构造法在高中数学中的应用

构造法在高中数学中的应用
构造法在高中数学中的应用

构造法在高中数学中的应用

构造法是数学中常用的方法。是一种利用已知的数学模型或已证明的问题,构造函数,构造方程,构造几何图形等一切可能的数学模型从而使问题得到解决。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于加强学生数学基础知识的灵活运用,提高学生分析问题和解决问题的能力,培养学生的思维能力和创新能力。对于培养思维的敏捷性和创造性,具有重要的意义。

标签:数学模型;高中数学;构造法;应用

1 绪论

构造法从数学产生的那天起就伴随着数学产生,构造法的应用研究涉及各个科学领域。构造法的教学有利于提高学生在解决问题时会通过有关题型建立数学模型的意识,增强学生自我建构的能力。

2 構造法在数学中的解题应用

2.1 构造函数。通过构造辅助函数,把原来的问题转化为研究辅助函数的性质,并利用函数的单调性,有界性,奇偶性来解决所探究的问题。

例1:不等式x2+x-2<0的解集为

解析:解法一(按照定向思维直接求解)可将原式化为:(x+12)2<94

解法二(构造二元一次函数图像求解)

据观察题目条件,可以直接构造函数:f(x)=x2+x-2=(x+2)(x-1)

分析比较:对于解法一,我们发现在化简二元一次不等式,的过程中很容易出现漏掉符号的情况,在化简的过程中出错,而这就会造成一步错步步错,使得这个问题最终未能解决,而且在计算过程中容易对两种情况的讨论容易发生错误。步骤相对于解法二也要相对复杂。但是,在解法二中,通過构造二元一次函数,然后从函数图象与x轴的两个交点可以很直观看出函数值小于零的情况,同时相对于解法一运算量大大减小,出错的几率也变小。

2.2 构造数列

2.2.1 构造等差数列法

例1. 在数列{an}中,求通项公式a1=3,nan+1=(n+2)an+2n(n+1)(n+2),求通项公式an。

最新浅谈构造法在中学数学解题中的应用上课讲义

浅谈构造法在中学数学解题中的应用 富源六中范文波 [摘要]:现代数学素质教育要求大力提高学生的数学素养,这不仅要使学生掌握数学知识,而且要使学生掌握渗透于数学知识中的数学思想方法,使他们能用数学知识和方法解决实际问题。构造法作为一种数学方法,不同于一般的逻辑方法,它是一步一步寻求必要条件,直至推导出结论,它属于非常规思维。其本质特征是“构造”,用构造法解题,无一定之规,表现出思维的试探性、不规则性和创造性。本文主要通过大量的例题说明构造法是广泛存在于解题过程中的,而且对于解某些问题是非常有用的. [关键词]:构造法;创造性;构造;几何变换 1 前言 解数学问题时,常规的思考方法是由条件到结论的定向思考,但有些问题用常规的思维方式来寻求解题途径却比较困难,甚至无从着手。在这种情况下,经常要求我们改变思维方向,换一个角度去思考从而找到一条绕过障碍的新途径。构造法就是这样的手段之一. 构造的数学思想提炼于数学各分支的研究方法之中,它融直观性、简单性、统一性、抽象性、相似性于一体,显示出简化与精密、直观与抽象的高度统一. 什么是构造法又怎样去构造呢?构造法是运用数学的基本思想经过认真的观察,深入的思考、分析,迁移联想,正确思维,巧妙地、合理地构造出某些元素、某种模式,使问题转化为新元素的问题,或转化为新元素之间的一种新的组织形式,从而使问题得以解决,这种方法称之为“构造法”. 构造法的内涵十分丰富,没有完全固定的模式可以套用,它是以广泛抽象的普遍性与现实问题的特殊性为基础,针对具体的问题的特点而采取相应的解决办法,其基本的方法是:借用一类问题的性质,来研究另一类问题的思维方法.在解题过程中,若按习惯定势思维去探求解题途径比较困难时,我们可以根据题目特点,展开丰富的联想拓宽自己思维范围,运用构造法来解题也是培养我们创造意识和创新思维的手段之一,同时对提高我们的解题能力也有所帮助. 构造法包含的内容很多,在解题中的应用也千变万化,无一定规律可言,它需要更多的分析、类比、归纳、判断,同时能激发人们的直觉思维和发散思维.

高中数学放缩法技巧全总结

2010高考数学备考之放缩技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求 ∑=-n k k 1 2 142 的值; (2)求证: 3 51 1 2 < ∑=n k k . 解析:(1)因为121121)12)(12(21 422+--=+-= -n n n n n ,所以12212111 4212 +=+-=-∑=n n n k n k (2)因为??? ??+--=-=- <1211212144 4 11 1 222n n n n n ,所以35321121121513121112=+-?>-?>?-=?=+ (14) ! )2(1!)1(1)!2()!1(!2+- +=+++++k k k k k k (15) )2(1) 1(1 ≥--<+n n n n n (15) 11 1) 11)((112 2 2 22 222<++ ++= ++ +--= -+-+j i j i j i j i j i j i j i 例2.(1)求证:)2()12(2167) 12(1513112 22≥-->-++++n n n (2)求证:n n 412141361161412 -<++++

中考数学构造法解题技巧

构造法在初中数学中的应用 所谓构造法就是根据题设条件或结论所具有的特征和性质,构造满足条件或结论的数学对象,并借助该对象来解决数学问题的思想方法。构造法是一种富有创造性的数学思想方法。运用构造法解决问题,关键在于构造什么和怎么构造。充分地挖掘题设与结论的内在联系,把问题与某个熟知的概念、公式、定理、图形联系起来,进行构造,往往能促使问题转化,使问题中原来蕴涵不清的关系和性质清晰地展现出来,从而恰当地构造数学模型,进而谋求解决题目的途径。下面介绍几种数学中的构造法: 一、构造方程 构造方程是初中数学的基本方法之一。在解题过程中要善于观察、善于发现、认真分析,根据问题的结构特征、及其问题中的数量关系,挖掘潜在已知和未知之间的因素,从而构造出方程,使问题解答巧妙、简洁、合理。 1、某些题目根据条件、仔细观察其特点,构造一个"一元一次方程" 求解,从而获得问题解决。 例1:如果关于x的方程ax+b=2(2x+7)+1有无数多个解,那么a、b的值分别是多少? 解:原方程整理得(a-4)x=15-b ∵此方程有无数多解,∴a-4=0且15-b=0 分别解得a=4,b=15 2、有些问题,直接求解比较困难,但如果根据问题的特征,通过转化,构造"一元二次方程",再用根与系数的关系求解,使问题得到解决。此方法简明、功能独特,应用比较广泛,特别在数学竞赛中的应用。

3、有时可根据题目的条件和结论的特征,构造出方程组,从而可找到解题途径。 例3:已知3,5,2x,3y的平均数是4。 20,18,5x,-6y的平均数是1。求 的值。 分析:这道题考查了平均数概念,根据题目的特征构造二元一次方程组,从而解出x、y的值,再求出的值。 二、构造几何图形 1、对于条件和结论之间联系较隐蔽问题,要善于发掘题设条件中的几何意义,可以通过构造适当的图形把其两者联系起来,从而构造出几何图形,把代数问题转化为几何问题来解决.增强问题的直观性,使问题的解答事半功倍。 例4:已知,则x 的取值范围是()

不等式数学归纳法

1. 设实数122018,,..,x x x 满足任意的12018i j ≤<≤,均有(1)i j i j x x ++≥-,求2018 1 i i ix =∑ 求2018 1i i ix =∑最小值. 2. 设正实数12,,..,n x x x 满足12..1n x x x =,求证:{}{}{}1221 ...2 n n x x x -+++≤ ,其中 {}x 表示x 的小数部分.

3. 设互不相等正整数12,,..,(2)n x x x n ≥,求证: (1)2221212231.......23n n x x x x x x x x x n +++≥++++-, (2) 222121221 ...(...)3 n n n x x x x x x ++++≥+++ 4.设[]2,(1),0,1i n i i n x ≥?≤≤∈,求证: 11 13n k l k k l n k n kx x kx ≤<≤=-≤∑∑,

5.设1233,...n n x x x x ≥<<<<,证明:111 (1) ()(1)2n n i j i j i j n i j n n x x n i x j x ≤<≤==->--∑∑∑ 6. 求证:12 n i π =

7.设函数211 ()1.....2!n n f x x x x n =++++,证明: (1) 当0x >,(),x n e f x n N +>∈; (2)当0x >,存在实数y,使得11 ()(1)! x n y n e f x x e n +=++,证明:0y x << 8.设()f n n =+,定义数列{}n a ,11,,()n n a m m N a f a ++=∈=,证明:对于每一个正整数m,数列{}n a 必有无穷多个完全平方数. ,

高中数学核心方法:构造法

高中数学核心方法:构造法 构造法,顾名思义是指当解决某些数学问题使用通常方法按照定向思维难以解决问题时,应根据题设条件和结论的特征、性质,从新的角度,用新的观点去观察、分析、理解对象,牢牢抓住反映问题的条件与结论之间的内在联系,运用问题的数据、外形、坐标等特征,使用题中的已知条件为原材料,运用已知数学关系式和理论为工具,在思维中构造出满足条件或结论的数学对象,从而,使原问题中隐含的关系和性质在新构造的数学对象中清晰地展现出来,并借助该数学对象方便快捷地解决数学问题的方法。 历史上有不少著名的数学家,如欧几里得、欧拉、高斯、拉格朗日等人,都曾经用“构造法”成功地解决过数学上的难题。数学是一门创造性的艺术,蕴含着丰富的美,而灵活、巧妙的构造令人拍手叫绝,能为数学问题的解决增添色彩,更具研究和欣赏价值。近几年来,构造法极其应用又逐渐为数学教育界所重视,在数学竞赛中有着一定的地位。 构造需要以足够的知识经验为基础,较强的观察能力、综合运用能力和创造能力为前提,根据题目的特征,对问题进行深入分析,找出“已知”与“所求(所证)”之间的联系纽带,使解题另辟蹊径、水到渠成。 用构造法解题时,被构造的对象是多种多样的,按它的内容可分为数、式、函数、方程、数列、复数、图形、图表、几何变换、对应、数学模型、反例等,从下面的例子可以看出这些想法的实现是非常灵

活的,没有固定的程序和模式,不可生搬硬套。但可以尝试从中总结规律:在运用构造法时,一要明确构造的目的,即为什么目的而构造;二要弄清楚问题的特点,以便依据特点确定方案,实现构造。 下面,我们通过几个例题,来简单看一下高中阶段几种常见的构造法。 例1.(构造函数)已知三角形的三边长分别为,,a b c ,且m 为正数,求证:a b c a m b m c m +>+++ 解:构造函数()1x m f x x m x m = =-++,则()f x 在()0+∞,上是增函数。 0a b c +>> ,()()f a b f c ∴+>。 ()()()()a b a b a b f a f b f a b f c a m b m a b m a b m a b m ++= +>+==+>++++++++ a b c a m b m c m ∴+>+++ 例2.(构造距离)求函数 ()f x =的最小值。 解:()f x =其几何意义是平面内动点(),0P x 到两定点()()1,4,3,2M N --的距离之和,当 ,,P M N 三点共线时距离之和最小为MN ==即() f x 的最小值为。 例3.(构造直线斜率)求函数()sin cos 3x f x x =- 的值域。 解:构造动点()cos ,sin P x x 与定点()3,0Q 的连线的斜率,而动点P 的轨迹为单位圆。

高级中学数学技能妙构造对偶式的八种途径

构造对偶式的八种途径 在数学解题过程中,合理地构造形式相似,具有某种对称关系的一对对偶关系式,并通过对这对对偶关系式进行适当的和,差,积等运算,往往能使问题得到巧妙的解决,收到事半功倍的效果。下面通过实例来谈谈构造对偶式的八种途径。 一.和差对偶 对于表达式()()u x v x ±,我们可构造表达式()()u x v x m 作为它的对偶关系式。 例1若02 πθ<< ,且3sin 4cos 5θθ+=,求tan θ的值。 解析:构造对偶式:3sin 4cos y θθ-= 则3sin 4cos 5,3sin 4cos y θθθθ+=??-=?得5sin 6 5cos 8y y θθ+? =??∴? -?= ?? 再由2 2sin cos 1θθ+=,得:7 3,tan 54 y θ=-∴=。 点评:这种构造对偶式的方法灵巧,富有创意,有助于培养学生的创新思维和创造能力。 例2已知:,,,a b c d R ∈,且2 2 2 2 1a b c d +++≤, 求证:444444 ()()()()()()6a b a c a d b c b d c d +++++++++++≤。 解: 4444444 4 4 4 4 4 ()()()()()():()()()()()() M a b a c a d b c b d c d N a b a c a d b c b d c d =+++++++++++=-+-+-+-+-+-设,构造对偶式 则有: 4444222222222222222226(222222)6()6 M N a b c d a b a c a d b c b d c d a b c d +=+++++++++=+++≤ 又0N ≥,故6M ≤,即原不等式成立。 点评:这个对偶式构造得好!它的到来一下子使问题冰消融了。解法自然,朴素,过程简洁,

高中数学选择题技巧讲解

专题一数学客观题的解题方法与技巧 专题一I 选择题的解法 高考数学试题中,选择题注重多个知识点的小型综合,渗透各种数学思想和方法,体现以考查“三基”为重点的导向,能否在选择题上获取高分,对高考数学成绩影响重大.解答选择题的基本要求是四个字—准确、迅速.选择题主要考查基础知识的理解、基本技能的熟练、基本计算的准确、基本方法的运用、考虑问题的严谨、解题速度的快捷等方面. 选择题具有题小、量大、基础、快捷、灵活的特点,是高考中的重点题型.在高考试卷中数量最大,占分比例高.全国卷的选择题占60分.因此,正确的解好选择题已成为高考中夺取高分的必要条件. 选择题从难度上讲是比其他类型题目降低了,但知识覆盖面广,要求解题熟练、准确、灵活、快捷.应“多一点想的,少一点算的”,该算不算,巧判断.因而,在解答时应该突出一个“选”字,尽量减少书写解答过程.在对照选项的同时,多方考虑间接解法,依据题目的具体特点,灵活、巧妙、快速的选择巧法,以便快速智取. 选择题的巧解说到底就是要充分利用选项提供的信息,发挥选项的作用.能力稍差的学生解选择题仅仅顾及题干,然后像解答题那样解下去,选项只取了核对的作用.本来像选择题这样的小题应当“小题小作”,但却做成了解答题.至少做成了填空题.这样就“小题大作”了,导致后面的解答题没有充裕的时间思考,这是不划算的. 由于选择题结构特殊,不要求反映过程,再加上解答方式没有固定的模式,灵活多变,具有极大的灵活性.选择题的解题思想,渊源于选择题与常规题的联系与区别,它在一定程度上还保留着常规题的某些痕迹;而另一方面,选择题在结构上具有自己的特点,即至少有一个答案是正确的或合适的.因此,可充分利用题目提供的信息,排除迷惑支的干扰,正确、合理、迅速地从选择支中选出正确支;选择题中的错误支具有双重性,既有干扰的一面,也有可利用的一面.只有通过认真的观察、分析和思考才能揭露其潜在的暗示作用,从而从反面提供信息,迅速做出判断. 1.选择题的解题策略 解题的基本策略是:充分地利用题干和选择支的两方面条件所提供的信息作出判断.先定性后定量,先特殊后推理;先间接后直解,先排除后求解. 一般地,解答选择题的策略是: ①熟练掌握各种基本题型的一般解法; ②结合高考单项选择题的结构(由“四选一”的指令、题干和选择项所构成)和不要求书写解题过程的特点,灵活运用特例法、筛选法、图解法等选择题的常用解法与技巧;

高中数学解题方法之构造法(含答案)

十、构造法 解数学问题时,常规的思考方法是由条件到结论的定向思考,但有些问题用常规的思维 方式来寻求解题途径却比较困难,甚至无从着手。在这种情况下,经常要求我们改变思维方 向,换一个角度去思考从而找到一条绕过障碍的新途径。 历史上有不少著名的数学家,如欧几里得、欧拉、高斯、拉格朗日等人,都曾经用“构 造法”成功地解决过数学上的难题。数学是一门创造性的艺术,蕴含着丰富的美,而灵活、 巧妙的构造令人拍手叫绝,能为数学问题的解决增添色彩,更具研究和欣赏价值。近几年来, 构造法极其应用又逐渐为数学教育界所重视,在数学竞赛中有着一定的地位。 构造需要以足够的知识经验为基础,较强的观察能力、综合运用能力和创造能力为前提, 根据题目的特征,对问题进行深入分析,找出“已知”与“所求(所证)”之间的联系纽带, 使解题另辟蹊径、水到渠成。 用构造法解题时,被构造的对象是多种多样的,按它的内容可分为数、式、函数、方程、 数列、复数、图形、图表、几何变换、对应、数学模型、反例等,从下面的例子可以看出这 些想法的实现是非常灵活的,没有固定的程序和模式,不可生搬硬套。但可以尝试从中总结 规律:在运用构造法时,一要明确构造的目的,即为什么目的而构造;二要弄清楚问题的特 点,以便依据特点确定方案,实现构造。 再现性题组 1、求证: 3 10910 22≥++=x x y (构造函数) 2、若x > 0, y > 0, x + y = 1,则4 2511≥???? ??+??? ??+ y y x x (构造函数) 3、已知01a <<,01b <<,求证: 22)1()1()1()1(22222222≥-+-+-+++-++b a b a b a b a (构造图形、复数) 4、求证:9)9(272≤-+x x ,并指出等号成立的条件。(构造向量) 5、已知:a>0、b>0、c>0 ,求证:222222c ac a c bc b b ab a ++≥+-++-当且仅当 c a b 111+=时取等号。(构造图形) 6 、求函数y = 再现性题组简解: 1、解:设)3(92 ≥+=t x t 则t t y t f 1)(2+==,用定义法可证:f (t )在),3[+∞上单调递增,令:3≤12t t < 则0)1)((11)()(2 1212122212121>--=+-+=-t t t t t t t t t t t f t f ∴310313)3(9 10322=+=≥++= f x x y

高中数学构造函数解决导数问题专题复习

高中数学构造函数解决导数问题专题复习 【知识框架】 【考点分类】 考点一、直接作差构造函数证明; 两个函数,一个变量,直接构造函数求最值; 【例1-1】(14顺义一模理18)已知函数() (Ⅰ)当时,求曲线在处的切线方程; (Ⅱ)若在区间上函数的图象恒在直线下方,求的取值范围. 【例1-2】(13海淀二模文18)已知函数. (Ⅰ)当时,若曲线在点处的切线与曲线在点 处的切线平行,求实数的值; (Ⅱ)若,都有,求实数的取值范围. ()()()h x f x g x =-2 1()ln 2 f x ax x x = -+,0a R a ∈≠2a =()y f x =(1,(1))f [)1,+∞()f x y ax =a ()ln ,()(0)a f x x g x a x ==- >1a =()y f x =00(,())M x f x ()y g x =00(,())P x g x 0x (0,]x e ?∈3 ()()2 f x g x ≥+a

【练1-1】(14西城一模文18)已知函数,其中. (Ⅰ)当时,求函数的图象在点处的切线方程; (Ⅱ)如果对于任意,都有,求的取值范围. 【练1-2】已知函数是常数. (Ⅰ)求函数的图象在点处的切线的方程; (Ⅱ)证明函数的图象在直线的下方; (Ⅲ)讨论函数零点的个数. 【练1-3】已知曲线. (Ⅰ)若曲线C 在点处的切线为,求实数和的值; (Ⅱ)对任意实数,曲线总在直线:的上方,求实数的取值范围. 【练1-4】已知函数,求证:在区间上,函数的图像在函数的图像的下方; ()ln a f x x x =-a ∈R 2a =()f x (1,(1))f (1,)x ∈+∞()2f x x >-+a ()=ln +1,f x x ax a R -∈=()y f x (1,(1))P f l =()(1)y f x x ≠l =()y f x :e ax C y =(0,1)2y x m =+a m a C l y ax b =+b ()2 1ln 2 f x x x = +()1,+∞()f x ()3 23 g x x = 分析:函数)(x f 的图象在函数)(x g 的图象的下方)()(x g x f =F 要证不等式转化变为:当1>x 时,)1()(F x F >,这只要证明: )(x g 在区间),1(+∞是增函数即可。

构造法在中学数学中的应用研究98943465

构造法在中学数学中的应用研究98943465

本科毕业设计(论文)题目构造法在中学数学解题中的应用研究

常熟理工学院本科毕业设计(论文)诚信承诺书本人郑重声明:所呈交的本科毕业设计(论文),是本人在导师的指导下,独立进行研究工作所取得的成果.除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 本人签名:日期: 常熟理工学院本科毕业设计(论文)使用授权说明本人完全了解常熟理工学院有关收集、保留和使用毕业设计(论文)的规定,即:本科生在校期间进行毕业设计(论文)工作的知识产权单位属常熟理工学院。学校有权保留并向国家有关部门或机构送交论文的复印件和电子版,允许毕业设计(论文)被查阅和借阅;学校可以将毕业设计(论文)的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存、汇编毕业设计(论文),并且本人电子文档和纸质论文的内容相一致。 保密的毕业设计(论文)在解密后遵守此规定。 本人签名:日期: 导师签名:日期:

构造法在中学数学解题中的应用研究 摘要 构造法是一种重要的划归手段,学生通过观察、分析、抓住特征、联想熟知的数学模型,然后变换命题,恰当的构造新的数学模型来达到解题的目的,在中学数学解题中具有重要的作用,主要涉及函数,图形,方程,数列等内容。构造法是一种富有创造性的方法,属于非常规思维,运用构造法解题有利于培养学生的创造性思维,提高学生观察、分析、解决问题的能力。 关键词:构造法,观察,分析,创造性,解题

初中数学不等式知识点

初中数学不等式知识点 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

不等式 性质 ①如果x>y,那么yy;() ②如果x>y,y>z,那么x>z;() ③如果x>y,而z为任意实数或,那么x+z>y+z;(,或叫同向不等式可加性) ④如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xzy,m>n,那么x+m>y+n;() ⑥如果x>y>0,m>n>0,那么xm>yn; ⑦如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n 次幂

不等式两边相加或相减同一个数或式子,不等号的方向不变。(移项要变号) 不等式两边相乘或相除同一个正数,不等号的方向不变。 不等式两边乘或除以同一个负数,不等号的方向改变。(×÷负数要变号) 解集 确定: ①比两个值都大,就比大的还大(同大取大); ②比两个值都小,就比小的还小(同小取小); ③比大的大,比小的小,无解(大大小小取不了); ④比小的大,比大的小,有解在中间(小大大小取中间)。 三个或三个以上成的不等式组,可以类推。 数轴法 把每个不等式的解集在上表示出来,数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集。有几个就要几个。注意实点与空点的区别。 在确定一元二次不等式时,a>0,Δ=b2-4ac>0时,不等式解集可用"大于取两边,小于取中间"求出。 证明方法 比较法 1.作差比较法:根据a-b>0a>b,欲证a>b,只需证a-b>0;

初中几何反证法专题(编辑)

初中几何反证法专题 学习要求 了解反证法的意义,懂得什么是反证法。 理解反证法的基本思路,并掌握反证法的一般证题步骤。 知识讲解 对于一个几何命题,当用直接证法比较困难时,则可采用间接证法,反证法就是一种间接证法,它不是直接去证明命题的结论成立,而是去证明命题结论的反面不能成立。从而推出命题的结论必然成立,它给我们提供了一种可供选择的新的证题途径,掌握这种方法,对于提高推理论证的能力、探索新知识的能力都是非常必要的。下面我们对反证法作一个简单介绍。 1.反证法的概念: 不直接从题设推出结论,而是从命题结论的反面出发,引出矛盾,从而证明命题成立,这样的证明方法叫做反证法。 2.反证法的基本思路: 首先假设所要证明的结论不成立,然后再在这个假定条件下进行一系列的正确逻辑推理,直至得出一个矛盾的结论来,并据此否定原先的假设,从而确认所要证明的结论成立。这里所说的矛盾是指与题目中所给的已知条件矛盾,或是与数学中已知定理、公理和定义相矛盾,还可以是与日常生活中的事实相矛盾,甚至还可以是从两个不同角度进行推理所得出的结论之间相互矛盾(即自相矛盾)。 3.反证法的一般步骤: (1)假设命题的结论不成立;

(2)从这个假设出发,经过推理论证得出矛盾; (3)由矛盾判定假设不正确,从而肯定命题的结论正 确 简而言之就是“反设-归谬-结论”三步曲。 例题: 例1.已知:AB、CD是⊙O内非直径的两弦(如图1),求证AB与CD不能互相平分。证明: 假设AB与CD互相平分于点M、则由已知条件AB、CD均非⊙O直径,可判定M不是圆心O,连结OA、OB、OM。 ∵OA=OB,M是AB中点 (1) ∴OM⊥AB (等腰三角形底边上的中线垂直于底边) 同理可得: OM⊥CD,从而过点M有两条直线AB、CD都垂直于OM 这与已知的定理相矛盾。 故AB与CD不能互相平分。 例2.已知:在四边形ABCD中,M、N分别是AB、DC的 中点,且MN=(AD+BC)。 求证:AD∥BC

谈构造法在数学解题中的运用

谈构造法在数学解题中的运用 摘要:“构造法”作为一种重要的化归手段,在数学解题中有着重要的作用。本文从“构造函数”、“构造方程”等常见构造及“构造模型”、“构造情境”等特殊构造出发,例谈构造法在数学解题中的运用。 关键词:构造数学解题 历史上有不少著名的数学家,如欧几里得、欧拉、高斯、拉格朗日等人,都曾经用“构造法”成功地解决过数学上的难题。数学是一门创造性的艺术,蕴含着丰富的美,而灵活、巧妙的构造令人拍手叫绝,能为数学问题的解决增添色彩,更具研究和欣赏价值。近几年来,构造法极其应用又逐渐为数学教育界所重视,在数学竞赛中有着一定的地位。 构造需要以足够的知识经验为基础,较强的观察能力、综合运用能力和创造能力为前提,根据题目的特征,对问题进行深入分析,找出“已知”与“所求(所证)”之间的联系纽带,使解题另辟蹊径、水到渠成。 “构造法”作为一种重要的化归手段,在数学中有着极为重要的作用,现举例谈谈其在数学解题中的运用。 一、构造函数 理解和掌握函数的思想方法有助于实现数学从常量到变量的这个认识上的飞跃。很多数学命题繁冗复杂,难寻入口,若巧妙运用函数思想,能使解答别具一格,耐人寻味。 [例1](柯西不等式)设a i,b i(i=1,2,…,n)均为实数,证明:

? ? ????? ??≤??? ??∑∑∑===n i i n i i n i i i b a b a 1212 12 证:构造二次函数f(x)=?? ? ??+??? ??+??? ??∑∑∑===n i i n i i i n i i b x b a x a 1212122,则 [例2]已知x,y,z ∈(0,1),求证: x(1-y)+y(1-z)+z(1-x)<1 (第15届俄罗斯数学竞赛题) 分析:此题条件、结论均具有一定的对称性,然而难以直接证明,不妨用构造法一试。 证:构造函数 f(x)=(y+z-1)x+(yz-y-z+1) ∵y,z ∈(0,1), ∴f(0)=yz-y-z+1=(y-1)(z-1)>0 f(1)=(y+z-1)+(yz-y-z+1)=yz >0 而f(x)是一次函数,其图象是直线, ∴由x ∈(0,1)恒有f(x) >0 即(y+z-1)x+(yz-y-z+1) >0 整理可得x(1-y)+y(1-z)+z(1-x) <1 二、构造方程 方程是解数学题的一个重要工具,许多数学问题,根据其数量关系,在已知和未知之间搭上桥梁,构造出方程,使解答简洁、合理。 [例3]已知a,b,c 为互不相等的实数,试证: bc (a-b)(a-c) +ac (b-a)(b-c) +ab (c-a)(c-b) =1 (1) 证:构造方程

浙教版八年级数学下册反证法作业练习

4.6 反证法 ◆基础练习 1.“ab C.a=b D.a=b或a>b 2.用反证法证明“若a⊥c,b⊥c,则a∥b”时,应假设() A.a不垂直于c B.a,b都不垂直于c C.a⊥b D.a与b相交 3.用反证法证明命题“在一个三角形中,如果两条边不相等,那么它们所对的角也不相等” 时,应假设___________. 4.用反证法证明“若│a│<2,则a<4”时,应假设__________. 5.请说出下列结论的反面:(1)d是正数; (2)a≥0; (3)a<5. 6.如下左图,直线AB,CD相交,求证:AB,CD只有一个交点. 证明:假设AB,CD相交于两个交点O与O′,那么过O,O′两点就有_____条直线,这与“过两点_______”矛盾,所以假设不成立,则________. 7.完成下列证明. 如上右图,在△ABC中,若∠C是直角,那么∠B一定是锐角. 证明:假设结论不成立,则∠B是______或______. 当∠B是____时,则_________,这与________矛盾; 当∠B是____时,则_________,这与________矛盾. 综上所述,假设不成立. ∴∠B一定是锐角.

8.如图,已知AB∥CD,求证:∠B+∠D+∠E=360°. 9.请举一个在日常生活中应用反证法的实际例子. ◆综合提高 10.用反证法证明“三角形中至少有一个内角不小于60°”,?应先假设这个三角形中( ) A .有一个内角小于60° B.每一个内角都小于60° C .有一个内角大于60° D.每一个内角都大于60° 11.若用反证法证明命题“在直角三角形中,至少有一个锐角不大于45 °”时,应假设______________. 12.用反证法证明:两直线平行,同旁内角互补. 132是一个无理数.(说明:任何一个有理数均可表示成 b a 的形式,且a ,b 互质) 14、试写出下列命题的反面: (1)a 大于2 _____________;(2)a⊥b _______________. 15、用反证法证明“若22a b ≠,则a b ≠”的第一步是______________. 16、填空:在△ABC 中,若∠C 是直角,那么∠B 一定是锐角. 证明:假设结论不成立的,则∠B 是__________或_________. ①当∠B 是_______时,则__________,这与____________________矛盾; ②当∠B 是_______时,则__________,这与____________________矛盾.

构造法及构造法在中学数学解题中的应用

摘要:构造法就是根据题设条件和结论的特殊性,构造出一些新的数学形式,并借助它来认识与解决原问题的一种思想方法。构造法是运用数学的适当的数学思想与原理,针对一些数学的问题的特点而采用相应的解决办法,合理地运用构造法一方面可以提高解题效率;同时也能够发展学生的思维能力和创新意识。本文在分析构造法的内涵和研究价值的基础上,对构造法在中学数学中一些典型问题解决中的运用进行了探索和尝试。 关键字:中学数学,解题,构造法

Abstract:According to the problem of construction method is the particularity of the set conditions and conclusion is constructed, some new form of mathematics, and with it to recognize and solution of the original problem a thought method. By using the mathematical method of construction is the proper mathematical idea and principle, in view of some mathematical characteristics and the corresponding solution, reasonable construction method on the one hand may improve by solving efficiency; Also can develop the students' thinking ability and innovative consciousness. Based on the analysis of the connotation and construction method, on the basis of research value of tectonic method in the middle school mathematics in the application of some typical problems probes and try. Keywords:middle school mathematics,problem-solving,method of construction

(六)数学归纳法

(六)数学归纳法 一、知识要点 1.一般地,当要证明一个命题对于不小于某正整数0n 的所有正整数n 都成立时,可以用数学归纳法。 2.数学归纳法的证明步骤: (1)证明0n n =时命题成立; (2)假设),(0n k N k k n ≥∈=+时命题成立,证明1+=k n 时命题也成立。 由(1)、(2)两步可得,所证命题成立。 二、例题解析 例1.用数学归纳法证明: ))(12()2()12(4321222222+∈+-=--++-+-N n n n n n . 例2.如果x 是实数,且n x x ,0,1≠->为大于1的自然数,证明:nx x n +>+1)1(.

例3.平面上有n 条直线,其中任意两条都相交,任意三条不共点,这些直线把平面分成多少 个区域?证明你的结论。 例4.证明:当)1(3221+++?+?=n n a n (n 是正整数)时,不等式 2 )1(2)1(2 +<<+n a n n n . 【点评】 利用数学归纳法证明不等式的关键是由k n =到1+=k n 的变形,为了达到目标,往往要采用“放缩”等手段。 知识检测

1.用数学归纳法证明不等式),2)((1 2131211+∈≥<-++++N n n n f n 的过程中,由k n =到1+=k n 时,左边增加了( ) A.1 项 B.k 项 C.12+k 项 D.k 2 项 2.某个命题与正整数n 有关,如果当)(+∈=N k k n 时命题成立,那么可推得当1+=k n 时,命题也成立。现已知当5=n 时命题不成立,那么可推得( ) A.当6=n 时该命题不成立 B.当6=n 时该命题成立 C.当4=n 时该命题不成立 D.当4=n 时该命题成立 3.证明不等式θθsin sin n n ≤(+∈N n ) 4.证明:1131211)321(2-+≥??? ??++++ ++++n n n n (2,>∈n N n ). 5.证明: n n n 113121222-<+++ (1,>∈n N n ).

中考数学解题方法反证法专题

中考数学解题方法反证法专题 在初中数学题目的求解过程中,当直接证明一个命题比较复杂麻烦,甚至不能证明时,我们可以采用反证法.反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法.反证法可以分为归谬 反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种). 用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论.反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大于/不大于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n-1)个;至多有一个/至少有两个;唯一/至少有两个. 归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水.推理必须严谨.导出的矛盾有如下几种类型:与已知

条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾. 至于什么问题宜用反证法?这是很难确切回答的问题.下面我们就结合实例归纳几种常使用反证法的 情况. 一、基本定理或初始命题的证明 在数学中,许多基本定理是使用反证法来证明的,例如“过直线外一点只有该直线的一条平行线”,“过平面外一点只有平面的一条垂线”.因为在证明这种基本定理时,由于除已经学过的公理及其推论外,在此之前所导出的定理不多或者与此命题相关的定理不多. 例1在同一平面内,两条直线a,b都和直线c垂直.求证:a与b平行. 证明假设命题的结论不成立,即“直线a与b相交”. 不妨设直线a,b的交点为M,a,b与c的交点分别为P,Q,如图1所示,则∠PMQ>0°. 这样,△MPQ的内角和=∠PMQ+∠MPQ+∠PQM=∠PMQ+90°+90°>180°. 这与定理“三角形的内角和等于180°”相矛盾.说明假设不成立.

北师大版高中数学必修51.1数列用构造法求数列的通项公式

用构造法求数列的通项公式 求数列的通项公式是高考重点考查的内容,作为两类特殊数列----等差数列·等比数列可直接根据它们的通项公式求解,但也有一些数列要通过构造转化为等差数列或等比数列,之后再应用各自的通项公式求解,体现化归思想在数列中的具体应用 例1:(06年福建高考题)数列{}=+==+n n n n a a a a a 则中12,1,11 ( ) A .n 2 B .12+n C .12-n D .12+n 解法1:121+=+n n a a )1(22211+=+=+∴+n n n a a a 又211=+a 21 11=++∴+n n a a {}1+n a 是首项为2公比为2的等比数列 12,22211-=∴=?=+-n n n n n a a ,所以选C 解法2 归纳总结:若数列{}n a 满足q p q pa a n n ,1(1≠+=+为常数),则令)(1λλ+=++n n a p a 来构造等比数列,并利用对应项相等求λ的值,求通项公式。 例2:数列{}n a 中,n n n a a a a a 23,3,11221-===++,则=n a 。 解:)(2112n n n n a a a a -=-+++ 212=-a a {}1--∴n n a a 为首项为2公比也为2的等比数列。 112--=-n n n a a ,(n>1) n>1时 122 1211 222)()()(211 12211-=--=++++=+-++-+-=-----n n n n n n n n n a a a a a a a a

显然n=1时满足上式 ∴=n a 12-n 小结:先构造{}n n a a --1等比数列,再用叠加法,等比数列求和求出通项公式, 例3:已知数列{}n a 中)3(,32,2,52121≥+===--n a a a a a n n n 求这个数列的通项公式。 解:2132--+=n n n a a a )(3211---+=+∴n n n n a a a a 又{}121,7-+=+n n a a a a 形成首项为7,公比为3的等比数列, 则2137--?=+n n n a a ………………………① 又)3(3211-----=-n n n n a a a a , 13312-=-a a ,{}13--n n a a 形成了一个首项为—13,公比为—1的等比数列 则21)1()13(3---?-=-n n n a a ………………………② ①+?3② 11)1(13374---?+?=n n n a 11)1(4 13347---+?=∴n n n a 小结:本题是两次构造等比数列,属于构造方面比较级,最终用加减消元的方法确定出数列的通项公式。 例4:设数列{}n a 的前项和为n n n n S a S =-22,若成立,(1)求证: {} 12-?-n n n a 是等比数列。(2) 求这个数列的通项公式 证明:(1)当 2,)1(2,1111=∴-=-?=a a b a b n 又n n n S b a b ?-=-?)1(2 ………………………① 111)1(2 +++?-=-?∴n n n S b a b ………………………② ②—① 11)1(2++?-=-?-?n n n n a b a b a b n n n a b a 21+?=∴+ 当2=b 时,有n n n a a 221+=+ )2(22)1(222)1(11-+?-?=?+-+=?+-∴n n n n n n n n a n a n a

相关文档
最新文档