作等腰直角三角形ACD和等腰直角三角形BCE,则DE长度的最小值为_____________.PE QDAA B第4题图第5题图5.如图,已知AB=10,C是线段AB上任一点,分别以AC,BC为边,在AB的同侧作等边三角形ACP和等边三角形BCQ,则PQ长度的最小值为_____________.6.动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P,Q也随之移动.若限定点P,Q分别在AB,AD边上移动,则点A′在BC边上可移动的最大距离为________________.B A'C B CPA Q D A D7.如图,在直角梯形纸片ABCD中,AD⊥AB,AB=8,AD=CD=4,点E,F分别在线段AB,AD上,将△AEF沿EF翻折,点A的对应点记为P.(1)当点P落在线段CD上时,PD的取值范围是_______.(2)当点P落在直角梯形ABCD内部时,PD长度的最小值为_____________.D P C D CF FPA EB A E BD C D CA B A B8.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=43,BC的中点为△D.将ABC绕点C顺时针旋转任意一个角度得到△FEC,EF的中点为G,连接DG,则在旋转过程中,DG长度的最大值为____________.yAB EDG BEDCC A O xF9.如图,已知ABC是边长为2的等边三角形,顶点A的坐标为(0,6),BC的中点D在点A下方的y轴上,E是边长为2且中心在坐标原点的正六边形的一个顶点,把这个正六边形绕其中心旋转一周,则在旋转过程中DE长度的最小值为_________.10.探究:如图1,在等边三角形ABC中,AB=6,AH⊥BC于点H,则AH=_______,△ABC的面积S△ABC__________.发现:如图2,在等边三角形ABC中,AB=6,点D在AC边上(可与点A,C重合),分别过点A,C作直线BD的垂线,垂足分别为点E,F,设BD=x,AE=m,CF=n.AAFE DB HC B C图1图2(1)用含x,m,n的代数式表示S△ABD 及S△CBD;(2)求(m+n)与x之间的函数关系式,并求出(m+n)的最大值和最小值.D C 应用:如图,已知正方形ABCD的边长为1,P是BC边上的任一点(可与点B,C重合),分别过点B,C,D作射线AP的垂线,垂足分别为点B′,C′,D′,则BB′+CC′+DD′的最大值为______,A D'B'P C'B最小值为______.三、回顾与思考________________________________________________ ________________________________________________ ________________________________________________【参考答案】精讲精练1.12 52.3 3.72 4.1△S ABD = 1发现:(1) xm , △SCBD= 25.56.27.(1) 8 - 4 3 ≤ PD ≤ 4 ;(2) 4 5 - 8 8.69. 4 - 310.探究: 3 3 , 9 31 2xn(2) m + n =应用:2, 218 3 x;m +n 的最大值为 6,最小值为 3 3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何最值问题复习
本内容全部需要在做讲义题目之前进行 一、 读一读下面的内容,想一想
1. 解决几何最值问题的理论依据
①两点之间,线段最短(已知两个定点);
②_______________(已知一个定点、一条定直线); ③三角形三边关系(已知两边长固定或其和、差固定).
2. 几何最值问题常见的基本结构
①利用几何变换进行转化——在右侧一栏中画出相关分析的辅助线,找到最终时刻点P 的位置
l
l
求min ()PA PB +,异侧和最小
l
l
MN 为固定线段长,求min
()AM BN +
l
l
求max PB PA -,同侧差最大 ②利用图形性质进行转化
M
D
A
C
O N
OD
求
max
不变特征:Rt△AOB中,直角与斜边长均不变,取斜边中点进行分析.
二、还原自己做最值问题的过程(从拿到题目读题开始),与下面小明的动作对标,补充或调整与自己不
一样的地方.
①研究背景图形,相关信息进行标注;
②分析考查目标中的定点、动点及图形特征,利用几何变换或图形性质对问题进行分析;
③封装常见的几何结构,当成一个整体处理,后期直接调用分析.
三、根据最值问题做题的思考过程,思考最值问题跟存在性问题、动点问题在分析过程中有什么样的区别
和联系,简要写一写你的看法.
答:
下面是小明的看法:
①都需要分层对问题分析,一层层,一步步进行分析;
②都需要研究基本图形,目标,条件,相关信息都需要有
标注;
③在画图分析时,都会使用与之有关的性质,判定,定理
及公理.
如存在性问题需要用四边形的判定;最值问题需要回到问题处理的理论依据.
四、借助对上述问题的思考,做讲义的题目.
几何最值问题(讲义)
一、知识点睛
解决几何最值问题的通常思路:
1.分析定点、动点,寻找不变特征.
2.若属于常见模型、结构,调用模型、结构解决问题;
若不属于常见模型,结合所求目标,依据不变特征转化,借助基本定理解决问题.
转化原则:尽量减少变量,向定点、定线段、定图形靠拢.
二、精讲精练
1.如图,在△ABC中,AB=6,AC=8,BC=10,P为BC边上一动点,PE⊥AB于点E,PF⊥AC于点F.若M为
EF的中点,则AM长度的最小值为____________.
M F
E P
C
B
A
O
E
D C
B
A
第1题图 第2题图
2. 如图,在Rt △ABC 中,∠B =90°,AB =3,BC =4,点D 在BC 边上,则以AC 为对角线的所有□ADCE 中,DE
长度的最小值为_____________.
3. 若点D 与点A (8,0),B (0,6),C (a ,a )是一平行四边形的四个顶点,则CD 长度的最小值为_____________.
4. 如图,已知AB =2,C 是线段AB 上任一点,分别以AC ,BC 为斜边,在AB 的同侧作等腰直角三角形ACD
和等腰直角三角形BCE ,则DE 长度的最小值为_____________.
E
D B C
A
第4题图 第5题图
5. 如图,已知AB =10,C 是线段AB 上任一点,分别以AC ,BC 为边,在AB 的同侧作等边三角形ACP 和等边
三角形BCQ ,则PQ 长度的最小值为_____________.
6. 动手操作:在矩形纸片ABCD 中,AB =3,AD =5.如图所示,折叠纸片,使点A 落在BC 边上的A ′处,折
痕为PQ ,当点A ′在BC 边上移动时,折痕的端点P ,Q 也随之移动.若限定点P ,Q 分别在AB ,AD 边上移动,则点A ′在BC 边上可移动的最大距离为________________.
Q
P
A'D C
B A D C
B
A
7. 如图,在直角梯形纸片ABCD 中,AD ⊥AB ,AB =8,AD =CD =4,点E ,F 分别在线段AB ,AD 上,将△AEF 沿
EF 翻折,点A 的对应点记为P .
(1)当点P 落在线段CD 上时,PD 的取值范围是_______.
(2)当点P 落在直角梯形ABCD 内部时,PD 长度的最小值为_____________.
Q
P
C
B
A
P F E
D C
B A
P
F
E D
C
B
A
D
C
B
A
D
C
B
A
8. 如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,AC
=BC 的中点为D .将△ABC 绕点C 顺时针旋转
任意一个角度得到△FEC ,EF 的中点为G ,连接DG ,则在旋转过程中,DG 长度的最大值为____________.
9. 如图,已知△ABC 是边长为2的等边三角形,顶点A 的坐标为(0,6),BC 的中点D 在点A 下方的y 轴上,
E 是边长为2且中心在坐标原点的正六边形的一个顶点,把这个正六边形绕其中心旋转一周,则在旋转过程中DE 长度的最小值为_________.
10. 探究:如图1,在等边三角形ABC 中,AB =6,AH ⊥BC 于点H ,则AH =_______,△ABC 的面积ABC S
△__________.
发现:如图2,在等边三角形ABC 中,AB =6,点D 在AC 边上(可与点A ,C 重合),分别过点A ,C 作直线BD 的垂线,垂足分别为点E ,F ,设BD =x ,AE =m ,CF =n .
D
G
F
E
C
B A F D
E A
A
图1 图2
(1)用含x ,m ,n 的代数式表示ABD S △及CBD S △;
(2)求(m n +)与x 之间的函数关系式,并求出(m n +)的最大值和最小值.
应用:如图,已知正方形ABCD 的边长为1,P 是BC 边上的任一点(可与点
B ,
C 重合),分别过点B ,C ,
D 作射线AP 的垂线,垂足分别为点B ′,C ′,D ′,则BB ′+CC ′+DD ′的最大值为______,最小值为______.
三、回顾与思考
________________________________________________ ________________________________________________ ________________________________________________ 【参考答案】 精讲精练 1.
125
2.3 3
.4.1 5.5 6.2
7.(1
)84PD -≤;(2
)8 8.6
D'
B'C'
P D C
B
A
9.4
10.探究:
发现:(1)
1
2
ABD
S xm
=
△
,
1
2
CBD
S xn
=
△
(2)m n
+=m+n的最大值为6,最小值为
应用:2。