概率论课件

合集下载

概率论课件之随机事件PPT课件

概率论课件之随机事件PPT课件
(4)德 摩根律 : A B A B, A B A B.
例1 设A,B,C 表示三个随机事件,试将下列事件 用A,B,C 表示出来.
(1) A 发生,且 B 与 C 至少有一个发生;
A( B∪C))
(2) A 与 B 发生,而 C 不发生; (3) A , B, C 中恰有一个发生;
ABC ABC ABC ABC
(4) A , B, C 中至少有两个发生;
AB BC AC
(5) A , B, C 中至多有两个发生;
ABCA不BC发生;
(6) A , B, C 中不多于一个发生.
AB BC AC
或ABC ABC ABC ABC
3. 小结
(1) 随机试验、样本空间与随机事件的关系
(4) 事件 A 与 B 积事件(交) 事件 A B { x x A 且 x B}称为事件
A 与事件 B 的积事件. A和B同时发生 A B发生 积事件也可记作 A B 或 AB.
实例 某种产品的合格与否是由该产品的长度 与直径是否合格所决定,设C=“产品合格” ,A =“长度合格”,B=“直径合格”.
AA B
B
Ω
B A
B
A AB Ω
(7) 事件 A 的对立事件
设 A 表示“事件 A 出现”, 则“事件 A 不出现”
称为事件 A 的对立事件或逆事件. 记作
A.
实例 “骰子出现1点”
“骰对子立不出现1点”
图示 A 与 B 的对立.
A
若 A 与 B对立,则有
A B 且 AB .
B A Ω
对立事件与互斥事件的区别 A、B 互斥(互不相容) A、B 对立(互逆)
(5) 事件 A 与 B 互不相容 (互斥)

概率论与数理统计ppt课件

概率论与数理统计ppt课件

04
理解基本概念和原理
做大量练习题,培养解题能力
05
06
阅读相关书籍和论文,拓宽知识面
02
概率论基础
概率的基本概念
试验
一个具有有限个或无限个 可能结果的随机试验。
事件
试验中的某些结果的总称 。
概率
衡量事件发生可能性的数 值,通常表示为0到1之间 的实数。
必然事件
概率等于1的事件。
不可能事件
概率等于0的事件。
01 点估计
用样本统计量估计总体参数,如用样本均值估计 总体均值。
02 区间估计
给出总体参数的估计区间,如95%置信区间。
03 估计量的性质
无偏性、有效性和一致性。
假设检验
假设检验的基本思想
先假设总体参数具有某种 特性,然后通过样本信息 来判断这个假设是否合理 。
双侧检验
当需要判断两个假设是否 相等时,如总体均值是否 等于某个值。
连续型随机变量
取值无限的随机变 量。
方差
衡量随机变量取值 分散程度的数值。
03
数理统计基础
总体与样本
总体
研究对象的全体。
抽样方法
简单随机抽样、分层抽样、系统抽样等。
样本
从总体中随机抽取的一部分个体,用于估 计和推断总体的特性。
样本大小
样本中包含的个体数量,需要根据研究目 的和资源来确定。
参数估计
单因素方差分析
单因素方差分析的定义
单因素方差分析是方差分析的一种形式,它只涉及一个实验因素。通过对不同组的均值进行比 较,可以确定这个因素对实验结果的影响是否显著。
单因素方差分析的步骤
单因素方差分析通常包括以下步骤:首先,对实验数据进行分组;其次,计算每组的均值;接 着,计算总的均值和总的变异性;然后,计算组间变异性和组内变异性;最后,通过比较这两 种变异,得出因素的显著性。

概率论绪论PPT课件

概率论绪论PPT课件
也可以按某种标准把支出分为高、 中、低三档. 这时,样本点有(高,高), (高,中),…,(低,低)等9种,样本空 间就由这9个样本点构成 .
引入样本空间后,事件便可以表示为 样本空间的子集 .
例如,掷一颗骰子,观察出现的点数
样本空间:
Ω = { i :i=1,2,3,4,5,6}
B = {1,3,5}
计学是概率论的一种应用. 但是它们是两个并列 的数学分支学科,并无从属关系.
概率论是一门研究客观世界随机现象数量 规律的 数学分支学科. —— 其起源与博弈问题 有关.
16世纪意大利学者开始研究掷骰子等赌博 中的一些问题;17世纪中叶,法国数学家B. 帕 斯卡、荷兰数学家C. 惠更斯 基于排列组合的方 法,研究了较复杂 的赌博问题, 解决了“ 合理 分配赌注问题” ( 即得分问题 ).
A1, A2,..., An 构成一个完备事件组.
举例
例1:掷一颗骰子的试验,观察其出现的点 数:事件A表示{出现奇数点};事件B表示 {出现点数小于5};事件C表示{出现小于5 的偶数点}。用列举法表_示_ 事件:
Ω ,A+B,A-B,B-A,AB,AC, A B
例2:设A、B、C为三个随机事件,表示下列 事件:
序论
第二次世界大战军事上的需要以及大工业 与管理的复杂化产生了运筹学、系统论、信息 论、控制论与数理统计学等学科.
数理统计学是一门研究怎样去有效地收集、 整理和分析带有随机性的数据,以对所考察的 问题作出推断或预测,直至为采取一定的决策 和行动提供依据和建议的 数学分支学科.
统计方法的数学理论要用到很多近代数学 知识,如函数论、拓扑学、矩阵代数、组合数 学等等,但关系最密切的是概率论,故可以这 样说:《概率论》是数理统计学的基础,数理统

概率论课件

概率论课件

例3 盒中有3个红球,2个白球,,每次从袋中任 取一只,观察其颜色后放回,并再放入一只与所 取之球颜色相同的球,若从合中连续取球4次,试 求第1、2次取得白球、第3、4次取得红球的概率 。
解:设Ai为第i次取球时取到白球,则
1.7 全概率公式
例:市场上有甲、乙、丙三家工厂生产的同一品牌产品, 已知三家工厂的市场占有率分别为1/4、1/4、1/2,且三 家工厂的次品率分别为 2%、1%、3%,试求市场上该品 牌产品的次品率。
古典概型中的概率: 设事件A中所含样本点个数为M ,以N记样 本空间S中样本点总数,则有
M P ( A) N
P(A)具有如下性质: (1) 0 P(A) 1;
(2) P()=1; P( )=0
(3) AB=,则 P( A B )= P(A) +P(B)
例1:有三个子女的家庭,设每个孩子是男是女的概
1.6 条件概率和乘法定理
袋中有十只球,其中九只白球,一只红球,十
人依次从袋中各取一球(不放回),问
第一个人取得红球的概率是多少?
第二个人取得红球的概率是多少?
若已知第一个人取到的是白球,则第二个人取 到红球的概率是多少? 若已知第一个人取到的是红球,则第二个人取到 红球的概率又是多少? 已知事件A发生的条件下,事件B发生的概率称为 A条件下B的条件概率,记作P(B|A)
• 随机事件
定义 试验中可能出现或可能不出现的情况叫“随 机事件”, 简称“事件”.记作A、B、C等. 在每次试验的结果中某事件一定发生,则该事件称 为必然事件,记作U。 在每次试验的结果中某事件一定不发生,则该事件 称为不可能事件,记作V。
频率:
设随机事件A在n次试验中发生了m次
m f n ( A) n

概率论与数理统计完整ppt课件

概率论与数理统计完整ppt课件
化学
在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的

概率论与数理统计课件:随机变量及其分布

概率论与数理统计课件:随机变量及其分布

随机变量及其分布
首页 返回 退出
§2.2 离散型随机变量及其分布律
定义 设离散型随机变量 X 所有可能取的值为xk , k = 1, 2,
X 取各个可能值的概率,即事件{ X xk } 的概率,为
P{ X xk } pk , k 1, 2, .
称此为离散型随机变量 X 的分布律.
随机变量及其分布
首页 返回 退出
定义2.1 设随机试验E, 其样本空间S, 若对样本
空间每一个样本点e, 都有唯一一个实数X(e)与之对
应,那么就把这个定义域为S的单值实值函数X=X(e),
称为随机变量。
随机变量通常用大写字母X,Y,Z 或希腊字母 ξ,η等表示.
而表示随机变量所取的值时,一般采用小写字母x,y,z等.
量方面,如,投掷一枚均匀骰子,我们观察出现的点
数。
记X=“出现的点数”
则X的可能取1, 2, …, 6中任一个数,可见X是变量;
又X取那个值不能事先确定,故此X的取值又带有随机
性.
有了随机变量,有关事件的表示也方便了,如
{X=2}, {X≤2}, ……
随机变量及其分布
首页 返回 退出
这样的例子还有很多. 又如,研究手机的使用寿命
或写成
随机变量及其分布
5
P( X k )
6
k 1
1
, k 1, 2,
6
首页 返回 退出
常见离散型随机变量
(一)“0-1”分布
设随机变量 X 只可能取 0 和1 两个值,它的分布律

k
P X k p(
1 p)1k k 0,1
(0 p 1)

概率论高等院校概率论课件

概率论高等院校概率论课件

应用场景
强大数定律在统计学中用于 估计极端事件发生的概率和 风险,在决策理论中用于评 估最优策略和期望收益,在 可靠性工程中用于分析系统 的可靠性和寿命。
注意事项
强大数定律的应用有一定的 限制条件,例如随机序列必 须是独立同分布的。此外, 强大数定律并不能保证每个 随机事件的绝对正确性,而 只是给出了最大值分布的稳 定性。
连续随机过程
如布朗运动,每一步都是连续 的,每一步的状态都是连续的

随机游走与布朗运动
随机游走
一个随机过程,其中每一步都是随机的,通 常用来描述粒子的无规则运动。
布朗运动
一种连续随机过程,由大量微小粒子在流体 中无规则运动产生,通常用来描述微观粒子 的运动。
马尔科夫链与马尔科夫过程
马尔科夫链
一个随机过程,其中下一个状态只依赖于当前状态,与过去状态 无关。
注意事项
大数定律的前提是试验次数必须足够多,并且随 机事件之间必须是独立的。此外,大数定律并不 能保证每个随机事件的绝对正确性,而只是给出 了频率趋于概率的稳定性。
强大数定律
总结词
强大数定律是概率论中的重 要定理之一,它描述了随机 序列中最大值的分布性质。
详细描述
强大数定律指出,对于任意 给定的正整数序列$a_n$和 $b_n$,有$lim_{n to infty} frac{a_n}{b_n} = 1$的概率 为1。这个定理说明了随机 序列中最大值的分布具有很 强的稳定性。
随机变量的性质
随机变量具有可测性、可加性和有限 可加性。
离散型随机变量及其分布
离散型随机变量的定义
离散型随机变量是在样本空间中取有 限个或可数个值的随机变量。
离散型随机变量的分布

《概率论讲义》课件

《概率论讲义》课件

线性回归
介绍线性回归模型的基本原理和应用案例。
多元非线性回归
探讨多元非线性回归分析的方法和实际应用。
蒙特卡罗方法
1
简介和基本概念
介绍蒙特卡罗方法的基本思想和使用领域。
2
模拟方法
说明蒙特卡罗方法的模拟过程和实际应用。
3
抽样方法
讨论蒙特卡罗方法中的抽样技术和抽样步骤。
应用案例
金融风险管理
探讨概率论在金融风险管理中的应用和重要性。
2
弱大数定律
探讨具体的弱大数定律和其适用性。
3

中心极限定理
详细解释中心极限定理及其在概率论中的重要性。
统计推断
1 点估计
介绍点估计的概念和方法,以及其在概率论中的应用。
2 区间估计
说明区间估计的原理和步骤,并讨论其实际应用。
3 假设检验
讲解假设检验的基本思想和步骤,以及其在统计学中的作用。
回归分析
《概率论讲义》PPT课件
概率论讲义PPT课件大纲
简介
介绍概率论的基本概念和应 用领域,初步了解概率论的 历史和发展。
随机变量
定义随机变量,离散型和连 续型随机变量及其概率分布。
概率分布
二项分布,泊松分布和正态 分布。
大数定律与中心极限定理
1
定义大数定律和中心极限定理
深入了解大数定律和中心极限定理的概念和应用。
人口统计学
展示概率论如何应用于人口统计学数据的分析和预测。
物理学和天文学
介绍概率论在物理学和天文学研究中的关键作用。
结论
总结所学内容,展望概率论的未来发展和应用前景。
参考文献
推荐阅读经典著作和相关文献
提供经典著作和相关文献,供学习和研究参考。

《概率论》课件

《概率论》课件

物理学
描述粒子在气体或液体中的运动状态。
金融学
用于股票价格和收益率的分析。
隐马尔科夫模型
定义
隐马尔科夫模型是一种特殊的马尔科夫模型 ,其中观测状态与隐藏状态有关,而隐藏状 态之间相互独立。
应用
语音识别、手写识别、生物信息学等领域。
05
大数定律与中心极限定理
大数定律及其应用
大数定律
在独立重复试验中,当试验次数趋于无穷时,事件发 生的频率趋于该事件发生的概率。
《概率论》ppt课 件
目录
• 概率论简介 • 概率的基本性质 • 随机变量及其分布 • 随机过程与马尔科夫链 • 大数定律与中心极限定理 • 贝叶斯统计推断
01
概率论简介
概率论的定义
概率论
研究随机现象的数学学科,通过数学模型和公式 来描述随机事件、随机变量和随机过程。
随机变量
表示随机现象的数值变量,其取值具有随机性。
THANKS
感谢观看
计算机科学
概率论在计算机科学中用于算法设计和数据 挖掘等领域。
02
概率的基本性质
概率的公理化定义
概率的公理化定义是概率论的基础,它规定了概率的几个基本性质,包括非负性 、规范性、可加性和有限可加性。
非负性指的是任何事件的概率都不小于0;规范性指的是必然事件的概率为1;可 加性指的是两个独立事件的概率等于它们各自概率的和;有限可加性指的是任意 有限个两两独立的事件的概率等于这些事件概率的和。
应用
在统计学中,大数定律用于估计样本的统计量和参数 ,如平均值、方差等。
中心极限定理及其应用
中心极限定理
无论随机变量的分布是什么,当样本量足够大时,样 本均值的分布近似正态分布。

概率论第一章ppt课件

概率论第一章ppt课件

A 1 “: 至少有一人命中目标 A 2 “: 恰有一人命中目标” A 3 “: 恰有两人命中目标” A 4 “: 最多有一人命中目标 A 5 “: 三人均命中目标” A 6 “: 三人均未命中目标”
”:
ABC
: ABCABCABC
: AC BABC ABC
”: BCACAB
:
ABC
:
ABC
21
小结
i1
i1
13
3. 积(交)事件 : 事件A与事件B同时发生,记
作 AB 或AB。
推广:n个事件A1, A2,…, An同时发生,记作
n
n
A1A2…An或 A i 或 A i
i1
i1
14
4. 差事件: A-B称为A与B的差事件, 表示事件 A发生而事件B不发生
15
5. 互不相容事件(也称互斥的事件): 即事件 A与事件B不能同时发生。AB= 。
3
第一章 概率论的基本概念
§1.1 随机事件及其运算 §1.2 概率的定义及其性质 §1.3 古典概型与几何概型 §1.4 条件概率 §1.5 独立性
4
§1.1 随机事件及其运算
1.1.1 随机现象
自然界的现象按照发生的可能性(或者必然 性)分为两类:
一类是确定性现象,特点是条件完全决定结果 一类是随机现象,特点是条件不能完全决定结 果 在一定条件下,可能出现这样的结果,也可 能出现那样的结果,我们预先无法断言,这类现象 成为随机现象。
概率论与数理统计
1
概率论与数理统计是研究什么的?
随机现象:不确定性与统计规律性 概率论——从数量上研究随机现象的统计规律性的
科学。
数理统计——从应用角度研究处理随机性数据,建 立有效的统计方法,进行统计推理。

概率论与数理统计课件(完整版)

概率论与数理统计课件(完整版)
例1. 两架飞机依次轮番对同一目标投弹, 每次投下一颗炸弹, 每架飞机各带3颗炸弹, 第1架扔一颗炸弹击中目标的概率为0.3, 第2架的概率为0.4, 求炸弹未完全耗尽而击中目标的概率。
1. 计算相互独立的积事件的概率: 若已知n个事件A1, A2, …, An相互独立,则 P(A1A2…An)=P(A1)P(A2)…P(An)
系统一:先串联后并联
A1
B1
A2
B2
A3
B3
A4
B4
*
例3. 100件乐器,验收方案是从中任 取3件测试(相互独立的), 3件测试后都认为音色纯则接收这批 乐器,测试情况如下: 经测试认为音色纯 认为音色不纯 乐器音色纯 0.99 0.01 乐器音色不纯 0.05 0.95
*
1. 公式法:
当A=S时, P(B|S)=P(B), 条件概率化为无条件概率, 因此无条件概率可看成条件概率.

计算条件概率有两种方法:
*
2.缩减样本空间法:
在A发生的前提下, 确定B的缩减样本空间, 并在其中计算B发生的概率, 从而得到P(B|A). 例2. 在1, 2, 3, 4, 5这5个数码中, 每次取一个数码, 取后不放回, 连取两次, 求在第1次取到偶数的条件下, 第2次取到奇数的概率.
*
随机试验: (1) 可在相同的条件下重复试验; (2) 每次试验的结果不止一个,且能事先明确所有可能的结果; (3) 一次试验前不能确定会出现哪个结果.
*
2. 样本空间与随机事件
样本空间的分类:
离散样本空间:样本点为有限个或可列个. 例 E1,E2等. 无穷样本空间:样本点在区间或区域内取值. 例 灯泡的寿命{t|t≥0}.
空集φ不包含任何样本点, 它在每次试验中都不发生,称为不可能事件。

概率论与数理统计ppt课件

概率论与数理统计ppt课件

称这种试验为等可能概型(或古典概型)。
*
例1:一袋中有8个球,其中3个为红球,5个为黄球,设摸到每一球的可能性相等,从袋中不放回摸两球, 记A={恰是一红一黄},求P(A). 解:
(注:当L>m或L<0时,记 )
例2:有N件产品,其中D件是次品,从中不放 回的取n件, 记Ak={恰有k件次品},求P(Ak). 解:
*
第四章 随机变量的数字特征 4.1 数学期望 4.2 方差 4.3 协方差及相关系数 4.4 矩、协方差矩阵 第五章 大数定律和中心极限定理 5.1 大数定律 5.2 中心极限定理 第六章 数理统计的基本概念 6.1 总体和样本 6.2 常用的分布
*
第七章 参数估计 7.1 参数的点估计 7.2 估计量的评选标准 7.3 区间估计 第八章 假设检验 8.1 假设检验 8.2 正态总体均值的假设检验 8.3 正态总体方差的假设检验 8.4 置信区间与假设检验之间的关系 8.5 样本容量的选取 8.6 分布拟合检验 8.7 秩和检验 第九章 方差分析及回归分析 9.1 单因素试验的方差分析 9.2 双因素试验的方差分析 9.3 一元线性回归 9.4 多元线性回归
解: 设 Ai={ 这人第i次通过考核 },i=1,2,3 A={ 这人通过考核 },
亦可:
*
例:从52张牌中任取2张,采用(1)放回抽样,(2)不放 回抽样,求恰是“一红一黑”的概率。
利用乘法公式
与 不相容
(1)若为放回抽样:
(2)若为不放回抽样:
解: 设 Ai={第i次取到红牌},i=1,2 B={取2张恰是一红一黑}



1 2 N


1 2 N
……

自考-概率论与数理统计课件(经管类)

自考-概率论与数理统计课件(经管类)

贝叶斯定理
贝叶斯定理的表述
对于任何事件A和B,有P(B|A)=P(A∩B)/P(A)。
贝叶斯定理的应用
贝叶斯定理在统计推断、决策分析和机器学习等领域 有广泛的应用。
贝叶斯定理的推导
贝叶斯定理可以通过条件概率的定义和全概率公式进 行推导。
02 随机变量及其分布
离散随机变量
定义
离散随机变量是在一定区间内取有限个值的随机变量,通 常用整数或离散值表示。
04 数理统计基础
样本与抽样分布
总体与样本
总体是研究对象的全体,样 本是从总体中抽取的一部分 。
随机抽样
随机抽样是从总体中按照随 机原则抽取一部分个体的方 法。
抽样分布
抽样分布是描述样本统计量 的分布情况。
参数估计
点估计
点估计是利用样本数据对总体参数进行估计的 方法。
区间估计
区间估计是基于点估计,给出总体参数可能存 在的区间范围。
性质
随机变量的函数的概率分布可以 通过对原随机变量的概率分布进 行相应的运算得到。
03 数字特征与特征函数
期望与方差
期望
期望是概率论中用来度量随机变量取值的平均水平的数学工具,常用符号E表示。期望的计算公式为 E(X)=∑XP(X),其中X是随机变量,P(X)是随机变量取各个可能值的概率。
方差
方差是用来度量随机变量取值分散程度的数学工具,常用符号D表示。方差的计算公式为 D(X)=E[(X−E(X))^2],其中E(X)是随机变量的期望值。
市场调查数据分析
调查问卷设计
基于概率论与数理统计原理,设计有 效的调查问卷,确保数据收集的准确
性和代表性。
数据处理与分析
利用统计分析方法对市场调查数据进 行处理和分析,提取有价值的信息,

概率论与数理统计教程ppt课件

概率论与数理统计教程ppt课件
1. 确定性现象
• 每天早晨太阳从东方升起; • 水在标准大气压下加温到100oC沸腾;
2. 随机现象
• 掷一枚硬币,正面朝上?反面朝上? • 一天内进入某超市的顾客数; • 某种型号电视机的寿命;
16 March 2020
华东师范大学
第一章 随机事件与概率
第3页
1.1.1 随机现象
• 随机现象:在一定的条件下,并不总出现相 同结果的现象称为随机现象.
16 March 2020
华东师范大学
第一章 随机事件与概率
例1.2.1 六根草,头两两相接、
尾两两相接。求成环的概率.
解:用乘法原则直接计算 所求概率为
644221 8 6 5 4 3 2 1 15
第30页
16 March 2020
华东师范大学
第一章 随机事件与概率
3. 若 AnF ,n=1, 2, …, 则

UFA.n
n 1
16 March 2020
华东师范大学
第一章 随机事件与概率
第21页
§1.2 概率的定义及其确定方法
• 直观定义 —— 事件A 出现的可能性大小.
• 统计定义 —— 事件A 在大量重复试验下 出现的频率的稳定值称为该事件的概率.
2. 样本点 —— 随机试验的每一个可能结果.
3. 样本空间(Ω) —— 随机试验的所有样本点构成的集合.
4. 两类样本空间: 离散样本空间 样本点的个数为有限个或可列个. 连续样本空间 样本点的个数为无限不可列个.
16 March 2020
华东师范大学
第一章 随机事件与概率
第5页
1.1.3 随机事件
华东师范大学
第一章 随机事件与概率

《概率论总复习》课件

《概率论总复习》课件

常见问题解答二:条件概率与独立性的关系?
总结词
条件概率与独立性是概率论中的重要概念,它们之间 存在密切的联系。
详细描述
条件概率是指在某个已知事件发生的条件下,另一个 事件发生的概率。而独立性则是指两个事件之间没有 相互影响,一个事件的发生不影响另一个事件的发生 。在条件概率中,如果两个事件在给定条件下是独立 的,那么它们同时发生的概率等于各自发生的概率的 乘积。因此,条件概率和独立性之间存在密切的联系 ,理解它们的概念和关系有助于更好地掌握概率论中 的相关内容。
04
概率论的应用
统计学中的概率论应用
统计推断
概率论为统计学提供了理论基 础,用于估计未知参数、检验 假设和进行预测。
随机抽样
概率论确保了随机抽样的公正 性和代表性,使得样本数据能 够反映总体特征。
统计决策
基于概率论的决策分析方法, 如贝叶斯决策和风险分析,帮 助决策者做出最优选择。
计算机科学中的概率论应用
100%
离散型随机变量的分布
离散型随机变量的分布通常由概 率质量函数或概率分布函数描述 。
80%
连续型随机变量的分布
连续型随机变量的分布由概率密 度函数描述,其总概率为1,即 ∫−∞∞f(x)dxF(x)=∫−∞∞f(x)dxF (x)=∫−∞∞f(x)dxF(x)=1。
02
概率论中的重要定理
贝叶斯定理
01
02
03
04
贝叶斯定理是概率论中的基本 定理之一,它提供了在已知某 些条件下,对概率进行更新和 推理的方法。
贝叶斯定理是概率论中的基本 定理之一,它提供了在已知某 些条件下,对概率进行更新和 推理的方法。
贝叶斯定理是概率论中的基本 定理之一,它提供了在已知某 些条件下,对概率进行更新和 推理的方法。

《概率论与数理统计》课件

《概率论与数理统计》课件
n
XXXX大学
单选题 1分
下列对古典概型说法正确的个数是 ( )。 A ①试验中可能出现的基本事件只有有限个;
②每个事件出现的可能性相等;
B ③若基本事件总数为n ,事件 A 包括 k 个基本事件,则P(A) = k n ;
④每个基本事件出现的可能性相等。 C A. 0
B. 1 C. 2 D D. 3
柯尔莫哥洛夫
概率的公理化定义
概率的性质
频率方法:
频率= nA n
概率=频率的稳定值
Ⅰ.规范性 Ⅱ.非负性 Ⅲ.可列可加
Ⅰ.P( ) = 0 ; Ⅱ.有限可加性 Ⅲ.对
立事件概率Ⅳ.减法公式; Ⅴ加法公式
概率
三种计算方法
几何方法:一维线段的长度;
二维区域的面积; 三维立体的体积.
古典方法:
Ⅰ .随机试验中只有有限个可能的结果;
AB
A
B
A = (A− B) + AB 显然A− B与AB互斥
2
P(A) = P(A− B) + P(AB)
P(A− B) = P(A) − P(AB)
B 仁 A,则P(A− B) = P(A) − P(B). 显然P(A) > P(B)
1.3.2概率的公理化定义及其性质
P( ) = 0;
A1 , A2 , , An
A
B. P(AB) = 1− P(A) − P(B) + P(AB) C. P(AB) = P(A)P(B)
B
D. P(A− B) = 0
C
P(A− B) = P(A) − P(AB) ,排除选项 A。
D
1− P(A) − P(B) + P(AB)=P(A) −1+ P(B) + P(A B)

《概率论与数理统计》课件

《概率论与数理统计》课件

条件概率与独立性
条件概率
在某个事件B已经发生的条件下,另 一事件A发生的概率,记为P(A|B)。
独立性
两个事件A和B如果满足 P(A∩B)=P(A)P(B),则称事件A和B是 独立的。
随机变量及其分布
01
随机变量
随机变量是定义在样本空间上的 一个实值函数,表示随机试验的 结果。
02
离散型随机变量
03
连续型随机变量
离散型随机变量的取值可以一一 列举出来,其概率分布可以用概 率质量函数或概率函数表示。
连续型随机变量的取值范围是一 个区间或半开区间,其概率分布 可以用概率密度函数表示。
数理统计初步
02
统计数据的描述
01
统计数据的收集
描述如何通过调查、试验或观测 等方法,获取用于统计分析的数
据。
03
夫链
随机过程的基本概念
随机过程
随机过程是一组随机变量,每个随机 变量对应于时间或空间的一个点。
有限维分布
描述随机过程在有限个时间点上的联 合分布。
独立性
如果随机过程在不相交的时间区间上 的随机变量是独立的,则该随机过程
是独立的。
马尔科夫链及其性质
马尔科夫性
在已知现在状态下,未来与过去独立,即“未来 只取决于现在”。
03
数据的可视化
介绍如何使用图表(如直方图、 散点图等)将数据可视化,以便 更直观地理解数据分布和关系。
02
数据的整理
介绍如何对数据进行分类、排序 和分组,以便更好地理解和分析

04
数据的数字特征
介绍如何使用均值、中位数、众 数、方差等统计量来描述数据的
中心趋势和离散程度。
参数估计与置信区间
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
别为0.7,0.2,0.1。一位顾客欲购买一箱产品,在购买时,营 业员随机地取一箱,而顾客从中任取4只检查,若无次品,则
买下该箱产品,否则退货,求:
1)顾客买下该箱产品的概率; 2)已知顾客买下一箱产品,则该箱都是正品的概率为多少?
34
例6 袋中N个球,其中红球个数从0~N等可能,每次从中
任取1球,观察其颜色后放回,如此重复了k次。结果k次 都观察到红球,问袋中全是红球的概率。
为在条件A下,事件B发生的(条件)概率。
25
注意:
(1)条件概率也是概率,所以满足概率的6条性质 。
(2)一般的,概率与条件概率之间没有必然的大小关系。
若 A B , 则 有 P (B | A) P (B )
26
例1。设10件产品中有2件次品,8件正品。现 每次从中任取一件产品,且取后不放回,试求 下列事件的概率。
35
B, B A A B
(2)并 定义:事件A,B至少有一个发生,称为事 件A与B的并(或和),记为A∪B或 A+B
9
(3)交 定义:事件A,B同时发生,称为事件A与B 的交(或积),记为A∩B(或AB)。 (4)对立(逆) 定义:若A∪B=Ω ,AB=Ф,则称A、B为 相互对立的事件(简称互逆),事件A 的逆事件记为 A 。 (5)差 定义 :事件A发生而事件B不发生称为A与B 的差。记为A-B。 A B A B
mA n
20
例1 盒中有a个黑球,b个白球,从中分不放回 和有放回地抽取n个球,求 事件A:“刚好取到k个黑球”的概率。
例2(抽签的公平性) 盒中有a个黑球,b个白球, 每次任取1个球(不放回),求 事件A:“第k(1≤ k ≤ a+b)次取到黑 球”的概率。
23
例3 一盒中含有N-1个黑球,一个白球,每次从盒中随机地取 一只球,并还入一只黑球,这样继续下去,求事件A:“第k次
推论:“加奇减偶原则”
n
P ( Ai )
i 1

n
P ( Ai )
i 1
1 i j n

P ( Ai A j )
1 i j k n

P ( Ai A j A k ) ( 1)
n 1
P ( A1 A 2 A n ).
性 质 5 . ( 减 法 公 式 ) 对 任 意 事 件 A , B , P ( B A ) P ( B ) P ( A B ). 有 性 质 6. 单 调 性 )若 A B, 则 有 P ( A ) P ( B ). (
31
2、全概率公式与贝叶斯公式
设Ω为随机试验E的样本空间, 1 , A2 ,, An为 A , 样本空间的一个划分。则:

(1)全概率公式:P( B) P( Ai ) P( B Ai )
i 1
(2)贝叶斯公式:P( Ai B)
P( A ) P( B A )
i 1 i i
32
(1)前两次均取到次品 (2)第一次、第二次取到次品 (3)已知第一次取到次品的条件下第二次也取到次品
27
例2:有10个产品,其中4个是次品,从中不
放回的抽取2个,已知取出的一个是次品的
条件下另外一个也是 次品的概率。
28
1.4.2 概率的乘法公式
定理:两个事件的交的概率等于其中一个事件的概率与另

P( Ai ) P( B | Ai )
例4、 设有一箱同类型的产品是由三家工厂
1 所生产的,已知其中有 的产品是由第一家 2
1 工厂生产的,其它二厂各生产 ;又知第一 4 第二两厂生产的有 2%是次品,第三家工厂
生产 的有4%是次品,现从箱中任取一件产 品,问拿到的是次品的概率为多少?
33
例5 产品整箱出售,每箱20个。各箱有0,1,2个次品的概率分
i 1
29
n
例3:把3个球随机地放到4个盒子中,A表示有 球盒子的最小号码为3,求P(A)。
30
1.4.3
全概率公式、贝叶斯公式
1、划分:设Ω 为随机试验E的样本空间,
A1 , A2 ,, An 为E的一组事件,若
(1)
Ai Aj .
(i j )
(2) A1 A2 An 则称 A1 , A2 ,, An 为样本空间的一个划分。
事件称为该试验的随机事件(简称事件) 通常用大写字母A、B、C等表示。
基本事件:试验E的每一种可能的结果称为一个基本事
件 ,一般用ω 表示。
样本空间:基本事件的全体组成的集合称为该试验的样本空间。
6
必然事件:每次试验中必然发生的事件称为 必然事件,记为Ω。 不可能事件:每次试验中不可能发生的事件 称为不可能事件,记为Φ。
随机试验一般用字母E表示。
4
例1 E1:掷一枚硬币,观察其正面(H)和反面(T) 出现的情况。
例2 E2:从含有2个黑球和3个白球的盒子中任意地取出3个球,
观察取出的球的颜色组合。
例3
E3:记录某网站在1分钟内的点击次数。
例4
E4:观察某厂生产的灯泡的使用寿命t。
5
1.1.2 随机事件 随 机事件 : 随 机 试 验 E 中 可 能 发 生 也 可 能 不 发 生 的
12
例1、在一个口袋里装有红、黄、白三种球, 每种球都不止一个,一次任取两个球,观察 它们的颜色。设A={两个同色球},B={至少
一个红色球},问A∪B由哪些基本事件组成?
13
例2、设A、B、C为三个事件,试将下列事件用A、 B、C表示出来。 (1)三个事件都发生;
(2)三个事件都不发生;
(3)三个事件至少有一个发生; (4)A发生,B、C不发生; (5)A、B都发生,C不发生; (6)三个事件中至少有两个发生; (7)不多于一个事件发生 ; (8)不多于两个事件发生。
授课教师:王峰
第一章 随机事件及概率
随机事件 随机事件的概率 等可能概型 条件概率 事件的独立性

2
§1.1 随机事件 1.1.1 随机试验
随机现象:在一定条件下,事先不能断定会出
现哪种结果,这种现象称为随机现象。
例:抛一枚硬币,观察出现正面或反面的情况。
3
随机试验必需满足:
(1)在相同条件下,可以进行大量重复试验。 ――可重复性 (2)每次试验中可以出现不同的结果,但不能 预知发生哪种结果。――偶然性 (3)试验中可以预知一切可能出现的结果。 --必然性(统计规律性)
(1)非负性:
(2)规范性:
P( A) 0 P ( ) 1
(3)可列可加性: A , A2 ,, An , 1 是互不相容的事件,则有:
P( Ai ) P( Ai )
i 1 i 1
18


概率性质
性 质1 . 不 可 能 事 件 的 概 率 为 0 , 即 P ( ) 0 .
n n
性 质 2.有 限 可 加 性 : A1 , A 2 , , A n 互 不 相 容 , 则 有 P ( Ai )
i 1
Hale Waihona Puke P ( Ai )i 1
性 质 3. ( 对 立 事 件 概 率 ) P ( A ) 1 P ( A ).
性 质 4. ( 加 法 公 式 ) 对 任 意 两 事 件 A, B 有 P ( A B ) P ( A ) P ( B ) P ( A B ).
取到黑球”的概率。
( N 1) k 1 P( A) 1 P( A) 1 k N
24
§1.4 条件概率与乘法公式 1.4.1 条件概率
在实际问题中,有时还要考虑在“已知事件A 发生”的条件下,事件B发生的概率。 P 称为条件概率,记为 : ( B A )
定义:A,B两个事件,P(A)>0,称 P( AB) P( B | A) P( A)
10
(6)互不相容
定义:若事件A、B不能同时发生,即AB=Ф, 则称事件A、B是互不相容的事件。 结论:互不相容事件没有公共的基本事件。 任何两个基本事件都是互不相容的。 A、B互逆 A、B互不相容 A、B互不相容; A、B互逆。
11
(7)事件的运算规律
交换律:A∪B=B∪A,AB=BA 结合律:(A∪B)∪C=A∪(B∪C), (AB)C=A(BC) 分配律:(AB)∪C=(A∪C)· (B∪C) , (A∪B)C=(AC)∪(BC) 德摩根公式 A B A B (对偶公式) A B A B
f n ( Ai )
i 1 m m

f n ( A i )。
i 1
说明
1)事件A发生的可能性愈大等价于其频率愈大; 2)频率有稳定性,即当n很大时,频率在一个常 数值附近摆动。
16
1.2.2 概率的定义
(1)概率的统计定义
定义1:在同一组条件下所作的大量重复试验
中,如果事件A发生的频率总是在一个确定的
14
§1.2 随机事件的概率 1.2.1 事件的频率
定义:如果在n次重复随机试验中,事件A发
nA 生了nA次,那么就称比值 f n ( A) 为事件A n
发生的频率,其中nA称为在这n次试验中A发
生的频数。
15
频率的性质: (1)对任意事件A,0 f n ( A) 1 。
(2) f n () 1 。 (3)对任意有限多个互不相容的事件A1,A2,…, Am , 有
7
注 意
(1)样本空间的构成是由试验的条件和观察的目的 所决定。
(2)基本事件是事件的一种,一般的事件是由若干 个基本事件共同组成的,因而是样本空间的子 集,通常又称其为复合事件。 (3)随机事件的另一个定义:样本空间Ω 的某个子
相关文档
最新文档