新浙教版八年级下册数学知识点大全
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新浙教版八年级下册数学知识点汇编
第一章二次根式
1.像3-b ,s 2,5,4+•a a 这样表示算术平方根的代数式叫做二次根式。
2.二次根式根号内字母的取值范围必须满足被开方数大于或等于零。
3.二次根式的性质1: ()2a =a ()0≥a
二次根式的性质2:
2a =a =)0(≥a a 或a -(a <0)
4.像7,5,14,s 2,a 这样,在根号内不含分母,不含开得尽方的因数或因式,这样的二次根式我们就说它是最简二次根式。二次根式的化简结果应为最简二次根式。
5.ab =a ×b (0≥a , 0≥b )
6.b a =b
a (0≥a , b>0) 7.a ×
b =ab (0≥a ,0≥b ) 8.
b a =b a (0≥a ,b>0 ) 9.223不能写成22
11 10.二次根式运算的结果,如果能够化简,那么应把它化简为最简二次根式。
11.二次根式的加减法:先把每一个二次根式化简,再把相同的二次根式像合并同类项那样合并。
12.分母有理化分两种情形:对于单个的二次根式,分子分母都乘以这个二次根式。对于含有二次根式的多项式,把它配成平方差式。
第二章一元二次方程
1.两边都是整式,只含有一个未知数,并且未知数的最高次数是2次的方程叫做一元二次方程。
2.判断一个方程是不是一元二次方程,必须在化简后判断。
3.能使一元二次方程两边相等的未知数的值叫做一元二次方程的解(或根)。+bx+c=0(a、b、c为常数,a≠0)称为一元二次方程的一般形式,其中ax2,bx,c分别称为二次项、一次项和常数项,a,b分别称为二次项系数和一次项系数。
5.确定一元二次方程的各项及其系数必须在一般形式中进行。
6.解一元二次方程的步骤:
①化为右边为0的方程;
②左边因式分解;
③化为两个一元一次方程;
④得解。
7.用因式分解法求解的一元二次方程形式为:右边为0,左边是一个可以因式分解的整式。
8.利用因式分解解一元二次方程的方法叫做因式分解法,这种方法把解一个一元二次方程转化为解两个一元一次方程。
9.对于形如x2=a(a≥0)的方程,根据平方根的定义。可得x1=a,x2=-a。这种解一元二次方程的方法叫做开平方法。
10.把一元二次方程的左边配成一个完全平方式,右边为一个非负常数,然后用开平方法求解,这种解一元二次方程的方法叫做配方法。
11.配方法求解一元二次方程的步骤:
①化二次项系数为1;
②转化为常数项在右边的形式;
③两边同加一次项系数一半的平方;
④左边配成完全平方式,右边合并化简;
⑤用开平方法求解。
12.对于一元二次方程ax2+bx+c=0(a≠0),如果b2-4ac≥0,那么方程的两个
b-,这个公式叫做一元二次方程的求根公式。利用求根公式,我们根为x=
a2
可以由一元二次方程的系数a,b,c的值,直接求得方程的根,这种解一元二次方程的方法叫做公式法。
13.方程的根的情况由代数式b2-4ac的值决定,b2-4ac叫做一元二次方程的根的判别式。
-4ac的值与一元二次方程的跟的关系是:
b2-4ac>0 ⇔方程ax2+bx+c=0(a≠0)有两个不相等的实数根;
b2-4ac=0 ⇔方程ax2+bx+c=0(a≠0)有两个相等的实数根;
b2-4ac<0⇔方程ax2+bx+c=0(a≠0)没有实数根。
15.列方程解应用题的基本步骤:
Ⅰ理解问题
①审题;
②找出题中各类量;
③找出题中的数量关系;
Ⅱ制定计划
④找出列方程所用的等量关系;
⑤设元;
⑥用所设字母表示相关量;
Ⅲ执行计划
⑦列方程;
⑧解方程;
Ⅳ回顾
⑨检验是否符合方程,是否符合实际意义;
⑩写答案
常见的应用题:双变应用题;增长率应用题;面积、体积应用题
第三章数据分析初步
1.如果有n个数X1,X2,…,Xn,我们把1/n (X1+X2+…Xn)叫做这n个数的算术平均数,简称平均数。
2.一组数据按从小到大(或从大到小)的顺序排列,位于最中间的一个数据(当数据个数为奇数时)或最中间两个数据(当数据个数为偶数时)的平均数叫做这组数据的中位数。
3.一组数据中出现次数最多的那个数据,叫做这组数据的众数。
4.各数据与平均数的差的平方的平均数
S2,叫做这组数据的方差,方差越大,说明
数据的波动越大。5.方差的算数平方根S=,叫做这组数据的标准差。?
第四章平行四边形
1.四边形的内角和等于360°。
边形的内角和为(n-2)180°(n≥3)
3.任何多边形的外角和为360°。格点多边形面积=a+b/2-1
4.从n边形的一个顶点出发,最多能画(n-3)条对角线,这些对角线能把n 边形分成(n-2)个三角形。共n(n-3)/2条对角线
5.夹在两条平行线间的平行线段相等。
6.夹在两条平行线间的垂线段相等。
7.两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离。
8.两平行线间的距离处处相等。
9.如果一个图形绕着一个点旋转180°后,所得到的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做对称中心。
10.对称中心平分连结两个对称点的线段。
11.如果一个图形绕着一个点O旋转180°后,能够和另外一个图形互相重合,我们就称这两个图形关于点O成中心对称。
12.在直角坐标系中,点A(x,y)与点B(–x,‐y)关于原点成中心对称。
13.连结三角形两边中点的线段叫做三角形的中位线。
14.三角形的中位线平行于第三边,并且等于第三边的一半。
15.假设命题不成立,从这样的假设出发,经过推理得出和已知条件矛盾,或者与定义、基本事实、定理等矛盾,从而得出假设命题不成立是错误的,即所求证的命题正确,这种证明的方法叫做反证法。
16.在同一平面内,如果两条直线都和第三条直线平行,那么这两条直线也互相平行。
17.在同一平面内,如果两条直线都和第三条直线垂直,那么这两条直线也互相平行。