解直角三角形的应用经典题型

合集下载

专题1.2 解直角三角形【十大题型】(举一反三)(北师大版)(原卷版)

专题1.2 解直角三角形【十大题型】(举一反三)(北师大版)(原卷版)

专题1.2 解直角三角形【十大题型】【北师大版】【题型1 直角三角形中直接解直角三角形】 (1)【题型2 构造直角三角形解直角三角形】 (2)【题型3 网格中解直角三角形】 (3)【题型4 坐标系中解直角三角形】 (5)【题型5 四边形中解直角三角形】 (6)【题型6 利用解直角三角形求不规则图形的面积】 (7)【题型7 解直角三角形的应用之坡度坡比问题】 (8)【题型8 解直角三角形的应用之俯角仰角问题】 (10)【题型9 解直角三角形的应用之方向角问题】 (12)【题型10 解直角三角形的应用之实物建模问题】 (14)【知识点 解直角三角形】【题型1 直角三角形中直接解直角三角形】【例1】(2023秋·上海青浦·九年级校考期中)如果AD 是Rt △ABC 的斜边BC 上的高,BC =a ,∠B =β,那么AD 等于( )A .a sin βcos βB .a cos 2βC .a sin 2βD .a sin βtanβ【变式1-1】(2023秋·陕西西安·九年级校考期中)如图,在Rt△ABC中,∠B=90°,E是BC边上一点,过点E作ED⊥AC,垂足为D,AB=4,DE=3,∠C=30°,求BE的长.【变式1-2】(2023·福建泉州·校联考模拟预测)如图,在△ABC中,∠B=90°,∠A=30°.D为线段AB上的动点.(1)若D运动到某个位置时,∠CDB=60°,CD=10米,求BC的长度.(2)若点D运动到某个位置时,∠CDB=45°,AD=6米.求BC的长度.(结果可保留根号),D 【变式1-3】(2023秋·广西梧州·九年级统考期末)如图,在Rt△ABC中,∠C=90°,AC=8,sin B=45为线段BC上一点,并且CD=2,求BD及cos∠DAC的值.【题型2构造直角三角形解直角三角形】【例2】(2023秋·广西梧州·九年级统考期末)已知在△ABC中,AB=AC=13,cos B=BC 的长()A.7B.8C.8或17D.7或17【变式2-1】(2023秋·上海静安·九年级上海市市北初级中学校考期末)如图,已知将△ABC沿角平分线BE 所在直线翻折,点A恰好落在边BC的中点M处,且AM=BE,那么∠EBC的余弦值为.【变式2-2】(2023·江苏·统考中考真题)如图,3个大小完全相同的正六边形无缝隙、不重叠的拼在一起,连接正六边形的三个顶点得到△ABC,则tan∠ACB的值是.【变式2-3】(2023秋·上海静安·九年级上海市民办扬波中学校考期中)如图,△ABC中,AB=AC=5,BC=6,BD⊥AC于点D,将△BCD绕点B逆时针旋转,旋转角的大小与∠CBA相等,如果点C、D旋转后分别落在点E、F的位置,那么∠EFD的正切值是.【题型3网格中解直角三角形】【例3】(2023·湖北武汉·统考三模)如图是由小正方形组成的8×8网格,每个小正方形的顶点叫做格点,A,C两个点是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图中,点B是格点,先画线段AB的中点D,再在AC上画点E,使AD=DE;(2)在图中,点B在格线上,过点C作AB的平行线CF;(3)在图中,点B在格线上,在AB上画点G,使tan∠ACG=4.7【变式3-1】(2023秋·江苏苏州·九年级统考期中)如图,A,B,C,D均为网格图中的格点,线段AB与CD相交于点P,则∠APD的正切值为.【变式3-2】(2023秋·福建泉州·九年级统考期末)如图,A、B、C、D是正方形网格的格点,AB、CD交于点O,则cos∠BOD的值为.【变式3-3】(2023·湖北武汉·统考模拟预测)如图是由小正方形组成的8×6网格,每个小正方形的顶点叫做格点,△ABC的三个顶点都是格点,仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,D,E分别是边AB,AC与网格线的交点.先将点C绕点D旋转180°得到点F,画出点F;再在边AB上画点G,使EG∥BC;(2)在图(2)中,在边AB上找一点P,使PA=PC;再在线段AC上找一点Q,使tan∠ABQ=34【题型4坐标系中解直角三角形】【例4】(2023·河南洛阳·校联考一模)如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,∠BOC=60°,顶点C的坐标为(a,3),y=k的图象与菱形对角线AO交于点D,连接BD,当DB⊥x轴时,kx的值是( )A.B.C.D.【变式4-1】(2023·广东湛江·岭师附中校联考一模)如图,在△ABO中,AB⊥OB,AB=OB=1,把△ABO绕点O顺时针旋转120°后,得到△A1B1O,则点A1的坐标为.【变式4-2】(2023秋·黑龙江哈尔滨·九年级哈尔滨市第十七中学校校考开学考试)如图:已知一次函数图.像与x轴、y轴分别交于点A、点B.OB=3,tan∠BAO=12(1)求直线AB的解析式;(2)若点C在x轴上方的直线AB上,△AOC的面积为15,求tan∠BOC.【变式4-3】(2023秋·黑龙江哈尔滨·九年级校考开学考试)在平面直角坐标系中,点O为坐标原点,直线y=kx+6k交x轴于点B,交y轴于点A,AB=2AO.(1)如图1,求k的值;(2)如图2,点H在AB上,点F在OB上,连接FH、OH,且FH=OH,过点F作AB的垂线,垂足为点S,设点H 的横坐标为t,−3<t<−1,线段SH的长为d,求d与t之间的函数关系式;(3)如图3,在(2)的条件下,将线段OH绕点O顺时针旋转60°得到线段OE,连接AE并延长交x轴于C,连接tan∠OEK时,求△SHF的面积.HC,点K是HC的中点,连接EK,当tan∠SHF=310【题型5四边形中解直角三角形】【例5】(2023·海南儋州·海南华侨中学校联考模拟预测)如图,在矩形ABCD中,AB=3,AD=4,点E 为对角线BD上一点,连接AE,过点E作EF⊥AE交BC于点F.连接AF交BE于点O,若AB=AE,则线段AF 与BD的位置关系为;BF的长为.【变式5-1】(2023秋·陕西渭南·九年级统考期中)如图,在矩形ABCD中,点E在AD上,且EC平分∠BED,AB=∠ABE=30°,DE的长为()A.1B C D.2【变式5-2】(2023·浙江·模拟预测)已知菱形的一个内角为60°,一条对角线的长为的长为.【变式5-3】(2023·黑龙江哈尔滨·统考模拟预测)如图,已知平行四边形ABCD中,E为BC边上一点,连接AE、DE,若AD=DE,AE=DC,BE=4,tan∠B=3,则EC的长为.【题型6利用解直角三角形求不规则图形的面积】【例6】(2023春·江苏·九年级专题练习)在△ABC中,∠B=45°,AC=4,则△ABC面积的最大值为()A.B.4C.8D.【变式6-1】(2023秋·上海·九年级上海外国语大学附属大境初级中学校考期中)已知:如图,在△ABC中,AB=AC=5,BC=8,D是边AB上一点,且tan∠DCB=35.(1)试求cos B的值;(2)试求△BCD的面积.【变式6-2】(2023春·福建漳州·九年级统考期中)阅读下列材料:如图1.在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,可以得到:SΔABC=12ab sin C=12ac sin B=12bc sin A证明:过点A作AD⊥BC,垂足为D.在Rt △ABD 中,sin B =AD c∴AD =c•sin B ∴S ΔABC =12a•AD =12ac sin B同理:S ΔABC =12ab sin CS ΔABC =12bc sin A∴S ΔABC =12ab sin C =12ac sin B =12bc sin A(1)通过上述材料证明:a sin A =b sin B =c sin C(2)运用(1)中的结论解决问题:如图2,在ΔABC 中,∠B =15°,∠C =60°,AB =AC 的长度.(3)如图3,为了开发公路旁的城市荒地,测量人员选择A 、B 、C 三个测量点,在B 点测得A 在北偏东75°方向上,沿笔直公路向正东方向行驶18km 到达C 点,测得A 在北偏西45°方向上,根据以上信息,求A 、B 、C 三点围成的三角形的面积.(本题参考数值:sin15°≈0.3,sin120°≈0.9,结果取整数)【变式6-3】(2023春·全国·九年级专题练习)已知在△ABC 中,∠ACB =135°,AC =8,D 、E 分别是边BC 、AB 上的一点,若tan ∠DEA =2,DE S △DEB =4,求四边形ACDE 的面积.【题型7 解直角三角形的应用之坡度坡比问题】【例7】(2023·山西阳泉·校联考模拟预测)根据山西省人民政府办公厅印发的《山西省推进分布式可再生能源发展三年行动计划(2023-2025年)》,从2023年开始,每年选择2-3个左右乡镇,利用各类村闲置集体土地开发建设分散式风电帮扶小镇,新增发电装机100万千瓦左右.如图1,是某地山坡上新建的一台风力发电机,数学活动小组的同学为测量这台发电机AB的高度,如图2,在C处测得发电机底端B的仰角为15°,沿水平地面前进30m到达D处,测得发电机顶端A的仰角为53°,若AB⊥DC于点E,图中点A,B,C,D,E均在同一平面内,测得山坡的坡角∠BDE=30°.(1)求斜坡BD的长;(2)求这台风力发电机AB的高度(结果取整数).(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈4,3≈1.73)【变式7-1】(2023秋·广西柳州·九年级统考期末)如图,某地下车库的入口处有斜坡AB,它的坡度为i=1:2,斜坡AB的长为,斜坡的高度为AH(AH⊥BC),为了让行车更安全,现将斜坡的坡角改造为14°(图中的∠ACB=14°).(1)求车库的高度AH;(2)求点B与点C之间的距离(结果精确到1m,参考数据:sin14°≈0.24,cos14°≈0.97,tan14°≈0.25).【变式7-2】(2023·河北沧州·统考二模)某场地的跑道分为上坡、平地、下坡三种类型.一架无人机始终以每分0.2km的速度在离水平地面500m的高度匀速向右飞行,在运动员的正上方进行跟踪拍摄.如图为无人机飞行以及运动员运动路径的图像.已知OA=,AB=1km,OA的坡度i=1:3,下坡路BC的坡角为45°.(1)求坡面OA的垂直高度ℎ;(2)求直线BC的函数解析式,并求运动员在下坡路段的速度;(3)通过计算说明运动员在O−A−B−C上运动的过程中,与无人机距离不超过300m的时长.【变式7-3】(2023·江苏泰州·统考中考真题)如图,堤坝AB长为10m,坡度i为1:0.75,底端A在地面上,堤坝与对面的山之间有一深沟,山顶D处立有高20m的铁塔CD.小明欲测量山高DE,他在A处看到铁塔顶端C刚好在视线AB上,又在坝顶B处测得塔底D的仰角α为26°35′.求堤坝高及山高DE.(sin26°35′≈0.45,cos26°35′≈0.89,tan26°35′≈0.50,小明身高忽略不计,结果精确到1m)【题型8解直角三角形的应用之俯角仰角问题】【例8】(2023春·湖南永州·九年级校考开学考试)如图,建筑物AB后有一座小山,∠DCF=30°,测得小山坡脚C点与建筑物水平距离BC=25米,若山坡上E点处有一凉亭,且凉亭与坡脚距离CE=20米,某人从建筑物顶端A点测得E点处的俯角为48°.求建筑物AB的高(精确到0.1m≈1.7,sin 48°≈0.7,cos48°≈0.6,tan48°≈1.1,sin42°≈0.6,cos42°≈0.7,tan42°≈0.9)【变式8-1】(2023·河南郑州·校考三模)河南省登封市境内的嵩岳寺塔是中国现存年代最久的佛塔,堪称世界上最早的筒体建筑.某校数学社闭的同学利用所学知识来测量嵩岳寺塔的高度,如图,CD是嵩岳寺塔附近不远处的某建筑物,他们在建筑物CD底端D处利用测角仪测得嵩岳寺塔顶端B的仰角为60°,在建筑物CD顶端C处利用测角仪测得嵩岳寺塔底端A的俯角为35°,已知建筑物CD的高为15米,AB⊥AD,CD⊥AD,点A,D在同一水平线上,求嵩岳寺塔AB的高度.(结果精确到0.1m,参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70 1.73)【变式8-2】(2023春·山东菏泽·九年级统考期中)某校数学兴趣小组借助无人机测量一条河流的宽度CD,如图所示,一架水平飞行的无人机在A处测得正前方河流的左岸C处的俯角为α,无人机沿水平线AF方向继续飞行60米至B处,测得正前方河流右岸D处的俯角为30°.线段AM的长为无人机距地面的垂直高度,点M,C,D在同一条直线上,其中tanα=3,MC=(1)求无人机的飞行高度AM;(结果保留根号)(2)求河流的宽度CD.(结果精确到0.1≈1.41≈1.73)【变式8-3】(2023秋·河南新乡·九年级统考期末)二七纪念塔位于郑州市二七广场,是独特的仿古联体双塔.学完解直角三角形的知识后,某校数学社团的王华和张亮决定用自己所学到的知识测量二七纪念塔AB 的高度.如图,CD是纪念塔附近不远处的某建筑物,他们在建筑物CD底端D处测得二七纪念塔顶端B的仰角为60°,在建筑物CD顶端C处测得二七纪念塔底端A的俯角为28°,已知建筑物CD的高为19米,AB⊥AD,CD⊥AD,求二七纪念塔AB的高度.(结果精确到1米.参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈ 1.73)【题型9 解直角三角形的应用之方向角问题】【例9】(2023·重庆·九年级专题练习)五一节日到来,重庆又一次成为全国火热城市,小明和小亮两人相约去观赏洪崖洞夜景,小明从A 地出发,小亮从B 地出发,相约到C 地观景.在A 处测得C 在A 的北偏东45°方向上,在B 处测得C 在B 的正北方向上,且B 在A 的北偏东75°方向上.小明小亮同时分别从A 、B 两地出发,他们约定先在AC 上的D 处汇合,小明沿着AC 方向慢跑,小亮沿着北偏西60°以150m/min 的速度跑了2分钟到达D ≈1.73≈1.41 2.45).(1)求AB 的长度(结果保留根号);(2)他们在D 处汇合的时间恰好为18:58,若他们汇合之后立即沿DC 方向同行的速度为200m/min (汇合时间忽略不计)则他们能在19:00之前到达C 地吗?【变式9-1】(2023·江苏宿迁·统考三模)宿迁骆马湖两岸风光如画,大家都喜欢坐游船游览观光.如图,在某两段平行航道(不考虑其他因素),甲游船由西向东慢速航行,同时乙游船由东向西航行.喜爱数学的小华在甲游船到达点A 处时测得C 处的乙游船在甲游船的北偏东67.4°方向,向前行驶156m 到点B 处测得行驶到D 处的乙游船在甲游船的北偏东37°方向,CD =240m ,求第二次测量时甲、乙两游船之间的距离.(参考数据sin22.6°≈513,cos22.6°≈1213,tan22.6°≈512,sin53°≈45,cos53°≈35,tan53°≈43)【变式9-2】(2023春·安徽合肥·九年级校考开学考试)如图,某巡逻艇在海上例行巡逻,上午10时在C 处接到海上搜救中心从B 处发来的救援任务,此时事故船位于B 处的南偏东25°方向上的A 处,巡逻艇位于B 处的南偏西28°方向上1260米处,事故船位于巡逻艇的北偏东58°方向上,巡逻艇立刻前往A 处救援,已知巡逻艇每分钟行驶120米,请估计几分钟可以到达事故船A 处.(结果保留整数.参考数据 1.73,sin53°≈45,cos53°≈35,tan53°≈43).【变式9-3】(2023秋·河北石家庄·九年级统考期末)期中测试临近学生都在紧张的复习中,小甘和小西相约周末去图书馆复习,如图,小甘从家A 地沿着正东方向走900m 到小西家B 地,经测量图书馆C 地在B 地的北偏东15°,C 地在A 地的东北方向.(1)求AC 的距离:(2)两人准备从B 地出发,实然接到疾控中心通知,一名确诊的新冠阳性患者昨天经过了C 地,并沿着C 地南偏东22°走了1800m 到达D 地,根据相关要求,凡是确诊者途径之处800m 区域以内都会划为管控区,问:2.45,sin37°≈0.6,cos37°≈0.8,tan37°≈0.75).【题型10 解直角三角形的应用之实物建模问题】【例10】(2023·河南南阳·校联考三模)如图1是某工厂生产的某种多功能儿童车,根据需要可变形为滑板车或三轮车,图2、图3是其示意图,已知前后车轮半径相同,车杆AB 的长为60cm ,点D 是AB 的中点,前支撑板DE =30cm ,后支撑板EC =40cm ,车杆AB 与BC 所成的∠ABC =53°.(1)如图2,当支撑点E 在水平线BC 上时,支撑点E 与前轮轴心B 之间的距离BE 的长;(2)如图3,当座板DE 与地面保持平行时,问变形前后两轴心BC 的长度有没有发生变化?若不变,请通过计算说明;若变化,请求出变化量.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)【变式10-1】(2023·广东揭阳·校考一模)“和谐号”高铁列车的小桌板收起时近似看作与地面垂直,展开小桌板使桌面保持水平时如图,小桌板的边沿O 点与收起时桌面顶端A 点的距离OA =75厘米,此时CB ⊥AO ,∠AOB =∠ACB =37°,且支架长OB 与支架长BC 的长度之和等于OA 的长度,求支架BC 的长.(参考数据sin 37°≈0.6,cos37°≈0.8,tan37°≈0.75)【变式10-2】(2023秋·河北石家庄·九年级校联考期中)下图是测温员使用测温枪的侧面示意图,其中枪柄BC 与手臂MC 始终在同一直线上,枪身BA 与额头保持垂直.量得胳膊MN =28cm ,MB =42cm ,肘关节M 与枪身端点A 之间的水平宽度为25.3cm (即MP 的长度),枪身BA =8.5cm .(1)求∠PMB的度数;(2)测温时规定枪身端点,A与额头距离范围为3~5cm,若测得∠BMN=68.6°,小红与测温员之间距离为50cm.问此时枪身端点A与小红额头的距离是否在规定范围内?并说明理由.(结果保留小数点后一位)(参考数据:sin66.4°≈0.92,cos66.4°≈0.40,sin23.6≈≈1.41)【变式10-3】(2023·山西忻州·统考模拟预测)随着人们生活水平的日益提高,大家对运动健身的需求日益凸显,小明家新买了一台折叠式跑步机(如图1),为了合理规划收纳空间,小明特地测量了该跑步机的一些数据,并且画出了示意图(如图2).已知支架AB=116 cm,跑带BC=170 cm,控制面板AD=56 cm,∠B=75°,∠DAB=105°,护架AE与跑带BC平行于地面.如图3,闲置时,跑带BC可以向上折叠,∠CBF=60°,支架BF放置于地面支撑整个跑步机.请你帮助小明计算这台跑步机折叠存放时的最大高度.(结果精确到1 cm.参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73≈1.73 1.41)。

解直角三角形(5种题型)(解析版)

解直角三角形(5种题型)(解析版)

解直角三角形(5种题型)【知识梳理】一.解直角三角形(1)解直角三角形的定义在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.(2)解直角三角形要用到的关系①锐角、直角之间的关系:∠A+∠B=90°;②三边之间的关系:a2+b2=c2;③边角之间的关系:sin A=∠A的对边斜边=ac,cos A=∠A的邻边斜边=bc,tan A=∠A的对边∠A的邻边=ab.(a,b,c分别是∠A、∠B、∠C的对边)二.解直角三角形的应用(1)通过解直角三角形能解决实际问题中的很多有关测量问.如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.(2)解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.三.解直角三角形的应用-坡度坡角问题(1)坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.(2)把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h/l=tanα.(3)在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.应用领域:①测量领域;②航空领域③航海领域:④工程领域等.四.解直角三角形的应用-仰角俯角问题(1)概念:仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.(2)解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.在视线与水平线所成的角中,视线在水平线上方的角叫仰角;视线在水平线下方的角叫俯角;五.解直角三角形的应用-方向角问题(1)在辨别方向角问题中:一般是以第一个方向为始边向另一个方向旋转相应度数.(2)在解决有关方向角的问题中,一般要根据题意理清图形中各角的关系,有时所给的方向角并不一定在直角三角形中,需要用到两直线平行内错角相等或一个角的余角等知识转化为所需要的角.【考点剖析】一.解直角三角形1.(2022春•闵行区校级期中)如图,在Rt△ABC中,∠ACB=90°,AC=BC=6,点D在边AC上,且AD =2CD,DE⊥AB,垂足为点E,联结CE,求:(1)线段BE的长;(2)∠ECB的余弦值.【分析】(1)根据题意,AC=BC=6,AD=2CD,可得AD的长度,根据等腰直角三角形的性质可得AB=√2AC,由AE=sin45°•AD的长度,则BE=AB﹣AE,计算即可得出答案;(2)过点E作EF⊥BC,垂足为F,如图,根据等腰直角三角形的性质可得,EF=BF=sin45°•BE,则CF=BC﹣BF,根据勾股定理可得CE=√EF2+CF2,在Rt△ECF中,由cos∠ECB=CFCE 计算即可得出答案.【解答】解:(1)∵AC=BC=6,AD=2CD,∴AD=4,∵∠ACB=90°,∴AB=√2AC=6√2,∴∠DAE=45°,DE⊥AB,∴AE=sin45°•AD=√22×4=2√2,∴BE=AB﹣AE=6√2−2√2=4√2;(2)过点E作EF⊥BC,垂足为F,如图,∵∠B=45°,∴EF=BF=sin45°•BE=√22×4√2=4,∴CF=BC﹣BF=2,∴CE=√EF2+CF2=√42+22=2√5,在Rt△ECF中,cos∠ECB=CFCE =2√5=√55.【点评】本题主要考查了解直角三角形及等腰直角三角形形的性质,应用等腰直角三角形性质进行计算是解决本题的关键.2.(2022春•浦东新区校级期中)如图,在△ABC中,CD是边AB上的高,AE是BC边上的中线,已知AD=8,BD=4,cos∠ABC=45.(1)求高CD的长;(2)求tan∠EAB的值.【分析】(1)在Rt△BCD中,由已知条件cos∠ABC=BDBC =45,即可算出BC的长,根据勾股定理即可得出答案;(2)过点E作EF⊥AB,垂足为F,如图,可得CD∥EF,由E为BC的中点,可得EF是△BCD的中位线,即可算出EF=12CD,DF的长度,即可算出AF=AD+DF的长度,在Rt△AEF中,根据tan∠EAB=EFAF即可得出答案.【解答】解:(1)在Rt△BCD中,∵cos∠ABC=BDBC =45,∴4BC =45,∴BC=5,∴CD=√BC2−BD2=√52−42=3;(2)过点E作EF⊥AB,垂足为F,如图,∵EF⊥BD,∴CD∥EF,∵E为BC的中点,∴EF是△BCD的中位线,∴EF=12CD=12×3=32,DF=12BD=12×4=2,∴AF=AD+DF=8+2=10,在Rt△AEF中,∴tan∠EAB=EFAF =3210=15.【点评】本题主要考查了解直角三角形,熟练掌握解直角三角形的方法进行求解是解决本题的关键.3.(2022•黄浦区二模)如图,在Rt△ABC中,∠ACB=90°,AC=3,sin∠ABC=13,D是边AB上一点,且CD=CA,BE⊥CD,垂足为点E.(1)求AD 的长; (2)求∠EBC 的正切值.【分析】(1)过C 点作CH ⊥AD 于H ,如图,利用等腰三角形的性质得到AH =DH ,再证明∠ACH =∠ABC ,则sin ∠ACH =sin ∠ABC =13,然后利用正弦的定义求出AH ,从而得到AD 的长;(2)在Rt △ABC 中先求出AB =9,则BD =7,再证明∠HCD =∠EBD ,则sin ∠EBD =DE BD =13,利用正弦的定义求出DE =73,接着利用勾股定理计算出BE ,然后根据正切的定义求解.【解答】解:(1)过C 点作CH ⊥AD 于H ,如图, ∵CD =CA , ∴AH =DH ,∵∠ABC+∠BCH =90°,∠ACH+∠BCH =90°, ∴∠ACH =∠ABC , ∴sin ∠ACH =sin ∠ABC =13, 在Rt △ACH 中,sin ∠ACH =AH AC =13,∴AD =2AH =2;(2)在Rt △ABC 中,sin ∠ABC =AC AB=13,∴AB =3AC =9,∴BD =AB ﹣AD =9﹣2=7, ∵∠E =90°, 而∠EDB =∠HDC , ∴∠HCD =∠EBD , ∴sin ∠EBD =DE BD =13,∴DE =13BD =73,∴BE =√72−(73)2=14√23,在Rt △EBC 中,tan ∠EBC =EC EB=3+7314√23=4√27.【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了等腰直角三角形的性质. 二.解直角三角形的应用4.(2022•长宁区二模)冬至是一年中太阳光照射最少的日子,如果此时楼房最低层能采到阳光,一年四季整座楼均能受到阳光的照射,所以冬至是选房买房时确定阳光照射的最好时机.某居民小区有一朝向为正南方向的居民楼.该居民楼的一楼是高6米的小区超市,超市以上是居民住房,在该楼前面20米处要盖一栋高25米的新楼.已知上海地区冬至正午的阳光与水平线夹角为29°(参考数据:sin29°≈0.48;cos29°≈0.87;tan29°≈0.55)(1)冬至中午时,超市以上的居民住房采光是否有影响,为什么?(2)若要使得超市全部采光不受影响,两楼应至少相距多少米?(结果保留整数)【分析】(1)延长光线交CD 于点F ,过点F 作FG ⊥AB ,垂足为G ,根据题意可得∠AFG =29°,GF =BC =20米,GB =FC ,然后在Rt △AGF 中,利用锐角三角函数的定义求出AG ,从而求出GB 的长,进行比较,即可解答;(2)延长光线交直线BC 于点E ,根据题意可得∠AEB =29°,然后在Rt △ABE 中,利用锐角三角函数的定义求出BE 的长,即可解答.【解答】解:(1)冬至中午时,超市以上的居民住房采光有影响,理由:延长光线交CD于点F,过点F作FG⊥AB,垂足为G,则∠AFG=29°,GF=BC=20米,GB=FC,在Rt△AGF中,AG=FG•tan29°≈20×0.55=11(米),∵AB=25米,∴GB=AB﹣AG=25﹣11=14(米),∴FC=GB=14米,∵14米>6米,∴冬至中午时,超市以上的居民住房采光有影响;(2)延长光线交直线BC于点E,则∠AEB=29°,在Rt△ABE中,AB=25米,∴BE=ABtan29°≈250.55≈45(米),∴若要使得超市全部采光不受影响,两楼应至少相距45米.【点评】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.5.(2022•徐汇区二模)激光电视的光源是激光,它运用反射成像原理,屏幕不通电无辐射,降低了对消费者眼睛的伤害.根据THX观影标准,当观影水平视场角“θ”的度数处于33°到40°之间时(如图1),双眼肌肉处于放松状态,是最佳的感官体验的观影位.(1)小丽家决定要买一个激光电视,她家客厅的观影距离(人坐在沙发上眼睛到屏幕的距离)为3.5米,小佳家要选择电视屏幕宽(图2中的BC的长)在什么范围内的激光电视就能享受黄金观看体验?(结果精确到0.1m,参考数据:sin33°≈0.54,tan33°≈0.65,sin40°≈0.64,tan40°≈0.84,sin16.5°≈0.28,tan16.5°≈0.30,sin20°≈0.34,tan20°≈0.36)(2)由于技术革新和成本降低,激光电视的价格逐渐下降,某电器商行经营的某款激光电视今年每台销售价比去年降低4000元,在销售量相同的情况下,今年销售额在去年销售总额100万元的基础上减少20%,今年这款激光电视每台的售价是多少元?【分析】(1)过点A作AD⊥BC于点D,根据题意可得AB=AC,当∠BAC=33°时,当∠BAC=40°时,利用锐角三角函数即可解决问题;(2)设今年这款激光电视每台的售价是x元,则去年每台的售价为(x+4000)元.由题意列出方程即可解决问题.【解答】解:(1)如图,过点A作AD⊥BC于点D,根据题意可知:AB=AC,AD⊥BC,∴BC=2BD,∠BAD=∠CAD=∠BAC,当∠BAC=33°时,∠BAD=∠CAD=16.5°,在△ABD中,BD=AD×tan16.5°≈3.5×0.30=1.05(m),∴BC=2BD=2.10(m),当∠BAC=40°时,∠BAD=∠CAD=20°,在△ABD中,BD=AD×tan20°≈3.5×0.36=1.26(m),∴BC=2BD=2.52m,答:小佳家要选择电视屏幕宽为2.10m﹣2.52m之间的激光电视就能享受黄金观看体验;(2)设今年这款激光电视每台的售价是x元,则去年每台的售价为(x+4000)元.由题意可得:=,解得:x=16000,经检验x=16000是原方程的解,符合题意,答:今年这款激光电视每台的售价是16000元.【点评】本题考查了解直角三角形的应用,分式方程的应用,视点,视角和盲区,解决本题的关键是根据题意找到等量关系准确列出方程.6.(2022•崇明区二模)为解决群众“健身去哪儿”问题,某区2021年新建、改建90个市民益智健身苑点,图1是某益智健身苑点中的“侧摆器”.锻炼方法:面对器械,双手紧握扶手,双脚站立于踏板上,腰部发力带动下肢做左右摆式运动.(1)如图2是侧摆器的抽象图,已知摆臂OA的长度为80厘米,在侧摆运动过程中,点A为踏板中心在侧摆运动过程中的最低点位置,点B为踏板中心在侧摆运动过程中的最高点位置,∠BOA=25°,求踏板中心(精确到0.1厘米)(sin25°≈0.423,cos25°≈0.906,tan25°≈0.466)点在最高位置与最低位置时的高度差.(2)小杰在侧摆器上进行锻炼,原计划消耗400大卡的能量,由于小杰加快了运动频率,每小时能量消耗比原计划增加了100大卡,结果比原计划提早12分钟完成任务,求小杰原计划完成锻炼需多少小时?【分析】(1)过点B作BD⊥OA垂足为D,由题意得:OB=OA=80cm,然后在Rt△BOD中,利用锐角三角函数的定义求出OD的长,进行计算即可解答;(2)先设小杰原计划x小时完成锻炼,然后根据实际每小时的能量消耗﹣原计划每小时的能量消耗=100,列出方程进行计算即可解答.【解答】解:(1)过点B作BD⊥OA垂足为D,由题意得:OB=OA=80cm,在Rt△BOD中,∠BOA=25°,∴OD=BO•cos25°≈80×0.906=72.48(cm),∴AD=OA﹣OD=80﹣72.48≈7.5(cm),∴踏板中心点在最高位置与最低位置时的高度差约为7.5厘米;(2)设小杰原计划x小时完成锻炼,由题意得:,解得:,经检验:都是原方程的根,但不符合题意,舍去,答:小杰原计划锻炼1小时完成.【点评】本题考查了解直角三角形的应用,分式方程的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.7.(2022•宝山区二模)某超市大门口的台阶通道侧面如图所示,共有4级台阶,每级台阶高度都是0.25米.根据部分顾客的需要,超市计划做一个扶手AD,AB、DC是两根与地平线MN都垂直的支撑杆(支撑杆底端分别为点B、C).(1)求点B与点C离地面的高度差BH的长度;(2)如果支撑杆AB、DC的长度相等,且∠DAB=66°.求扶手AD的长度.(参考数据:sin66°≈0.9,cos66°≈0.4,tan66°≈2.25,cot66°≈0.44)【分析】(1)根据每级台阶高度都是0.25米,然后计算出3个台阶的总高度,即可解答;(2)连接BC,根据题意可得:AB=DC,AB∥DC,从而可得四边形ABCD是平行四边形,然后利用平行四边形的性质可得AD=BC,AD∥BC,从而求出∠CBH=66°,最后在Rt△CBH中,利用锐角三角函数的定义进行计算即可解答.【解答】解:(1)∵每级台阶高度都是0.25米,∴BH=3×0.25=0.75(米),∴点B与点C离地面的高度差BH的长度为0.75米;(2)连接BC,由题意得:AB=DC,AB∥DC,∴四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAB=∠CBH=66°,在Rt△CBH中,BH=0.75米,∴BC=≈=1.875(米),∴扶手AD的长度约为1.875米.【点评】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.三.解直角三角形的应用-坡度坡角问题8.(2021秋•闵行区期末)如图,某幢楼的楼梯每一级台阶的高度为20厘米,宽度为30厘米,那么斜面AB 的坡度为.【分析】根据坡度的概念计算,得到答案.【解答】解:斜面AB的坡度为20:30=1:1.5,故答案为:1:1.5.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.9.(2022春•浦东新区校级期中)工厂的传送带把物体从地面送到离地面5米高的地方,如果传送带与地面所成的斜坡的坡度i=1:2.4,那么物体所经过的路程为米.【分析】根据坡度的概念求出AC,根据勾股定理求出AB.【解答】解:∵传送带与地面所成的斜坡的坡度i=1:2.4,∴BCAC =12.4,即5AC=12.4,解得,AC=12,由勾股定理得,AB=√AC2+BC2=√122+52=13(米),故答案为:13.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.10.(2022•黄浦区二模)某传送带与地面所成斜坡的坡度i=1:2.4,如果它把物体从地面送到离地面10米高的地方,那么物体所经过的路程为米.【分析】根据坡度的概念求出水平距离,根据勾股定理计算,得到答案.【解答】解:∵传送带与地面所成斜坡的坡度i=1:2.4,它把物体从地面送到离地面10米高,∴水平距离为:2.4×10=24,∴物体所经过的路程为:√102+242=26(米),故答案为:26.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度的概念是解题的关键.11.(2022•浦东新区二模)如图,一个高BE为√3米的长方体木箱沿坡比为1:√3的斜面下滑,当木箱滑至如图位置时,AB=3米,则木箱端点E距地面AC的高度EF为米.【分析】根据坡度的概念求出∠DAF=30°,根据正弦的定义求出DE,进而求出BD,得到答案.【解答】解:设AB、EF交于点D,∵斜坡的坡比为1:√3,∴tan∠DAF=√3=√33,∴∠DAF=30°,∴∠ADF=90°﹣30°=60°,∴∠BDE=60°,在Rt△BDE中,sin∠BDE=BEDE,∴√3DE =√32,解得,DE=2(米),∴BD=1m,∴AD=AB﹣BD=2(米),在Rt△ADF中,∠DAF=30°,∴DF=12AD=1(米),∴EF=DE+DF=3(米),故答案为:3.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度的概念是解题的关键.四.解直角三角形的应用-仰角俯角问题12.(2021秋•浦东新区期末)在离旗杆20米处的地方,用测角仪测得旗杆顶的仰角为α,如测角仪的高为1.5米,那么旗杆的高为()米.A.20cotαB.20tanαC.1.5+20tanαD.1.5+20cotα【分析】由题意得,在直角三角形中,知道了已知角的邻边求对边,用正切值计算即可.【解答】解:根据题意可得:旗杆比仪器高20tanα,测角仪高为1.5米,故旗杆的高为(1.5+20tanα)米.故选:C.【点评】本题考查了解直角三角形的应用﹣仰角俯角,熟练掌握解直角三角形的方法是解题的关键.13.(2022•徐汇区二模)如图,小明在某次投篮中刚好把球打到篮板的点D处后进球,已知小明与篮板底的距离BC=5米,眼睛与地面的距离AB=1.7米,视线AD与水平线的夹角为α,已知tanα的值为0.3,则点D到地面的距离CD的长为米.【分析】根据题意可得AE=BC=5米,EC=AB=1.7米,然后在Rt△ADE中,利用锐角三角函数的定义求出DE的长,进行计算即可解答.【解答】解:由题意得:AE=BC=5米,EC=AB=1.7米,在Rt△ADE中,tanα=0.3,∴DE=AE•tanα=5×0.3=1.5(米),∴DC=DE+EC=1.5+1.7=3.2(米),∴点D到地面的距离CD的长为3.2米,故答案为:3.2.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解题的关键.14.(2022•青浦区二模)小明要测量公园里一棵古树的高,被一条小溪挡住去路,采用计算方法,在A点测得古树顶的仰角为α,向前走了100米到B点,测得古树顶的仰角为β,则古树的高度为米.【分析】设CD=x米,用含x的代数式表示出AD和BD的长,再根据AD﹣BD=100可得x的值.【解答】解:设CD=x米,在Rt△ACD中,tanα=CDAD,∴AD=xtanα,在Rt△BCD中,tanβ=CDBD,∴BD=xtanβ,∵AD﹣BD=100,∴xtanα−xtanβ=100,解得x=100⋅tanβ⋅tanαtanβ−tanα,故答案为:100⋅tanβ⋅tanαtanβ−tanα.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.五.解直角三角形的应用-方向角问题15.(2021秋•黄浦区期末)如图,在东西方向的海岸线l上有一长为1千米的码头MN,在距码头西端M的正西方向58千米处有一观测站O,现测得位于观测站O的北偏西37°方向,且与观测站O相距60千米的小岛A处有一艘轮船开始航行驶向港口MN.经过一段时间后又测得该轮船位于观测站O的正北方向,且与观测站O相距30千米的B处.(1)求AB两地的距离;(结果保留根号)(2)如果该轮船不改变航向继续航行,那么轮船能否行至码头MN靠岸?请说明理由.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37≈0.75.)【分析】(1)过点A作AC⊥OB于点C.可知△ABC为直角三角形.根据勾股定理解答.(2)延长AB交l于D,比较OD与OM+MN的大小即可得出结论.【解答】解:(1)过点A作AC⊥OB于点C.由题意,得OA=60千米,OB=30千米,∠AOC=37°.∴AC=OAsin37°≈60×0.60=36(千米).在Rt△AOC中,OC=OA•cos∠AOC≈60×0.8=48(千米).∴BC=OC﹣OB=48﹣30=18(千米).在Rt△ABC中,AB=.(2)如果该轮船不改变航向继续航行,不能行至码头MN靠岸.理由:延长AB交l于点D.∵∠ABC=∠OBD,∠ACB=∠BOD=90°.∴△ABC∽△DBO,∴,∴,∴OD=60(千米).∵60>58+1,∴该轮船不改变航向继续航行,不能行至码头MN靠岸.【点评】本题考查了解直角三角形的应用,此题结合方向角,考查了阅读理解能力、解直角三角形的能力.计算出相关特殊角和作出辅助线构造相似三角形是解题的关键.16.(2021秋•嘉定区期末)如图,在航线l的两侧分别有两个灯塔A和B,灯塔A到航线l的距离为AC=3千米,灯塔B到航线l的距离为BD=4千米,灯塔B位于灯塔A南偏东60°方向.现有一艘轮船从位于灯塔B北偏西53°方向的N(在航线l上)处,正沿该航线自东向西航行,10分钟后该轮船行至灯塔A正南方向的点C(在航线l上)处.(1)求两个灯塔A和B之间的距离;(2)求该轮船航行的速度(结果精确到0.1千米/小时).(参考数据:,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)【分析】(1)根据特殊角三角函数即可解决问题;(2)根据三角函数定义可得CN的长,进而可以求该轮船航行的速度.【解答】解:(1)由题意,得∠ACM=∠BDM=90°,AC=3,BD=4,∠CAM=∠DBM=60°,在Rt△ACM中,,∴cos60°=,∴AM=6,在Rt△BDM中,,∴cos60°=,∴BM=8,∴AB=AM+BM=14千米.答:两个灯塔A和B之间的距离为14千米.(2)在Rt△ACM中,,∴,∴,在Rt△BDM中,,∴, ∴, ∴,在Rt △BDN 中,,由题意,得∠DBN =53°∴, ∴DN =4tan53°,∴,设该轮船航行的速度是V 千米/小时,由题意,得,∴V ≈40.7(千米/小时 ),答:该轮船航行的速度是40.7千米/小时. 【点评】本题考查了解直角三角形的应用中的仰角俯角问题、矩形的判定与性质等知识;掌握仰角俯角定义是解题的关键.【过关检测】一、单选题 九年级假期作业)已知在ABC 中,【答案】B 【分析】过点C 作CD AB ⊥,垂足为D ,根据60A ∠=︒,得出30ACD ∠=︒,进而求得CD ,由已知条件得出CD BD =,进而得出45BCD ∠=︒,即可求解.【详解】解:如图所示,过点C 作CD AB ⊥,垂足为D ,在Rt ADC 中,60A ∠=︒,∴30ACD ∠=︒, ∴sin ,cos CD AD A A AC AC ==sin 602CD =︒∴⨯=11BD AB AD ∴=−=∴CD BD =,在Rt BCD 中,CD BD =45BCD ∴∠=︒75ACB ACD BCD ∴∠=∠+∠=︒故选:B .【点睛】本题考查了解直角三角形,构造直角三角形,掌握直角三角形的边角关系是解题的关键.【答案】D【分析】在直线y=2x 上任取一点P (a ,2a),过点P 作x 轴的垂线,垂足为点B ,则可求得α的正余弦、正余切值,从而可得答案.【详解】如图,在直线y=2x 上任取一点P (a ,2a),过点P作x 轴的垂线,垂足为点B则OB=|a|,PB=2|a| 由勾股定理得:|OPa ==在直角△POB 中,sin 5PB OP α==,cos 5OB OP α===, 2tan =2a PB OB a α==,1cot =22a OB PB a α==故选项D 正确故选:D【点睛】本题考查了正比例函数的图象与性质,锐角三角函数,关键是画出图形,并在直线任取一点,作x 轴的垂线得到直角三角形.【答案】D【分析】先求出120°的补角为60°,然后再把60°放在直角三角形中,所以过点C作CD⊥AB,交BA的延长线于点D,在Rt△ACD中可求出AD与CD的长,最后在Rt△BDC中利用勾股定理求出BC即可解答.【详解】解:过点C作CD⊥AB,交BA的延长线于点D,∵∠BAC=120°,∴∠CAD=180°-∠BAC=60°,在Rt△ACD中,AC=2,∴AD=ACcos60°=2×12=1,CD=ACsin60°=2×∵AB=4,∴BD=AB+AD=4+1=5,∴tanB=CD BD=, 故选:D .【点睛】本题考查了解直角三角形,勾股定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键. 4.(2023·上海·九年级假期作业)如图,45ACB ∠=︒,125PRQ ∠=︒,ABC 底边BC 上的高为1h ,PQR 底边QR 上的高为2h ,则有( )A .12h h =B .12h h <C .12h h >D .以上都有可能【答案】B 【分析】由已知可知高所对的斜边都为5,由正弦的定义可得到高关于正弦的表达式,比较正弦值即可得到答案.【详解】解:如图,分别作出两三角形的高12,h h∵45,5ACB AC ∠=︒=∴1sin 455sin 45h AC =⨯︒=︒ ∵125,5PRQ PR ∠=︒=∴()2sin 1801255sin55h PR =︒−︒=︒ ∵sin 55sin 45︒︒>∴21h h > 故选:B .【点睛】本题考查解直角三角形,依题意作高构造直角三角形是解题的关键.5.(2023·上海·九年级假期作业)小杰在一个高为h 的建筑物顶端,测得一根高出此建筑物的旗杆顶端的仰【答案】C 【分析】过A 作AE BC ⊥于E ,在Rt ACE △中,已知了CE 的长,可利用俯角CAE ∠的正切函数求出AE 的值;进而在Rt ABE △中,利用仰角BAE ∠的正切函数求出BE 的长;从而可得答案.【详解】解:如图,过A 作AE BC ⊥于E ,则四边形ADCE 是矩形,CE AD h ==.∵在Rt ACE △中,CE h =,60CAE ∠=︒,∴tan 60CE AE ==︒,∵在Rt ABE △中,30BAE ∠=︒,∴1tan 303BE AE h =︒==,∴1433BC BE CE h h h =+=+=. 即旗杆的高度为43h .故选C .【点睛】本题考查了解直角三角形的应用--仰角俯角问题,首先构造直角三角形,再运用三角函数的定义解题,是中考常见题型,解题的关键是作出高线构造直角三角形.6.(2021·上海·九年级专题练习)如图,把两条宽度都是1的纸条,其中一条对折后再两条交错地叠在一起,相交成角α,则重叠部分的面积是( )【答案】C【分析】根据题意可知:所得图形是菱形,设菱形ABCD,由已知得∠ABE=α,过A作AE⊥BC于E,由勾股定理可求BE、AB、BC的长度,根据菱形的面积公式即可求出所填答案.【详解】解:由题意可知:重叠部分是菱形,设菱形ABCD,则∠ABE=α,过A作AE⊥BC于E,则AE=1,设BE=x,∵∠ABE=α,∴AB=1sin sinAEαα=,∴BC=AB=1sinα,∴重叠部分的面积是:1sinα×1=1sinα.故选:C.【点睛】本题主要考查了菱形的性质,勾股定理,含30°角的直角三角形的性质,菱形的面积公式等知识点,把实际问题转化成数学问题,利用所学的知识进行计算是解此题的关键.二、填空题7.(2023·上海·九年级假期作业)小球沿着坡度为1:1.5i=的坡面滚动了13m,则在这期间小球滚动的水平距离是___________m.【答案】【分析】设高度为x ,根据坡度比可得水平距离为1.5x ,根据勾股定理列方程即可得到答案;【详解】解:设高度为x ,∵坡度为1:1.5i =,∴水平距离为1.5x ,由勾股定理可得,222(1.5)13x x +=,解得:x =∴水平距离为1.5⨯=故答案为:【点睛】本题考查坡度比及勾股定理,解题的关键是根据坡度比得到高度与水平距离的关系.【答案】13【分析】根据斜坡AB 的坡度1i =AB 的值先求出AH ,再根据斜坡AC 的坡度21:2.4i =,求得AC ,即可求解.【详解】解:∵1i =∴tan 3ABH ∠==, ∴30ABH ∠=︒,∴152AH AB ==, ∵21:2.4i =,∴1tan 2.4AH ACB CH ∠==,∵5AH =,∴12=CH ,在Rt ACH 中,13AC ==,故答案为:13.【点睛】本题考查的是解直角三角形的应用,坡度问题,熟知锐角三角函数的定义是解答此题的关键.【答案】10【分析】作BH AC ⊥于H .由四边形ABCD 是矩形,推出OA OC OD OB ===,设5OA OC OD OB a ====,由余切函数,可得4BH a =,3OH a =,由题意:12104402a a ⨯⨯⨯=,求出a 即可解决问题.【详解】解:如图,作BH AC ⊥于H .∵四边形ABCD 是矩形,∴OA OC OD OB ===,设5OA OC OD OB a ====,则10AC a =.∵根据题意得:3cot 4OH BOH BH ∠==, ∴4BH a =,3OH a =,由题意:12104402a a ⨯⨯⨯=,∴1a =,∴10AC =.故答案为10.【点睛】本题考查了矩形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题. 10.(2023·上海·九年级假期作业)已知:在ABC 中,60A ∠=︒,45B ∠=︒,8AB =.则ABC 的面积为____(结果可保留根号).【答案】48−【分析】过C 作CD AB ⊥于D ,利用直角三角形的性质求得CD 的长.已知AB 的长,根据三角形的面积公式即可求得其面积.【详解】解:过C 作CD AB ⊥于D ,在Rt ADC 中,90CDA ∠=︒Q ,∴tan tan 60CD DAC AD =∠=︒=即AD 在Rt BDC 中,45B ∠=︒, 45BCD ∴∠=︒, CD BD ∴=.8AB DB DA CD =+==,12CD ∴=−.118(124822ABC S AB CD ∴=⨯=⨯⨯−=−故答案为:48−【点睛】本题考查解直角三角形,直角三角形的性质及三角形的面积公式,熟练掌握通过作三角形的高,构造直角三角形是解题的关键.分别在DEF 的边,ABE 沿直线 【答案】67【分析】根据题意和翻折的性质可得ABCABE 是等腰直角三角形,ABC 是等腰直角三角形,所以AC BE ∥,得23DA AC DE HE ==,设2AC AE x ==,则3HE x =,4AD x =,所以7FE x =,6DE x =,然后根据锐角三角函数即可解决问题.【详解】解:如图所示:90DEF ∠=︒,45EBA ∠=︒,ABE ∴是等腰直角三角形,AE BE ∴=,ABE 沿直线AB 翻折,翻折后的点E 落在DEF 内部的点C ,ABC ∴是等腰直角三角形,∴∥AC BE ,∴23DA AC DE HE ==,FH AD =,设2AC AE x ==,则3HE x =,4AD x =,7FE x ∴=,6DE x =, ∴67DE FE =,6cot 7DE D FE ∴==. 故答案为:67.【点睛】本题考查了翻折变换,解直角三角形,解决本题的关键是掌握翻折的性质. 统考二模)在ABC 中,,那么ABC 的重心到【答案】4【详解】解:如下图所示,设点D 为BC 的中点,点E 为三角形的重心,∵AB AC =,∴AD BC ⊥,∵152BD BC ==,5cos 13B =,cos BD B AB = ∴13AB =,∴12AD ==,∵点E 为三角形的重心,∴21AE ED =, ∴4ED =,∵AD BC ⊥,∴ABC 的重心到底边的距离为4,故答案为:4.【点睛】本题考查解直角三角形、三角形重心的性质和勾股定理,解题的关键是熟知重心到顶点的距离与重心到对边中点的距离之比为2:1. 13.(2023·上海·一模)平面直角坐标系内有一点()1,2P ,那么OP 与x 轴正半轴的夹角为α,tan α=________.【答案】2【分析】过点P 作PA x ⊥轴于点A ,由P 点的坐标得PA 、OA 的长,根据正切函数的定义得结论.【详解】解:过点P 作PA x ⊥轴于点A ,如图:∵点PA x ⊥,∴2PA =,1OA =,∴2an 21t PA OA α===.故答案为:2.【点睛】本题考查了点在平面直角坐标系里的意义及解直角三角形.解决本题的关键是构造直角三角形. 一模)如图,已知在ABC 中, 【答案】95【分析】如图,设AP m =.证明AP MQ m ==,根据3cos cos 5A CMQ =∠=,构建方程求解.。

解直角三角形的典型例题十

解直角三角形的典型例题十

解直角三角形的典型例题十
例 为了测量一个球的直径,今有若干根木棒可供使用,通过实验发现,若将球放在桌面上,再将一根长6厘米的木棒垂桌面而立,某一时刻,在斜射阳光的照射下,球与木棒的影长都是8厘米(如图所示),求球的直径.
分析 可以把光线看成是平行线束,AB FC //,球的影长8=CB cm ,木棒长6=AC cm ,显然球的直径CD EG =,根据勾股定理可求出AB ,这样又可求出B ∠的正弦值,故在Rt BCD ∆中可求出CD .
解 由题意可知cm 6,cm 8,===AC BC CD EG .
在Rt ABC ∆中,根据勾股定理,得
10862222=+=+=BC AC AB (cm ), 所以5
3106sin ===
AB AC B . 在Rt BCD ∆中,BC CD B =sin ,所以8.45
38sin =⨯=⋅=B BC CD (cm ). 所以球的直径8.4==CD EG cm . 说明 解决此类问题时,要注意观察、实践与想象.。

专题11 解直角三角形题型归纳(解析版)

专题11 解直角三角形题型归纳(解析版)

专题11 解直角三角形题型归纳1.如图是某小区地下停车场入口处栏杆的示意图,MQ、PQ分别表示地面和墙壁的位置,OM表示垂直于地面的栏杆立柱,OA、AB是两段式栏杆,其中OA段可绕点O旋转,AB段可绕点A旋转.图1表示栏杆处于关闭状态,此时O、A、B在与地面平行的一直线上,并且∥,OA段与竖直方向夹角为点B接触到墙壁;图2表示栏杆处于打开状态,此时AB MQAB=.OA=,150cm 30︒.已知立柱宽度为30cm,点O在立柱的正中间,120cmOM=,120cm(1)求栏杆打开时,点A到地面的距离;(2)为确保通行安全,要求汽车通过该入口时,车身与墙壁间需至少保留10cm的安全距离,问一辆最宽处为2.1m,最高处为2.1m的货车能否安全通过该入口?取1.73)【详解】(1)(2)2.如图,株洲市炎陵县某中学在实施“五项管理”中,将学校的“五项管理”做成宣传牌(CD),放置在教学楼A栋的顶部(如图所示)该中学数学活动小组在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿芙蓉小学围墙边坡AB向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度为i=1:3,AB,AE=8m.(1)求点B距水平面AE的高度BH.(2)求宣传牌CD的高度.(结果精确到0.1)【答案】(1)点B距水平面AE的高度BH是2米【我思故我在】本题考查了解直角三角形的应用-仰角俯角问题,坡度坡角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.3.如图1是疫情期间测温员用“额温枪”对小红测温时的实景图,图2是其侧面示意图,其中枪柄BC 与手臂MC 始终在同一直线上,枪身BA 与额头保持垂直量得胳膊28cm MN =,枪柄与枪身之间的夹角为120°(即120MBA ∠=︒),肘关节M 与枪身端点A 之间的水平宽度为25.3cm (即MP 的长度),枪身8.5cm BA =.(1)求M B 的长;(2)测温时规定枪身端点A 与额头距离范围为3~5cm .在图2中,若测得75BMN ∠=︒,小红与测温员之间距离为50cm 问此时枪身端点A 与小红额头的距离是否在规定范围内?并说明理由.(结果精确到0.1cm 1.4≈ 1.7) 【答案】(1)33.6cm ;(2)在规定范围内,理由见详解.【分析】(1)过点B 作BH MP ⊥于点H ,在Rt BMH 中,利用含30°直角三角形三边关系,即可解答;(2)延长PM 交FG 于点I ,45NMI ∠=︒,在Rt NMI 中,利用三角函数的定义即可求出MI 的长,比较即可判断.(1)解:过点B 作BH MP ⊥于点H ,由题可知四边形ABHP 为矩形,如下图:Rt BMH Rt NMI 4.小明利用刚学过的测量知识来测量学校内一棵古树的高度.一天下午,他和学习小组的同学带着测量工具来到这棵古树前,由于有围栏保护,他们无法到达古树的底部B ,如图所示.于是他们先在古树周围的空地上选择一点D ,并在点D 处安装了测量器CD ,测得=135ACD ∠︒;再在BD 的延长线上确定一点G ,使5DG =米,并在G 处的地面上水平放置了一个小平面镜,小明沿着BG 方向移动,当移动到点F 时,他刚好在小平面镜内看到这棵古树的顶端A 的像,此时,测得2FG =米,小明眼睛与地面的距离=1.6EF 米,测量器的高度=0.5CD 米.已知点F 、G 、D 、B 在同一水平直线上,且EF 、CD 、AB 均垂直于FB ,则这棵古树的高度AB 为多少米?(小平面镜的大小忽略不计)ACH ,得出ABG ∽△,因此得出米,ACH 中,5.广场上有一个充满氢气的气球P ,被广告条拽着悬在空中,甲乙二人分别站在E 、F 处,他们看气球的仰角分别是30度、45度,E 点与F 点的高度差AB 为1米,水平距离CD 为5米,FD 的高度为0.5米,请问此气球有多高?(结果保留到0.1米).Rt PEA AE tan30°6.综合与实践小明为自己家设计了一个在水平方向可以伸缩的遮阳蓬,如图所示,已知太原地区在夏至日的正午太阳高度角(即正午太阳光线与地平面的夹角)为75︒ ,冬至日的正午太阳高度角为29.5︒ ,小明家的玻璃窗户()AB 高为190cm ,在A 点上方20cm 的C 处安装与墙垂直的宽为CD 的遮阳蓬,并且该遮阳蓬可伸缩(CD 可变化);为了保证在夏至日正午太阳光不射到屋内,冬至日正午整块玻璃都能受到太阳光照射,求可伸缩的遮阳蓬CD 宽度的范围.(结果精确到0.1,参考数据:sin750.97︒=,cos750.26︒=,tan75 3.73︒=,sin29.50.49︒=,cos29.50.87︒=,tan29.50.57︒=)t R BCD ,求出t R BCD 中,cm 210 ,DBE ∠cm7.如图,在航线l 的两侧分别有两个灯塔A 和B ,灯塔A 到航线l 的距离为3AC =千米,灯塔B 到航线l 的距离为4BD =千米,灯塔B 位于灯塔A 南偏东60︒方向.现有一艘轮船从位于灯塔B 北偏西53︒方向的N (在航线l 上)处,正沿该航线自东向西航行,10分钟后该轮船行至灯塔A 正南方向的点C (在航线l 上)处. 1.73≈,sin530.80≈︒,cos530.60≈︒,tan53 1.33≈︒ )(1)求两个灯塔A 和B 之间的距离;(2)求该轮船航行的速度(结果精确到0.1千米/小时). Rt ACM 中,3cos60=AM ︒,6AM = ,Rt BDM 中,cos60=BD BM ︒,8BM =,AM BM =+答:两个灯塔Rt ACM 中,tan60=3MC ︒,33=MC ,Rt BDM 中,tan60=4DM ︒,MC DM =+Rt BDN △中,DBN ∠8.风能作为一种清洁能源越来越受到世界各国的重视,我市结合自身地理优势架设风力发电机利用风能发电.王芳和李华假期去明月峰游玩,看见风电场的各个山头上布满了大大小小的风力发电机,好奇的想知道风力发电机塔架的高度.如图,王芳站在C 点测得C 点与塔底D 点的距离为25m ,李华站在斜坡BC 的坡顶B 处,已知斜坡BC 的坡度i =,坡面BC 长30m ,李华在坡顶B 处测得轮毂A 点的仰角38α=︒,请根据测量结果帮他们计算:(1)斜坡顶点B 到CD 所在直线的距离;(2)风力发电机塔架AD 的高度.(结果精确到0.1m ,参考数据sin380.62︒≈,cos380.79︒≈,tan380.78︒≈ 1.41≈ 1.73)BC︒=153由题意得,四边形BEDF由勾股定理得:EC=,ABF BF=︒≈⨯Rt ABF中,tan38400.7840=+AD AF FD答:塔架高度【我思故我在】本题考查了解直角三角形的实际应用以及勾股定理,根据题意构造直角三角形是解本题的关键.9.小明和小亮利用数学知识测量学校操场边升旗台上的旗杆高度.如图,旗杆AB立在水平的升旗台上,两人测得旗杆底端B到升旗台边沿C的距离为2m,升旗台的台阶所在的斜坡CD长为2m,坡角为30,小明又测得旗杆在太阳光下的影子落在水平地面MN上的部分DE的长为6m,同一时刻,小亮测得长1.6m的标杆直立于水平地面时的影子长为1.2m.请你帮小明和小亮求出旗杆AB 1.732)CDG ∠=12CG ∴=HE HG ∴=同一时刻,物高和影长成正比,1.61.2AH HE ∴=握同一时刻,物高和影长成正比是解决本题的关键.10.某项目学习小组用测倾仪、皮尺测量小山的高度MN ,他们设计了如下方案(如图):①在点A 处安置测倾仪,测得小山顶M 的仰角MCE ∠的度数;②在点A 与小山之间的B 处安置测倾仪,测得小山顶M 的仰角MDE ∠的度数(点A ,B 与N 在同一水平直线上);③量出测点A ,B 之间的距离.已知测倾仪的高度 1.5AC BD ==米,为减小误差,他们按方案测量了两次,测量数据如下表(不完整):(1)写出MCE ∠的度数的平均值.(2)根据表中的平均值,求小山的高度.(参考数据:sin 220.37,cos 220.93,tan 220.40︒≈︒≈︒≈) (3)该小组没有利用物体在阳光下的影子来测量小山的高度,你认为原因可能是什么?(写出一条即可)【答案】(1)22°(2)101.5米(3)小山的影子长度无法测量【分析】(1)根据平均数公式,用两次测量得的MCE ∠的度数和除以2即可求解;(2)在Rt △MDE 中,利用仰角⊥MDE 的45°,即可求得ME =DE ,在Rt △MCE 中,利用仰角⊥MCE 的正切值,可得ME =CE ⋅tan⊥MCE ,进而由CE =CD +DE =CD +ME ,易知四边形CANE 、四边形ABDC 是矩形,可得EN =AC =1.5米,CD =AB =150米,代入即可求出ME 的值,然后由MN =ME +NE 求解;11.小红家的阳台上放置了一个晒衣架(如图①),图②是晒衣架的侧面示意图,立杆AB,CD相交于点O,B,D两点立于地面,经测量:AB=CD=136 cm,OA=OC=51 cm,OE=OF =34 cm,现将晒衣架完全稳固张开,扣链EF成一条线段,且EF=32 cm(参考数据:sin 61.9°≈0.882,cos 61.9°≈0.471,tan 28.1°≈0.534).(1)求证:AC⊥BD.(2)求扣链EF与立杆AB的夹角⊥OEF的度数(结果精确到0.1°).(3)小红的连衣裙穿在晒衣架上的总长度达到122 cm,垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由.)证明:证法一:,AB CDOA OC=(180OAC BOD∴∠=︒∠﹣同理可证:12 ODB∠=OAC∴∠=.AC BD∴证法二:AB=85cmOD==OA OCOB OD==又,AOC BODAOC BOD∴∽,OAC OBD∴∠=∠,.AC BD∴(2)解:在OEF中,EF BD ,OEM ,Rt Rt OEM ABH ∽,,OE OM OM AB AH AB AH OE ⋅===所以:小红的连衣裙垂挂在衣架后的总长度解法二:小红的连衣裙会拖落到地面)可证:EF BD ,ABD ∴∠BD ⊥于点, 136ABD =所以:小红的连衣裙垂挂在衣架后的总长度12.开封清明上河园是依照北宋著名画家张择端的《清明上河图》建造的,拂云阁是园内最高的建筑.某数学小组测量拂云阁DC 的高度,如图,在A 处用测角仪测得拂云阁顶端D 的仰角为34°,沿AC 方向前进15m 到达B 处,又测得拂云阁顶端D 的仰角为45°.已知测角仪的高度为1.5m ,测量点A ,B 与拂云阁DC 的底部C 在同一水平线上,求拂云阁DC 的高度(结果精确到1m .参考数据:sin340.56︒≈,cos340.83︒≈,tan340.67︒≈).EG FG -即0.67DG -解得DG ≈DC DG ∴=∴拂云阁13.如图,为测量某建筑物AB 的高度,小刚采用了如下的方法:先从与建筑物底端B 在同一水平线上的C 点出发,沿斜坡CD 行走60米至坡顶D 处,再从D 处沿水平方向继续前行若干米后至E 点处,在E 点测得该建筑物顶端A 的仰角为60︒,建筑物底端B 的俯角为45︒,点AB C D E 、、、、在同一平面内,斜坡CD 的坡度34i =:.请根据小刚的测量数据,计算出建筑物AB 的高度. 1.73≈)Rt DFC 中,利用勾股定理求出Rt GEB 中,利用锐角三角函数的定义求出Rt AGE 中,利用锐角三角函数的定义求出的长,进行计算即可解答.【详解】解:过点,垂足为F 交AB 于点GRt DFC 中,60DC =,⊥560a =解得12a =,⊥336DF a ==,36GB DF =∴=Rt GEB 中,Rt AGE 中,tan EG =⋅AG GB =+建筑物AB 的高度约为【我思故我在】本题考查了解直角三角形的应用14.如图1,2分别是某款篮球架的实物图与示意图,AB BC ⊥于点B ,底座=1BC 米,底座BC 与支架AC 所成的角60ACB ∠=︒,点H 在支架AF 上,篮板底部支架EH BC .EF EH ⊥于点E ,已知AH HF 米,3=2HE 米.(1)求篮板底部支架HE 与支架AF 所成的FHE ∠的度数.(2)求篮板底部点E 到地面的距离,(精确到0.1米) 1.41≈ 1.73≈) 【答案】(1)篮板底部支架HE 与支架AF 所成的角⊥FHE 的度数为45°;(2)篮板底部点E 到地面的距离约为2.2米【分析】(1)在Rt ⊥HEF 中,利用锐角三角函数的定义进行计算即可解答;(2)延长FE 交直线BC 与点M ,过点A 作AG ⊥FM ,垂足为G ,根据题意易证四边形ABMG 是矩形,从而得AB =GM ,然后在Rt ⊥AGF 中求出FG ,从而求出EG ,最后在Rt ⊥ABC 中,求出AB ,进行计算即可解答.(1)⊥EF ⊥EH ,⊥⊥HEF =90°,【我思故我在】本题考查了解直角三角形的应用,勾股定理的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.。

解直角三角形的典型例题

解直角三角形的典型例题

一、知识概述1、仰角、俯角仰角、俯角:视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.如图所示.说明:仰角、俯角一定是水平线与视线的夹角,即从观察点引出的水平线与视线所夹的锐角.2、坡角和坡度坡角:坡面与水平面的夹角叫做坡角,用字母α表示.坡度(坡比):坡面的铅直高度h和水平宽度l的比叫做坡度,用字母i表示.则.如图所示说明:(1)坡角的正切等于坡度,坡角越大,坡度也越大,坡面越陡.(2)在解决实际问题时,遇到坡度、坡角的问题,常构造如图所示的直角三角形.3、象限角象限角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫象限角,如图中的目标方向线OA、OB、OC、OD的方向角分别表示北偏东30°,南偏东45°,北偏西60°,南偏西80°,如:东南方向,指的是南偏东45°角的方向上.如图所示.二、重点难点疑点突破1、怎样运用解直角三角形的方法解决实际问题在解决实际问题时,解直角三角形有着广泛的应用.我们要学会将千变万化的实际问题转化为数学问题来解决,具体地说,要求我们善于将某些实际问题中的数量关系归结为直角三角形中的元素(边、角)之间的关系,这样就可运用解直角三角形的方法了.一般有以下三个步骤:(1)审题,通过图形(题目没画出图形的,可自己画出示意图),弄清已知和未知;(2)找出有关的直角三角形,或通过作辅助线产生有关的直角三角形,把问题转化为解直角三角形的问题;(3)根据直角三角形元素(边、角)之间关系解有关的直角三角形.其中,找出有关的直角三角形是关键,具体方法是:(1)将实际问题转化为直角三角形中的数学问题;(2)作辅助线产生直角三角形,再把条件和问题转化到这个直角三角形中,使问题解决.2、在学习中应注意两个转化(1)把实际问题转化成数学问题这个转化分两个方面:一是将实际问题的图形转化为几何图形,画出正确的平面或截面示意图,并赋予字母;二是将已知条件转化成示意图中的边或角.(2)把数学问题转化成解直角三角形问题.如果示意图形不是直角三角形,可添加适当的辅助线,把它们分割成一些直角三角形和矩形,把实际问题转化为解直角三角形问题,把可解的直角三角形纳入基本类型,确定合适的边角关系,细心推理,按要求精确度作近似计算,最后写出答案并注明单位.三、典型例题讲解1、测量河宽例1、如图,河边有一条笔直的公路l,公路两侧是平坦的草地.在数学活动课上,老师要求测量河对岸B点到公路的距离,请你设计一个测量方案.要求:(1)列出你测量所使用的测量工具;(2)画出测量的示意图,写出测量的步骤;(3)用字母表示测得的数据,求出B点到公路的距离.分析:这是一个实际问题,要求B到CD的距离,可转化为直角三角形,然后在两个直角三角形中,可分别用含有AB的式子表示AC和AD,而AC+AD=m,可运用解方程的方法求出AB即可.解:(1)测角器、尺子;(2)测量示意图如下图所示;测量步骤:①在公路上取两点C,D,使∠BCD,∠BDC为锐角;②用测角器测出∠BCD=α,∠BDC=β;③用尺子测得CD的长,记为m米;④计算求值.(3)解:设B到CD的距离为x米,作BA⊥CD于点A,在△CAB中,x=CAtanα,点评:运用所学的解直角三角形的知识解决实际生活中的问题,要求我们要具备数学建模能力(即将实际问题转化为数学问题).2、仰角、俯角问题例2、为申办2010年冬奥会,须改变哈尔滨市的交通状况.在大直街拓宽工程中,要伐掉一棵树AB.在地面上事先划定以B为圆心、半径与AB等长的圆形危险区.现在某工人站在离B点3米远的D处测得树的顶端A点的仰角为60°,树的底部B的俯角为30°(如图).问距离B点8米远的保护物是否在危险区内?分析:解决测量问题要明确仰角、俯角、视角、坡度、坡角等名词术语.要考查距离B点8米远的保护物是否在危险区内,关键的一点是要测算树AB的高度.解:过点C作CE⊥AB,垂足为E.在Rt△CBE中,在Rt△CAE中,故AB=AE+BE=≈4×1.73=6.92(米)<8(米).因此可判断该保护物不在危险区内.3、坡角、坡度(坡比)例3、如图,一水坝横断面为等腰梯形ABCD,斜坡AB的坡度为,坡面AB的水平宽度为上底宽AD为4m,求坡角B,坝高AE和坝底宽BC各是多少?分析:首先将实际问题转化为数学问题,如图所示,实际上已知求∠B、AE、BC.此题实质转化为解直角三角形的问题.点评:(1)解应用题时,解题过程中可以不写各数量的单位,但最后作答时务必写清单位名称.(2)应用问题尽管题型千变万化,但关键是设法化归为解直角三角形问题,必要时应添加辅助线,构造出直角三角形,梯形也是通过作底边的高线来构造直角三角形.(3)本题主要应用坡度是坡角的正切函数而求出坡角,运用坡度的概念求出梯形高,运用等腰梯形性质求出底边.4、象限角例4、如图,一轮船自西向东航行,在A处测得某岛C,在北偏东60°的方向上,船前进8海里后到达B,再测C岛,在北偏东30°的方向上,问船再前进多少海里与C岛最近?最近距离是多少?分析:将实际问题转化为数学问题,并构造出与实际问题有关的直角三角形,如图所示.船沿AB方向继续前进至D处与C岛最近,此问题实质就是已知∠CAB=90°-60°=30°,∠ABC=90°+30°=120°,AB=8海里,求BD和CD的解直角三角形问题.解:根据题设可知△ABC中,∠CAB=30°,∠ABC=120°,∴∠ACB=180°-30°-120°=30°,AB=BC=8,作CD⊥AB于D.∴最近距离即为C到AB所在直线的垂线段CD的长度.在Rt△CBD中,BC=8,∠CBD=60°,点评:根据题意准确画出示意图是解这类题的前提和保障.5、开放探究题例5、(荆州市)某海滨浴场的沿岸可以看作直线,如图,1号救生员在岸边A点看到海中的B点有人求救,便立即向前跑300米到离B点最近的D点,再跳入海中游到B点救助;若每位救生员在岸上跑步的速度都是6米/秒,在水中游泳的速度都是2米/秒,∠BAD=45°.(1)请问1号救生员的做法是否合理?(2)若2号救生员从A跑到C,再跳入海中游到B点救助,且∠BCD=65°,请问谁先到达点B?(所有数据精确到0.1,sin65°≈0.9,cos65°≈0.4,)分析:(1)比较1号救生员从点A直接游到点B所用时间与从点A跑到点D再游到点B的时间即可作出判断.(2)分别计算出1号救生员、2号救生员所用时间,再作判断.点评:掌握探究题的探究方法非常重要,本题中救生员赶到点B的时间是我们探究的核心问题,如何准确求出救生员赶到点B所用时间是解决本题的关键.。

解直角三角形及其应用题目

解直角三角形及其应用题目

解直角三角形是数学中的一个重要概念,它涉及到利用三角函数来求解三角形的未知元素。

在解直角三角形的问题中,我们通常知道三角形的一个锐角及其对应的两边(直角边和斜边),或者知道两个锐角和一边。

通过使用正弦、余弦和正切等三角函数,我们可以找到三角形的其他元素。

下面解直角三角形的题目示例:1、【题目】在直角三角形ABC中,∠C = 90°,AB = 5cm,BC = 4cm。

求AC 的长度。

【解析】利用勾股定理求解。

在直角三角形中,AC2= AB2–BC2。

代入已知数值,AC2 = 52– 42 = 9,所以AC = 3cm。

2、【题目】在直角三角形中,∠A = 30°,∠C = 90°,BC = 3cm。

求AB 的长度。

【解析】利用正弦函数求解。

sin A = BC/AB,所以AB = BC/sin A = 3/sin 30° = 6cm。

3、【题目】在直角三角形中,∠B = 45°,∠C = 90°,AC = 2cm。

求AB 的长度。

【解析】利用正切函数求解。

tan B = AC/BC,所以BC = AC/tan B = 2/tan 45° = 2cm。

因为∠B = 45°,所以AB = sqrt(2) * BC = 2sqrt(2)cm。

4、【题目】在直角三角形中,∠A = 60°,∠C = 90°,AB = 4cm。

求BC 和AC的长度。

【解析】利用余弦函数和勾股定理求解。

cos A = AC/AB,所以AC = AB * cos A = 4 * cos 60° = 2cm。

然后利用勾股定理,BC2 = AB2– AC2 = 16 - 4 = 12,所以BC = 2sqrt(3)cm。

5、【题目】一艘船以15节(海里/小时)的速度向正北方向航行。

同时,一股水流以5节的速度从东向西流过。

求船的实际航向和速度。

(完整版)解直角三角形的应用经典题型

(完整版)解直角三角形的应用经典题型

解直角三角形应用经典1.如图,一架飞机在空中P 处探测到某高山山顶D 处的俯角为60°,此后飞机以300米/秒的速度沿平行于地面AB 的方向匀速飞行,飞行10秒到山顶D 的正上方C 处,此时测得飞机距地平面的垂直高度为12千米,求这座山的高(精确到0.1千米)2.如图,水坝的横断面是梯形,背水坡AB 的坡角∠BAD=60,坡长AB=m 320,为加强水坝强度, 将坝底从A 处向后水平延伸到F 处,使新的背水坡 的坡角∠F= 45,求AF 的长度(结果精确到1米, 参考数据: 414.12≈,732.13≈).3.施工队准备在一段斜坡上铺上台阶方便通行.现测得斜坡上铅垂的两棵树间水平距离AB =4米,斜面距离BC =4.25米,斜坡总长DE =85米. (1)求坡角∠D 的度数(结果精确到1°);(2)若这段斜坡用厚度为17c m 的长方体台阶来铺,需要铺几级台阶?4. 在东西方向的海岸线l 上有一长为1km 的码头MN (如图),在码头西端M 的正西19.5 km 处有一观察站A .某时刻测得一艘匀速直线航行的轮船位于 A 的北偏西30°,且与A 相距40km 的B 处;经过1小时20分钟,又测得该轮船位于A 的北偏东60°,且与A 相距83km 的C 处.(1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN 靠岸?请说明理由.NM 东北BCAl17cmABCDA B 12P CD G 65. 如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP 是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:2≈1.41,3≈1.73,5≈2.24,6≈2.45)7.图1为已建设封顶的16层楼房和其塔吊图,图2为其示意图,吊臂AB与地面EH平行,测得A点到楼顶D点的距离为5m,每层楼高3.5m,AE、BF、CH都垂直于地面,EF=16m,求塔吊的高CH的长.8.在一个阳光明媚、清风徐来的周末,小明和小强一起到郊外放风筝﹒他们把风筝放飞后,将两个风筝的引线一端都固定在地面上的C处(如图).现已知风筝A的引线(线段AC)长20m,风筝B的引线(线段BC)长24m,在C处测得风筝A的仰角为60°,风筝B的仰角为45°.(1)试通过计算,比较风筝A与风筝B谁离地面更高?(2)求风筝A与风筝B的水平距离.(精确到0.01 m;参考数据:sin45°≈0.707,cos45°≈0.707, tan45°=1,sin60°≈0.866,cos60°=0.5,tan60°≈1.732)AB45°60°C E D9. 为了缓解酒泉市区内一些主要路段交通拥挤的现状,交警队在一些主要路口设立了交通路况显示牌(如图).已知立杆AB 高度是3m ,从侧面D 点测得显示牌顶端C 点和底端B 点的仰角分别是60°和45°.求路况显示牌BC 的高度.10.如图所示,小明在家里楼顶上的点A 处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A 处看电梯楼顶部点B 处的仰角为60°,在点A 处看这栋电梯楼底部点C 处的俯角为45°,两栋楼之间的距离为30m ,则电梯楼的高BC 为______米(精确到0.1).(参考数据:414.12≈732.13≈)82.011. 2009年首届中国国际航空体育节在莱芜举办,期间在市政府广场进行了热气球飞行表演.如图,有一热气球到达离地面高度为36米的A 处时,仪器显示正前方一高楼顶部B 的仰角是37°,底部C 的俯角是60°.为了安全飞越高楼,气球应至少再上升多少米?(结果精确到0.1米) (参考,75.037tan ,80.037cos ,60.037sin ≈︒≈︒≈︒73.13≈)12. 摩天轮是嘉峪关市的标志性景观之一.某校数学兴趣小组要测量摩天轮的高度.如图,他们在C 处测得摩天轮的最高点A 的仰角为45︒,再往摩天轮的方向前进50 m 至D 处,测得最高点A 的仰角为60︒.求该兴趣小组测得的摩天轮的高度AB (3 1.732≈,结果保留整数).ABC D45°60°BAC13.小明想知道西汉胜迹中心湖中两个小亭A 、B 之间的距离,他在与小亭A 、B 位于同一水平面且东西走向的湖边小道l 上某一观测点M 处,测得亭A 在点M 的北偏东30°, 亭B 在点M 的北偏东60°,当小明由点M 沿小道l 向东走60米时,到达点N 处,此时测得亭A 恰好位于点N 的正北方向,继续向东走30米时到达点Q 处,此时亭B 恰好位于点Q 的正北方向,根据以上测量数据,请你帮助小明计算湖中两个小亭A 、B 之间的距离.14. 小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数)(参考数据:o o o o 33711sin37tan37sin 48tan48541010≈≈≈≈,,,)15.如图,某天然气公司的主输气管道从A 市的东偏北30°方向直线延伸,测绘员在A 处测得要安装天然气的M 小区在A 市东偏北60°方向,测绘员沿主输气管道步行2000米到达C 处,测得小区M 位于C 的北偏西60°方向,请你在主输气管道上寻找支管道连接点N ,使到该小区铺设的管道最短,并求AN 的长.B37° 48° DCA。

解直角三角形典型应用20例子

解直角三角形典型应用20例子

解直角三角形.典型应用题20例1.已知:如图,河旁有一座小山,从山顶 A 处测得河对岸点 C 的俯角为30°,测得岸边点D 的俯角为45°,又知河宽 CD 为50m .现需从山顶 A 到河对岸点C 拉一条笔直的缆 绳AC ,求山的高度及缆绳 AC 的长(答案可带根号)•2•已知:如图,一艘货轮向正北方向航行,在点 A 处测得灯塔M 在北偏西30°,货轮以每小时20海里的速度航行,1小时后到达B 处,测得灯塔 M 在北偏西45°,问该货轮 继续向北航行时,与灯塔 M 之间的最短距离是多少 ?(精确到0.1海里,J 3止1.732)3.已知:如图,在两面墙之间有一个底端在端在B 点;当它靠在另一侧墙上时,梯子的顶端在45°.点D 到地面的垂直距离 DE =3J2m ,求点B 到地面的垂直距离 BC •4.已知:如图,小明准备测量学校旗杆 的影子恰好落在水平地面和斜坡的坡面上, 上的影长CD = 8m ,太阳光线AD 与水平地面成26°角,斜坡CD 与水平地面所成的锐 角为30°,求旗杆 AB 的高度(精确到1m ) •A 点的梯子,当它靠在一侧墙上时,梯子的顶D 点.已知/ BAC = 60°,/ DAE=AB 的高度,当他发现斜坡正对着太阳时,旗杆AB测得水平地面上的影长 BC = 20m ,斜坡坡面北A5.已知:如图,在某旅游地一名游客由山脚一个景点B ,再由B 地沿山坡BC 行走320米到达山顶C ,如果在山顶 C 处观测到景点 B 的俯角为60°.求山高CD (精确到0.01米).5.已知:如图,小明准备用如下方法测量路灯的高度:他走到路灯旁的一个地方,竖起一 根2m 长的竹竿,测得竹竿影长为 1m ,他沿着影子的方向,又向远处走出两根竹竿的 长度,他又竖起竹竿,测得影长正好为2m .问路灯高度为多少米 ?运动员从营地A 出发,沿北偏东60°方向走了 500 30°方向走了 500m ,到达目的地 C 点.求IIIA 沿坡角为30°的山坡AB 行走400m ,到达6.已知:如图,在一次越野比赛中,到达B 点,然后再沿北偏西北n(1)A 、C 两地之间的距离;⑵确定目的地C 在营地A 的什么方向?已知:如图,在1998年特大洪水时期,要加固全长为10000m 的河堤.大堤高5m ,坝顶宽4m ,迎水坡和背水坡都是坡度为1 : 1的等腰梯形.现要将大堤加高坡度改为1 : 1.5.已知坝顶宽不变,求大坝横截面面积增加了多少平方米, 多少立方米的土石?(1)BC 的长; ⑵△ ABC 的面积.(1)求AB 的长;a⑵求证:—一si n ot7. 1m ,背水坡完成工程需已知:如图,在△ ABC 中, 9. 已知:如图,在△ ABC 中, AC = b , BC = a ,锐角/ A = Ct ,/ B =P .__b sin P . A拓展、探究、思考AB = c , AC = b ,锐角/ A = Ct .RRt △ ADC 中,/ D = 90°,/ A=a ,/ CBD = P , AB = a.用含a 及P的三10.已知:如图,在角函数的式子表示CD的长.11.已知:△ ABC 中,/ A = 30°, AC = 10,12.已知:四边形 ABCD 的两条对角线 AC 、=a (0 °v a v 90° ),求此四边形的面积. BD 相交于 E 点,AC = a , BD = b , / BEC13 ..已知:如图, 长.(精确到 AB = 52m , / DAB = 430.01m),/ CAB = 40°,求大楼上的避雷针 CD 的□□□□□□□□□ □□口□□口口口口口□□口口□□口口14.已知:如图, 知测角仪AB 的高为在距旗杆 25m 的A 处,用测角仪测得旗杆顶点C 的仰角为30°,已BC =5J2,求 AB 的长.4 1如图,△ ABC 中,AC = 10, si nC=-,si nB=-,求 AB .3如图,在O O 中,/ A =/ C ,求证:AB = CD (利用三角函数证明).如图,P 是矩形ABCD 的CD 边上一点,PE 丄AC 于E , PF 丄BD 于F , AC18.已知:如图,一艘渔船正在港口 A 的正东方向40海里的B 处进行捕鱼作业,突然接到通知,要该船前往C 岛运送一批物资到 A 港,已知C 岛在A 港的北偏东60 ° 方向,且在B 的北偏西45°方向.问该船从B 处出发,以平均每小时20海里的速 度行驶,需要多少时间才能把这批物资送到A 港(精确到1小时)(该船在C 岛停留半个小时"(丁㊁止1.41, J 3 7.73, J 6 止 2.45)15 .已知:16.已知:17.已知:=15, BC = 8,求 PE + PF.C19.已知:如图,直线y = —x+ 12分别交X轴、y轴于A、B点,将△ AOB折叠,使A 点恰好落在0B的中点C处,折痕为DE .(1)求AE 的长及sin / BEC 的值; ⑵求△ CDE 的面积.20..已知:如图,斜坡 PQ 的坡度i = 1 : J 3,在坡面上点0处有一根1m 高且垂直于水平面的水管0A ,顶端A 处有一旋转式喷头向外喷水,水流在各个方向沿相同的 抛物线落下,水流最高点 M 比点A 高出1m ,且在点A 测得点M 的仰角为30°, 以0点为原点,OA 所在直线为 标系•设水喷到斜坡上的最低点为(1) 写出A 点的坐标及直线 PQ 的解析式; (2) 求此抛物线AMC 的解析式;⑶求 I X C — X B I ; ⑷求B 点与C 点间的距离.y 轴,过O 点垂直于OA 的直线为X 轴建立直角坐 B ,最高点为C.。

解直角三角形的应用-坡度坡角问题.

解直角三角形的应用-坡度坡角问题.

: 
二、典型题型
二、典型题型
平面:的
tan53°≈,
、某地的一座人行天桥如图所示,天桥高为
:.
1+)米,小军和小明同时分别从
小军的行走速度为米
4、
5、
6、同学们,如果你是修建三峡大坝的工程师,现在有这样一个问题请你解决:如图水库大坝的横断面是梯形,坝顶宽12m,坝高23m,斜坡AB的坡度i=3
1:,斜坡CD的坡度i=1∶3,求斜坡AB的坡面角α,坝底宽AD和斜坡AB的长(精确到0.1m参考数据:3≈1.732)
7、如图,广安市防洪指挥部发现渠江边一处长400米,高8米,背水坡的坡角为45°的防洪大堤(横截
ABCD)
)急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,面为梯形ABCD
i=1:
:2.
并使上底加宽2米,加固后,背水坡EF的坡比i=1
的长;
(1)求加固后坝底增加的宽度AF的长;
)求完成这项工程需要土石多少立方米?
(2)求完成这项工程需要土石多少立方米?。

解直角三角形在实际生活中的应用

解直角三角形在实际生活中的应用

解直角三角形在实际生活中的应用山东 李浩明在现实生活中, 有许多和解直角三角形有关的实际问题,如航海航空、建桥修路、测量技术、图案设计等,解决这类问题其关键是把具体问题抽象成“直角三角形”模型,利用直角三角形的边角关系以及勾股定理来解决.下面举例说明,供大家参考.一、航空问题例1.(2008年桂林市)汶川地震后,抢险队派一架直升飞机去A 、B 两个村庄抢险,飞机在距地面450米上空的P 点,测得A 村的俯角为30︒,B 村的俯角为60︒(如图1).求A 、B1.414 1.732==)分析:要求A 、B 两个村庄间的距离,由题意知AB =PB ,在Rt △PBC 中,可求得60PBC ∠=︒,又因为PC =450,所以可通过解直角三角形求得PB.解:根据题意得:30A ∠=︒,60PBC ∠=︒,所以6030APB ∠=︒-︒,所以A P B A ∠=∠,所以AB =PB .在Rt BCP ∆中,90,60C PBC ∠=︒∠=︒,PC =450,所以PB=450sin 60==︒.所以520AB PB ==≈(米) 答:A 、B 两个村庄间的距离为520米. 二、测量问题例2.(2008年湛江市)如图2所示,课外活动中,小明在离旗杆AB 10米的C 处,QB CP A 45060︒30︒图1用测角仪测得旗杆顶部A 的仰角为40︒,已知测角仪器的高CD =1.5米,求旗杆AB 的高(精确到0.1米) .分析:要求AB 的高,由题意知可知CD=BE ,先在Rt △ADE 中求出AE 的长,再利用AB=BE +AE 求出AB 的长.解:在Rt △ADE 中,tan ∠ADE =DEAE. ∵DE =10,∠ADE =40︒.∴AE =DE tan ∠ADE =10tan 40︒≈100.84⨯=8.4. ∴AB =AE +EB =AE +DC =8.4 1.59.9+=.答:旗杆AB 的高为9.9米. 三、建桥问题例4.(2008年河南)如图所示,A 、B 两地之间有一条河,原来从A 地到B 地需要经过DC ,沿折线A →D →C →B 到达,现在新建了桥EF ,可直接沿直线AB 从A 地到达B 地.一直BC =11km ,∠A =45°,∠B =37°.桥DC 和AB 平行,则现在从A 地到达B 地可比原来少走多少路程?(结果精确到0.1km .参考数据: 1.412≈,sin37°≈0.60,cos37°≈0.80). 分析:要求现在比原来少走多少路程,就需要计算两条路线路程之差,如图构造平行四边形DCBG ,将两条路线路程之差转化为AD DG AG +-,作高线DH ,将△ADG 转化为两个直角三角形,先在在Rt DGH △中求DH 、GH ,再在Rt ADH △中求AD 、AH,此题即可得解.解:如图,过点D 作DH AB ⊥于H ,DG CB ∥交AB 于G .DC AB ∥,∴四边形DCBG 为平行四边形.∴DC GB =,11GD BC ==.∴两条路线路程之差为AD DG AG +-. 在Rt DGH △中,sin37110.60 6.60DH DG =⋅≈⨯=, cos37110.808.80GH DG =⋅⨯≈≈.在Rt ADH △中,1.41 6.609.31AD =⨯≈≈.6.60AH DH =≈.∴(9.3111)(6.608.80)AD DG AG +-=+-+≈即现在从A 地到B 地可比原来少走约4.9km . 四、图案设计问题例4.(2008年上海市)“创意设计”公司员工小王不慎将墨水泼在一张设计图纸上,导致其中部分图形和数据看不清楚(如图4所示).已知图纸上的图形是某建筑物横断面的示意图,它是以圆O 的半径OC 所在的直线为对称轴的轴对称图形,A 是OD 与圆O 的交点.由于图纸中圆O 的半径r 的值已看不清楚,根据上述信息(图纸中1:0.75i =是坡面CE 的坡度),求r 的值.分析:要求圆O 的半径r 的值,需在直角三角形ODH 中来解决,而已知的条件太少,需要先在直角三角形CEH 中,根据条件5CE =、坡面CE 的坡度1:0.75i =求出EH 、CH ,然后在直角三角形ODH 中利用勾股定理列出方程,从而求出r 的值.解:由已知OCDE ⊥,垂足为点H ,则90CHE ∠=.图41:0.75i =,43CH EH ∴=. 在Rt HEC △中,222EH CH EC +=.设4CH k =,3(0)EH k k =>,又5CE =,得222(3)(4)5k k +=,解得1k =.∴3EH =,4CH =.∴7DH DE EH =+=,7OD OA AD r =+=+,4OH OC CH r =+=+. 在Rt ODH △中,222OH DH OD +=,∴222(4)7(7)r r ++=+. 解得83r =.航海中的安全问题船只在海上航行,特别要注意安全问题,这就需要运用数学知识进行有关的计算,以确保船只航行的安全性.请看下面两例.例1 (深圳市)如图1,某货船以24海里/时的速度将一批重要物资从A 处运往正东方向的M 处,在点A 处测得某岛C 在北偏东60的方向上.该货船航行30分钟后到达B 处,此时再测得该岛在北偏东30的方向上,已知在C 岛周围9海里的区域内有暗礁.若继续向正东方向航行,该货船有无触礁危险?试说明理由.分析:问题的关键是弄清方位角的概念,过点C 作CD ⊥AB 于D ,然后通过解直角三角形求出CD 的长,通过列方程解决几何问题也是一种常用方法.解:由已知,得AB=24×21=12,∠CAB=90°-60°=30°,∠CBD=90°-30°=60°,所以∠C=30°,所以∠C=∠CAB ,所以CB=AB=12.在Rt △CBD 中,sin ∠CBD=CB CD ,所以CD=CB ·sin ∠CBD=12×3623=.∵936> 所以货船继续向正东方向行驶无触礁危险.例2 如图2,一艘渔船在A 处观测到东北方向有一小岛C ,已知小岛C 周围4.8海里范围内是水产养殖场.渔船沿北偏东30°方向航行10海里到达B 处,在B 处测得小岛C 在北偏东60°方向上,这时渔船改变航线向正东(即BD )方向航行,这艘渔船是否有进入养殖场的危险?分析:先将实际问题转化为解直角三角形的问题.可有如下两种方法求解. 解法一:如图3,过点B 作BM ⊥AH 于M ,则BM//AF.所以∠ABM=∠BAF=30°. 在Rt △BAM 中,AM=21AB=5,BM=35. 过点C 作CN ⊥AH 于点N ,交BD 于K. 在Rt △BCK 中,∠CBK=90°-60°=30°. 设CK=x ,则BK=3x.在Rt △CAN 中,因为∠CAN=90°-45°=45°,所以AN=NC.所以AM+MN=CK+KN. 又NM=BK ,BM=KN ,所以x+35=5+3x.解得x=5. 因为5>4.8,所以渔船没有进入养殖场的危险.解法二:如图4,过点C 作CE ⊥BD 于E.所以CE//GB//FA. 所以∠BCE=∠GBC=60°,∠BCA=∠FAC=45°. 所以∠BCA=∠BCE-∠ACE=60°-45°=15°. 又∠BAC=∠FAC-∠FAB=45°-30°=15°,D图2图3图4所以∠BCA=∠BAC.所以BC=AB=10.在Rt △BCE 中,CE=BC ·cos ∠BCE=BC ·cos60°=10×21=5. 也5>4.8,所以渔船没有进入养殖场的危险.实际中的仰角和俯角问题在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角.计算原理:视线、水平线、物体的高构成直角三角形,已知仰角、俯角和另一边,利用解直角的知识就可以求出物体的高度.梳理总结:⑴仰角和俯角是指视线相对于水平线而言的,不同位置的仰角和俯角是不同的;可巧记为“上仰下俯”.在测量物体的高度时,要善于将实际问题抽象为数学问题.⑵在测量山的高度时,要用“化曲为直”的原则把曲的山坡“化整为零地分成一些小段,把每一小段山坡长近似地看作直的,测出仰角求出每一小段山坡对应的高,再把每部分高加起来,就得到这座山的高度.例1 (成都)如图2,甲、乙两栋高楼的水平距离BD 为90米,从甲楼顶部C 点测得乙楼顶部A 点的仰角α为30︒,测得乙楼底部B 点的俯角β为60︒,求甲乙两栋高楼各有多高?(计算过程和结果都不取近似值.分析:过点C 作CE ⊥AB 于点E, 在Rt △BCE 和Rt △ACE 中, BE 和AE 可用含CE(即为水平距离)的式子表示出来,从而求得两楼的高.解:作CE ⊥AB 于点E,∵CE ∥DB,CD ∥AB,且∠CDB=090,∴四边形BECD 是矩形. ∴CD=BE,CE=BD.图 1 E图2在Rt △BCE 中, ∠β=060,CE=BD=90米. ∵,tan CEBE=β∴BE=CE 39060tan 90tan 0=⨯=⋅β(米). ∴CD=BE=390(米).在Rt △ACE 中, ∠α=030,CE=90米. ∵ ,tan CEAE=α∴AE=CE 330339030tan 90tan 0=⨯=⨯=⋅α(米). ∴AB=AE+BE=3120390330=+(米). 答:甲楼高为390米,乙楼高为3120米.反思:仰角和俯角问题是解直角三角形中的常见题型,作辅助线构造直角三角形(一般同时得到两个直角三角形)并解之是解决这类问题的常用方法.例2 (乐山)如图3,小山上有一棵树.现有测角仪和皮尺两种测量工具,请你设计一种测量方案,在山脚水平地面上测出小树顶端A 到水平地面的距离AB .要求:⑴画出测量示意图;⑵写出测量步骤(测量数据用字母表示); ⑶根据(2)中的数据计算AB .分析:要测量底步不能到达的物体的高度,要转化为双直角三角形问题,测量方案如图2,计算的关键是求 AE,可设AE=x,则在Rt △AGF 和 Rt △AEF 中, 利用三角函数可得αtan x HE =,βtan x EF = ,再根据HE-FE=CD=m 建立方程即可. 解:(1)测量图案(示意图)如图4所示(2)测量步骤:第一步:在地面上选择点C 安装测角仪,测得此时树尖A 的仰角AHE α=∠;第二步:沿CB 前进到点D ,用皮尺量出C D ,之间的距离CD m =;AB图3AE F H CDB图4第三步:在点D 安装测角仪,测得此时树尖A 的仰角AFE β=∠; 第四步:用皮尺测出测角仪的高h . (3)计算: 令AE=x,则,tan HE x =α得αtan x HE =,又,tan EF x =β得βtan xEF =, ∵HE-FE=HF=CD=m, ∴,tan tan m xx =-βα 解得αββαtan tan tan tan -⋅=m x ,∴AB=.tan tan tan tan h m +-⋅αββα反思:在多个直角三角形中一定要认真分析各条线段之间的关系(包括三角函数关系、相等关系),运用方程求解,有时可起到事半功倍之效.快乐套餐:1.(泰安)如图5,一游人由山脚A 沿坡角为30的山坡AB 行走600m ,到达一个景点B ,再由B 沿山坡BC 行走200m 到达山顶C ,若在山顶C 处观测到景点B 的俯角为45,则山高CD 等于 (结果用根号表示)2.(安徽)如图6,某幢大楼顶部有一块广告牌CD ,甲乙两人分别在相距8米的A 、B 两处测得D 点和C 点的仰角分别为45°°和60°,且A 、B 、E 三点在一条直线上,若BE=15米,求这块广告牌的高度.(1.73,计算结果保留整数)ABCD图5第19题图EDCB A450600图6参考答案:1. (300 .2. ∵AB=8,BE=15,∴AE=23,在Rt△AED中,∠DAE=45°,∴DE=AE=23.在Rt△BEC中,∠CBE=60°,∴CE=BE·tan60°=CD=CE-DE=23≈2.95≈3.即这块广告牌的高度约为3米.。

解直角三角形的应用题型

解直角三角形的应用题型

解直角三角形的应用题型直角三角形是初中数学中一个重要的概念,也是解决实际问题中常用的基本图形之一。

在应用题中,我们经常需要用到直角三角形的性质和定理,以解决各种实际问题。

下面列举一些常见的直角三角形应用题型。

1. 求斜边长已知直角三角形的一条直角边和另一条边的长度,求斜边长。

这类问题可以用勾股定理解决,即斜边的长度等于直角边长度的平方加上另一条边长度的平方的平方根。

例题:已知直角三角形的一个直角边为3,另一条边长为4,求斜边长。

解:斜边长等于3的平方加上4的平方的平方根,即√(3+4)=√25=5。

2. 求角度已知直角三角形两个角度,求第三个角度。

由于直角三角形的内角和为180度,因此第三个角度可以用90度减去已知的两个角度得到。

例题:已知直角三角形两个角度分别为30度和60度,求第三个角度。

解:第三个角度等于90度减去30度和60度的和,即90-30-60=0度。

3. 求高已知直角三角形的斜边和一条直角边,求高。

我们可以通过求出这个三角形的面积以及底边长度来求出高,也可以利用正弦定理或余弦定理求出高。

例题:已知直角三角形的斜边长为5,直角边长为3,求高。

解:利用勾股定理可求出这个三角形的面积为(3*4)/2=6。

利用面积公式S=1/2*底边长*高,可得高为(2*6)/3=4。

4. 求面积已知直角三角形的两条直角边长度,求面积。

我们可以利用面积公式S=1/2*底边长*高求出面积。

例题:已知直角三角形的两条直角边长分别为4和3,求面积。

解:利用面积公式S=1/2*4*3,可得面积为6。

以上是直角三角形应用题的一些常见类型,希望能对大家的学习有所帮助。

解直角三角形经典题型应用题

解直角三角形经典题型应用题

解直角三角形经典题型应用题1. 一个田径运动员越过一根高度为2米的木板,如果他离地面的水平距离是3米,那么他的起跳点距离木板底部的高度是多少?解:设起跳点距离木板底部的高度为x,则根据勾股定理,得到:$x^2 + 3^2 = 2^2$化简得:$x^2 = 2^2 - 3^2 = -5$由于x是高度,因此应该为正数。

但是由于方程无解,因此无法解出起跳点距离木板底部的高度。

这个结果告诉我们,如果要跨越一个木板,距离不能太远,否则就无法起跳!2. 一个人看到一个高楼,测得距离为50米,角度为30度,那么这个高楼的高度是多少?解:设高楼的高度为h,根据三角函数,得到:$tan(30) = \frac{h}{50}$化简得:$h = 50\times tan(30) = 50 \times \frac{1}{\sqrt{3}} \approx28.87$因此,这个高楼的高度约为28.87米。

3. 一个人站在一座桥上,看到一条河流在他的正下方流过,测得桥与河面的垂直距离为20米,角度为45度,那么河宽是多少?解:设河宽为w,根据三角函数,得到:$tan(45) = \frac{w}{20}$化简得:$w = 20\times tan(45) = 20$因此,河宽为20米。

4. 在一个矩形田地中,角A的顶点和角B的底点均在田地边界上,角A的角度为30度,角B的角度为60度,且田地的长宽比为3:2,那么田地的面积是多少?解:假设田地的长为3x,宽为2x,则田地的面积为6x²。

又根据三角函数,得到:$tan(30) = \frac{3x}{y}$$tan(60) = \frac{2x}{y}$化简得:$x = y\times tan(30) = y\cdot\frac{1}{\sqrt{3}}$ $x = y\times tan(60) = y\cdot\sqrt{3}$解得:$y = 6\sqrt{3}$因此,田地的面积为6x² = 1080平方米。

初中解直角三角形经典题型

初中解直角三角形经典题型

初中解直角三角形经典题型
初中解直角三角形是一种重要的数学题型,以下是一些经典题型:
1. 已知直角三角形中一个角和一条边,解直角三角形。

这种题型比较容易,先利用一个角,求出另一个角,然后再观察已知的边是哪一条,需要求的边与已知的边是什么关系,选择合适的三角函数解题。

2. 已知直角三角形中两条边,解直角三角形。

已知两条边,解直角三角形。

按照难易程度,先用勾股定理求第三边。

我们可以任意地用两条去比,求出比值,然后与三角函数值表对照,就能得出角度。

需要注意,不能用斜边比直角边,一定是用直角边比斜边。

3. 已知直角三角形中一个角和直角边,解直角三角形。

这种题型比较特殊,需要特别注意。

先利用一个角,求出另一个角,然后根据三角函数计算出需要求的边的长度,再根据边角关系求解。

4. 已知直角三角形中两条直角边,解直角三角形。

这种题型也比较简单,根据边角关系,直接计算出需要求的边的长度,再根据三角函数求解。

5. 利用仰俯角解直角三角形。

这种题型考的是考生的综合分析能力。

根据仰俯角的基本原理,利用仰角和俯角之间的关系,求解直角三角形。

以上是初中解直角三角形的一些经典题型,考生需要熟练掌握,并能灵活运用到各种实际问题中。

题型十一 解直角三角形的实际应用

题型十一 解直角三角形的实际应用

题型十一 解直角三角形的实际应用1.(2019·锦州)如图,某学校体育场看台的顶端C 到地面的垂直距离CD 为2 m ,看台所在斜坡CM 的坡比i =1∶3,在点C 处测得旗杆顶点A 的仰角为30°,在点M 处测得旗杆顶点A 的仰角为60°,且B ,M ,D 三点在同一水平线上,求旗杆AB 的高度.(结果精确到0.1 m ,参考数据:2≈1.41,3≈1.73)解:如图,延长AC 交BD 的延长线于点H ,则∠H =∠ACE =30°,则∠MAC =∠AMB-∠H =30°,∴AM =MH ,∵i =1∶3,则MD =3CD =6 m ,在Rt △CDH 中,DH =CD tan 30°=23,∴MH =6+2 3.在Rt △ABH 中,AB =AM·sin 60°=33+3≈8.2.答:旗杆AB 的高度约为8.2 m .2.如图,某人在山坡坡脚C 处测得一座建筑物顶点A 的仰角为60°,沿山坡向上走到P 处再测得该建筑物顶点A 的仰角为45°.已知BC =60 m ,且B 、C 、E 在同一条直线上,山坡的坡比为1∶2.求此人所在位置点P 的铅直高度(即PE 的长,结果保留根号).解:如图,过点P 作PF ⊥AB 于点F ,又∵AB ⊥BC 于点B ,∴四边形BEPF 是矩形,∴PE =BF ,PF =BE ,∵在Rt △ABC 中,BC =60米,∠ACB =60°,∴AB =BC·tan 60°=603(米),设PE =x 米,则BF =PE =x 米,∵在Rt △PCE 中,tan ∠PCE =PE CE =12,∴CE =2x 米,∵在Rt △PAF 中,∠APF =45°,∴AF =AB -BF =603-x ,PF =BE =BC +CE =60+2x ,又∵AF =PF ,∴603-x =60+2x ,解得:x =203-20,答:此人所在的位置点P 的铅直高度为(203-20)米.3.(2019·甘肃)为了保证人们上下楼的安全,楼梯踏步的宽度和高度都要加以限制.中小学楼梯宽度的范围是260 mm ~300 mm (含300 mm ),高度的范围是120 mm ~150 mm (含150 mm ).如图是某中学的楼梯扶手的截面示意图,测量结果如下:AB ,CD 分别垂直平分踏步EF ,GH ,各踏步互相平行,AB =CD ,AC =900 mm ,∠ACD =65°,试问该中学楼梯踏步的宽度和高度是否符合规定.(结果精确到1 mm ,参考数据:sin 65°≈0.906,cos 65°≈0.423)解:如图,连接BD ,作DM ⊥AB 于点M ,∵AB =CD ,AB ,CD 分别垂直平分踏步EF ,GH ,∴AB ∥CD ,AB =CD ,∴四边形ABCD 是平行四边形,∴∠C =∠ABD ,AC =BD ,∵∠C =65°,AC =900,∴∠ABD =65°,BD =900,∴BM =BD·cos 65°≈900×0.423≈381,DM =BD·sin 65°≈900×0.906≈815,∵381÷3=127,120<127<150,∴该中学楼梯踏步的高度符合规定,∵815÷3≈272,260<272<300,∴该中学楼梯踏步的宽度符合规定,由上可得,该中学楼梯踏步的宽度和高度都符合规定.4.(2019·铁岭)如图,聪聪想在自己家的窗口A 处测量对面建筑物CD 的高度,他首先量出窗口A 到地面的距离(AB 长)为16米,又测得从A 处到建筑物底部C 的俯角α为30°,看建筑物顶部D 的仰角β为53°,且AB ,CD 都与地面垂直,点A ,B ,C ,D 在同一平面内.(1)求AB 与CD 之间的距离(结果保留根号);(2)求建筑物CD 的高度(精确到1 m ).(参考数据:sin 53°≈0.8,cos 53°≈0.6,tan 53°≈1.3,3≈1.7)解:(1)如图,过点A 作AM ⊥CD 于点M ,∵AB ⊥BC ,DC ⊥BC ,∴∠ABC =∠BCD =∠CMA =90°,∴四边形ABCM 为矩形,∴AM =BC ,CM =AB =16,在Rt △ACM 中,∵CM =16,α=30°,∴tan ∠CAM =CM AM ,∴AM =16tan 30°=163,答:AB 与CD 之间的距离为163米;(2)在Rt △ADM 中,∵tan ∠DAM =DM AM,∴DM =AM·tan ∠DAM ≈163×1.3≈35.4,∴DC =DM +CM ≈51(米),答:建筑物CD 的高度约为51米.5.(2019·连云港)如图,海上观察哨所B 位于观察哨所A 正北方向,距离为25海里.在某时刻,哨所A 与哨所B 同时发现一走私船,其位置C 位于哨所A 北偏东53°的方向上,位于哨所B 南偏东37°的方向上.(1)求观察哨所A 与走私船所在的位置C 的距离;(2)若观察哨所A 发现走私船从C 处以16海里/小时的速度向正东方向逃窜,并立即派缉私艇沿北偏东76°的方向前去拦截,求缉私艇的速度为多少时,恰好在D 处成功拦截.(结果保留根号)(参考数据:sin 37°=cos 53°≈35,cos 37°=sin 53°≈45,tan 37°≈34,tan 76°≈4)解:(1)在△ABC 中,∠ACB =180°-∠B -∠BAC =180°-37°-53°=90°.在Rt △ABC 中,sin B =AC AB ,∴AC =AB·sin 37°=25×35=15(海里). 答:观察哨所A 与走私船所在的位置C 的距离为15海里;(2)过点C 作CM ⊥AB 于点M ,由题意易知,D ,C ,M 在一条直线上.在Rt △AMC 中,CM =AC·sin ∠CAM ≈15×45=12,AM =AC ·cos ∠CAM ≈15×35=9. 在Rt △AMD 中,tan ∠DAM =DM AM,∴DM =AM·tan 76°≈9×4=36, ∴AD =AM 2+DM 2=92+362=917,CD =DM -CM =36-12=24.设缉私艇的速度为x 海里/小时,则有2416=917x ,解得x =617. 经检验,x =617是原方程的解.答:当缉私艇的速度为617 海里/小时时,恰好在D 处成功拦截.6.(2019·宿迁)宿迁市政府为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面上的实物图,图②是其示意图,其中AB 、CD 都与地面l 平行,车轮半径为32 cm ,∠BCD =64°,BC =60 cm ,坐垫E 与点B 的距离BE 为15 cm .(1)求坐垫E 到地面的距离;(2)根据经验,当坐垫E 到CD 的距离调整为人体腿长的0.8时,坐骑比较舒适.小明的腿长约为80 cm ,现将坐垫E 调整至坐骑舒适高度位置E′,求EE′的长.(结果精确到0.1 cm ,参考数据:sin 64°≈0.90,cos 64°≈0.44,tan 64°≈2.05)解:(1)如图,过点E作EM⊥CD于点M,由题意知∠BCM=64°,EC=BC+BE=60+15=75 cm,∴EM=EC sin∠BCM=75×sin64°≈67.5(cm),67.5+32≈99.5(cm).答:坐垫E到地面的高度约为99.5 cm;(2)如图所示,过点E′作E′H⊥CD于点H,由题意知E′H=80×0.8=64,则E′C=E′Hsin∠ECH=64sin64°≈71.1,∴EE′=CE-CE′≈75-71.1=3.9(cm).∴EE′的长约为3.9 cm.。

《解直角三角形》典型例题

《解直角三角形》典型例题

《解直角三角形》典型例题(一)例1 在Rt △ABC 中,∠C=90°,∠B=60°,a=4,解这个三角形.分析 本题实际上是要求∠A 、b 、c 的值.可根据直角三角形中各元素间的关系解决. 解(1);(2)由a bB =tan ,知;(3)由c a B =cos ,知860cos 4cos =︒==B a c .说明 此题还可用其他方法求b 和c .例 2在Rt △ABC 中,∠C=90°,∠A=30°,3=b ,解这个三角形. 解法一 ∵ ∴设 ,则由勾股定理,得∴.∴.解法二133330tan =⨯=︒=b a说明 本题考查含特殊角的直角三角形的解法,它可以用目前所学的解直角三角形的方法,也可以用以前学的性质解题. 例 3设中,于D ,若,解三角形ABC .分析“解三角形ABC”就是求出的全部未知元素.本题CD不是的边,所以应先从Rt入手.解在Rt中,有:在Rt中,有说明(1)应熟练使用三角函数基本关系式的变形,如:(2)平面几何中有关直角三角形的定理也可以结合使用,本例中“”就是利用“对30°角的直角边等于斜边的一半”这一定理.事实上,还可以用面积公式求出AB的值:所以解直角三角形问题,应开阔思路,运用多种工具.例4在中,,求.分析(1)求三角形的面积一方面可以根据面积公式求出底和底上的高的长,也可以根据其中规则面积的和或差;(2)不是直角三角形,可构造直角三角形求解.解如图所示,作交CB的延长线于H,于是在Rt△ACH中,有,且有;在中,,且,∴;于是,有,则有说明还可以这样求:例5如图,在电线杆上离地面高度5m的C点处引两根拉线固定电线杆,一根拉线AC和地面成60°角,另一根拉线BC和地面成45°角.求两根拉线的总长度(结果用带根号的数的形式表示).分析分别在两个直角三角形ADC和BDC中,利用正弦函数的定义,求出AC和BC.解:在Rt△ADC中,331023560sin==︒=DCAC在Rt△BDC中,221022545sin==︒=DCBC说明本题考查正弦的定义,对于锐角三角函数的定义,要熟练掌握.。

2022年中考数学专题复习:解直角三角形的应用题 精选(word版、无答案)

2022年中考数学专题复习:解直角三角形的应用题 精选(word版、无答案)

解直角三角形应用分类中考试题精选类型一俯仰角问题1.如图,某数学兴趣小组要测量一栋五层居民楼CD的高度.该楼底层为车库,高2.5米;上面五层居住,每层高度相等.测角仪支架离地1.5米,在A处测得五楼顶部点D的仰角为60°,在B处测得四楼顶点E的仰角为30°,AB=14米.求居民楼的高度(精确到0.1米,参考数据:≈1.73)2.如图所示,某工程队准备在山坡(山坡视为直线l)上修一条路,需要测量山坡的坡度,即tanα的值.测量员在山坡P处(不计此人身高)观察对面山顶上的一座铁塔,测得塔尖C的仰角为37°,塔底B的仰角为26.6°.已知塔高BC=80米,塔所在的山高OB=220米,OA=200米,图中的点O、B、C、A、P在同一平面内,求山坡的坡度.(参考数据sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)3.如图,一只猫头鹰蹲在一棵树AC的B(点B在AC上)处,发现一只老鼠躲进短墙DF的另一侧,猫头鹰的视线被短墙遮住,为了寻找这只老鼠,它又飞至树顶C处,已知短墙高DF=4米,短墙底部D与树的底部A的距离为2.7米,猫头鹰从C点观测F点的俯角为53°,老鼠躲藏处M(点M在DE上)距D点3米.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)(1)猫头鹰飞至C处后,能否看到这只老鼠?为什么?(2)要捕捉到这只老鼠,猫头鹰至少要飞多少米(精确到0.1米)?类型二方位角问题4、在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M的正西19.5km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A 相距km的C处.(1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.5.(如图,在海面上生产了一股强台风,台风中心(记为点M)位于海滨城市(记作点A)的南偏西15°,距离为612千米,且位于临海市(记作点B)正西方向60 3千米处,台风中心正以72千米/时的速度沿北偏东60°的方向移动(假设台风在移动过程中的风力保持不变),距离台风中心60千米的圆形区域内均会受到此次强台风的侵袭.(1)滨海市、临海市是否会受到此次台风的侵袭请说明理由;(2)若受到此次台风侵袭,该城市受到台风侵袭的持续时间有多少小时?6.如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C 的求救信号.已知A、B两船相距100(+1)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号).(2)已知距观测点D处100海里范围内有暗礁.若巡逻船A沿直线AC去营救船C ,在去营救的途中有无触暗礁危险?(参考数据:≈1.41,≈1.73)7、钓鱼岛历来是中国领土,以它为圆心在周围12海里范围内均属于禁区,不允许它国船支进入.如图7,今有一中国海监船在位于钓鱼岛A正南方向距岛60海里的B处海域巡逻,值班人员发现在钓鱼岛的正西方向52海里的C处有一艘日本渔船,正以9节的速度沿正东方向驶向钓鱼岛,中方立即向日本渔船发出警告,并沿北偏西30°的方向以12节的速度前往拦截,其间多次发出警告,2小时后海监船到达D处,与此同时日本渔船到达E处,此时海监船再次发出严重警告.(1)当日本渔船收到严重警告信号后,必须沿北偏东转向多少度航行,才能恰好避免进入钓鱼岛12海里禁区?(4分)(2)当日本渔船不听严重警告信号,仍按原速度、原方向继续前进,那么海监船必须尽快到达距岛12海里,且位于线段AC上的F处强制拦截渔船,问海监船能否比日本渔船先到达F处?(5分)(注:①中国海监船的最大航速为18节,1节=1海里/时;②参考数据:sin26.3°≈0.44,sin20.5°≈0.35,sin18.1°≈0.3121.431.7)类型三坡度坡角问题8.(如图,点A、B、C表示某旅游景区三个缆车站的位置,线段AB、BC表示连接缆车站的钢缆,已知A、B、C三点在同一铅直平面内,它们的海拔高度AA′,BB′,CC′分别为110米、310米、710米,钢缆AB的坡度i1=1:2,钢缆BC的坡度i2=1:1,景区因改造缆车线路,需要从A到C直线架设一条钢缆,那么钢缆AC的长度是多少米?(注:坡度:是指坡面的铅直高度与水平宽度的比)9.如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:3,AB=10米,AE=15米.(i=1:3是指坡面的铅直高度BH与水平宽度AH的比)(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:2≈1.414,3≈1.732)10.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1米,参考数据:3=1.73,2=1.41);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.类型四生活中问题11.如图,伞不论张开还是收紧,伞柄AP始终平分同一平面内两条伞架所成的角∠BAC,当伞收紧时,结点D与点M重合,且点A、E、D在同一条直线上,已知部分伞架的长度如下:单位:cm伞架DE DF AE AF AB AC长度36 36 36 36 86 86(1)求AM的长.(2)当∠BAC=104°时,求AD的长(精确到1cm).备用数据:sin52°=0.788,cos52°=0.6157,tan52°=1.2799.12.如图1,滨海广场装有风能、太阳能发电的风光互补环保路灯,灯杆顶端装有风力发电机,中间装有太阳能板,下端装有路灯.该系统工作过程中某一时刻的截面图如图2,已知太阳能板的支架BC垂直于灯杆OF,路灯顶端E距离地面6米,DE=1.8米,∠CDE=60°.且根据我市的地理位置设定太阳能板AB的倾斜角为43°.AB=1.5米,CD=1米,为保证长为1米的风力发电机叶片无障碍安全旋转,对叶片与太阳能板顶端A的最近距离不得少于0.5米,求灯杆OF至少要多高?(利用科学计算器可求得sin43°≈0.6820,cos43°≈0.7314,tan43°≈0.9325,结果保留两位小数)13.小明坐于堤边垂钓,如图,河堤AC的坡角为30°,AC 长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离.。

(附答案)《解直角三角形》典型例题

(附答案)《解直角三角形》典型例题

《解直角三角形》典型例题例1 在Rt △ABC 中,∠C=90°,∠B=60°,a=4,解这个三角形. 分析 本题实际上是要求∠A 、b 、c 的值.可根据直角三角形中各元素间的关系解决. 解 (1) ;(2)由abB =tan ,知 ;(3)由c a B =cos ,知860cos 4cos =︒==B a c . 说明 此题还可用其他方法求b 和c .例 2 在Rt △ABC 中, ∠C=90°,∠A=30°,3=b ,解这个三角形.解法一 ∵ ∴设 ,则由勾股定理,得∴ .∴.解法二 133330tan =⨯=︒=b a说明 本题考查含特殊角的直角三角形的解法,它可以用目前所学的解直角三角形的方法,也可以用以前学的性质解题. 例 3 设 中,于D ,若,解三角形ABC .分析“解三角形ABC”就是求出的全部未知元素.本题CD不是的边,所以应先从Rt入手.解在Rt中,有:∴在Rt中,有说明(1)应熟练使用三角函数基本关系式的变形,如:(2)平面几何中有关直角三角形的定理也可以结合使用,本例中“”就是利用“对30°角的直角边等于斜边的一半”这一定理.事实上,还可以用面积公式求出AB的值:所以解直角三角形问题,应开阔思路,运用多种工具.例4在中,,求.分析(1)求三角形的面积一方面可以根据面积公式求出底和底上的高的长,也可以根据其中规则面积的和或差;(2)不是直角三角形,可构造直角三角形求解.解如图所示,作交CB的延长线于H,于是在Rt△ACH中,有,且有;在中,,且,∴;于是,有,则有说明还可以这样求:例5 如图,在电线杆上离地面高度5m 的C 点处引两根拉线固定电线杆,一根拉线AC 和地面成60°角,另一根拉线BC 和地面成45°角.求两根拉线的总长度(结果用带根号的数的形式表示).分析 分别在两个直角三角形ADC 和BDC 中,利用正弦函数的定义,求出AC 和BC .解: 在Rt △ADC 中,331023560sin ==︒=DC AC 在Rt △BDC 中,221022545sin ==︒=DC BC说明 本题考查正弦的定义,对于锐角三角函数的定义,要熟练掌握.学习要有三心:一信心;二决心;三恒心.知识+方法=能力,能力+勤奋=效率,效率×时间=成绩. 宝剑锋从磨砺出,梅花香自苦寒来.。

初中数学解直角三角形的应用题型大全

初中数学解直角三角形的应用题型大全

第12关 解直角三角形的应用(讲义部分)知识点1 坡角、坡度题型1 坡角、坡度【例1】如图,某公园入口处原有三级台阶,每级台阶高为18cm ,宽为30cm ,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A ,斜坡的起始点为C ,现设计斜坡BC 的坡度1:5i =,求AC 的长度.【解答】解:过点B 作BD AC ⊥于D ,根据题意得:23060()AD cm =⨯=,18354()BD cm =⨯=,斜坡BC 的坡度1:5i =, :1:5BD CD ∴=,5554270()CD BD cm ∴==⨯=,27060210()AC CD AD cm ∴=-=-=. AC ∴的长度是210cm . 答:AC 的长度为210cm .【点评】此题考查了解直角三角形的应用:坡度问题,难度适中,注意掌握坡度的定义,注意数 形结合思想的应用与辅助线的作法.【例2】在一次课题设计活动中,小明对修建一座87m 长的水库大坝提出了以下方案;大坝的横截面为等腰梯形,如图,//AD BC ,坝高10m ,迎水坡面AB 的坡度53i =,老师看后,从力学的角度对此方案提出了建议,小明决定在原方案的基础上,将迎水坡面AB 的坡度进行修改,修改后的迎水坡面AE 的坡度56i =.(1)求原方案中此大坝迎水坡AB 的长(结果保留根号);(2)如果方案修改前后,修建大坝所需土石方总体积不变,在方案修改后,若坝顶沿EC 方向拓宽2.7m ,求坝底将会沿AD 方向加宽多少米?【解答】解:(1)过点B 作BF AD ⊥于F .在Rt ABF ∆中,53BF i AF ==,且10BF m =.6AF m ∴=,AB =.答:此大坝迎水坡AB 的长是; (2)过点E 作EG AD ⊥于G .在Rt AEG ∆中,56EG i AG ==,且10EG BF m ==12AG m ∴=, 6AF m =,6BE GF AG AF m ∴==-=,如图,延长EC 至点M ,AD 至点N ,连接MN ,方案修改前后,修建大坝所需土石方总体积不变.ABE CMND S S ∆=梯形,∴11()22BE EG MC ND EG =+ 即BE MC ND =+.6 2.7 3.3()DN BE MC m =-=-=. 答:坝底将会沿AD 方向加宽3.3m .【点评】本题考查直角三角形应用,(1)过点B 作BF AD ⊥于F ,在直角三角形ABF 中从而 解得AF ,AB 的长度;(2)作辅助线,由ABE CMND S S ∆=梯形,解方程组得到ND .【例3】如图是某市一座人行天桥的示意图,天桥离地面的高BC 是10米,坡面AC 的倾斜角45CAB ∠=︒,在距A 点10米处有一建筑物HQ .为了方便行人推车过天桥,市政府部门决定降低坡度,使新坡面DC 的倾斜角30BDC ∠=︒,若新坡面下D 处与建筑物之间需留下HD 长的人行道,问人行道HD 的长度是( )米.(计算最后结果保留一位小数).(参考数据:1.414≈ 1.732)≈A .2.7B .3.4C .2.5D .3.1【解答】解:根据题意可知:90CBA ∠=︒,45CAB ∠=︒, 45ACB ∴∠=︒, 10AB CB ∴==, 10AH =,设DH x =,则10AD AH DH x =-=-,20BD AD AB x ∴=+=-, 在Rt DCB ∆中,30CDB ∠=︒,tan30BCBD∴︒=,即1020x =-, 解得 2.7x ≈.所以人行道HD 的长度是2.7米. 故选:A .【点评】本题考查了解直角三角形的应用-坡度坡角问题,解决本题的关键是掌握坡度坡角.【例4】小明想测量一棵树的高度,他发现树影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30︒,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为 米.【解答】解:延长AC 交BF 延长线于D 点,则30CFE ∠=︒,作CE BD ⊥于E ,在Rt CFE ∆中,30CFE ∠=︒,4CF m =,2CE ∴=(米),4cos30EF =︒=), 在Rt CED ∆中,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,2CE =(米),:1:2CE DE =,4DE ∴=(米),12BD BF EF ED ∴=++=+)在Rt ABD ∆中,11(126)22AB BD ==+=(米).故答案为:6)+.【点评】本题考查了解直角三角形的应用以及相似三角形的性质.解决本题的关键是作出辅助线 得到AB 的影长.知识点2 俯角、仰角题型2 俯角、仰角【例5】如图,在两建筑物之间有一旗杆,高15米,从A 点经过旗杆顶点恰好看到矮建筑物的墙角C 点,且俯角α为60︒,又从A 点测得D 点的俯角β为30︒,若旗杆底点G 为BC 的中点,则矮建筑物的高CD 为( )A .20米B .米C .米D .【解答】解:点G 是BC 中点,//EG AB ,EG ∴是ABC ∆的中位线, 230AB EG ∴==米,在Rt ABC ∆中,30CAB ∠=︒,则tan 30BC AB BAC =∠== 如图,过点D 作DF AF ⊥于点F .在Rt AFD ∆中,AF BC ==则tan 10FD AF β===米,综上可得:301020CD AB FD =-=-=米. 故选:A .【点评】本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数的 知识求解相关线段的长度.【例6】如图,某电信公司计划修建一条连接B 、C 两地的电缆.测量人员在山脚A 点测得B 、C 两地的仰角分别为30︒、45︒,在B 处测得C 地的仰角为60︒,已知C 地比A 地高200m ,求电缆BC 的长.(结果可保留根号)【解答】解:过B 点分别作BE CD ⊥、BF AD ⊥,垂足分别为E 、F .设BC xm =. 60CBE ∠=︒,12BE x ∴=,CE =.200CD =,200DE x ∴=.200BF DE ∴==,12DF BE x ==.45CAD ∠=︒, 200AD CD ∴==.12002AF x ∴=-.在Rt ABF ∆中,2002tan 3012002BF AF x ︒==-,解得1)()x m =. 答:电缆BC至少200)m【点评】本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.【例7】如图,小山顶上有一信号塔AB ,山坡BC 的倾角为30︒,现为了测量塔高AB ,测量人员选择山脚C 处为一测量点,测得塔顶仰角为45︒,然后顺山坡向上行走100米到达E 处,再测得塔顶仰角为60︒,求塔高AB1.73≈1.41)≈【解答】解:依题意可得:30AEB EAB ∠=∠=︒,15ACE ∠=︒,又AEB ACE CAE ∠=∠+∠ 15CAE ∴∠=︒,即ACE ∆为等腰三角形, 100AE CE m ∴==,在Rt AEF ∆中,60AEF ∠=︒,cos6050EF AE m ∴=︒=,sin 60AF AE =︒=, 在Rt BEF ∆中,30BEF ∠=︒,tan3050BF EF ∴=︒==,58AB AF BF ∴=-==≈(米). 答:塔高AB 大约为58米.【点评】本题考查了解直角三角形的知识,解答本题的关键是构造直角三角形,利用三角函数表 示出相关线段的长度,难度一般.【例8】某学校门前一直行马路,为方便学生过马路,交警在门口设有一定宽度的斑马线,斑马线的宽度DE 为4米,为安全起见,规定车头距斑马线后端的水平距离CD 不得低于2米,现有一旅游车在路口遇红灯刹车停下,汽车里司机A 与斑马线前后两端的视角FAE ∠、FAD ∠的大小分别为15︒和30︒,司机距车头的水平距离BC 为0.8米,试问该旅游车停车是否符合上述安全标准?(E 、D 、C 、B 四点在平行于斑马线的同一直线上.)(参考数据:tan150.27︒≈,sin150.26cos150.97︒≈︒︒≈ 1.73≈ 1.41)≈【解答】解:15FAE ∠=︒,30FAD ∠=︒,15EAD ∴∠=︒, //AF BE ,15AED FAE ∴∠=∠=︒,30ADB FAD ∠=∠=︒, EAD AED ∴∠=∠, 4AD DE ∴==米.在直角三角形ADB 中,30ADB ∠=︒,cos30 3.46BD AD ∴=︒=≈米,3.460.8 2.662CD BD BC ∴=-≈-=>米, 故该旅游车停车符合上述安全标准.【点评】本题考查的是解直角三角形的应用,其中涉及到平行线的性质,等腰三角形的判定,锐 角三角函数的定义,根据题意找出符合条件的直角三角形,利用直角三角形的性质进 行解答是解决本题的关键.知识点3 方向角题型3 方向角方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角.如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东45°(东北方向) , 南偏东45°(东南方向), 南偏西45°(西南方向), 北偏西45°(西北方向).【例9】如图,已知B 港口位于A 观测点东偏北67︒(即67)DAB ∠=︒方向,且B 到A 观测点正东方向的距离BD 长为46海里,一艘货轮从B 港口以40海里/h 的速度沿45ABC ∠=︒的BC方向航行.现测得货轮C 处位于A 观测点东偏北82︒(即82)DAC ∠=︒方向,求此时货轮C 到AB 之间的最短距离(精确到0.1海里).(参考数据:sin670.92︒≈,cos670.39︒≈,tan67 2.36︒≈,sin820.99︒≈,cos820.14︒≈.tan827.12︒≈,sin150.26︒≈,cos150.97︒≈,tan150.27)︒≈【解答】解:过C 作CH AB ⊥于H ,在Rt ABD ∆中,46BD =,67BAD ∠=︒,4650sin 670.92BD AB ∴===︒,45ABC ∠=︒, CH BH ∴=, 82DAC ∠=︒, 15CAB ∴∠=︒, 设CH BH x ==,tan150.27CH xAH ∴==︒, 500.27xx ∴+=,解得:10.6x ≈,∴货轮C 到AB 之间的最短距离是10.6海里.【点评】此题主要考查了解直角三角形的应用-方向角问题,根据已知构造直角三角形得出BH 的长是解题关键.【例10】如图,某旅游景区为方便游客,修建了一条东西走向的木栈道AB ,在景区道路CD 的C 处测得栈道一端A 位于北偏西42︒方向,另一端B 位于北偏东45︒方向,又测得AC 为100米,求木栈道AB 的长度(结果保留整数). (参考数据:27sin 4240︒≈,3cos 424︒≈,9tan 42)10︒≈【解答】解:过C 作CE AB ⊥于E ,如图所示:则90CEA CEB ∠=∠=︒,由题意得:42ACE ∠=︒,45BCE ∠=︒,BCE ∴∆是等腰直角三角形, BE CE ∴=,sin AE ACE AC ∠=,cos CEACE AC∠=, 27sin 4210067.540AE AC ∴=⨯︒≈⨯=(米),3cos42100754CE AC =⨯︒≈⨯=(米),75BE CE ∴==米,67.575142.5143AB AE BE ∴=+=+=≈(米); 答:木栈道AB 的长度为143米.【点评】本题考查解直角三角形-方向角问题,解题的关键是学会添加常用辅助线.构造直角三 角形解决问题,属于中考常考题型.【例11】如图,在南北方向的海岸线MN 上,有A 、B 两艘巡船,现均收到故障船C 的求救信号.已知A .B 两船相距1)海里,船C 在船A 的北偏东60︒方向上,船C 在船B 的东南方向上,MN 上有一观测点D ,测得船C 正好在观测点D 的南偏东75︒方向上.已知距观测点D 处100海里范围内有暗礁,若巡逻船A 沿直线AC 去营救船C ,在去营救的途中有1.41≈, 1.73)≈【解答】解:如图,作CE AB ⊥,由题意得:45ABC ∠=︒,60BAC ∠=︒, 设AE x =海里,在Rt AEC ∆中,tan 60CE AE =︒=;在Rt BCE ∆中,BE CE =.1)AE BE x ∴+=+=, 解得:100x =. 2200AC x ==.在ACD ∆中,60DAC ∠=︒,75ADC ∠=︒,则45ACD ∠=︒. 过点D 作DF AC ⊥于点F ,设AF y =,则DF CF ==,200AC y ∴=+=,y=,解得:1)∴==≈海里,DF1)126.29>,126.29100所以巡逻船A沿直线AC航线,在去营救的途中没有触暗礁危险.【点评】本题考查了解直角三角形的应用,解题的关键是从实际问题中整理出直角三角形并选择合适的边角关系解答.第12关 解直角三角形的应用(题册部分)【课后练1】如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m .如果在坡比为41:3i =的山坡上种树,也要求株距为4m ,那么相邻两树间的坡面距离为( )A .5mB .6mC .7mD .8m【解答】解:水平距离为4m ,坡比为41:3i =, ∴铅直高度为3434m ⨯=. 根据勾股定理可得:5()m .故选:A .【课后练2】水利部门为加强防汛工作,决定对某水库大坝进行加固,大坝的横截面是梯形ABCD .如图所示,已知迎水坡面AB 的长为16米,60B ∠=︒,背水坡面CD 的长为米,加固后大坝的横截面积为梯形ABED ,CE 的长为8米. (1)已知需加固的大坝长为150米,求需要填土石方多少立方米? (2)求加固后的大坝背水坡面DE 的坡度.【解答】解:(1)分别过A 、D 作AF BC ⊥,DG BC ⊥,垂点分别为F 、G ,如图所示.在Rt ABF ∆中,16AB =米,60B ∠=︒,sin AFB AB=,∴在矩形AFGD 中,16AF ==(米),DG =米 11822DCE S CE DG ∆∴=⨯⨯=⨯⨯=(平方米)需要填方:150⨯=;(2)在直角三角形DGC 中,DC =24GC ∴=米, 32GE GC CE ∴=+=米,坡度:324i DG GE ===.【课后练3】如图,小敏同学想测量一棵大树的高度.她站在B 处仰望树顶,测得仰角为30︒,再往大树的方向前进4m ,测得仰角为60︒,已知小敏同学身高()AB 为1.6m ,则这棵树的高度为( )(结果精确到0.1m 1.73)≈.A .3.5mB .3.6mC .4.3mD .5.1m【解答】解:设CD x =,在Rt ACD ∆中,CD x =,30CAD ∠=︒, 则tan30::CD AD x AD ︒==故AD ,在Rt CED ∆中,CD x =,60CED ∠=︒, 则tan60::CD ED x ED ︒==故ED x ,由题意得,4AD ED -=,解得:x =则这棵树的高度 1.6 5.1m =+≈. 故选:D .【课后练4】如图,在电线杆上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面成60︒角,在离电线杆6米的B 处安置测角仪,在A 处测得电线杆上C 处的仰角为30︒,已知测角仪高AB 为1.5米,求拉线CE 的长(结果保留根号).【解答】解:过点A 作AH CD ⊥,垂足为H ,由题意可知四边形ABDH 为矩形,30CAH ∠=︒, 1.5AB DH ∴==,6BD AH ==, 在Rt ACH ∆中,tan CHCAH AH∠=, tan CH AH CAH ∴=∠,tan 6tan306CH AH CAH ∴=∠=︒==), 1.5DH =,1.5CD ∴=, 在Rt CDE ∆中,60CED ∠=︒,sin CDCED CE∠=,(4sin60CDCE ∴==︒(米),答:拉线CE 的长为(4+米.【课后练5】某校数学兴趣小组假期实地测量南淝河两岸互相平行的一段东西走向的河的宽度,在河的南岸边点A 处,测得河的北岸边点C 在其东北方向,然后向南走20米到达点B 处,测得点C 在点B 的北偏东30︒方向上. (1)求ACB ∠的度数;(2)求出这段河的宽度.(结果精确到1米,参考数据: 1.41≈ 1.73)【解答】解:(1)如图,延长CA 于点D ,交直线CE 于点D ,则BD CD ⊥, 90CDB ∴∠=︒,根据题意可知:45ACD ∠=︒,30BCD ∠=︒, 15ACB CAD B ∴∠=∠-∠=︒;(2)45ACD ∠=︒,30BCD ∠=︒,20AB =, ∴在Rt ACD ∆中,AD CD =,在Rt CBD ∆中,tan BD ADBCD CD AD AB∠==+,20ADAD =+, 解得27()AD m ≈.答:这段河的宽度约为27米.【课后练6】很多交通事故是由于超速行驶导致的,为集中治理超速现象,高速交警在距离高速路40米的地方设置了一个测速观察点,现测得测速点A 的西北方向有一辆小型轿车从B 处沿西向正东方向行驶,2秒钟后到达测速点A 北偏东60︒的方向上的C 处,如图.(1)求该小型轿车在测速过程中的平均行驶速度约是多少千米/时(精确到1千米/时)?(参考数据: 1.4 1.7)≈(2)我国交通法规定:小轿车在高速路行驶,时速超过限定速度10%以上不到50%的处200元罚款,扣3分:时速超过限定速度50%以上不到70%的处1500元罚款,扣12分;时速超过限定时速70%以上的处1500元罚款,扣12分.若该高速路段限速120千米/时,你认为该小轿车驾驶员会受到怎样的处罚.【解答】解:(1)过A 作AD BC ⊥于D ,由题意得,40AD m =,45BAD ∠=︒,60CAD ∠=︒,40BD AD ∴==,CD ==40BC BD CD ∴=+=+∴197/km h ≈; (2)19712064%120-=,50%64%70%<<,∴处1500元罚款,扣12分.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解直角三角形应用经典
1.如图,一架飞机在空中P 处探测到某高山山顶D 处的俯角为60°,此后飞机以300米/秒的速度沿平行于地面AB 的方向匀速飞行,飞行10秒到山顶D 的正上方C 处,此时测得飞机距地平面的垂直高度为12千米,求这座山的高(精确到0.1千米)
2.如图,水坝的横断面是梯形,背水坡AB 的坡
角∠BAD=
60,坡长AB=m 320,为加强水坝强度, 将坝底从A 处向后水平延伸到F 处,使新的背水坡 的坡角∠F= 45,求AF 的长度(结果精确到1米, 参考数据: 414.12≈,732.13≈).
3.施工队准备在一段斜坡上铺上台阶方便通行.现测得斜坡上铅垂的两
棵树间水平距离AB =4米,斜面距离BC =4.25米,斜坡总长DE =85米. (1)求坡角∠D 的度数(结果精确到1°);
(2)若这段斜坡用厚度为17c m 的长方体台阶来铺,需要铺几级台阶?
4. 在东西方向的海岸线l 上有一长为1km 的码头MN (如图),在码头西端M 的正西19.5 km 处有一观察站A .某时刻测得一艘匀速直线航行的轮船位于 A 的北偏西30°,且与A 相距40km 的B 处;经过1小时20分钟,又测得该轮船位于A 的北偏东60°,且与A 相距83km 的C 处.(1)求该轮船航行的速度(保留精确结果);
(2)如果该轮船不改变航向继续航行,那么轮船能否正
好行至码头MN 靠岸?请说明理由.
N
M 东

B
C
A
l
17cm
A
B
C
D
A B 12
P C
D G 6
5. 如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传
送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4米.
(1)求新传送带AC的长度;
(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP 是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:2≈1.41,3≈1.73,5≈2.24,6≈2.45)
7.图1为已建设封顶的16层楼房和其塔吊图,图2为其示意图,吊臂AB与地面EH平行,测得A点到楼顶D点的距离为5m,每层楼高3.5m,AE、BF、CH都垂直于地面,EF=16m,求塔吊的高CH的长.
8.在一个阳光明媚、清风徐来的周末,小明和小强一起到郊外放风筝﹒他们把风筝放飞后,将两个风筝的引线一端都固定在地面上的C处(如图).现已知风筝A的引线(线段AC)长20m,风筝B的引线(线段BC)长24m,在C处测得风筝A的仰角为60°,风筝B的仰角为45°.
(1)试通过计算,比较风筝A与风筝B谁离地面更高?
(2)求风筝A与风筝B的水平距离.
(精确到0.01 m;参考数据:sin45°≈0.707,cos45°≈0.707, tan45°=1,sin60°≈0.866,cos60°=0.5,tan60°≈1.732)
A
B
45°
60°
C E D
9. 为了缓解酒泉市区内一些主要路段交通拥挤的现状,交警队在一些主要路口设立了交通路况显示牌(如图).已知立杆AB 高度是3m ,从侧面D 点测得显示牌顶端C 点和底端B 点的仰角分别是60°和45°.求路况显示牌BC 的高度.
10.如图所示,小明在家里楼顶上的点A 处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A 处看电梯楼顶部点B 处的仰角为60°,在点A 处看这栋电梯楼底部点C 处的俯角为45°,两栋楼之间的距离为30m ,则电梯楼的高BC 为______米(精确到0.1).(参考数据:414.12≈
732.13≈)82.0
11. 2009年首届中国国际航空体育节在莱芜举办,期间在市政府广场进行了热气球飞行表
演.如图,有一热气球到达离地面高度为36米的A 处时,仪器显示正前方一高楼顶部B 的仰角是37°,底部C 的俯角是60°.为了安全飞越高楼,气球应至少再上升多少米?(结果精确到0.1米) (参考,75.037tan ,80.037cos ,60.037sin ≈︒≈︒≈︒73.13≈)
12. 摩天轮是嘉峪关市的标志性景观之一.某校数学兴趣小组要测量摩天轮的高度.如图,他们在C 处测得摩天轮的最高点A 的仰角为45︒,再往摩天轮的方向前进50 m 至D 处,测得最高点A 的仰角为60︒.求该兴趣小组测得的摩天轮的高度AB (3 1.732≈,结果保留整数).
A
B
C D
45°
60°
B
A
C
13.小明想知道西汉胜迹中心湖中两个小亭A 、B 之间的距离,他在与小亭A 、B 位于同一水平面且东西走向的湖边小道l 上某一观测点M 处,测得亭A 在点M 的北偏东30°, 亭B 在点M 的北偏东60°,当小明由点M 沿小道l 向东走60米时,到达点N 处,此时测得亭A 恰好位于点N 的正北方向,继续向东走30米时到达点Q 处,此时亭B 恰好位于点Q 的正北方向,根据以上测量数据,请你帮助小明计算湖中两个小亭A 、B 之间的距离.
14. 小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数)
(参考数据:o o o o 33711
sin37tan37sin 48tan48541010
≈≈≈≈,,,)
15.如图,某天然气公司的主输气管道从A 市的东偏北30°方向直线延伸,测绘员在A 处测得要安装天然气的M 小区在A 市东偏北60°方向,测绘员沿主输气管道步行2000米到达C 处,测得小区M 位于C 的北偏西60°方向,请你在主输气管道上寻找支管道连接点N ,使到该小区铺设的管道最短,并求AN 的长.
B
37° 48° D
C
A。

相关文档
最新文档