浅谈描述性统计分析过程
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Frequency
Std. Dev = 48.43
Mean = 435.8
0 300.0
350.0
400.0
450.0
500.0
550.0
N = 120.00 600.0
325.0
375.0
425.0
475.0
525.0
575.0
选择反应时间
2. 用箱图 (或叫框图)反映数据的集中趋势和特异值
调 用 数 据 文 件 并 得 到 箱 图
实例演示
Z分数:从平均数为,标准差为的总体中抽取一观测值,该 观测值的Z分数是其距离总体平均值的标准差数。标准分数反映的 是一观测值与其他分数相比的相对位置。比如Z 分数为 1.5 ,则其 比平均数大 1.5 个标准差。在实际应用中 ,为了避免小数的不便, 可以对标准分数进行线性转换:
T=10Z+50
200
300
400
500
600
700
Observed Value
描述性统计,是心理学研究、教育研究中资料分析的基 本内容和进一步分析的基础。常用的除上述介绍之外,还包 括交叉列联表分析,我们将交叉列联表的分析转入非参数检 验部分讨论。
本章要求熟练掌握的内容包括:平均数、标准差、中位 数、众数、频数分布、标准分数 (Z)及其线性转换、峰度计 算、偏度计算、奇异值和极值检测、方差齐性检验等方面的 SPSS过程;准确理解直方图和箱图的各种特征及其所代表的 含义。
频数 (Frequency) 就是一个变量的各个观测值出现的次 数。比如某班语文考试的成绩,可以统计出各分数值的人数。
峰度(Kurtosis) : 是描述某变量所有取值的分布形态陡缓 程度的统计量,而峰度对陡缓程度的度量是与正态分布进行比 较的结果。如果峰度等于 0 ,其数据分布的陡缓程度与正态分 布相同 ;峰度大于 0,其数据分布比正态分布更陡峭;峰度小 于0,其数据分布比正态分布更平坦。
Normal Q-Q Plot of 选择反应时间
3
2
1
0
-1
-2பைடு நூலகம்
-3
100
200
300
Observed Value
Dev from Normal
Detrended Normal Q-Q Plot of 选择反应时间
1.5
1.0
.5
0.0
400 -.5
500
600
700
-1.0
-1.5
-2.0
100
1. 用直方图反映数据的分布直观形式;
2. 用箱图 (或叫框图)反映数据的集中趋势和奇异值;
3. 用Levene检验考察多组间方差是否齐性;
4. 用Q-Q概率图检验数据是否正态分布或接近正态分布。
Histogram
30
20
10
直方图:是一种频数分布图, 它 反映处在某一观测值范围内的 个案数。图中每个直方条下部 的中点坐标是该观测值范围的 中点、直方条的宽度代表该观 测值范围、直方条的高度代表 该观测值范围内的个案数或人 数比例。
第二章 描述性统计分析过程
所谓描述性统计分析,就是对一组数据的各种特征进行 分析,以便于描述测量样本的各种特征及其所代表的总体的 特征。描述性统计分析的项目很多,常用的如平均数、标准 差、中位数、频数分布、正态或偏态程度等等。这些分析是 复杂统计分析的基础。
严格地讲,在方差和标准差的计算中,分母应取n-1,因为 数据变异的自由度是n-1。但在大样本情况下,使用n和n-1差别 不大。
比如某人在艾森克人格问卷的测量中 ,其精神质得分比同年 龄人的平均成绩高2.0个标准差,则其换算后的标准分数为 70 分 ; 如果另一人的测试分数正好等于平均数,则其标准分数为50。
探索分析是对一组或多组数据的总体分布特征进行分析,以 考察其中有无奇异值、极大或极小值等;考察各组数据或全部 数据是不是正态或接近于正态分布;探索多组数据之间的方差 是否齐性,以确定是否可以采用某种统计分析技术对数据进行 检验等等。我们这里介绍:
4. 用Q-Q概率图检验数据是否正态分布
可以用正态概率Q-Q图和离散正态概率Q-Q 图检验观测值的 分布是否是或接近于正态分布。正态概率图是由观测值与按正态 分布的预期值作出来的散点图 ,如果实际值为正态分布 ,则其 与预期值具有线性对应关系,散点图回归一条斜线,该斜线是正 态分布的标准线,散点图组成的回归线越接近于标准线,表示实 际观测数据越接近正态分布;如果以观测值、其与正态分布期望 值的离差值做散点图,则当散点近似随机地落在过原点的中间横 线周围时,数据分布接近于正态分布。
选择反应时间
700
27
20
600
55
500
400
300
36
49
200
73
100
N=
30
30
30
30
1
2
3
4
不同颜色的灯光刺激
批注 : 箱图可以直观地反映 一组观测值的集中趋势、离 散趋势、不正常观测值(奇 异值和极值,均可被排除后 重新分析)。左图中箱图的 高度代表了25% 位数到 75 % 位数的距离;箱图中的 粗线代表中位数;箱图上下 中央的垂直线叫触须线,触 须线的上下截止线分别对应 于观测值的最大值和最小值; 用 O标记的是奇异值(与框 边距离超出框高1.5倍)、用
*标记的为极大值或极小 值(与框边距离超出框高3 倍) 。
3. 用Levene检验方差是否齐性
方差齐性检验是统计分析中的一种常见过程,它是从样本方 差以至样本各自所代表的总体方差是否相同而判断两个样本同质 性(homogeneity) 的方法。简单地说,方差齐性检验就是检验各 个方差是否存在显著性差异。一般采用Levene方法:先将各组观 测值均转换为离差绝对值,然后对各组离差绝对值进行方差分析, 如果方差分析的结果中p> 0.05,则认为方差齐性(即方差具有相 同性);方差分析的结果中p<0.05,则认为方差不齐性(即方差 具有不同质性)。
实例演示
偏度( Skewness ) 是描述数据分布对称性的统计量 ,而 且也是与正态分布的对称性相比较而得到的。如果分布的偏度 等于0 ,则其数据分布的对称性与正态分布相同 ;如果偏度大 于0,则其分布为正偏或右偏,即在峰的右边有大的偏差值,使 右边出现一个拖得较远的尾巴;如果偏度小于 0,则为负偏或 左偏,即在峰的左边有大的偏差值,使左边出现一个拖得较远 的尾巴。
练习题
1. 表2-lx-1所示的数据是某中学初二5班学生的期末考试成绩。