双曲线的渐近线方程PPT课件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0
,且过点(2,-6),其标准方程
• ______________

x2 y
4、知双曲线
1 3m
的离心率是方程2x211x50的根,则
ห้องสมุดไป่ตู้
• 实数m的值是_____
• 5、知 F 1 F 2 为双曲线与椭圆 x2 4y2 4 的公共焦点,左焦点 F 1 到
• 双曲线渐近线距离为 2 ,求(1)双曲线标准方程 (2)设P是双曲
3、求焦距26,过点(0,-12)的双曲线标准方程
-
5
四、提高 1、求 a 2 3 ,且与双曲线 x 2 y 2 1有公共焦点的双曲线标准方程
16 4
2、求焦点在x轴上,渐近线方程为 y 3 x ,且过点N(2,1)的双曲线
标准方程
4
3、知双曲线与椭圆
x2 y2 1 9 25
有公共焦点 F 1 , F
求双曲线的标准方程、渐近线方程
2
,其
离心率和
14 5
-
6
五、综合练习
• 1、双曲线 9x216y2144的实轴长_____,虚轴长___,焦点______,渐 • • 近线方程_____
• 2、知双曲线的离心率 2 ,过点P(-3,5),其标准方程______.

x 3、双曲线的渐近线方程 2
y 3
顶点、离心率、渐近线
-
1
一、知识回顾
• 1、椭圆的定义、标准方程、几何性质?
• 2、双曲线的定义、标准方程?

3、知椭圆
y2 36
x2 16
1 ,则其长轴长_____,短轴长___,
• 焦点坐标______,顶点坐标____,离心率____.

4、双曲线
x2 5
y2 4
1
的焦点坐标_______,焦距______.
• 练:求下列双曲线的实轴、虚轴、顶点、离心率、渐近线
• •
(1)
x2 y2 1 81 9
(2) y2 4x2 1
-
4
例2:求实轴长12,离心率 2 ,焦点在横轴上的双曲线标准方程
练: 1、求焦距10,离心率 e
5
,焦点在y轴上的双曲线
3
2、知等轴双曲线的一个焦点(-6,0),求标准方程和渐近线
-
7
• 线与椭圆在第一象限的交点,求 cosF1PF2 的值
-
8
放映结束 感谢各位批评指导!
谢 谢!
让我们共同进步
-
9
• 5、双曲线 x 2 y 2 1 上一点P到左焦点距离18,则点P到
64 36
• 右焦点距离_____.
-
2
二、几何性质
• 1、对称性: • 2、顶点: • 实轴 • 3、离心率: • 4、渐近线:
虚轴
• 等轴双曲线:
-
x
y

F1
0 F2
Y F1
M
0
X
F2 3
三、应用
• 例1、求双曲线 5x24y2 20的顶点、实轴、虚轴、离心率、 渐近线
相关文档
最新文档