第10节 导数的概念及计算

合集下载

新坐标2020版一轮数学:2.10-导数的概念及运

新坐标2020版一轮数学:2.10-导数的概念及运
由题意可得x0+y0=0,② 3x20+2ax0=-1.③
由①②可得 x30+ax20=-x0,即 x0(x20+ax0+1)=0.④
栏目导航
由③可得 3x20+2ax0+1=0.⑤ 由⑤可得 x0≠0,所以④式可化为 x20+ax0+1=0.⑥ 由⑤⑥可得 x0=±1,代入②式得 xy00= =1-,1 或xy00= =- 1. 1, 即 P(1,-1)或 P(-1,1).故选 D.]
1 [先用“导数法”求出切线方程,然后代入点(2,7)求出 a 的值. ∵f′(x)=3ax2+1,∴f′(1)=3a+1. 又 f(1)=a+2, ∴切线方程为 y-(a+2)=(3a+1)(x-1). ∵切线过点(2,7),∴7-(a+2)=3a+1,解得 a=1.]
解析答案 栏目导航
36
3.(2016·全国卷Ⅲ)已知 f(x)为偶函数,当 x≤0 时,f(x)=e-x-1 -x,则曲线 y=f(x)在点(1,2)处的切线方程是________.
()
[答案] (1)× (2)× (3)√ (4)√
栏目导航
12
2.(教材改编)有一机器人的运动方程为 s(t)=t2+3t (t 是时间,s
是位移),则该机器人在时刻 t=2 时的瞬时速度为( )
A.149
B.147
C.145
D.143
D [由题意知,机器人的速度方程为 v(t)=s′(t)=2t-t32,故当
解析答案 栏目导航
20
[规律方法] 导数运算的常见形式及其求解方法 连乘积形式 先展开化为多项式的形式,再求导
观察函数的结构特征,先化为整式函数或较为简单的分式 公式形式
函数,再求导 对数形式 先化为和、差的形式,再求导 根式形式 先化为分数指数幂的形式,再求导 三角形式 先利用三角函数公式转化为和或差的形式,再求导 含待定系数 如含 f′(x0),a,b 等的形式,先将待定系数看成常数,再

高等数学导数的概念教学ppt课件.ppt

高等数学导数的概念教学ppt课件.ppt

h0
h
h0 h 0.
即 (C ) 0.
9
第二章 导数与微分
第一节 导数的概念
例5 设函数 f ( x) sin x,求(sin x)及(sin x) x . 4
解:(sin x) lim sin( x h) sin x
h0
h
h
lim cos( x
h0
h) sin 2 2h
cos
x.
2 即 (sin x) cos x.
定理2.1.2 凡可导函数都是连续函数.
证 设函数 f ( x)在点 x0可导, 即
lim y x0 x
f ( x0 )

lim y
x0
lim
x0
y x
x
f
(
x0
)
lim
x0
x
0
函数 f ( x)在点 x0连续 .
注意: 该定理的逆定理不成立.
15
第二章 导数与微分
第一节 导数的概念
例10 讨论函数 f ( x) x 在x 0处的可导性.
1.左导数:
f( x0 )
lim
x x0
f ( x) f ( x0 ) lim
x x0
x0
f ( x0 x) x
f ( x0 ) ;
2.右导数:
f( x0 )
lim
x x0
f ( x) f ( x0 ) lim
x x0
x0
f ( x0 x) x
f ( x0 ) ;
定理2.1.1
函数 f ( x)在点x0 处可导 左导数 f( x0 ) 和右 导数 f( x0 )都存在且相等.
解: f (0 h) f (0) h ,

导数的概念

导数的概念

伊萨克·牛顿爵士
牛顿和莱布尼兹的差别在于,牛顿将无穷小量作为求流数或导数的工具,而莱布尼兹则用无穷小量的比值来表示导数。这与二人的哲学思想差异有关[7]:92。
微积分的理论面世后,遭到了有关无穷小量定义的攻击与质疑。导数的定义自然也包括在内。莱布尼兹和牛顿对无穷小量的认识都是模糊的。不仅如此,莱布尼兹甚至引入了 和 ,称其为“未消失的量”,用以进行求导前部的计算。在完成计算后再用“消失的量” 和 来代替它们,并假定前两者之比等于后两者之比,认为这是一个不容置疑的真理[7]:102。
导数
维基百科,自由的百科全书
一个实值函数的图像曲线。函数在一点的导数等于它的图像上这一点处之切线的斜率。
微积分学
函数 · 导数 · 微分 · 积分
显示▼基础概念
显示▼一元微分
显示▼一元积分
显示▼多元微积分
显示▼微分方程
显示▼数学家
查·论·编·历
在数学中,导数是微积分学中重要的基础概念。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。导数的本质是通过极限的概念对函数进行局部的线性逼近。当函数的自变量在一点上产生一个增量时,函数输出值的增量与自变量增量的比值在趋于0时的极限如果存在,即为在处的导数,记作、或。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度[1]:153。
、 或
这种记法是在1695年出现的[10]:205。这里的分子和分母不再具有单独的意义。莱布尼兹的记法中使用 来表示微分算子,比如说二阶的导数 就可以看成:
[12]
莱布尼兹记法的另一个好处是便于记忆导数计算的法则。例如链式法则(见导数的计算一节)应用莱布尼兹的记法就是:
可以想象为右边是两个分式的乘积,消去之后就变成左边[12]。

第2章---第10节

第2章---第10节

x,则f′(x)>0的解集为
B.(-1,0)∪(2,+∞)
C.(2,+∞)
【错解】
典 例 探 究 · 提 知 能
D.(-1,0)
高 考 体 验 · 明 考 情
2 4 2x -2x-4 ∵f′(x)=2x-2- = , x x
x2-x-2 ∴由 f′(x)>0,可得 >0, x 解得 x>2 或-1<x<0,故选 B.
1 x0+1 从而所围三角形的面积为2| -1|· 0-1-1| |2x x0-1 1 2 =2| ||2x -2|=2.是定值 x0-1 0
课 时 知 能 训 练


新课标 ·数学(文)(广东专用)
自 主 落 实 · 固 基 础
高 考 体 验 · 明 考 情
典 例 探 究 · 提 知 能
课 时 知 能 训 练
自 主 落 实 · 固 基 础
【尝试解答】
(1)f′(x)=a-
1 , x+b2
2a+ 1 =3, 2+b 于是 1 a- =0, 2+b2
∵a,b∈Z, 故 f(x)=x+ 1 . x-1
a=9, 4 a=1, 解得 或 b=-1, b=-8. 3
高 考 体 验 · 明 考 情
自 主 落 实 · 固 基 础
轴交点的纵坐标是(
)
A.-9
【解析】
B.-3
C.9
D.15
∵y′=(x3+11)′=3x2,切点P(1,12),
高 考 体 验 · 明 考 情
∴k=y′|x=1=3.
典 例 探 究 · 提 知 能
因此在点P(1,12)处的切线方程为3x-y+9=0, 令x=0,得y=9. 【答案】 C
菜 单

导数的运算法则PPT教学课件

导数的运算法则PPT教学课件
• 能利用给出的基本初等函数的导数公式表 和导数的四则运算法则求简单函数的导数
• 本节重点:导数的四则运算及其运用.
• 本节难点:导数的四则运算法则的推导.
• 1.可导函数的四则运算法则是解决函数 四则运算形式的求导法则,也是进一步学 习导数的基础,因此,必须透彻理解函数 求导法则的结构内涵,注意挖掘知识的内 在联系及规律,通过对知识的重新组合, 以达到巩固知识、提升能力的目的.
• 6 . 函 数 y = xsinx - cosx 的 导 数 为 __________________.
• [答案] 2sinx+xcosx
• [解析] y′=(xsinx)′-(cosx)′=2sinx+xcosx.
• 三、解答题
• 7.函数f(x)=x3-x2-x+1的图象上有两点 A得(0[函解,1析数)和] f(Bx直)(线的1,0图A)B,象的在斜在区率x=间kABa(=0处,-1的)1内,切f′求线(x实)=平数3行x2a-,于2x使直
(f(x)±g(x))′=

• (f(x2.)·设g函(x数))′=f(x)、g(x)是可导函数,且 g(x)≠0.,gf((xx))′

f′(x)·g(x)-f(x)·g′(x) g2(x)
.
• [例1] 求下列函数的导数:
• •
((12))(yy3)= =y=(x1xx2++sinx212x+);2x3(3x;-1);
• 2.利用导数的定义推导出函数的和、差、 积的求导法则,以及常见函数的导数公式 之后,对一些简单函数的求导问题,便可 直接应用法则和公式很快地求出导数,而
• 3.应用导数的四则运算法则和常见函数 的导数公式求导数时,在可能的情况下, 应尽量少用甚至不用乘积的求导法则,应 在求导之前,先利用代数、三角恒等变形 对函数进行化简,然后再求导,这样可以 减少运算量,提高运算速度,避免差错.

高考数学一轮复习第二篇第10节导数的概念与计算课件理新人教A版

高考数学一轮复习第二篇第10节导数的概念与计算课件理新人教A版

返回导航
解:(1)∵y=x12+x5x+2 sin x=x-32+x3+sixn2 x, ∴y′=(x-32)′+(x3)′+(x-2sin x)′ =-32x-52+3x2-2x-3sin x+x-2cos x; (2)因为 y=sin 2x(-cos 2x)=-12sin x, 所以 y′=(-12sin x)′=-12(sin x)′=-12cos x.
第二篇 函数、导数及其应用 (必修1、选修2-2)
第 10 节 导数的概念与计算
最新考纲 1.了解导数概念的实际背景. 2.通过函数图象直观理解导数的几何意义. 3.能根据导数的定义求函数 y=C(C 为常数),y=x,y=1x,y=x2,y=x3, y= x的导数. 4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的 导数,并了解复合函数求导法则,能求简单复合函数(仅限于形如 y=f(ax +b)的复合函数)的导数.
返回导航
【教材导读】 曲线 y=f(x)“在点 P(x0,y0)处的切线”与“过点 P(x0,y0)的切线”有何不 同? 提示:(1)曲线 y=f(x)在点 P(x0,y0)处的切线是指 P 为切点,切线斜 率为 k=f′(x0)的切线,是唯一的一条切线. (2)曲线 y=f(x)过点 P(x0,y0)的切线,是指切线经过 P 点.点 P 可以 是切点,也可以不是切点,而且这样的直线可能有多条.
返回导航
【即时训练】 求下列函数的导数: (1)y=( x+1) 1x-1; (2)y=xsin2x+π2cos2x+π2; (3)y=ee2xx++ee--x2x.
返回导航
解:(1)因为 y= x·1x- x+ 1x-1
=-x12+x-12,
所以 y′=-(x12)′+(x-12)′=-12x-12-12x-32

2020版导与练一轮复习理科数学课件:第十三篇 导数及其应用(选修1-1) 第10节 导数的概念及运算 .pdf

2020版导与练一轮复习理科数学课件:第十三篇 导数及其应用(选修1-1) 第10节 导数的概念及运算 .pdf

第10节 导数的概念及运算考点专项突破知识链条完善 把散落的知识连起来知识梳理1.导数的概念(1)函数y=f(x)在x=x 0处的导数()()00f x x f x x+∆-∆(2)函数f(x)的导函数函数f′(x)= 为f(x)的导函数.()()0lim x f x x f x x ∆→+∆-∆2.导数的几何意义函数y=f(x)在点x 0处的导数f′(x 0)的几何意义,就是曲线y=f(x)在点P(x 0,f(x 0))处的切线的 ,过点P的切线方程为 .斜率y-y 0=f′(x 0)(x-x 0) 3.基本初等函数的导数公式基本初等函数导函数f(x)=C(C为常数)f′(x)= .f(x)=x α(α∈Q *)f′(x)=.0αx α-1f(x)=sin x f′(x)= .f(x)=cos x f′(x)= .f(x)=e x f′(x)= .f(x)=a x(a>0,且a≠1)f′(x)= .f(x)=ln x f′(x)=f(x)=loga x(a>0,且a≠1)f′(x)=cos x-sin xe xa x ln a1lnx a1x4.导数的运算法则若f′(x),g′(x)存在,则有(1)[f(x)±g(x)]′= ;(2)[f(x)·g(x)]′= ;f′(x)±g′(x) f′(x)g(x)+f(x)g′(x) ()()()()()2f xg x f x g x g x ''-⎡⎤⎣⎦【重要结论】1.奇函数的导数是偶函数,偶函数的导数是奇函数.周期函数的导数还是周期函数.2.函数y=f(x)的导数f′(x)反映了函数f(x)的瞬时变化趋势,其正负号反映了变化的方向,其大小|f′(x)|反映了变化的快慢,|f′(x)|越大,曲线在这点处的切线越“陡”.1.(教材改编题)曲线y=x 3+11在点P(1,12)处的切线与y轴交点的纵坐标是( )(A)-9 (B)-3 (C)9 (D)15解析:因为y=x 3+11,所以y′=3x 2,所以y′|x=1=3,所以曲线y=x 3+11在点P(1,12)处的切线方程为y-12=3(x-1),令x=0,得y=9.对点自测C2.已知f(x)=xln x,若f′(x0)=2,则x等于( )解析:f(x)的定义域为(0,+∞),f′(x)=ln x+1,由f′(x0)=2,即ln x+1=2,解得x0=e.B3.(2018·天津卷)已知函数f(x)=e x ln x,f′(x)为f(x)的导函数,则f′(1)的值为 .答案:e答案:x-y+1=05.下面四个结论中正确的是 .(1)f′(x0)是函数y=f(x)在x=x附近的平均变化率.(2)函数f(x)=sin(-x)的导数f′(x)=cos x.(3)求f′(x0)时,可先求f(x),再求f′(x).(4) 曲线的切线与曲线不一定只有一个公共点.解析:(1)f′(x0)表示y=f(x)在x=x0处的切线斜率,(1)错误.(2)f(x)=sin(-x)=-sin x,则f′(x)=-cos x,(2)错误.(3)求f′(x)时,应先求f′(x),再代入求值,(3)错误,只有(4)正确.答案:(4)考点专项突破 在讲练中理解知识考点一 导数的运算(多维探究)考查角度1:利用求导法则运算【例1】 求下列函数的导数:(1)y=e x ln x;反思归纳(1)熟记基本初等函数的导数公式及运算法则是导数计算的前提,求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错.(2)如函数为根式形式,可先化为分数指数幂,再求导.【跟踪训练1】 求下列函数的导数:考查角度2:抽象函数的导数运算【例2】 已知函数f(x)的导函数为f′(x),且满足关系式f(x)=x2+3xf′(2) +ln x,则f′(2)= .反思归纳(1)准确活用求导法则是解题的关键,另外一定注意f′(x0)(x是变量x某一取值)是一个常数,不是变量.(2)求解该类问题时要善于观察题目特征,恰当赋值,重视方程思想的运用.【跟踪训练2】 已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(1)+ln x,则f′(1)等于( )(A)-e (B)-1 (C)1 (D)e考点二 导数的几何意义(多维探究)考查角度1:求切线方程或切点坐标【例3】 (1)已知函数f(x)=xln x,若直线l过点(0,-1),并且与曲线y=f(x)相切,则直线l的方程为 ;答案:(1)x-y-1=0(2)已知f(x)为偶函数,当x≤0时,f(x)=e-x-1-x,则曲线y=f(x)在点(1,2)处的切线方程是 ;解析:(2)令x≥0,则-x≤0,f(-x)=e x-1+x,又f(x)为偶函数,所以x≥0时,f(x)=e x-1+x,所以f(1)=2,f′(x)=e x-1+1,f′(1)=2,所求切线方程为y-2=2(x-1),即y=2x.答案:(2)y=2x(3)若曲线y=xln x上点P处的切线平行于直线2x-y+1=0,则点P的坐标是 .答案:(3)(e,e)反思归纳(1)求曲线在点P(x0,y)处的切线,则表明P点是切点,只需求出函数在P处的导数,然后利用点斜式写出切线方程,若切线垂直于x轴,则切线方程为x=x.(2)求曲线过点P的切线,则P点不一定是切点,应先设出切点坐标,然后列出切点坐标的方程解出切点坐标,进而写出切线方程.求出切点坐标是解题的关键.【跟踪训练3】 (1)(2018·全国Ⅰ卷)设函数f(x)=x3+(a-1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为( )(A)y=-2x(B)y=-x(C)y=2x(D)y=x解析:(1)法一 因为f(x)为奇函数,所以f(-x)=-f(x),由此可得a=1,故f(x)=x3+x,f′(x)=3x2+1,f′(0)=1,所以曲线y=f(x)在点(0,0)处的切线方程为y=x.故选D.法二 因为f(x)=x3+(a-1)x2+ax为奇函数,所以f′(x)=3x2+2(a-1)x+a为偶函数,所以a=1,即f′(x)=3x2+1,所以f′(0)=1,所以曲线y=f(x)在点(0,0)处的切线方程为y=x.故选D.答案:(1)D答案:(2)(1,1)考查角度2:求参数的值或取值范围【例4】 (1)(2018·开封模拟)函数f(x)=ln x+ax的图象存在与直线2x-y=0平行的切线,则实数a的取值范围是( )(A)(-∞,2] (B)(-∞,2)(C)(2,+∞) (D)(0,+∞)答案:(1)B答案:(2)-8反思归纳(1)求解与曲线切线有关的参数问题,其实质是利用导数的几何意义求曲线切线方程的逆用.(2)解题的关键是根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.答案:(1)1(2)已知曲线f(x)=acos x与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,则实数a+b的值为 .解析:(2)因为两曲线的交点为(0,m),所以m=acos 0,m=02+b×0+1.所以m=1,a=1.因为曲线f(x),g(x)在(0,m)处有公切线,所以f′(0)=g′(0),所以-sin 0=2×0+b,所以b=0.所以a+b=1.答案:(2)1备选例题【例2】 (2018·西安质检)已知函数f(x)=axln x,x∈(0,+∞),其中a为实数, f′(x)为f(x)的导函数.若f′(1)=3,则a的值为 .答案:3【例3】 已知函数f(x)=-f′(0)e x+2x,点P为曲线y=f(x)在点(0,f(0))处的切线l上的一点,点Q在曲线y=e x上,则|PQ|的最小值为 .点击进入应用能力提升。

导数的概念及其意义、导数的运算

导数的概念及其意义、导数的运算

B.(x2ex)′=x(x+2)ex D.x-1x′=1-x12
答案:BC
解析:A 项ln1x′=-ln12x·(ln x)′=-xln12x; D 项x-1x′=1+x12.
2.已知 f(x)=coesx x,则 f′(x)=________.
答案:-sin
x+cos ex
x
解析:f′(x)=coesx
答案:C 解析:由题意可知 y′=2cos x-sin x,则 y′|x=π=-2.所以曲线 y =2sin x+cos x 在点(π,-1)处的切线方程为 y+1=-2(x-π),即 2x +y+1-2π=0,故选 C.
6.[2019·全国Ⅰ卷]曲线 y=3(x2+x)ex 在点(0,0)处的切线方程为 ________.
答案:C 解析:∵f(x)=2xf′(1)+ln x,∴f′(x)=2f′(1)+1x, ∴f′(1)=2f′(1)+1,∴f′(1)=-1.
2.[选修二·P18 A 组 T6]曲线 y=1-x+2 2在点(-1,-1)处的切线 方程为________.
答案:2x-y+1=0 解析:∵y′=x+222,∴y′|x=-1=2.∴所求切线方程为 2x-y+1 =0.
4.设 f(x)=ln(3-2x)+cos 2x,则 f′(0)=________.
答案:-23 解析:因为 f′(x)=-3-22x-2sin 2x,所以 f′(0)=-23.
三、走进高考 5.[2019·全国Ⅱ卷]曲线 y=2sin x+cos x 在点(π,-1)处的切线方 程为( ) A.x-y-π-1=0 B.2x-y-2π-1=0 C.2x+y-2π+1=0 D.x+y-π+1=0
微点 2 未知切点求切线方程 [例 2] 已知函数 f(x)=xln x,若直线 l 过点(0,-1),并且与曲线 y=f(x)相切,则直线 l 的方程为________.

第2篇 第10节 导数的概念与计算课件 理 新人教A版 课件

第2篇 第10节 导数的概念与计算课件 理 新人教A版 课件
1 f′(x)=____x _____
质疑探究 1:如果 f(x)=ln |x|,则 f′(x)=1x? 提示:正确,分 x>0,x<0 去绝对值,求导数可得.
4.导数的运算法则和复合函数的导数
(1)导数的运算法则 ①[f(x)± g(x)]′=___f_′(_x_)_±__g_′(_x_)_____; ②[f(x)·g(x)]′=_f_′(_x_)g_(_x_)_+__f(_x_)_g_′(_x_) ______;
解析:设过点(1,0)的直线与 y=x3 相切于点(x0,x30), 所以切线方程为 y-x30=3x02(x-x0), 即 y=3x20x-2x30, 又(1,0)在切线上, 则 x0=0 或 x0=32, 当 x0=0 时,由 y=0 与 y=ax2+145x-9 相切可得 a=-2654, 当 x0=32时,
导数,记作 f′(x0)或 y′|x=x0,即 ___Δ_lix_m→_0__f_x_0+__Δ_Δ_xx_-__f_x_0_____.
f′(x0)=Δlixm→0
ΔΔyx=
②几何意义
函数 f(x)在 x=x0 处的导数 f′(x0)的几何意义是在曲线 y= f(x)上点(x0,f(x0))处的 切线的斜率 (瞬时速度就是位移函数 s(t) 对 时 间 t 的 导 数 ) . 相 应 地 , 切 线 方 程 为 ___y_-__f(_x_0_)=__f_′(_x_0_)(_x_-__x_0)__________.
即f′(x+T)=f′(x), 所以导函数为周期函数. 因为y=f(x)是奇函数, 所以f(-x)=-f(x), 两边求导得f′(-x)(-x)′=-f′(x), 即-f′(-x)=-f′(x), 所以f′(-x)=f′(x), 即导函数为偶函数,故选B. 答案:B

导数的概念与导数运算考点及题型全归纳

导数的概念与导数运算考点及题型全归纳

第三章 导数及其应用第一节 导数的概念与运算基础知识1.导数的概念一般地,函数y =f (x )在x =x 0处的瞬时变化率lim →Δ0x ΔyΔx =lim →Δ0x f (x 0+Δx )-f (x 0)Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim→Δ0x ΔyΔx =lim →Δ0x f (x 0+Δx )-f (x 0)Δx .f ′(x )与f ′(x 0)的区别与联系f ′(x )是一个函数,f ′(x 0)是函数f ′(x )在x 0处的函数值(常数),所以[f ′(x 0)]′=0.2.导数的几何意义函数f (x )在x =x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).曲线y =f (x )在点P (x 0,f (x 0))处的切线是指以P 为切点,斜率为k =f ′(x 0)的切线,是唯一的一条切线.3.函数f (x )的导函数称函数f ′(x )=lim →Δ0xf (x +Δx )-f (x )Δx为f (x )的导函数.4.导数的运算(1)几种常见函数的导数①(C )′=0(C 为常数);②(x n )′=nx n -1(n ∈Q *); ③(sin x )′=cos_x ;④(cos x )′=-sin_x ;⑤(e x )′=e x ; ⑥(a x )′=a x ln_a (a >0,a ≠1);⑦(ln x )′=1x ;⑧(log a x )′=1x ln a(a >0,a ≠1). (2)导数的四则运算法则 ①[u (x )±v (x )]′=u ′(x )±v ′(x ); ②[u (x )v (x )]′=u ′(x )v (x )+u (x )v ′(x );③⎣⎡⎦⎤u (x )v (x )′=u ′(x )v (x )-u (x )v ′(x )[v (x )]2(v (x )≠0).熟记以下结论: (1)⎝⎛⎭⎫1x ′=-1x 2; (2)⎣⎡⎦⎤1f (x )′=-f ′(x )[f (x )]2(f (x )≠0); (3)[af (x )±bg (x )]′=af ′(x )±bg ′(x );(4)奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.考点一 导数的运算[典例] 求下列函数的导数.(1)y =ln x +1x ;(2)y =(2x +1)·e x ; (3)y =1+x 5x 2;(4)y =x -sin x 2cos x2.[解] (1)y ′=⎝⎛⎭⎫ln x +1x ′=(ln x )′+⎝⎛⎭⎫1x ′=1x -1x2. (2)y ′=[(2x +1)·e x ]′=(2x +1)′·e x +(2x +1)·(e x )′=2e x +(2x +1)·e x =(2x +3)·e x .(3)∵1+x 5x2=x 35+x -25,∴y ′=⎝ ⎛⎭⎪⎫1+x 5x 2′=(x 35)′+(x -25)′=35x -25-25x -75.(4)∵y =x -sin x 2cos x 2=x -12sin x ,∴y ′=1-12cos x .[题组训练]1.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)=( )A .-eB .-1C .1D .e解析:选B 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1x.所以f ′(1)=2f ′(1)+1,则f ′(1)=-1. 2.求下列函数的导数.(1)y =cos x -sin x ; (2)y =(x +1)(x +2)(x +3); (3)y =ln x x 2+1.解:(1)y ′=(cos x )′-(sin x )′=-sin x -cos x .(2)∵y =(x +1)(x +2)(x +3) =(x 2+3x +2)(x +3) =x 3+6x 2+11x +6, ∴y ′=3x 2+12x +11.(3)y ′=(ln x )′(x 2+1)-ln x (x 2+1)′(x 2+1)2=1x(x 2+1)-2x ·ln x(x 2+1)2=x 2(1-2ln x )+1x (x 2+1)2.考点二 导数的几何意义考法(一) 求曲线的切线方程[典例] (2018·全国卷Ⅰ)设函数f (x )=x 3+(a -1)x 2+ax ,若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( )A .y =-2xB .y =-xC .y =2xD .y =x[解析] ∵f (x )=x 3+(a -1)x 2+ax ,∴f ′(x )=3x 2+2(a -1)x +a .又∵f (x )为奇函数,∴f (-x )=-f (x )恒成立, 即-x 3+(a -1)x 2-ax =-x 3-(a -1)x 2-ax 恒成立, ∴a =1,∴f ′(x )=3x 2+1,∴f ′(0)=1, ∴曲线y =f (x )在点(0,0)处的切线方程为y =x . [答案] D[解题技法]若已知曲线y =f (x )过点P (x 0,y 0),求曲线过点P 的切线方程的方法(1)当点P (x 0,y 0)是切点时,切线方程为y -y 0=f ′(x 0)·(x -x 0). (2)当点P (x 0,y 0)不是切点时,可分以下几步完成: 第一步:设出切点坐标P ′(x 1,f (x 1));第二步:写出过点P ′(x 1,f (x 1))的切线方程y -f (x 1)=f ′(x 1)(x -x 1); 第三步:将点P 的坐标(x 0,y 0)代入切线方程求出x 1;第四步:将x 1的值代入方程y -f (x 1)=f ′(x 1)(x -x 1)可得过点P (x 0,y 0)的切线方程. 考法(二) 求切点坐标[典例] 曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P 点的坐标为( )A .(1,3)B .(-1,3)C .(1,3)和(-1,3)D .(1,-3)[解析] f ′(x )=3x 2-1,令f ′(x )=2,则3x 2-1=2,解得x =1或x =-1,∴P (1,3)或(-1,3).经检验,点(1,3),(-1,3)均不在直线y =2x -1上,故选C. [答案] C[解题技法] 求切点坐标的思路已知切线方程(或斜率)求切点的一般思路是先求函数的导数,再让导数等于切线的斜率,从而求出切点的横坐标,将横坐标代入函数解析式求出切点的纵坐标.考法(三) 求参数的值(范围)[典例] 函数f (x )=ln x +ax 的图象上存在与直线2x -y =0平行的切线,则实数a 的取值范围是________.[解析] 函数f (x )=ln x +ax 的图象上存在与直线2x -y =0平行的切线,即f ′(x )=2在(0,+∞)上有解,而f ′(x )=1x +a ,即1x +a =2在(0,+∞)上有解,a =2-1x 在(0,+∞)上有解,因为x >0,所以2-1x <2,所以a 的取值范围是(-∞,2). [答案] (-∞,2)[解题技法]1.利用导数的几何意义求参数的基本方法利用切点的坐标、切线的斜率、切线的方程等得到关于参数的方程(组)或者参数满足的不等式(组),进而求出参数的值或取值范围.2.求解与导数的几何意义有关问题时应注意的两点(1)注意曲线上横坐标的取值范围; (2)谨记切点既在切线上又在曲线上.[题组训练]1.曲线y =e x 在点A 处的切线与直线x -y +3=0平行,则点A 的坐标为( )A .(-1,e -1) B .(0,1) C .(1,e)D .(0,2)解析:选B ∵y ′=e x ,令e x =1,得x =0.当x =0时,y =1,∴点A 的坐标为(0,1). 2.设曲线y =a (x -1)-ln x 在点(1,0)处的切线方程为y =2x -2,则a =( )A .0B .1C .2D .3解析:选D ∵y =a (x -1)-ln x ,∴y ′=a -1x ,∴y ′|x =1=a -1.又∵曲线在点(1,0)处的切线方程为y =2x -2, ∴a -1=2,解得a =3.3.已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A .x +y -1=0B .x -y -1=0C .x +y +1=0D .x -y +1=0 解析:选B 因为点(0,-1)不在曲线y =f (x )上,所以设切点坐标为(x 0,y 0).又因为f ′(x )=1+ln x ,所以⎩⎪⎨⎪⎧ y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得⎩⎪⎨⎪⎧x 0=1,y 0=0.所以切点坐标为(1,0),所以f ′(1)=1+ln 1=1,所以直线l 的方程为y =x -1,即x -y -1=0.[课时跟踪检测]A 级1.设f (x )=x e x 的导函数为f ′(x ),则f ′(1)的值为( )A .eB .e +1C .2eD .e +2解析:选C 由题意知f (x )=x e x ,所以f ′(x )=e x +x e x ,所以f ′(1)=e +e =2e. 2.曲线y =sin x +e x 在x =0处的切线方程是( )A .x -3y +3=0B .x -2y +2=0C .2x -y +1=0D .3x -y +1=0解析:选C ∵y ′=cos x +e x ,∴当x =0时,y ′=2.又∵当x =0时,y =1,∴所求切线方程为y -1=2x ,即2x -y +1=0.3.设f (x )=x (2 019+ln x ),若f ′(x 0)=2 020,则x 0等于( )A .e 2B .1C .ln 2D .e解析:选B f ′(x )=2 019+ln x +1=2 020+ln x ,由f ′(x 0)=2 020,得2 020+ln x 0=2 020,则ln x 0=0,解得x 0=1.4.已知函数f (x )=a ln x +bx 2的图象在点P (1,1)处的切线与直线x -y +1=0垂直,则a 的值为( )A .-1B .1C .3D .-3解析:选D 由已知可得P (1,1)在函数f (x )的图象上,所以f (1)=1,即a ln 1+b ×12=1,解得b =1, 所以f (x )=a ln x +x 2,故f ′(x )=ax+2x .则函数f (x )的图象在点P (1,1)处的切线的斜率k =f ′(1)=a +2, 因为切线与直线x -y +1=0垂直, 所以a +2=-1,即a =-3.5.(2018·合肥第一次教学质量检测)已知直线2x -y +1=0与曲线y =a e x +x 相切(其中e 为自然对数的底数),则实数a 的值是( )A.12 B .1 C .2D .e解析:选B 由题意知y ′=a e x +1,令a e x +1=2,则a >0,x =-ln a ,代入曲线方程得y =1-ln a ,所以切线方程为y -(1-ln a )=2(x +ln a ),即y =2x +ln a +1=2x +1⇒a =1.6.设函数f (x )=x 3+ax 2,若曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为x +y =0,则点P 的坐标为( )A .(0,0)B .(1,-1)C .(-1,1)D .(1,-1)或(-1,1)解析:选D 因为f ′(x )=3x 2+2ax ,所以f ′(x 0)=3x 20+2ax 0=-1.又因为切点P 的坐标为(x 0,-x 0),所以x 30+ax 20=-x 0.联立两式得⎩⎪⎨⎪⎧ 3x 20+2ax 0=-1,x 30+ax 20=-x 0,解得⎩⎪⎨⎪⎧ a =2,x 0=-1或⎩⎪⎨⎪⎧a =-2,x 0=1.所以点P 的坐标为(-1,1)或(1,-1).7.已知直线y =-x +1是函数f (x )=-1a ·e x图象的切线,则实数a =________.解析:设切点为(x 0,y 0),则f ′(x 0)=-1a·e 0x =-1,∴ex =a ,又-1a·e 0x =-x 0+1,∴x 0=2,a =e 2.答案:e 28.(2019·安徽名校联考)已知函数f (x )=2x -ax 的图象在点(-1,f (-1))处的切线斜率是1,则此切线方程是________.解析:因为f ′(x )=-2x 2-a ,所以f ′(-1)=-2-a =1,所以a =-3,所以f (x )=2x +3x ,所以f (-1)=-5,则所求切线的方程为y +5=x +1,即x -y -4=0. 答案:x -y -4=09.设曲线y =1+cos x sin x在点⎝⎛⎭⎫π2,1处的切线与直线x -ay +1=0平行,则实数a =________. 解析:因为y ′=-1-cos xsin 2x ,所以y ′|=2x π=-1,由条件知1a =-1, 所以a =-1. 答案:-110.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小距离为________.解析:由y =x 2-ln x ,得y ′=2x -1x(x >0),设点P 0(x 0,y 0)是曲线y =x 2-ln x 上到直线y =x -2的距离最小的点, 则y ′|x =x 0=2x 0-1x 0=1,解得x 0=1或x 0=-12(舍去).∴点P 0的坐标为(1,1).∴所求的最小距离为|1-1-2|2= 2.答案: 211.求下列函数的导数.(1)y =(1-x )⎝⎛⎭⎫1+1x ; (2)y =x ·tan x ; (3)y =cos x ex .解:(1)∵y =(1-x )⎝⎛⎭⎫1+1x =1x-x =x -12-x 12,∴y ′=(x-12)′-(x 12)′=-12x -32-12x -12.(2)y ′=(x ·tan x )′=x ′tan x +x (tan x )′ =tan x +x ·⎝⎛⎭⎫sin x cos x ′=tan x +x ·cos 2x +sin 2x cos 2x =tan x +xcos 2x. (3)y ′=⎝⎛⎭⎫cos x e x ′=(cos x )′e x-cos x (e x)′(e x )2=-sin x +cos xe x .12.已知点M 是曲线y =13x 3-2x 2+3x +1上任意一点,曲线在M 处的切线为l ,求:(1)斜率最小的切线方程; (2)切线l 的倾斜角α的取值范围. 解:(1)∵y ′=x 2-4x +3=(x -2)2-1,∴当x =2时,y ′min =-1,此时y =53,∴斜率最小时的切点为⎝⎛⎭⎫2,53,斜率k =-1, ∴切线方程为3x +3y -11=0. (2)由(1)得k ≥-1,∴tan α≥-1, 又∵α∈[0,π),∴α∈⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. 故α的取值范围为⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. B 级1.如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .4解析:选B 由题图可知切线过点(0,2),(3,1),则曲线y =f (x )在x =3处的切线的斜率为-13,即f ′(3)=-13,又因为g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),所以g ′(3)=1+3×⎝⎛⎭⎫-13=0. 2.已知曲线f (x )=x 3+ax +14在x =0处的切线与曲线g (x )=-ln x 相切,则a 的值为________.解析:由f (x )=x 3+ax +14,得f ′(x )=3x 2+a ,f ′(0)=a ,f (0)=14,∴曲线y =f (x )在x =0处的切线方程为y -14=ax .设直线y -14=ax 与曲线g (x )=-ln x 相切于点(x 0,-ln x 0),g ′(x )=-1x,∴⎩⎨⎧-ln x 0-14=ax 0, ①a =-1x 0. ②将②代入①得ln x 0=34,∴x 0=e 34,∴a =-1e34=-e-34.答案:-e-343.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值; (2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围. 解:f ′(x )=3x 2+2(1-a )x -a (a +2).(1)由题意,得{ f (0)=b =0,f ′(0)=-a (a +2)=-3,解得b =0,a =-3或a =1.(2)因为曲线y =f (x )存在两条垂直于y 轴的切线,所以关于x 的方程f ′(x )=3x 2+2(1-a )x -a (a +2)=0有两个不相等的实数根, 所以Δ=4(1-a )2+12a (a +2)>0, 即4a 2+4a +1>0, 所以a ≠-12.所以a 的取值范围为⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫-12,+∞.。

高中数学第二章函数、导数及其应用 第10节导数与导数的运算课件

高中数学第二章函数、导数及其应用 第10节导数与导数的运算课件

【小题快练】
1.思考辨析 静心思考 判一判
(1)求f′(x0)时,可先求f(x0)再求f′(x0). ( ) (2)曲线的切线不一定与曲线只有一个公共点. ( )
(3)与曲线只有一个公共点的直线一定是曲线的切线. ( ) (4)若f(x)=f′(a)x2+lnx(a>0),则f′(x)=2xf′(a)+ 1 .( )
①函数f(x)在x=x0处的导数:
(ⅰ)定义:称函数y=f(x)在x0点的瞬时变化率为函数y=f(x)在点x0的
导数,通常用f′(x0)表示,记作
f′(x0)=
lim f (x1) f (x0 ) =
x1x0 x1 x0
lim f (x0 x) f (x0 )
x0
x
.
(ⅱ)几何意义:
函数y=f(x)在x0处的导数,是曲线y=f(x)在点(x0,f(x0))处的切线 的斜率.相应地,切线方程为_y_-_f_(_x_0_)_=_f_′__(_x_0)_(_x_-_x_0_)_.
③[
f x
g(x)
f (x)g(x) f (x)g(x)
]′=
[g(x)]2
(g(x)≠0).
(5)复合函数的导数:
复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为 yx′=_y_u_′_·__u_x_′__.
2.必备结论 教材提炼 记一记 (1)曲线y=f(x)在点P(x0,y0)处的切线是以点P(x0,y0)为切点,以 f′(x0)为斜率的直线,而曲线y=f(x)过点P(x0,y0)的切线,点P(x0,y0) 不一定是切点. (2)函数y=f(x)的导数f′(x)反映了函数f(x)的瞬时变化趋势,其正 负号反映了变化的方向,其大小|f′(x)|反映了变化的快 慢,|f′(x)|越大,曲线在这点处的切线越“陡”.

(完整版)变化率与导数及导数的计算

(完整版)变化率与导数及导数的计算

第十一节变化率与导数、导数的计算一、导数的概念1.函数y =f (x )在x =x 0处的导数 (1)定义:称函数y =f (x )在x =x 0处的瞬时变化率 lim Δx →0f (x 0+Δx )-f (x 0)Δx=lim Δx →0 ΔyΔx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0Δy Δx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx. (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).2.函数f (x )的导函数 称函数f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx为f (x )的导函数.二、基本初等函数的导数公式原函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x n (n ∈Q *) f ′(x )=nx n -1 f (x )=sin x f ′(x )=cos_x f (x )=cos x f ′(x )=-sin_x f (x )=a x f ′(x )=a x ln_a f (x )=e x f ′(x )=e x f (x )=log a x f ′(x )=1x ln af (x )=ln xf ′(x )=1x三、导数的运算法则1.[f (x )±g (x )]′=f ′(x )±g ′(x ); 2.[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );3.⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).1.(教材习题改编)若f (x )=x e x ,则f ′(1)=( ) A .0 B .e C .2eD .e 2解析:选C ∵f ′(x )=e x +x e x ,∴f ′(1)=2e.2.曲线y =x ln x 在点(e ,e)处的切线与直线x +ay =1垂直,则实数a 的值为( ) A .2 B .-2 C.12D .-12解析:选A 依题意得y ′=1+ln x ,y ′ |x =e =1+ln e =2,所以-1a ×2=-1,a =2.3.(教材习题改编)某质点的位移函数是s (t )=2t 3-12gt 2(g =10 m/s 2),则当t =2 s 时,它的加速度是( )A .14 m/s 2B .4 m/s 2C .10 m/s 2D .-4 m/s 2解析:选A 由v (t )=s ′(t )=6t 2-gt ,a (t )=v ′(t )=12t -g ,得t =2时,a (2)=v ′(2)=12×2-10=14(m/s 2).4.(2012·广东高考)曲线y =x 3-x +3在点(1,3)处的切线方程为________. 解析:∵y ′=3x 2-1,∴y ′ |x =1=3×12-1=2. ∴该切线方程为y -3=2(x -1),即2x -y +1=0. 答案:2x -y +1=05.函数y =x cos x -sin x 的导数为________. 解析:y ′=(x cos x )′-(sin x )′ =x ′cos x +x (cos x )′-cos x =cos x -x sin x -cos x =-x sin x . 答案:-x sin x 1.函数求导的原则对于函数求导,一般要遵循先化简,再求导的基本原则,求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.2.曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别与联系(1)曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,切线斜率为k =f ′(x 0)的切线,是唯一的一条切线.(2)曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点.点P 可以是切点,也可以不是切点,而且这样的直线可能有多条.典题导入[例1] 用定义法求下列函数的导数. (1)y =x 2; (2)y =4x2.[自主解答] (1)因为Δy Δx =f (x +Δx )-f (x )Δx=(x +Δx )2-x 2Δx=x 2+2x ·Δx +(Δx )2-x 2Δx =2x +Δx ,所以y ′=lim Δx →0 ΔyΔx=lim Δx →0 (2x +Δx )=2x . (2)因为Δy =4(x +Δx )2-4x 2=-4Δx (2x +Δx )x 2(x +Δx )2, ΔyΔx =-4·2x +Δx x 2(x +Δx )2, 所以limΔx →0 Δy Δx =lim Δx →0 ⎣⎢⎡⎦⎥⎤-4·2x +Δx x 2(x +Δx )2=-8x 3. 由题悟法根据导数的定义,求函数y =f (x )在x =x 0处导数的步骤 (1)求函数值的增量Δy =f (x 0+Δx )-f (x 0); (2)求平均变化率Δy Δx =f (x 0+Δx )-f (x 0)Δx ;(3)计算导数f ′(x 0)=li m Δx →0ΔyΔx. 以题试法1.一质点运动的方程为s =8-3t 2.(1)求质点在[1,1+Δt ]这段时间内的平均速度;(2)求质点在t =1时的瞬时速度(用定义及导数公式两种方法求解). 解:(1)∵s =8-3t 2,∴Δs =8-3(1+Δt )2-(8-3×12)=-6Δt -3(Δt )2,v =ΔsΔt=-6-3Δt . (2)法一(定义法):质点在t =1时的瞬时速度 v =li m Δt →0ΔsΔt=li m Δt →0 (-6-3Δt )=-6. 法二(导数公式法):质点在t 时刻的瞬时速度 v =s ′(t )=(8-3t 2)′=-6t . 当t =1时,v =-6×1=-6.典题导入[例2] 求下列函数的导数. (1)y =x 2sin x ;(2)y =e x +1e x -1; [自主解答] (1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x . (2)y ′=(e x +1)′(e x -1)-(e x +1)(e x -1)′(e x -1)2=e x (e x -1)-(e x +1)e x (e x -1)2=-2e x (e x -1)2.则y ′=(ln u )′u ′=12x -5·2=22x -5,即y ′=22x -5.由题悟法求导时应注意:(1)求导之前利用代数或三角恒等变换对函数进行化简可减少运算量.(2)对于商式的函数若在求导之前变形,则可以避免使用商的导数法则,减少失误.以题试法2.求下列函数的导数.(1)y =e x ·ln x ;(2)y =x ⎝⎛⎭⎫x 2+1x +1x 3; 解:(1)y ′=(e x ·ln x )′ =e x ln x +e x ·1x =e x ⎝⎛⎭⎫ln x +1x . (2)∵y =x 3+1+1x 2,∴y ′=3x 2-2x 3.典题导入[例3] (1)(2011·山东高考)曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( )A .-9B .-3C .9D .15(2)设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f (1))处切线的斜率为( )A .-14B .2C .4D .-12[自主解答] (1)y ′=3x 2,故曲线在点P (1,12)处的切线斜率是3,故切线方程是y -12=3(x -1),令x =0得y =9.(2)∵曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,∴g ′(1)=k =2. 又f ′(x )=g ′(x )+2x ,∴f ′(1)=g ′(1)+2=4,故切线的斜率为4. [答案] (1)C (2)C若例3(1)变为:曲线y =x 3+11,求过点P (0,13)且与曲线相切的直线方程. 解:因点P 不在曲线上,设切点的坐标为(x 0,y 0), 由y =x 3+11,得y ′=3x 2, ∴k =y ′|x =x 0=3x 20.又∵k =y 0-13x 0-0,∴x 30+11-13x 0=3x 20. ∴x 30=-1,即x 0=-1. ∴k =3,y 0=10.∴所求切线方程为y -10=3(x +1), 即3x -y +13=0.由题悟法导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面: (1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0); (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k ;(3)已知切线过某点M (x 1,f (x 1))(不是切点)求切点,设出切点A (x 0,f (x 0)),利用k =f (x 1)-f (x 0)x 1-x 0=f ′(x 0)求解.以题试法3.(1)(2012·新课标全国卷)曲线y =x (3ln x +1)在点(1,1)处的切线方程为________. (2)(2013·乌鲁木齐诊断性测验)直线y =12x +b 与曲线y =-12x +ln x 相切,则b 的值为( )A .-2B .-1C .-12D .1解析:(1)y ′=3ln x +1+3,所以曲线在点(1,1)处的切线斜率为4,所以切线方程为y -1=4(x -1),即y =4x -3.(2)设切点的坐标为⎝⎛⎭⎫a ,-12a +ln a ,依题意,对于曲线y =-12x +ln x ,有y ′=-12+1x ,所以-12+1a =12,得a =1.又切点⎝⎛⎭⎫1,-12 在直线y =12x +b 上,故-12=12+b ,得b =-1. 答案:(1)y =4x -3 (2)B1.函数f (x )=(x +2a )(x -a )2的导数为( ) A .2(x 2-a 2) B .2(x 2+a 2) C .3(x 2-a 2)D .3(x 2+a 2)解析:选C f ′(x )=(x -a )2+(x +2a )[2(x -a )]=3(x 2-a 2).2.已知物体的运动方程为s =t 2+3t (t 是时间,s 是位移),则物体在时刻t =2时的速度为( )A.194 B.174 C.154D.134解析:选D ∵s ′=2t -3t 2,∴s ′|t =2=4-34=134.3. (2012·哈尔滨模拟)已知a 为实数,函数f (x )=x 3+ax 2+(a -2)x 的导函数f ′(x )是偶函数,则曲线y =f (x )在原点处的切线方程为( )A .y =-3xB .y =-2xC .y =3xD .y =2x解析:选B ∵f (x )=x 3+ax 2+(a -2)x , ∴f ′(x )=3x 2+2ax +a -2. ∵f ′(x )为偶函数,∴a =0. ∴f ′(x )=3x 2-2.∴f ′(0)=-2.∴曲线y =f (x )在原点处的切线方程为y =-2x .4.设曲线y =1+cos x sin x 在点⎝⎛⎭⎫π2,1处的切线与直线x -ay +1=0平行,则实数a 等于( ) A .-1 B.12 C .-2D .2解析:选A ∵y ′=-sin 2x -(1+cos x )cos x sin 2x =-1-cos x sin 2x ,∴y ′|x =π2=-1.由条件知1a =-1,∴a =-1.5.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小距离为( ) A .1 B. 2 C.22D. 3解析:选B 设P (x 0,y 0)到直线y =x -2的距离最小,则y ′|x =x 0=2x 0-1x 0=1.得x 0=1或x 0=-12(舍).∴P 点坐标(1,1).∴P 到直线y =x -2距离为d =|1-1-2|1+1= 2.6.f (x )与g (x )是定义在R 上的两个可导函数,若f (x ),g (x )满足f ′(x )=g ′(x ),则f (x )与g (x )满足( )A .f (x )=g (x )B .f (x )=g (x )=0C .f (x )-g (x )为常数函数D .f (x )+g (x )为常数函数解析:选C 由f ′(x )=g ′(x ),得f ′(x )-g ′(x )=0, 即[f (x )-g (x )]′=0,所以f (x )-g (x )=C (C 为常数).7.(2013·郑州模拟)已知函数f (x )=ln x -f ′(-1)x 2+3x -4,则f ′(1)=________. 解析:∵f ′(x )=1x -2f ′(-1)x +3,f ′(-1)=-1+2f ′(-1)+3,∴f ′(-1)=-2,∴f ′(1)=1+4+3=8.答案:88.(2012·辽宁高考)已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为________.解析:易知抛物线y =12x 2上的点P (4,8),Q (-2,2),且y ′=x ,则过点P 的切线方程为y =4x -8,过点Q 的切线方程为y =-2x -2,联立两个方程解得交点A (1,-4),所以点A 的纵坐标是-4.答案:-49.(2012·黑龙江哈尔滨二模)已知函数f (x )=12x -14sin x -34cos x 的图象在点A (x 0,y 0)处的切线斜率为1,则tan x 0=________.解析:由f (x )=12x -14sin x -34cos x 得f ′(x )=12-14cos x +34sin x ,则k =f ′(x 0)=12-14cos x 0+34sin x 0=1,即32sin x 0-12cos x 0=1,即sin ⎝⎛⎭⎫x 0-π6=1. 所以x 0-π6=2k π+π2,k ∈Z ,解得x 0=2k π+2π3,k ∈Z.故tan x 0=tan ⎝⎛⎭⎫2k π+2π3=tan 2π3=- 3. 答案:- 310.求下列函数的导数. (1)y =x ·tan x ;(2)y =(x +1)(x +2)(x +3);解:(1)y ′=(x ·tan x )′=x ′tan x +x (tan x )′ =tan x +x ·⎝⎛⎭⎫sin x cos x ′=tan x +x ·cos 2x +sin 2x cos 2x =tan x +x cos 2x. (2)y ′=(x +1)′(x +2)(x +3)+(x +1)[(x +2)(x +3)]′=(x +2)(x +3)+(x +1)(x +2)+(x +1)(x +3)=3x 2+12x +11.11.已知函数f (x )=x -2x ,g (x )=a (2-ln x )(a >0).若曲线y =f (x )与曲线y =g (x )在x =1处的切线斜率相同,求a 的值,并判断两条切线是否为同一条直线.解:根据题意有曲线y =f (x )在x =1处的切线斜率为f ′(1)=3, 曲线y =g (x )在x =1处的切线斜率为g ′(1)=-a .所以f ′(1)=g ′(1),即a =-3.曲线y =f (x )在x =1处的切线方程为y -f (1)=3(x -1), 得:y +1=3(x -1),即切线方程为3x -y -4=0. 曲线y =g (x )在x =1处的切线方程为y -g (1)=3(x -1). 得y +6=3(x -1),即切线方程为3x -y -9=0, 所以,两条切线不是同一条直线.12.设函数f (x )=x 3+ax 2-9x -1,当曲线y =f (x )斜率最小的切线与直线12x +y =6平行时,求a 的值.解:f ′(x )=3x 2+2ax -9=3⎝⎛⎭⎫x +a 32-9-a 23,即当x =-a 3时,函数f ′(x )取得最小值-9-a 23,因斜率最小的切线与12x +y =6平行, 即该切线的斜率为-12,所以-9-a 23=-12,即a 2=9,即a =±3.1.(2012·商丘二模)等比数列{a n }中,a 1=2,a 8=4,f (x )=x (x -a 1)(x -a 2)…(x -a 8),f ′(x )为函数f (x )的导函数,则f ′(0)=( )A .0B .26C .29D .212解析:选D ∵f (x )=x (x -a 1)(x -a 2)…(x -a 8), ∴f ′(x )=x ′(x -a 1)…(x -a 8)+x [(x -a 1)…(x -a 8)]′ =(x -a 1)…(x -a 8)+x [(x -a 1)…(x -a 8)]′,∴f ′(0)=(-a 1)·(-a 2)·…·(-a 8)+0=a 1·a 2·…·a 8=(a 1·a 8)4=(2×4)4=(23)4=212. 2.已知f 1(x )=sin x +cos x ,记f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n (x )=f n -1′(x )(n ∈N *,n ≥2),则f 1⎝⎛⎭⎫π2+f 2⎝⎛⎭⎫π2+…+f 2 012⎝⎛⎭⎫π2=________. 解析:f 2(x )=f 1′(x )=cos x -sin x , f 3(x )=(cos x -sin x )′=-sin x -cos x , f 4(x )=-cos x +sin x ,f 5(x )=sin x +cos x , 以此类推,可得出f n (x )=f n +4(x ), 又∵f 1(x )+f 2(x )+f 3(x )+f 4(x )=0,∴f 1⎝⎛⎭⎫π2+f 2⎝⎛⎭⎫π2+…+f 2 012⎝⎛⎭⎫π2=503f 1⎝⎛⎭⎫π2+f 2⎝⎛⎭⎫π2+f 3⎝⎛⎭⎫π2+f 4⎝⎛⎭⎫π2=0. 答案:03.已知函数f (x )=x 3-3x 及y =f (x )上一点P (1,-2),过点P 作直线l ,根据以下条件求l 的方程.(1)直线l 和y =f (x )相切且以P 为切点; (2)直线l 和y =f (x )相切且切点异于P .解:(1)由f (x )=x 3-3x 得f ′(x )=3x 2-3,过点P 且以P (1,-2)为切点的直线的斜率f ′(1)=0,故所求的直线方程为y =-2.(2)设过P (1,-2)的直线l 与y =f (x )切于另一点(x 0,y 0),则f ′(x 0)=3x 20-3. 又直线过(x 0,y 0),P (1,-2),故其斜率可表示为y 0-(-2)x 0-1=x 30-3x 0+2x 0-1,所以x 30-3x 0+2x 0-1=3x 20-3, 即x 30-3x 0+2=3(x 20-1)(x 0-1).解得x 0=1(舍去)或x 0=-12,故所求直线的斜率为k =3⎝⎛⎭⎫14-1=-94. 所以l 的方程为y -(-2)=-94(x -1),即9x +4y -1=0.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.解:(1)方程7x -4y -12=0可化为y =74x -3,当x =2时,y =12.又f ′(x )=a +bx2,则⎩⎨⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x .(2)证明:设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎫1+3x 20·(x -x 0),即y -⎝⎛⎭⎫x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0).令x =0得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0.令y =x 得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为12⎪⎪⎪⎪-6x 0|2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,此定值为6.【基础自测】1.(2013全国高考)已知曲线124++=ax x y 在点)2,1(+-a 处的切线的斜率为8,则a =( )A.9B.6C.-9D.-62.(2014宁夏一模)如果过曲线12++=x x y 上的点P 处的切线平行于直线2+=x y ,那么点P 的左标为 ( )A.(1,0)B.(0,-1) B.(0,1) D.(-1,0)3.(2013惠州一模)设P 为曲线C :322++=x x y 上的点,且曲线C 在点P 处的切线倾斜角的取值范围为]4,0[π,则点P 横坐标的取值范围为 ( ) A.]21,1[-- B.]0,1[- C.]1,0[ D.]1,21[4.(2013宁夏联考)已知二次函数c bx ax x f ++=2)(的导数为)('x f ,且0)0('>f ,对于任意实数x 都有0)(≥x f ,则)0()1('f f 的最小值为 ( ) A.3 B.25 C.2 D.23.)1()1(lim,2)1(1)(1'的值求处可导,且在】设函数【例hh f h f f x x f --+==x f D. x fx f B. x f x x f x x f x x f )()(.C )()(.A )()(lim,)(000'0'000--∆-∆-)等于(则处可导在【变式】设函数.)0,1()2(1)1(.123的切线方程求曲线过点处的切线方程;求曲线在】已知曲线【例--=+=x x y。

导数的概念与导数的四则运算

导数的概念与导数的四则运算

导数的概念与导数的四则运算2 导数与微分2.1 导数的概念与导数的四则运算⼀、导⼊新课:导数与微分是微分学的两个最基本、最重要的概念。

导数刻画的是函数相对于⾃变量的变化快慢程度,即变化率。

本节主要研究导数的概念、性质和基本求导公式。

下⾯,我们先通过两个经典实例引出导数的概念,进⽽研究导数的计算⽅法。

⼆、讲授新课: 2.1.1两个引例引例2.1.1(变速直线运动的瞬时速度)设物体作变速直线运动,路程s 关于时间t 的运动⽅程为()s s t =,试求物体在0t 时刻的瞬时速度0()v t 。

解:对于匀速运动来说,我们有速度公式:=st速度(s 表⽰经过的路程,t 表⽰所⽤的时间)。

当时间t 由0t 获得增量t ?时,路程s 有相应的增量 00()()s s t t s t ?=+?- ⽐值00()()s t t s t s t t+?-?=就是物体在0t 到0t t +?这段时间内的平均速度,记作v ,即00()()s t t s t s v t t+?-?==?? 显然,t ?越⼩,平均速度v 就越接近于物体在0t 时刻的瞬时速度。

当t ?⽆限⼩时,平均速度v 就⽆限接近于物体在0t 时刻的瞬时速度,即00000()()()lim limlim t t t s t t s t sv t v t t→?→?→+?-?===?? 引例2.1.2(平⾯曲线的切线斜率)设函数()y f x =的图像为曲线L ,考察曲线L 上某点的切线的斜率。

解:记点M 坐标为00(,())x f x ,设1(,())M x f x 为曲线L 上另⼀点,M 与1M 到x 轴的垂⾜分别为A 和B ,作MN 垂直1BM 并交1BM 于N ,则0MN x x x =?=-10()()NM y f x f x =?=- ⽽⽐值0000()()()()f x f x f x x f x y x x x x-+?-?==?-? 便是割线1MM 的斜率tan ?,当0x ?→时,1M 沿曲线L ⽆限接近于M ,割线1MM ⽆限接近于切线MT ,从⽽得到切线的斜率10000()()tan lim tan limlimM Mx xα?→?→?→+?-?===?? 2.1.2 导数的定义1)导数的定义定义 2.1.1 设函数()y f x =在点0x 的某⼀领域内有定义,当⾃变量x 在0x 处有增量x ?(0x ?≠,0x x +?仍在该领域内)时,相应地,函数有增量00()()y f x x f x ?=+?-,如果当0x ?→时,极限0000()()limlim x x f x x f x yx x ?→?→+?-?=?? 存在,则称函数()y f x =在点0x 处可导,并称该极限值为函数()y f x =在点0x 处的导数,记作0()f x ',也记为00(),x x x x df x y dx =='或x x dy dx=即00000()()()limlimx x f x x f x yf x x x→?→+?-?'==?? 若极限不存在,则称函数()y f x =在点0x 处不可导。

导数的概念及运算课件-2025届高三数学一轮复习

导数的概念及运算课件-2025届高三数学一轮复习
(ⅰ)[f(x)±g(x)]'= f'(x)±g'(x)

(ⅱ)[f(x)g(x)]'= f'(x)g(x)+f(x)g'(x) ;


(ⅲ)
()
()
′()()−()′()
'=
(g(x)≠0).
[()]2
②简单复合函数的导数:由函数y=f(u)和u=g(x)复合而成的函数y=f(g
f'(x)= -sin x



目录
基本初等函数
f(x)=ex
f(x)=ax(a>0,且a≠1)
f(x)=ln x
f(x)=logax(a>0,且a≠1)
导数
f'(x)=
ex
f'(x)=
axln a
f'(x)=
1

f'(x)=
1
ln




目录
(2)导数的运算法则
①函数和、差、积、商的导数:若f'(x),g'(x)存在,则有:
P(x0,y0)的切线”的区别:前者P(x0,y0)为切点,而后者P(x0,y0)不一
定为切点.
目录
|解题技法|
求切点坐标的思路
已知切线方程(或斜率)求切点的一般思路是先函数的导数,再让导数
等于切线的斜率,从而求出切点的横坐标,将横坐标代入函数解析式求出切点
的纵坐标.
目录
当堂检测
在平面直角坐标系xOy中,点A在曲线y=ln x上,且该曲线在点A处的切线经过点
目录
二、导数的几何意义及应用
目录
二、导数的几何意义及应用

高考数学大一轮复习配套课时训练:第二篇 函数、导数及其应用 第10节 导数的概念与计算(含答案)

高考数学大一轮复习配套课时训练:第二篇 函数、导数及其应用 第10节 导数的概念与计算(含答案)

第10节导数的概念与计算课时训练练题感提知能【选题明细表】A组一、选择题1.在曲线y=x2+1的图象上取一点(1,2)及邻近一点(1+Δx,2+Δy),则为( C )(A)Δx++2 (B)Δx--2(C)Δx+2 (D)Δx-+2解析:Δy=f(1+Δx)-f(1)=[(1+Δx)2+1]-2=(Δx)2+2·(Δx),∴=Δx+2,选C.2.若f(x)=2xf′(1)+x2,则f′(0)等于( D )(A)2 (B)0 (C)-2 (D)-4解析:∵f′(x)=2f′(1)+2x,∴f′(1)=2f′(1)+2,∴f′(1)=-2,∴f′(x)=2x-4,∴f′(0)=-4.故选D.3.(2013合肥模拟)函数y=x2cos x在x=1处的导数是( B )(A)0 (B)2cos 1-sin 1(C)cos 1-sin 1 (D)1解析:∵y′=(x2cos x)′=(x2)′cos x+x2(cos x)′=2xcos x-x2sin x,∴在x=1处的导数为2cos 1-sin 1,故选B.4.(2013中山市期末)函数f(x)=x2-bx+a的图象如图所示,则函数g(x)=ln x+f′(x)的零点所在的区间是( B )(A)(,)(B)(,1)(C)(1,2)(D)(2,3)解析:由题图知f(1)=1-b+a=0,0<f(0)=a<1,所以1<b<2.g(x)=ln x+2x-b,易知g(x)为(0,+∞)上的增函数,又g(1)=2-b>0,g()=ln +1-b<0,故函数g(x)的零点所在区间为(,1),故选B.5.(2013深圳调研)曲线y=2x-ln x在点(1,2)处的切线方程为( C )(A)y=-x-1 (B)y=-x+3(C)y=x+1 (D)y=x-1解析:y′=2-,所以曲线在点(1,2)处的切线的斜率为k=2-1=1,因此,在点(1,2)处的切线方程为y-2=x-1,即y=x+1,故选C.6.(2013潍坊模拟)若曲线f(x)=x·sin x+1在x=处的切线与直线ax+2y+1=0互相垂直,则实数a等于( D )(A)-2 (B)-1 (C)1 (D)2解析:f′(x)=sin x+xcos x,依题意,f′()=1,且-×1=-1,解得a=2,故选D.7.(2013惠阳一中实验学校高三月考)曲线y=在点(4,e2)处的切线与坐标轴所围成的三角形的面积为( D )(A)6e2(B)4e2(C)2e2(D)e2解析:∵y′=·,∴y′|x=4=·e2.∴曲线y=在点(4,e2)处的切线方程为y-e2=·e2(x-4).令y=0,得x=2,令x=0,得y=-e2,所以,切线与坐标轴所围成的三角形面积S=×2×|-e2|=e2.故选D.二、填空题8.设直线y=x+b是曲线y=ln x(x>0)的一条切线,则实数b的值为.解析:由已知条件可得直线的斜率k=,y′=(ln x)′==,得切点的横坐标为x=2,切点坐标为(2,ln 2).由点(2,ln 2)在切线y=x+b上可得b=ln 2-×2=ln 2-1.答案:ln 2-19.(2013广东六校第三次联考)设P为曲线C:y=x3-x上的点,则曲线C 在点P处的切线的倾斜角的取值范围为.解析:设点P的横坐标是x,则曲线C在点P处的切线斜率是k=3x2-1≥-1,设切线的倾斜角是α,则tan α≥-1,α∈[0,π),解得α∈[0, )∪[,π).答案:[0, )∪[,π)10.等比数列{a n}中,a1=1,a2012=4,函数f(x)=x(x-a1)(x-a2)…(x-a2012),则函数f(x)在点(0,0)处的切线方程为.解析:∵f(x)=x[(x-a1)(x-a2)…(x-a2012)],∴f′(x)=(x-a1)(x-a2)…(x-a2012)+x·[(x-a1)(x-a2)…(x-a2012)]′∴f′(0)=a1·a2·a3·…·a2012=(a1·a2012)1006=41006=22012.∴f(x)在点(0,0)处的切线方程为y=22012x.答案:y=22012x11.(2013广州高三调研)若直线y=2x+m是曲线y=xln x的切线,则实数m的值为.解析:设切点为(x0,x0ln x0),由y′=(xln x)′=ln x+x·=ln x+1得切线斜率为k=ln x0+1,故切线方程为y-x0ln x0=(ln x0+1)·(x-x0),整理得y=(ln x0+1)x-x0,与y=2x+m比较得解得答案:-e三、解答题12.(1)求下列函数的导数.①y=(2x2+3)(3x-1);②y=(-2)2;③y=x-sin cos;(2)设f(x)=(ax+b)sin x+(cx+d)cos x,试确定常数a,b,c,d,使得f′(x)=xcos x.解:(1)①法一y′=(2x2+3)′(3x-1)+(2x2+3)(3x-1)′=4x(3x-1)+3(2x2+3)=18x2-4x+9.法二∵y=(2x2+3)(3x-1)=6x3-2x2+9x-3,∴y′=(6x3-2x2+9x-3)′=18x2-4x+9.②∵y=(-2)2=x-4+4,∴y′=x′-(4)′+4′=1-4×=1-2.③∵y=x-sin cos=x-sin x,∴y′=x′-(sin x)′=1-cos x.(2)由已知f′(x)=[(ax+b)sin x+(cx+d)cos x]′=[(ax+b)sin x]′+[(cx+d)cos x]′=(ax+b)′sin x+(ax+b)(sin x)′+(cx+d)′cos x+(cx+d)(cos x)′=asinx+(ax+b)cos x+ccos x-(cx+d)sin x=(a-cx-d)sin x+(ax+b+c)cos x. ∵f′(x)=xcos x,∴必须有即⇒a=d=1,b=c=0.13.已知函数f(x)=在x=处的切线为l,直线g(x)=kx+与l平行,求f(x)的图象上的点到直线g(x)的最短距离.解:因为f(x)=,所以f′(x)=.所以切线l的斜率为k=f′()=1,切点为T(,).所以切线l的方程为x-y+=0.因为切线l与直线g(x)=kx+平行,所以k=1,即g(x)=x+.f(x)的图象上的点到直线g(x)=x+的最短距离为切线l:x-y+=0与直线x-y+=0之间的距离,所以所求最短距离为=.14.已知点M是曲线y=x3-2x2+3x+1上任意一点,曲线在M处的切线为l,求:(1)斜率最小的切线方程;(2)切线l的倾斜角α的取值范围.解:(1)y′=x2-4x+3=(x-2)2-1≥-1,∴当x=2时,y′=-1,y=,∴斜率最小的切线过,斜率k=-1,∴切线方程为x+y-=0.(2)由(1)得k≥-1,∴tan α≥-1,∴α∈∪.B组15.(2012年高考辽宁卷)已知P,Q为抛物线x2=2y上两点,点P,Q的横坐标分别为4,-2,过P,Q分别作抛物线的切线,两切线交于点A,则点A的纵坐标为( C )(A)1 (B)3 (C)-4 (D)-8解析:y=,y′=x,∴y′|x=4=4,y′|x=-2=-2,点P的坐标为(4,8),点Q的坐标为(-2,2),∴在点P处的切线方程为y-8=4(x-4),即y=4x-8.在点Q处的切线方程为y-2=-2(x+2),即y=-2x-2,解得A(1,-4),则A点的纵坐标为-4.故选C.16.(2013河北保定一模)设函数f(x)=|sin x|的图象与直线y=kx(k>0)有且仅有三个公共点,这三个公共点横坐标的最大值为α,则α等于( B )(A)-cos α(B)tan α(C)sin α(D)π解析:如图,若直线与函数有且仅有三个公共点,则直线y=kx与曲线y=-sin x(x∈[π,2π])相切,设切点为(α,-sin α),则-sin α=kα且k=-cos α,所以α=tan α.故选B.。

导数与微分导数的基本公式与运算法则

导数与微分导数的基本公式与运算法则

第2讲的基本公导数的定义提供了求导数的方法.但对于一些比较复杂的函数,求导数时不仅烦琐,而且需要相当的技巧.本节将给出所有基本初等函数的求导公式和导数的四则运算法则及复合函数的求导法则,借助于这些法则和公式,就能比较方便地求出常见函数的导数.01基本初等函数的导数02求导法则03反函数的导数04可导与连续的关系常见函数都是由基本初等函数生成的,因此首先考虑基本初等函数的导数。

利用导数的定义,可以比较容易的得到它们的求导公式。

先回顾一下导数的定义通过上一节的例题,我们知道ꢀ例1ꢀ注ꢀ例2证明根据定义,ꢀ例3证明ꢀ例4思路对于分段函数的导数,在各区段内直接求导即可;在分界点处需要通过单侧导数确定导数的存在性。

数的导数解01基本初等函数的导数02求导法则03反函数的导数04可导与连续的关系初等函数是由基本初等函数经过有限次四则运算和复合运算得到的,前面已经求得基本初等函数的导数,如果能够建立起导数的运算与函数运算之间的关系,则会使计算简化很多。

下面推导几个主要的求导法则,借助这些法则以及上节得到的导数公式,可以求出一系列函数的导数公式,并在此基础上解决初等函数的求导问题.ꢀ定理2.3并不像极限的四则运算法则那么美好证明(1)根据导数的定义,(2)可导必连续(3)(1)和(差)的求导法则可以推广至有限个可导函数的情形,即(2)乘积的求导法则中注意:每次只对一个因子求导!这一求导法则也可以推广至有限个可导函数的连乘积,例如ꢀ例5解根据定理2.3,有练习ꢀ例6解ꢀ例7解=sec2ꢀ.ꢀ例8解01基本初等函数的导数02求导法则03反函数的导数04可导与连续的关系ꢀ定理2.4(反函数求导法则)需改写!即:反函数的导数等于直接函数导数的倒数。

ꢀ例9证明ꢀ例10证明常见基本初等函数的导数表01基本初等函数的导数02求导法则03反函数的导数04可导与连续的关系在研究函数的变化率时,经常需要对复合函数进行求导。

为此有证明或由定理可知,复合函数对自变量的导数等于函数对中间变量的导数乘以中间变量对自变量的导数.此法则又称为复合函数的链式求导法则.因此,在对复合函数求导时,首先需要熟练引入中间变量,把复合函数分解成一串简单的函数,再用链式法则求导,最后把中间变量用自变量的函数代替.ꢀ例11求下列函数的导数:解熟练掌握链式法则后,可以不必写出中间变量和中间过程。

「精品」高考数学一轮第二篇 第10节 导数的概念及计算-精品

「精品」高考数学一轮第二篇 第10节 导数的概念及计算-精品

第10节导数的概念及计算【选题明细表】基础巩固(时间:30分钟)1.(2017·黑龙江省伊春市期中)函数y=的导数为( D )(A) (B)(C)- (D)解析:因为y=,所以y′==.故选D.2.函数y=ln(2x2+1)的导数是( B )(A) (B)(C)(D)解析:因为y=ln(2x2+1),所以y′=·(2x2+1)′=.故选B.3.(2017·山西怀仁县期中)已知f(x)=x2+3xf′(1),则f′(2)等于( A )(A)1 (B)2 (C)4 (D)8解析:f′(x)=2x+3f′(1),令x=1,得f′(1)=2+3f′(1),f′(1)=-1,所以f′(x)=2x-3.所以f′(2)=1.故选A.4.(2017·湖南怀化一模)如图,函数y=f(x)的图象在点P处的切线方程是y=-x+8,则f(5)+f′(5)等于( A )(A)2 (B)1(C)(D)0解析:根据图象知,点P为切点,f(5)=-5+8=3,f′(5)为函数y=f(x)的图象在点P处的切线的斜率,所以f′(5)=-1,所以f(5)+f′(5)=2.故选A.5.函数f(x)=e x ln x在x=1处的切线方程是( C )(A)y=2e(x-1) (B)y=ex-1(C)y=e(x-1) (D)y=x-e解析:函数f(x)=e x ln x的导数为f′(x)=e x ln x+e x·,所以切线的斜率k=f′(1)=e,令f(x)=e x ln x中x=1,得f(1)=0,所以切点坐标为(1,0),所以切线方程为y-0=e(x-1),即y=e(x-1).故选C.6.(2017·湖南邵阳二模)已知a>0,曲线f(x)=2ax2-在点(1,f(1))处的切线的斜率为k,则当k取最小值时a的值为( A )(A)(B)(C)1 (D)2解析:f(x)=2ax2-的导数为f′(x)=4ax+,可得在点(1,f(1))处的切线的斜率为k=4a+,由a>0,可得4a+≥2=4,当且仅当4a=,即a=时,k取最小值.故选A.·河南许昌二模)已知函数y=x+1+ln x在点A(1,2)处的切线l,若l与二次函数y=ax2+(a+2)x+1的图象也相切,则实数a的取值为( D )(A)12 (B)8 (C)0 (D)4解析:y=x+1+ln x的导数为y′=1+,曲线y=x+1+ln x在x=1处的切线斜率为k=2,则曲线y=x+1+ln x在x=1处的切线方程为y-2=2x-2,即y=2x.由于切线与曲线y=ax2+(a+2)x+1相切,y=ax2+(a+2)x+1可联立y=2x,得ax2+ax+1=0,又a≠0,两线相切有一切点,所以有Δ=a2-4a=0,解得a=4.故选D.8.(2017·天津卷)已知a∈R,设函数f(x)=ax-ln x的图象在点(1,f(1))处的切线为l,则l在y轴上的截距为.解析:因为f′(x)=a-,所以f′(1)=a-1.又因为f(1)=a,所以切线l的斜率为a-1,且过点(1,a),所以切线l的方程为y-a=(a-1)(x-1).令x=0,得y=1,故l在y轴上的截距为1.答案:19.(2017·云南一模)已知函数f(x)=axln x+b(a,b∈R),若f(x)的图象在x=1处的切线方程为2x-y=0,则a+b= .解析:f(x)=axln x+b的导数为f′(x)=a(1+ln x),由f(x)的图象在x=1处的切线方程为2x-y=0,易知f(1)=2,即b=2,f′(1)=2,即a=2,则a+b=4.能力提升(时间:15分钟)f(x)在R上可导,且f(x)=x2+2xf′(2),则函数f(x)的解析式为( B )(A)f(x)=x2+8x (B)f(x)=x2-8x(C)f(x)=x2+2x (D)f(x)=x2-2x解析:因为f(x)=x2+2xf′(2),所以f′(x)=2x+2f′(2),所以f′(2)=2×2+2f′(2),解得f′(2)=-4,所以f(x)=x2-8x,故选B.11.(2017·广州一模)设函数f(x)=x3+ax2,若曲线y=f(x)在点P(x0,f(x0))处的切线方程为x+y=0,则点P的坐标为( D )(A)(0,0) (B)(1,-1)(C)(-1,1) (D)(1,-1)或(-1,1)解析:因为f(x)=x3+ax2,所以f′(x)=3x2+2ax,因为函数在点(x0,f(x0))处的切线方程为x+y=0,所以3+2ax0=-1,因为x0++a=0,解得x0=±1.当x0=1时,f(x0)=-1,当x0=-1时,f(x0)=1.故选D.12.(2017·甘肃二模)曲线y=2ln x上的点到直线2x-y+3=0的最短距离为(A) (B)2(C)3(D)2解析:设与直线2x-y+3=0平行且与曲线y=2ln x相切的直线方程为2x-y+m=0. 设切点为P(x0,y0),因为y′=,所以斜率=2,解得x0=1,因此y0=2ln 1=0.所以切点为P(1,0).则点P到直线2x-y+3=0的距离d==.所以曲线y=2ln x上的点到直线2x-y+3=0的最短距离是.故选A.13.(2017·天津一模)已知函数f(x)=,f′(x)为f(x)的导函数,则f′(0)的值为.解析:f′(x)==,所以f′(0)==2.答案:214.已知函数f(x)=,g(x)=aln x,a∈R,若曲线y=f(x)与曲线y=g(x)相交,且在交点处有共同的切线,则切线方程为.解析:f′(x)=,g′(x)=(x>0),由已知得解得a=,x=e2.所以两条曲线交点的坐标为(e2,e),切线的斜率为k=f′(e2)=,所以切线的方程为y-e=(x-e2),即y=x+.答案:y=x+15.(2017·沈阳一模)设点P在曲线y=e x上,点Q在曲线y=ln(2x)上,则|PQ|的最小值为.解析:因为函数y=e x与函数y=ln(2x)互为反函数,图象关于y=x对称,函数y=e x上的点P(x,e x)到直线y=x的距离为d=,设g(x)=e x-x(x>0),则g′(x)=e x-1,由g′(x)=e x-1≥0,可得x≥ln 2,由g′(x)=e x-1<0可得0<x<ln 2,所以函数g(x)在(0,ln 2)上单调递减,在[ln 2,+∞)上单调递增,所以当x=ln 2时,函数g(x)min=1-ln 2,d min=,由图象关于y=x对称得|PQ|最小值为2d min=(1-ln 2).答案:(1-ln 2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

︱高中总复习︱一轮·理数
考点二 导数的几何意义及其应用(多维探究)
考查角度1:求切线方程
【例2】 (2018·湖北荆州模拟)函数f(x)是定义在R上的奇函数,且当x<0
时,f(x)=x3-2x2,则曲线y=f(x)在点(1,f(1))处的切线方程为
.
解析:设x>0,则-x<0,由x<0时,f(x)=x3-2x2可知f(-x)=(-x)3-2(-x)2=-x32x2. 因为函数f(x)是定义在R上的奇函数,所以f(-x)=-f(x),所以f(x)=x3+2x2, 所以f(1)=1+2=3. f′(x)=3x2+4x,且f′(1)=7. 答因案此:曲7x线-yy-=4=f(0x)在点(1,f(1))处的切线方程为y-3=7(x-1),即7x-y-4=0.
︱高中总复习︱一轮·理数
反思归纳
求曲线在点P(x0,f(x0))处的切线方程的方法: (1)求出y=f(x)在x=x0处的导数,即y=f(x)在点P(x0,f(x0)) 处的切线斜率; (2)由点斜式求得切线方程y-f(x0)=f(x)·(x-x0).
︱高中总复习︱一轮·理数
【跟踪训练2】 设函数y=f(x)的图象在x=0处的切线方程是x-y+1=0,则函数
解:(3)f′(x)=( cos x )′= cos x ex cos x ex =- sin x cos x .
ex
ex 2
ex
(4)由
f(x)=(1-2x2)
1 2
,
所以
f′(x)=-
1
(1-2x2)
3 2
·(-4x),f′(x)=2x(1-2x2)
3 2
.
2
f(x)=ax f(x)=ex
为 f(x)的导函数.
导函数 f′(x)=0 f′(x)= αxα-1 . f′(x)= cos x . f′(x)= -sin x . f′(x)= axln a . f′(x)= ex .
︱高中总复习︱一轮·理数
f(x)=logax f(x)=ln x
1
f′(x)= x ln a
解析:因为 f(x)=x3+ax2,所以 f′(x)=3x2+2ax, 因为曲线 y=f(x)在点 P(x0,f(x0))处的切线方程为 x+y=0, 所以 3 x02 +2ax0=-1,① x0+ x03 +a x02 =0,即 x0( x02 +ax0+1)=0,② 由①可得 x0≠0,因此变形②为 x02 +ax0+1=0, 结合①可解得 x0=±1,所以当 x0=1 时,f(x0)=-1,
︱高中总复习︱一轮·理数
4.函数 f(x)= 3 tan x 在( π ,f( π ))处的切线的倾斜角α为( C )
2
44Βιβλιοθήκη (A) π 6(B) π 4
(C) π 3
(D) π 2
解析:f′(x)=( 3 × sin x )′= 3 × 1 ,得切线斜率 k=tan α=f′( π )=
2 cos x
2 cos2 x
4
3,
则α= π ,故选 C. 3
︱高中总复习︱一轮·理数
5.曲线 y=x2+ 1 在点(1,2)处的切线方程为
.
x
解析:因为 y′=2x- 1 , x2
所以在点(1,2)处的切线的斜率为
y′|x=1=2×1-
1 12
=1,
所以切线方程为 y-2=x-1,即 x-y+1=0.
答案:x-y+1=0
(C) ln 2 2
(D)- ln 2 2
︱高中总复习︱一轮·理数
解析:对 f(x)=ex+a·e-x 求导得 f′(x)=ex-ae-x,又 f′(x)是奇函数,故 f′
(0)=1-a=0,解得 a=1,故有 f′(x)=ex-e-x,设切点为(x0,y0),则 f′(x0)= ex0
- ex0 = 3 ,解得 ex0 =2 或 ex0 =- 1 (舍去),所以 x0=ln 2.故选 A.
2
2
︱高中总复习︱一轮·理数
反思归纳 已知曲线在某点的切线斜率或切线方程求切点坐标,应先设出切点坐标,再 根据切点在切线上以及曲线在切点处的导数值等于切线的斜率建立方程(组) 求切点坐标.
︱高中总复习︱一轮·理数
【跟踪训练3】 设函数f(x)=x3+ax2,若曲线y=f(x)在点P(x0,f(x0))处的切线 方程为x+y=0,则点P的坐标为( ) (A)(0,0) (B)(1,-1) (C)(-1,1) (D)(1,-1)或(-1,1)
(1)f(x)=(x3+1)(2x2+8x-5);(2)f(x)= 1 x + 1 x ; 1 x 1 x
解:(1)因为f(x)=(x3+1)(2x2+8x-5)=2x5+8x4-5x3+2x2+8x-5. 所以f′(x)=10x4+32x3-15x2+4x+8.
2
2
(2)因为 f(x)= 1 x + 1 x = 1 x
(3)y=ln 1 2x ;(4)y=1+cos2x.
解:(3)因为 y=ln 1 2x ,所以 y= 1 ln(1+2x), 2
所以 y′= 1 · 1 ·(1+2x)′= 1 .
2 1 2x
1 2x
(4)因为 y=1+cos2x=1+ 1 cos 2x = 3 + 1 cos 2x,
y=f(x)+ex的图象在x=0处的切线方程是
.
解析:因为函数y=f(x)图象在x=0处的切线方程是x-y+1=0,
所以f′(0)=1,f(0)=1,
从而可知函数y=f(x)+ex的图象在x=0处的切线斜率等于f′(0)+e0=2,
又函数y=f(x)+ex在x=0处的函数值为f(0)+e0=2.
故函数y=f(x)+ex的图象在x=0处的切线方程是y-2=2(x-0),
1 x +
= 2 2x = 4 -2,
1 x 1 x 1 x
1 x 1 x 1 x
所以 f′(x)=( 4 -2)′= 41 x = 4 .
1 x
1 x2 1 x2
︱高中总复习︱一轮·理数
(3)f(x)= cos x ;(4)f(x)= 1 .
ex
1 2x2
︱高中总复习︱一轮·理数
(2)y= 1 + 1 ; 1 x 1 x
解:(2)y= 1 + 1 1 x 1 x
= 1 x 1 x 1 x 1 x
=2. 1 x
所以 y′=( 2 )′=(- 2 )′= 2 .
1 x
x 1
x 12
︱高中总复习︱一轮·理数
即2x-y+2=0. 答案:2x-y+2=0
︱高中总复习︱一轮·理数
考查角度 2:求切点坐标 【例 3】 (2018·河北石家庄模拟)设 a∈R,函数 f(x)=ex+a·e-x 的导函数
是 f′(x),且 f′(x)是奇函数.若曲线 y=f(x)的一条切线的斜率是 3 ,则 2
切点的横坐标为( ) (A)ln 2 (B)-ln 2
︱高中总复习︱一轮·理数
对点自测
1.给出下列结论:
①若 y=log2x,则 y′= 1 ;②若 y=x ln 2
1 x
,则 y′= 1 2x x
;③若 f(x)= 1 x2
,则 f′(3)
=- 2 ;④若 y=ax(a>0 且 a≠1),则 y′=axln a.其中正确的个数是( 27
(A)1
(B)2
︱高中总复习︱一轮·理数
2.设 f(x)在 x=x0 处可导,且 lim f x0 x f x0 =1,则 f′(x0)等于( A )
x 0
x
(A)1 (B)0
(C)3
(D) 1 3
解析: lim f x0 x f x0 =1,即 f′(x0)=1.故选 A.
(C)3
(D)4
D)
︱高中总复习︱一轮·理数
解析:①正确;若 y=-
1 x
=-
1
x2
,则
y′=
1

x
3 2
2
=
1 2x
x
,所以②正确;若 f(x)=
1 x2
,则
f′(x)=-2x-3,所以 f′(3)=- 2 ,所以③正确;若 y=ax(a>0 且 a≠1),则 y′=axln a, 27
所以④正确.因此正确的结论个数是 4,故选 D.
(3)物理意义:函数y=f(x)表示变速运动的质点的运动方程,就是该质点在 [x1,x2]上的 平均 速度.
︱高中总复习︱一轮·理数
2.导数的概念
(1)函数 y=f(x)在 x=x0 处的导数
①定义
称函数 y=f(x)在 x=x0 处的瞬时变化率 lim y =
lim f x0 x f x0
(2)复合函数的导数
(g(x)≠0).
复合函数y=f(ax+b)的求导法则为[f(ax+b)]′=af′(ax+b).
︱高中总复习︱一轮·理数
【重要结论】
1.奇函数的导数是偶函数,偶函数的导数是奇函数.周期函数的导数还是周期 函数. 2.函数y=f(x)的导数f′(x)反映了函数f(x)的瞬时变化趋势,其正负号反映了 变化的方向,其大小|f′(x)|反映了变化的快慢,|f′(x)|越大,曲线在这点处 的切线越“陡”.
相关文档
最新文档