变量间的相关关系
两个变量间的相关关系

从上表发现,对某个人不一定有此规律,但对很多个体放 在一起,就体现出“人体脂肪随年龄增长而增加”
这一规律.而表中各年龄对应的脂肪数是这个年龄人群的样 本平均数.我们也可以对它们作统计图、表,对这两个变量有 一个直观上的印象和判断.
下面我们以年龄为横轴, 脂肪含量为纵轴建立直 40 角坐标系,作出各个点,35 称该图为散点图。
5
年龄
0 20 25 30 35 40 45 50 55 60 65
方案3、如果多取几对点,确定多条直线,再求出 这些直线的斜率和截距的平均值作为回归 直线的斜率和截距。而得回归方程。 如图
我们还可以找到
更多的方法,但 40 这些方法都可行 35
吗?科学吗?
30
25
准确吗?怎样的 20
方法是最好的? 15 10
n
n
y (xi x)(yi y)
xi
nxy
i
b i1 n (xi x)2
i1 n
xi2
n
2
x
,
i1
i1
a ybx
以上公式的推导较复杂,故不作推导,但它的原 理较为简单:即各点到该直线的距离的平方和最 小,这一方法叫最小二乘法。
求线性回归方程
例1:观察两相关变量得如下表:
x -1 -2 -3 -4 -5 5 3 4 2 1
的距离,再移动直线,到达一个使距离的
和最小时,测出它的斜率和截距,得回归
方程。
脂肪含量
40
如图 :
35
30
25
20
15
10
5
年龄
0 20 25 30 35 40 45 50 55 60 65
变量之间的关系有哪三种

变量之间的关系有哪三种
变量之间的关系可用表格,函数关系式,图象法三种方法表示。
变量之间的关系是相关关系。
相关关系是客观现象存在的一种非确定的相互依存关系,即自变量的每一个取值,因变量由于受随机因素影响,与其所对应的数值是非确定性的。
相关分析中的自变量和因变量没有严格的区别,可以互换。
变量相关关系:当一个或几个相互联系的变量取一定的数值时,与之相对应的另一变量的值虽然不确定,但它仍按某种规律在一定的范围内变化。
变量间的这种相互关系,称为具有不确定性的相关关系。
当一个或几个变量取一定的值时,另一个变量有确定值与之相对应,我们称这种关系为确定性的函数关系。
马赫的要素一元论把科学和认识所及的世界归结为要素的复合,又把要素解释为感觉,认为这个世界以人的感觉为转移。
他指出,人的感觉是相同的,对于同一对象,不同的人乃至同一个人在不同的情况下会有不同的感觉,因此,世界上事物的存在只是相对的。
变量间的相关关系及独立性检验

判断两个变量之间是否存在非线性相关关系可以通过绘制散点图或计算非 线性相关系数等方法来进行。
相关系数及其计算
相关系数是衡量两个变量之间相关关系的统计量,其计算方法有多种,其中最常用的是皮尔逊相关系 数和斯皮尔曼秩相关系数。
皮尔逊相关系数使用积差法计算,其值介于-1和1之间,用于衡量线性相关关系的强度和方向。斯皮尔 曼秩相关系数则用于衡量等级数据之间的相关性。
变量间的相关关系及独立性检验
目录
• 变量间的相关关系 • 变量间的独立性检验 • 变量间的因果关系推断 • 相关性与独立性的区别与联系
01
变量间的相关关系
线性相关关系
线性相关关系是指两个或多个变量之间存在一种可以用直 线表示的依赖关系。当一个变量发生变化时,另一个变量 也会随之发生相应的变化。
独立性检验
常用于验证两个变量之间是否存在直 接的因果关系,例如在经济学中检验 货币政策是否对经济增长有影响,或 者在心理学中检验某种疗法是否对心 理健康有影响。
THANKS。
因果关系推断的方法
基于理论的推断
01
根据相关学科的理论和知识,推断变量之间的因果关
系。
基于相关关系的推断
02 通过分析变量之间的相关系数、相关图等,推断变量之间的因果关系。基于实验的推断03
通过实验的方式,控制其他变量的影响,观察单一变
量的变化对结果变量的影响,从而推断因果关系。
因果关系推断的局限性
相关性与独立性的联系
相关性和独立性是描述变量间关系的 两种不同角度,有时一个变量可能既 与另一个变量相关,又与第三个变量 独立。
在某些情况下,相关性和独立性可能 相互转化,例如当引入第三个变量时 ,两个原本独立的变量可能变得相关 。
变量之间的相关关系

在直角坐标系中,任何一条直线都有相 应的方程,回归直线的方程称为回归方程.对 一组具有线性相关关系的样本数据,如果能 够求出它的回归方程,那么我们就可以比较 具体、清楚地了解两个相关变量的内在联系, 并根据回归方程对总体进行估计.
知识探究(四) :回归方程
思考 1: 回归直线与散点图中各点的位置应具 有怎样的关系?
相关关系是进行回归分析的基础,同时, 也是散点图的基础。
知识探究(二):散点图 【问题】在一次对人体脂肪含量和年龄 关系的研究中,研究人员获得了一组样 本数据:
年龄 23
脂肪 9.5 年龄 53
27
39
41
45
49
50
17.8 21.2 25.9 27.5 26.3 28.2 54 56 57 58 60 61
知识探究(一):变量之间的相关关系 思考1:考察下列问题中两个变量之间的关系: (1)商品销售收入与广告支出经费; (2)粮食产量与施肥量; (3)人体内的脂肪含量与年龄. 这些问题中两个变量之间的关系是函数关 系吗? 均不是!
上述两个变量之间的关系是一种非确定 性关系,称之为相关关系,那么相关关 系的含义如何?
3.在下列各变量之间的关系中: ①汽车的重量和百公里耗油量.②正n边形的边数与内角度数之 和.③一块农田的小麦产量与施肥量.④家庭的经济条件与学生 的学习成绩.
是相关关系的有(
(A)①②
)
(C)②③ (D)③④
(B)①③
二、填空题(每题5分,共10分)
4.(2010·广东高考)某市居民2005~2009年家庭平均收入
脂肪 29.6 30.2 31.4 30.8 33.5 35.2 34.6
其中各年龄对应的脂肪数据是这个年龄 人群脂肪含量的样本平均数.
高中数学知识点:变量之间的相关关系

高中数学知识点:变量之间的相关关系变量与变量之间存在着两种关系:一种是函数关系,另一种是相关关系。
1.函数关系
函数关系是一种确定性关系,如y=kx+b,变量x取的每一个值,y 都有唯一确定的值和它相对应。
2.相关关系
变量间确定存在关系,但又不具备函数关系所要求的确定性
相关关系分为两种:
正相关和负相关
要点诠释:
对相关关系的理解应当注意以下几点:
(1)相关关系与函数关系不同.因为函数关系是一种非常确定的关系,而相关关系是一种非确定性关系,即相关关系是非随机变量与随机变量之间的关系.而函数关系可以看成是两个非随机变量之间的关系.因此,不能把相关关系等同于函数关系.
(2)函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.例如,有人发现,对于在校儿童,鞋的大小与阅读能力有很强的相关关系.然而,学会新词并不能使脚变大,而是涉及到第三个因素——年龄.当儿童长大一些,他们的阅读能力会提高而且由于长大脚也变大.
(3)函数关系与相关关系之间有着密切联系,在一定的条件下
可以相互转化.例如正方形面积S与其边长x间虽然是一种确定性关系,但在每次测量边长时,由于测量误差等原因,其数值大小又表现出一种随机性.而对于具有线性关系的两个变量来说,当求得其回归直线后,我们又可以用一种确定性的关系对这两个变量间的关系进行估计.
3.散点图
将收集到的两个变量的统计数据分别作为横、纵坐标,在直角坐标系中描点,这样的图叫做散点图。
通过散点图可初步判断两个变量之间是否具有相关关系,她反映了各数据的密切程度。
变量之间的相关关系

变量间的相互关系是指两个或两个以上变量之间相联系的性质,主要有两种类型。
(1)因果关系:是指在两个有关系的变量中,因为一个变量的变化而引起另一个变量的变化。
应注意三点:第一,在两个变量中,只能一个是因,另一个是果,而不能互为因果。
第二,原因变量一定出现在结果变量之前。
第三,两者之间的变化关系是必然的,否则就不是因果关系。
社会现象的因果关系十分复杂,有一因一果、一果多因、一因多果以及多因多果等。
在社会调查研究中,调查者应注意区别事物之间因果关系的类型,对一果多因、一因多果以及多因多果等复杂的因果关系要仔细分析,逐一明确,这样才能清楚地认识社会现象和事物发展变化的规律。
(2)相关关系:是指变量的变化之间存在着非因果关系的一定联系和一定关系。
社会调查研究运用相关这一概念,其目的是了解社会现象和事物之间关系的密切程度,从中探寻其规律性。
变量之间的相关关系从变化的方向来看,可以分为正相关与负相关;从变化的表现形式来看,可以分为直线相关和曲线相关。
当一个变量的数值发生变化时,另一个变量的数值也随之发生同方向的变化,这种相关关系是正相关,也叫直接相关。
当一个变量的数值发生变化时,另一个变量的数值也随之发生反方向的变化,这种相关关系是负相关,也叫逆相关。
在社会调查研究中,掌握变量关系的正相关与负相关的概念,有利于了解社会现象和事物的发展方向和趋势。
当一个变量的数值发生变动(增加或减少),另一个变量的数值随着发生大致均等的变动时,这种关系称为直线相关;当一个变量的数值发生变动,另一个变量的数值随之发生不均等的变动时,这种关系称为曲线相关。
变量间的相关关系教案

变量间的相关关系优秀教案第一章:引言1.1 教学目标让学生理解变量间的相关关系概念让学生掌握绘制散点图的方法让学生了解相关系数的概念1.2 教学内容变量间的相关关系定义散点图的绘制方法相关系数的概念及计算方法1.3 教学过程1.3.1 导入通过实际例子引入变量间的相关关系概念,如身高与体重的关系。
1.3.2 新课导入讲解变量间的相关关系定义,解释相关系数的概念。
演示如何绘制散点图,让学生跟随操作。
1.3.3 案例分析提供一些实际数据,让学生绘制散点图,并计算相关系数。
1.3.4 练习与讨论让学生回答相关问题,巩固所学内容。
引导学生讨论实际问题中的变量间相关关系。
1.4 教学评价通过课堂练习和讨论,评估学生对变量间的相关关系的理解和应用能力。
第二章:线性相关关系2.1 教学目标让学生理解线性相关关系的概念让学生掌握线性相关关系的判断方法让学生学会绘制线性回归直线2.2 教学内容线性相关关系的定义线性相关关系的判断方法线性回归直线的绘制方法2.3 教学过程2.3.1 导入通过实际例子引入线性相关关系概念,如房价与面积的关系。
2.3.2 新课导入讲解线性相关关系的定义,解释线性回归直线的概念。
演示如何判断线性相关关系,让学生跟随操作。
2.3.3 案例分析提供一些实际数据,让学生判断线性相关关系,并绘制线性回归直线。
2.3.4 练习与讨论让学生回答相关问题,巩固所学内容。
引导学生讨论实际问题中的线性相关关系。
2.4 教学评价第三章:非线性相关关系3.1 教学目标让学生理解非线性相关关系的概念让学生掌握非线性相关关系的判断方法让学生学会绘制非线性回归直线3.2 教学内容非线性相关关系的定义非线性相关关系的判断方法非线性回归直线的绘制方法3.3 教学过程3.3.1 导入通过实际例子引入非线性相关关系概念,如温度与冰点的关系。
3.3.2 新课导入讲解非线性相关关系的定义,解释非线性回归直线的概念。
演示如何判断非线性相关关系,让学生跟随操作。
变量之间的相互关系

变量之间的相互关系一、引言在研究数据科学、统计学、经济学以及其他众多领域时,变量间的相互关系是不可或缺的议题。
这种关系描述了不同变量如何互相影响,从而帮助我们理解和预测现象。
本文将深入探讨变量间相互关系的概念、类型和测量方法。
二、变量间的关系类型1.因果关系:如果一个变量(原因)的变化导致了另一个变量(结果)的变化,则存在因果关系。
这种关系是有方向的,原因必定在前,结果只能在后。
2.相关关系:当两个或多个变量同时发生变化,但不表示因果方向时,我们称之为相关关系。
相关关系可以是正相关(一个变量增加时,另一个也增加)或负相关(一个变量增加时,另一个减少)。
3.函数关系:当一个变量(自变量)完全确定另一个变量(因变量)的值时,我们称之为函数关系。
这种情况下,因变量的变化完全依赖于自变量的变化。
三、测量变量间关系强度的方法1.皮尔逊相关系数:衡量两个连续变量的线性相关程度,取值范围在-1到1之间。
接近1表示强正相关,接近-1表示强负相关,接近0表示无相关。
2.斯皮尔曼秩相关系数:与皮尔逊相关系数类似,但适用于非参数数据。
它衡量的是两个连续变量之间的秩次相关性。
3.偏相关系数:当存在多个变量影响因变量时,偏相关系数可以用来衡量特定自变量与因变量之间的线性关系。
四、应用场景理解并测量变量间的相互关系在众多实际场景中都有应用价值。
例如,在市场营销中,通过分析消费者行为、购买历史等变量与购买决策之间的相互关系,可以更有效地制定营销策略。
在医学研究中,了解疾病症状、患者生理指标等变量之间的关系,有助于疾病的诊断和治疗。
五、结论理解并测量变量间的相互关系是数据科学和统计学中的重要概念。
通过明确关系的类型和测量方法,我们可以更好地理解和预测现象,从而在各个领域中做出更有效的决策。
随着技术的发展和数据的丰富,变量间相互关系的研究将继续深化和拓展,为我们提供更多的洞见和可能。
变量间的相关关系

变量间的相关关系 【知识梳理】(1)相关关系:当自变量的取值一定时,因变量的取值带有 ,那么这两个变量之间的关系叫做 ,如果一个变量的值由小变大时,另一个变量的值也由小到大,这种相关称为 ,反之,如果一个变量的值由小变大,另一个变量的值由大到小,这种关系为 (2)线性相关关系、回归直线如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有 关系,这条直线叫做回归直线. (3)线性回归方程方程y=ˆbx+ˆa 是两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的线性回归方程,其中ˆb , ˆa 是待定参数.ˆˆb a ⎧=⎪⎨=⎪⎩【基础练习】1.(2009·海南高考题)对变量x ,y 有观测数据(x 1,y 1)(i =1,2,…,10),得散点图1;对变量u ,v 有观测数据(u 1,v 1)(i =1,2,…,10),得散点图2.由这两个散点图可以判断( ) A .变量x 与y 正相关,u 与v 正相关 B .变量x 与y 正相关,u 与v 负相关 C .变量x 与y 负相关,u 与v 正相关 D .变量x 与y 负相关,u 与v 负相关2.已知关于某设备的使用年限x 与所支出的维修费用y(万元),有如下统计资料:若y 对x 呈线性相关关系,则回归直线方程ˆy=ˆb x +ˆa 表示的直线一定过定点________.3. (原创题)经研究表明,学生的体重y(单位:kg)与身高x(单位:cm)有很强的线性相关关系,其回归方程为y=0.75x-68.2,如果一个学生的身高为170 cm ,则他的体重( ) A. 一定是59.3 kg B. 一定大于59.3 kg C. 有很大的可能性在59.3 kg 左右 D. 一定小于59.3 kg 【互动探究】【例1】(1)如图是两个变量统计数据的散点图,判断两个变量之间是否具有相关关系?画出散点图,并判断它们是否有相关关系【例2】 三点(3,10),(7,20),(11,24)的回归方程是( )A.y ∧=-5.75+1.75xB.y ∧=1.75x +5.75C.y ∧=-1.75x +5.75 D.y ∧=-1.75x -5.75练习:一家保险公司调查其总公司营业部的加班程度,收集了5周中每周加班工作时间y (小时)与签发新保单数目x 的数据如下表:【例3】(2007·广东卷)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)(1)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y =ˆbx +ˆa ; (2)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:3×2.5+4×3+5×4+6×4.5=66.5)练习: (原创题)某服装厂引进新技术,其生产服装的产量x (百件)与单位成本y (元)满足回归直线方程y =149.36-16.2x ,则以下说法正确的是( ) A. 产量每增加100件,单位成本下降16.2元 B. 产量每减少100件,单位成本上升149.36元 C. 产量每增加100件,单位成本上升16.2元 D. 产量每减少100件,单位成本下降16.2元【当堂检测】1.观察下列散点图,则①正相关;②负相关;③不相关.它们的排列顺序与图形相对应的是( ) A .a —①,b -②,c -③ B .a -②,b -③,c -①C .a -②,b -①,c -③D .a -①,b -③,c -② 2.(2010·湖南,3)某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是( )A.y ∧=-10x +200 B.y ∧=10x +200 C.y ∧=-10x -200 D.y ∧=10x -200 3.设有一线性回归方程为y =2-1.5x ,则变量x 增加一个单位时,y 平均减少________个单位. 4.已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的回归方程是( ) A.y ^=1.23x +4 B.y ^=1.23x +5 C.y ^=1.23x +0.08D.y ^=0.08x +1.235.若施化肥量x kg 与水稻产量y kg 在一定范围内线性相关,若回归方程为y ^=5x +250.当施化肥量为80 kg 时,预计水稻的产量为________.6. 实验测得4组(x,y )的值为(1,2),(2,3),(3,4),(4,5),则y 与x 之间的回归直线方程为 ( ) A. y =x+1B. y =x+2C. y =2x+1D. y =x-17.具有线性相关关系的两个变量满足如下关系:A. y =0.56x +997.4B. y =0.63x -231.2C. y =50.2x +501.4D. y =60.4x +400.7 8. 一般来说,一个人的脚越长,他的身高就越高.现对10名成年人的脚长x 与身高y 进行测量,得如下数据(单位:作出散点图后,发现散点在一条直线附近.经计算得到一些数据:x =24.5,y =171.5,()()101iii x x y y =--=∑577.5, ()2101ii x x =-∑=82.5.某刑侦人员在某案发现场发现一对裸脚印,量得每个脚印长26.5 cm ,请你估计案发嫌疑人的身高为 cm.。
两个变量间相关关系的举例

两个变量间相关关系的举例相关关系是指两个变量之间的变化是否存在某种联系或者依赖。
在统计学中,我们可以通过计算相关系数来度量两个变量之间的相关程度。
下面,我将为你举例说明两个变量间的相关关系。
举例一:首先,我们来看身高和体重之间的相关关系。
身高和体重是人体的两个重要指标,一般来说,身高越高,体重也会相应增加。
我们可以通过一个调查统计来验证这种关系。
在调查中,我们随机选择了1000名男性被试,记录了他们的身高和体重。
通过运用统计学方法,我们计算得到了身高和体重之间的相关系数为0.8,这说明身高和体重之间存在着强正相关关系。
也就是说,身高增加会促使体重的增加。
举例二:其次,让我们来考察学习时间和考试成绩之间的相关关系。
有一种常见的观点是,学习时间越多,考试成绩也会越好。
我们可以通过一个实验证明这种关系。
我们在一所学校中随机选取了500名学生,将他们分为两组:一组进行了加强学习时间的训练,每天学习4个小时;另一组保持正常学习时间,每天学习2个小时。
在经过一段时间的训练后,我们进行了一次考试,记录了两组学生的考试成绩。
通过对比两组学生的考试成绩,我们发现加强学习时间组的平均分高于正常学习时间组,这说明学习时间和考试成绩之间存在着正相关关系。
举例三:再次,让我们来研究睡眠时间和工作效率之间的相关关系。
一般来说,充足的睡眠对于提高工作效率很重要。
为了验证这个假设,我们进行了一项睡眠实验。
我们让20名被试者进行七天的实验,在前三天,他们每晚只睡4个小时;在后四天,他们每晚睡眠时间恢复到正常的8个小时。
在每天的工作结束后,我们记录了被试者当天的工作成绩。
通过实验数据的分析,我们发现在睡眠时间缺乏的前三天,被试者的工作效率明显降低;而在恢复充足睡眠的后四天,工作效率也得到了明显的提高。
这表明睡眠时间和工作效率之间存在着正相关关系。
以上三个例子表明,两个变量之间的相关关系可以通过实验证明或者调查统计来证实。
将变量之间的相关关系研究清楚,对我们了解事物的本质以及提高效率具有重要意义。
变量间的相关关系教案

变量间的相关关系优秀教案一、教学目标:1. 让学生理解相关关系的概念,掌握相关系数的定义和计算方法。
2. 培养学生运用相关系数分析实际问题,判断变量间的关系。
3. 引导学生利用图表和数据进行推理和分析,提高学生的数据分析能力。
二、教学内容:1. 相关关系的概念和性质2. 相关系数的定义和计算方法3. 相关系数的大小与变量间关系的强度和方向4. 实际问题中的相关关系分析三、教学重点与难点:1. 重点:相关关系的概念、相关系数的定义和计算方法,相关系数的大小与变量间关系的判断。
2. 难点:相关系数计算公式的理解和应用,实际问题中的相关关系分析。
四、教学方法:1. 采用问题驱动的教学方法,引导学生通过实例认识相关关系。
2. 利用图表和数据进行分析,帮助学生理解相关系数的含义和作用。
3. 结合生活中的实际问题,培养学生运用相关系数分析和解决问题的能力。
五、教学准备:1. 准备相关关系的实例和数据,制作PPT进行展示。
2. 准备相关系数计算器,方便学生进行实践操作。
3. 准备一些实际问题,用于课堂讨论和分析。
六、教学过程:1. 引入:通过一个简单的实例,如身高和体重之间的关系,引导学生思考变量间的关系。
2. 讲解相关关系的概念和性质,解释相关系数的作用。
3. 讲解相关系数的定义和计算方法,引导学生理解相关系数的大小与变量间关系的强度和方向。
4. 进行实际问题分析,让学生运用相关系数判断变量间的关系。
5. 总结本节课的重点内容,布置课后作业。
七、课堂练习:1. 让学生使用相关系数计算器,计算给定数据集的相关系数。
2. 让学生分析实际问题中的相关关系,判断变量间的关系强度和方向。
3. 让学生解释相关系数在实际问题中的应用和意义。
八、课堂讨论:1. 引导学生讨论实际问题中的相关关系,分享彼此的想法和观点。
2. 引导学生从相关系数的角度分析实际问题,提出解决方案。
3. 鼓励学生提出问题,促进课堂互动和思考。
九、课后作业:1. 让学生完成相关关系练习题,巩固所学知识。
变量间的相关关系、统计案例

2.独立性检验思想的理解 独立性检验的思想类似于反证法,即要确定“两个变量 X 与 Y 有关 系”这一结论成立的可信度,首先假设结论不成立,即它们之间没有关 系,也就是它们是相互独立的,利用概率的乘法公式可推知, (ad-bc) nad-bc2 接近于零,也就是随机变量 K = 应该很小,如 a+bc+da+cb+d
A.y 与 x 具有正的线性相关关系 B.回归直线过样本点的中心( x , y ) C.若该大学某女生身高增加 1 cm,则其体重约增加 0.85 kg D.若该大学某女生身高为 170 cm,则可断定其体重必为 58.79 kg
【名师点评】 求样本数据的线性回归方程的步骤 第一步,计算平均数 x , y ;
2 第二步,求和i∑ x y , ∑ x ; i i =1 i=1 i n n
∑ xi- x yi- y ∑ x y -n x y =1 =1 i i i i ^= 第三步,计算b = n 2 , n 2 2 ∑ xi- x ∑ x -n x i=1 i=1 i ^= y -b ^x; a ^x+a ^. 第四步,写出回归方程^ y=b
2
由于 9.967>6.635, 所以在犯错误的概率不超过 0.01 的前提下认为该 地区的老年人是否需要帮助与性别有关.
• (3)由(2)的结论知,该地区老年人是否需 要帮助与性别有关,并且从样本数据能看 出该地区男性老年人与女性老年人中需要 帮助的比例有明显差异,因此在调查时, 先确定该地区老年人中男、女的比例,再 把老年人分成男、女两层并采用分层抽样 方法,比采用简单随机抽样方法更好.
• 考向二 回归方程的求法及回归分析 • [例2] (2013年淄博模拟)某种产品的宣传 费支出x与销售额y(单位:万元)之间有如 下对应数据:
变量之间的相关关系

变量之间的相间确实存在关系,但又不 具备函数关系所要求的确定性,若它们的关系是 带有随机性的,就说两个变量具有相关关系. 注:相关关系是一种非确定性关系. 2、散点图:从一个统计数表中,为了更清楚地 看出x与y是否有相关关系,常将x的取值作为横 坐标,将y的相应取值作为纵坐标,在直角坐标 系中描点 i i ,这样的图形叫做散 点图.
温热度饮/℃杯数-5 与当0 天4气温7的对12比表15:19 23 27 31 36 热饮杯数 156 150 132 128 130 116 104 89 93 76 54
(1)画出散点图; (2)从散点图中发现气温与热饮销售杯数之间关系的 一般规律;
变量之间的相关关系
【典型例题】 解:(1)散点图如图所示
变量之间的相关关系
【分类】
线性相关关系:
正相关:指的是两个变量有相同的变化趋势,即从 整体上来看一个变量会随着另一个变量变大而变大. 这在散点图上的反映就是散点的分布在斜率大于0的 直线附近;
40
35
30
25
20
15
10
5
0
0
10
20
30
40
50
60
70
变量之间的相关关系
【分类】
负相关:指的是两个变量有相反的变化趋势,即 从整体上来看一个变量会随着另一个变量变大而 变小,这在散点图上的反映就是散点的分布在斜 率小于0的直线附近.
1.2 1
0.8 0.6 0.4 0.2
0 0
0.1
0.2
0.3
0.4
0.5
0.6
变量之间的相关关系
【典型例题】
1、某机构曾研究温度对翻车鱼的影响,在一定温 度下,经过x单位时间,翻车鱼的存活比例为y,数 据如下: (0.10,1.00),(0.15,0.95),(0.20,0.95), (0.25,0.90),(0.30,0.85),(0.35,0.70), (0.40,0.65),(0.45,0.60),(0.50,0.55), (0.55,0.40) (1)请作出这些数据的散点图; (2)关于这两个变量的关系,你能得出什么结论?
变量间的相关关系教案

变量间的相关关系优秀教案第一章:引言1.1 课程介绍本课程旨在帮助学生理解变量间的相关关系,并学会如何进行相关性分析。
通过本章的学习,学生将能够掌握相关性概念,并了解相关性在实际应用中的重要性。
1.2 变量间的相关关系概念1.2.1 变量概念变量是研究对象的特征或属性,可以用来衡量或描述。
在本课程中,我们将关注两种类型的变量:定量变量和分类变量。
1.2.2 相关关系概念相关关系是指两个变量之间的相互关系或关联程度。
相关关系可以是正相关的,即一个变量增加时,另一个变量也增加;也可以是负相关的,即一个变量增加时,另一个变量减少。
第二章:皮尔逊相关系数2.1 皮尔逊相关系数的概念皮尔逊相关系数是衡量两个定量变量之间线性相关程度的一种统计方法。
它的取值范围在-1到1之间,当相关系数为1时,表示完全正相关;当相关系数为-1时,表示完全负相关;当相关系数为0时,表示没有相关关系。
2.2 计算皮尔逊相关系数2.2.1 数据收集收集两组定量变量的数据,并将其整理成表格形式。
2.2.2 计算步骤(1)计算两组数据的均值;(2)计算两组数据的标准差;(3)计算协方差;(4)计算皮尔逊相关系数。
2.3 应用案例通过实际案例,让学生了解如何使用皮尔逊相关系数进行相关性分析,并解释结果。
第三章:斯皮尔曼等级相关系数3.1 斯皮尔曼等级相关系数的概念斯皮尔曼等级相关系数是衡量两个变量之间单调相关程度的一种非参数方法。
它适用于非正态分布的数据或有序分类变量。
3.2 计算斯皮尔曼等级相关系数3.2.1 数据收集收集两组有序分类变量的数据,并将其整理成表格形式。
3.2.2 计算步骤(1)将数据进行等级排序;(2)计算等级差的积;(3)计算等级差的平均值;(4)计算斯皮尔曼等级相关系数。
3.3 应用案例通过实际案例,让学生了解如何使用斯皮尔曼等级相关系数进行相关性分析,并解释结果。
第四章:肯德尔等级相关系数4.1 肯德尔等级相关系数的概念肯德尔等级相关系数是衡量多于两个变量之间单调相关程度的一种非参数方法。
高中数学必修三-变量间的相关关系

变量间的相关关系知识集结知识元变量之间的相关关系知识讲解1、变量之间的相关关系两个变量之间的关系可能是确定的关系(如:函数关系),或非确定性关系.当自变量取值一定时,因变量也确定,则为确定关系;当自变量取值一定时,因变量带有随机性,这种变量之间的关系称为相关关系.相关关系是一种非确定性关系,如长方体的高与体积之间的关系就是确定的函数关系,而人的身高与体重的关系,学生的数学成绩好坏与物理成绩的关系等都是相关关系.2、线性相关和非线性相关:两个变量之间的相关关系又可分为线性相关和非线性相关,如果所有的样本点都落在某一函数曲线的附近,则变量之间具有相关关系(不确定性的关系),如果所有样本点都落在某一直线附近,那么变量之间具有线性相关关系,相关关系只说明两个变量在数量上的关系,不表明他们之间的因果关系,也可能是一种伴随关系.3、两个变量相关关系与函数关系的区别和联系(1)相同点:两者均是两个变量之间的关系.(2)不同点:函数关系是一种确定的关系,如匀速直线运动中时间t与路程s的关系,相关关系是一种非确定的关系,如一块农田的小麦产量与施肥量之间的关系,函数关系是两个随机变量之间的关系,而相关关系是非随机变量与随机变量之间的关系;函数关系式一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.例题精讲变量之间的相关关系例1.用线性回归模型求得甲、乙、丙3组不同的数据的线性相关系数分别为0.81,-0.98,0.63,其中___(填甲、乙、丙中的一个)组数据的线性相关性最强.例2.如图所示,有A,B,C,D,E,5组数据,去掉___组数据后,剩下的4组数据具有较强的线性相关关系.(请用A、B、C、D、E作答)例3.对两个变量的相关系数r,有下列说法:(1)|r|越大,相关程度越大;(2)|r|越小,相关程度越大;(3)|r|趋近于0时,没有非线性相关系数;(4)|r|越接近于1时,线性相关程度越强,其中正确的是_________.例4.下列两个变量之间的关系是相关关系的是___.①正方体的棱长和体积;②单位圆中圆心角的度数和所对弧长;③单产为常数时,土地面积和总产量;④日照时间与水稻的亩产量.两个变量的线性相关知识讲解1.散点图【知识点的知识】1.散点图的概念:在考虑两个量的关系时,为了对变量之间的关系有一个大致的了解,人们常将变量所对应的点描出来,这些点就组成了变量之间的一个图,通常称这种图为变量之间的散点图.2.曲线拟合的概念:从散点图可以看出如果变量之间存在着某种关系,这些点会有一个集中的大致趋势,这种趋势通常可以用一条光滑的曲线来近似,这种近似的过程称为曲线拟合.3.正相关和负相关:(1)正相关:对于相关关系的两个变量,如果一个变量的值由小变大时,另一个变量的值也由小变大,这种相关称为正相关,正相关时散点图的点散布在从左下角到右上角的区域内.(2)负相关:如果一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关,负相关时散点图的点散布在从左上角到右下角的区域.3、注意:画散点图的关键是以成对的一组数据,分别为此点的横、纵坐标,在平面直角坐标系中把其找出来,其横纵坐标的单位长度的选取可以不同,应考虑数据分布的特征,散点图只是形象的描述点的分布,如果点的分布大致呈一种集中趋势,则两个变量可以初步判断具有相关关系,如图中数据大致分布在一条直线附近,则表示的关系是线性相关,如果两个变量统计数据的散点图呈现如下图所示的情况,则两个变量之间不具备相关关系,例如学生的身高和学生的英语成绩就没有相关关系.4、散点图又称散点分布图,是以一个变量为横坐标,另一变量为纵坐标,利用散点(坐标点)的分布形态反映变量统计关系的一种图形.特点是能直观表现出影响因素和预测对象之间的总体关系趋势.优点是能通过直观醒目的图形方式反映变量间关系的变化形态,以便决定用何种数学表达方式来模拟变量之间的关系.散点图不仅可传递变量间关系类型的信息,也能反映变量间关系的明确程度.2.线性回归方程【概念】线性回归是利用数理统计中的回归分析,来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法之一,运用十分广泛.分析按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析.如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析.如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析.变量的相关关系中最为简单的是线性相关关系,设随机变量与变量之间存在线性相关关系,则由试验数据得到的点将散布在某一直线周围.因此,可以认为关于的回归函数的类型为线性函数.【实例解析】例:对于线性回归方程,则=解:,因为回归直线必过样本中心(),所以.故答案为:58.5.方法就是根据线性回归直线必过样本中心(),求出,代入即可求.这里面可以看出线性规划这类题解题方法比较套路化,需要熟记公式.【考点点评】这类题记住公式就可以了,也是高考中一个比较重要的点.3.最小二乘法【概念】最小二乘法(又称最小平方法)是一种数学优化技术.它通过最小化误差的平方和寻找数据的最佳函数匹配.利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小.最小二乘法还可用于曲线拟合.其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达.【例题解析】例:关于x与y有如表数据:请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程为y=0.7x+0.35.解:∵由题意知,,∴=0.7∴要求的线性回归方程是y=0.7x+0.35,故答案为:y=0.7x+0.35.集体步骤就是先做出x,y的平均数,代入的公式,利用最小二乘法做出线性回归直线的方程的系数,写出回归直线的方程,得到结果.【考点解析】最小二乘法一般在线性拟合中应用的比较多,主要是一种方法,能够熟记如何操作就可以了,剩下的就是计算要认真.例题精讲两个变量的线性相关例1.'2018年9月17日,世界公众科学素质促进大会在北京召开,国家主席习近平向大会致贺信中指出,科学技术是第一生产力,创新是引领发展的第一动力某企业积极响应国家“科技创新”的号召,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据{x i,y i)(i=1,2,3,4,5,6),如表(1)求出p的值;(2)已知变量x,y具有线性相关关系,求产品销量y(件)关于试销单价:x(百元)的线性国归方程y=bx+a(计算结果精确到整数位);(3)用表示用正确的线性回归方程得到的与x对应的产品销的估计值当销售数据(x i,y i)的残差的绝对值|y i-y|<1时,则将销售数据称为一个“有效数据”现从这6组销售数中任取2组,求抽取的2组销售数据都是“有效数据”的概率.参考公式及数据=y i=80,=1606,=91,,'例2.'某地种植常规稻α和杂交稻β,常规稻α的亩产稳定为485公斤,今年单价为3.70元/公斤,估计明年单价不变的可能性为10%,变为3.90元/公斤的可能性为70%,变为4.00的可能性为20%.统计杂交稻β的亩产数据,得到亩产的频率分布直方图如图①.统计近10年杂交稻β的单价(单位:元/公斤)与种植亩数(单位:万亩)的关系,得到的10组数据记为(x i,y i)(i=1,2,..10),并得到散点图如图②.(1)根据以上数据估计明年常规稻α的单价平均值;(2)在频率分布直方图中,各组的取值按中间值来计算,求杂交稻β的亩产平均值;以频率作为概率,预计将来三年中至少有二年,杂交稻β的亩产超过795公斤的概率;(3)①判断杂交稻β的单价y(单位:元/公斤)与种植亩数x(单位:万亩)是否线性相关?若相关,试根据以下的参考数据求出y关于x的线性回归方程;②调查得知明年此地杂交稻β的种植亩数预计为2万亩.若在常规稻α和杂交稻β中选择,明年种植哪种水稻收入更高?统计参考数据:=1.60,=2.82,(x i)(y i)=-0.52,(x i)2=0.65,附:线性回归方程=bx+a,b=.'当堂练习单选题练习1.用模型y=ce kx拟合一组数据时,为了求出回归方程,设z=lny,其变换后得到线性回归方程z=0.3x+2,则c=()A.e2B.e4C.2D.4练习2.根据最小二乘法由一组样本点(x i,y i)(其中i=1,2,…,300),求得的回归方程是=x+,则下列说法正确的是()A.至少有一个样本点落在回归直线=x+上B.若所有样本点都在回归直线=x+上,则变量间的相关系数为1C.对所有的解释变量x i(i=1,2….300).bx i+的值一定与y i有误差D.若回归直线=x+的斜率b>0,则变量x与y正相关练习3.已知一组数据点(x1,y1),(x2,y2),(x3,y3),…,(x7,y7),用最小二乘法得到其线性回归方程为,若数据x1,x2,x3,…x7的平均数为1,则=()A.2B.11C.12D.14练习4.根据如下样本数据得到的回归直线方程为=bx+a,则()A.a>0,b>0B.a>0,b<0C.a<0,b<0D.a<0,b>0练习5.下列表格所示的五个散点数据,用最小二乘法得出y与x的线性回归直线方程为,则表格中m的值应为()A.8.3B.8.2C.8.1D.8练习6.一车间为规定工时定额,需要确定加工零件所花费的时间,为此进行了4次试验,测得的数据如下根据上表可得回归方程,则实数a的值为()A.37.3B.38C.39D.39.5练习1.如图所示,有A,B,C,D,E,5组数据,去掉___组数据后,剩下的4组数据具有较强的线性相关关系.(请用A、B、C、D、E作答)练习2.有下列关系:①人的年龄与他(她)拥有的财富之间的关系;②曲线上的点与该点的坐标之间的关系;③苹果的产量与气候之间的关系;④森林中的同一种树木,其横断面直径与高度之间的关系,其中是相关关系的为_____.练习3.对两个变量的相关系数r,有下列说法:(1)|r|越大,相关程度越大;(2)|r|越小,相关程度越大;(3)|r|趋近于0时,没有非线性相关系数;(4)|r|越接近于1时,线性相关程度越强,其中正确的是_________.练习4.下列两个变量之间的关系是相关关系的是___.①正方体的棱长和体积;②单位圆中圆心角的度数和所对弧长;③单产为常数时,土地面积和总产量;④日照时间与水稻的亩产量.练习1.'2013年以来精准扶贫政策的落实,使我国扶贫工作有了新进展,贫困发生率由2012年底的10.2%下降到2018年底的1.4%,创造了人类减贫史上的中国奇迹.“贫困发生率”是指低于贫困线的人口占全体人口的比例,2012年至2018年我国贫困发生率的数据如表:(1)从表中所给的7个贫困发生率数据中心任选两个,求两个都低于5%的概率;(2)设年份代码x=t-2015,利用线性回归方程,分析2012年至2018年贫困发生率y与年份代码x的相关情况,并预测2019年贫困发生率.'练习2.'某企业为确定下一年投入某种产品的研发费用,需了解年研发费用x(单位:千万元)对年销售量y(单位:千万件)的影响,统计了近10年投入的年研发费用x i与年销售量y i(i=1,2…,10)的数据,得到散点图如图所示.(1)利用散点图判断y=a+bx和y=c∙x d(其中c,d均为大于0的常数)哪一个更适合作为年销售量y和年研发费用x的回归方程类型(只要给出判断即可,不必说明理由);(2)对数据作出如下处理,令u i=lnx i,v i=lny i,得到相关统计量的值如表:根据第(1)问的判断结果及表中数据,求y关于x的回归方程;(3)已知企业年利润z(单位:千万元)与x,y的关系为z=18y-x(其中e≈2.71828),根据第(2)问的结果判断,要使得该企业下一年的年利润最大,预计下一年应投入多少研发费用?附:对于一组数据(u1,v1),(u2,v2),…,(u n,v n),其回归直线=+的斜率和截距的最小二乘估计分别为=,=.'基于移动互联技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,带给人们新的出行体验,某共享单车运营公司的市场研究人员为了解公司的经营状况,对该公司最近六个月内的市场占有率进行了统计,设月份代码为x,市场占有率为y(%),得结果如表(1)观察数据看出,可用线性回归模型拟合y与x的关系,请用相关系数加以说明(精确到0.001):(2)求y关于x的线性回归方程,并预测该公司2019年4月份的市场占有率;(3)根据调研数据,公司决定再采购一批单车扩大市场,现有采购成本分别为1000元/辆和800元/辆的甲,乙两款车型报年限各不相同.考虑到公司的经济效益,该公司决定先对两款单车各100辆行科学模拟测试,得到两款单车使用寿命表如下经测算,平均每辆单车每年可以为公司带来收入500元,不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且用频率估计每单车使用寿命的概率,以每辆单车产生利润的期望值为决策依据.如果你是该公司的负责人,你会选择采购哪款车型?参考数据(x i)2=17.5,(y i)2=76,(x i)(y i)=35,≈36.5参考公式:相关系数r=回归方程=x中斜率和截距的最小二乘估计公式分别为=,=近期,某公交公司与银行开展云闪付乘车支付活动,吸引了众多乘客使用这种支付方式.某线路公交车准备用20天时间开展推广活动,他们组织有关工作人员,对活动的前七天使用云闪付支付的人次数据做了初步处理,设第x天使用云闪付支付的人次为y,得到如图所示的散点图.由统计图表可知,可用函数y=a∙b x拟合y与x的关系(1)求y关于x的回归方程;(2)预测推广期内第几天起使用云闪付支付的人次将超过10000人次.附:①参考数据表中v i=lgy i,=lgy i②参考公式:对于一组数据(u1,v1),(u2,v2)…,(u n,v n),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为β=,α=-β.'习近平总书记在十九大报告中指出,必须树立和践行“绿水青山就是金山银山”的生态文明发展理念,某城市选用某种植物进行绿化,设其中一株幼苗从观察之日起,第x的高度为ycm,测得一些数据图如下表所示作出这组数的散点图如图.(1)请根据散点图判断,y=ax+b与y=c+d中哪一个更适宜作为幼苗高度y关于时间x的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程,并预测第144天这株幼苗的高度(结果保留1位小数)附:=,参考数据:'某老小区建成时间较早,没有集中供暖,随着人们生活水平的日益提高热力公司决定在此小区加装暖气该小区的物业公司统计了近五年(截止2018年年底)小区居民有意向加装暖气的户数,得到如下数据(Ⅰ)若有意向加装暖气的户数y与年份编号x满足线性相关关系求y与x的线性回归方程并预测截至2019年年底,该小区有多少户居民有意向加装暖气;(Ⅱ)2018年年底郑州市民生工程决定对老旧小区加装暖气进行补贴,该小区分到120个名额物业公司决定在2019年度采用网络竞拍的方式分配名额,竞拍方案如下:①截至2018年年底已登记在册的居民拥有竞拍资格;②每户至多申请一个名额,由户主在竞拍网站上提出申请并给出每平方米的心理期望报价;③根据物价部门的规定,每平方米的初装价格不得超过300元;④申请阶段截止后,将所有申请居民的报价自高到低排列,排在前120位的业主以其报价成交;⑤若最后出现并列的报价,则认为申请时问在前的居民得到名额,为预测本次竞拍的成交最低价,物业公司随机抽取了有竞拍资格的50位居民进行调查统计了他们的拟报竞价,得到如图所示的频率分布直方图:(1)求所抽取的居民中拟报竞价不低于成本价180元的人数;(2)如果所有符合条件的居民均参与竞拍,请你利用样本估计总体的思想预测至少需要报价多少元才能获得名额(结果取整数)参考公式对于一组数据(x1,y1),(x2,y2),(x3,y3),…(x n,y n),其回归直线=x+的斜率和截距的最小二乘估计分别为,=,=-。
变量间的相关关系

数学成绩
由散点图可见,两者之间具有正相关关系。
小结:用Excel作散点图的步骤如下 : (结合软件边讲边练)
(1)进入Excel,在A1,B1分别输入“数学成 绩”、“物理成绩”,在A、B列输入相应的数据。 (2)点击图表向导图标,进入对话框,选择“标准 类型”中的“XY散点图”,单击“完成”。 (3)选中“数值X轴”,单击右键选中“坐标轴格 式”中的“刻度”,把“最小值”、“最大值”、 “刻度主要单位”作相应调整,最后按“确定”。y 轴方法相同。
(3)从散点图可以看出,0 140 130 120 110 100 90 80 70 60 50 40 -10 0 10
^ Y=-2.352x+147.767
20
30
40
^ (4)当x=2时,y=143.063, 因此,这天大 约可以卖出143杯热饮。
练习:P96 小结:
解2:用Excel求线性回归方程,步 骤如下:
. (1)进入Excel作出散点图。
(2)点击“图表”中的“添加趋势 线”,单击“类型”中的“线性”,单 击“确定”,得到回归直线。 (3)双击回归直线,弹出“趋势线格 式”,单击“选项”,选定“显示公 式”,最后单击“确定”。
三、利用线性回归方程对总体进行估计
二、求线性回归方程
例2:观察两相关变量得如下表: x y -1 -9 -2 -7 -3 -5 -4 -3 -5 -1 5 1 3 5 4 3 2 7 1 9
求两变量间的回归方程
解1: 列表:
i 1
i
2 -2 -7 14
3 -3 -5 15
4 -4 -3 12
10
5 -5 -1 5
2
6 5 1 5
变量间的相关关系与统计案例

变量间的相关关系与统计案例在统计学中,变量之间的相关关系是一个非常重要的概念。
通过分析变量之间的相关关系,我们可以更好地理解数据之间的联系,为进一步的分析和预测提供基础。
本文将通过一些统计案例,介绍变量间相关关系的概念,并通过实际数据进行分析,帮助读者更好地理解相关关系的含义及其在实际应用中的重要性。
首先,我们需要了解什么是变量间的相关关系。
在统计学中,变量之间的相关关系是指它们之间存在的某种关联或者依存关系。
这种关系可以是正向的,也可以是负向的。
正向的相关关系意味着两个变量的数值同时增加或减少,负向的相关关系则表示一个变量的数值增加时,另一个变量的数值减少。
通过相关系数的计算,我们可以量化这种相关关系的强度和方向。
接下来,我们通过一个实际的统计案例来说明变量间相关关系的应用。
假设我们有一组数据,包括了某个城市每月的平均气温和冰淇淋销量。
我们想要分析气温和冰淇淋销量之间是否存在相关关系。
首先,我们可以通过散点图来观察两个变量之间的关系。
如果散点图呈现出一种明显的趋势,那么说明两个变量之间可能存在相关关系。
接着,我们可以通过计算相关系数来量化这种关系的强度。
最常用的相关系数是皮尔逊相关系数,它的取值范围在-1到1之间,绝对值越接近1,表示两个变量之间的相关关系越强。
在这个案例中,我们发现气温和冰淇淋销量之间存在着正向的相关关系。
也就是说,随着气温的升高,冰淇淋销量也会增加。
这个发现对于冰淇淋生产商来说是非常有用的信息,他们可以根据气温的变化来调整生产和销售策略,以更好地满足消费者的需求。
除了正向的相关关系,我们还可以遇到负向的相关关系。
比如,一个城市的降雨量和游乐园的游客数量之间可能存在负向的相关关系。
这意味着降雨量增加时,游客数量会减少。
这对于游乐园的经营者来说也是非常重要的信息,他们可以根据天气预报来调整营销策略,以减少降雨天对游客数量的影响。
通过以上案例,我们可以看到,变量间的相关关系在实际应用中具有非常重要的意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何具体的求出回归方程?
方案一:采用测量的方法:先画一条直线,测 量出各点到它的距离,然后移动直线,到达一 个使距离之和最小的位置,测量出此时直线的 斜率和截距,就得到回归方程。
脂肪
40 30 20 10
0 0
脂肪
20
40
60
80
我们应该如何具体的求出这个回归方程呢?
方案二、在图中选取两点画直线,使得直线两 侧的点的个数基本相同。
s r2
B 正方体的棱长和它的体积
v a3
C 正n边形的边数和内角和 g(n) (n 2) •180o
D 人的年龄和身高
问题2:在学校里,有这样一种说法:“如果你 的数学成绩好,那么你的物理学习就不会有什么 大问题.”按照这种说法,似乎学生的物理成绩与 数学成绩之间存在着某种关系,我们把数学成绩 和物理成绩看成是两个变量,那么这两个变量之 间的关系是函数关系吗?
练习1:判断下列变量间是否是相关关系
(1)光照时间和果树亩产量 是 (2)降雪量和交通事故发生率 是 (3)某人的身高与体重 是 (4)角度和它的余弦值 不是 (5)炼钢时钢水的碳含量与冶炼时间 是
例3:设某地10户家庭的年收入和年饮食支出的统计
资料如下表:
年收入x/万元 2 4
4
6
6 6 7 7 8 10
2.3.1 变量间的相关关系
.
复习引入:
问题:函数的定义是什么?
设集合A是一个非空的数集,对A内任意实数x, 按照确定的对应法则f,都有唯一确定的实数值y与它 对应,则这种对应关系叫做集合A上的一个函数。
函数关系是一种确定性关系
问题1:下列两个变量之间的关系哪个不是函数关系
A 圆的半径和它的面积
(4)学习的努力程度与学习成绩
正相关 负相关 负相关 正相关
思考:你能列举一些生活中的变量成 正相关或负相关的实例吗?
练习4:
1、名师出高徒 2、高瞻远瞩 3、见多识广 4、种瓜得瓜,种豆得豆
总结:
1.函数关系是一种确定性关系 相关关系是一种非确定性关系
2.散点图的画法
3. 正相关和负相关的概念
学生 学科
A
B
C
D
F
数学 80 75 70 65 60
物理 70 66 68 64 62
上述数学成绩和物理成绩两个变量之间的关 系是一种非确定性关系,称之为相关关系, 那么什么是相关关系呢?
自变量取值一定时,因变量的取值带有 一定随机性的两个变量之间的关系, 叫做相关关系.
例1:空气中二氧化碳的浓度和汽车尾气的排 放量(与工厂排放的废气,煤等燃料的燃烧, 人口的数量等有关)
思考:1、两个变量成负相关关系时,散点图 有什么特点?
两个变量的散点图中点的分布的位置是 从左上角到右下角的区域,即一个变量值由小 变大,而另一个变量值由大变小,我们称这种 相关关系为负相关。
2、你能举出一些生活中的变量成正相关或者 负相关的例子吗?
3、若两个变量散点图呈下图,它们之间是否 具有相关关系?
年饮食支出y/万 0.9 1.4 1.6 2.0 2.1 1.9 1.8 2.1 2.2 2.3 元
由表中数据可以看出,y有随x增加而增加的趋势, 为了更清楚地看出x与y是否具有相关关系,我们以年 收入x的取值作横坐标,把年饮食支出y的相应取值作 为纵坐标,在直角坐标系中描点,
y 3
2
1
x 0 2 4 6 8 10 在平面直角坐标系中,表示具有相关关系 的两个变量的一组数据图形,称为散点图.
(1)、将表中的数据画成散点图
(2)、你能从散点图中发现温度与热茶杯数近似 成什么关系吗?
70 杯数
60
50
40
30
20
10
0 2 4 6 8 1012 14 16 18 20 22 24
温 度
近似成负相关
练习3:判断下列各题属于哪种相关关系?
(1)某工厂一月份总成本与该月 总产量
(2)吸烟有害健康 (3)高原含氧量与海拔高度
例2:商品销售收入与广告支出经费之间的 关系。(还与商品质量,居民收入,商品外 包装,销售人员的工作能力境等有关)
相关关系与函数关系的异同点:
相同点: 两者均是指两个变量的关系。
不同点: 1、函数关系是一种确定的关系,如匀速 直线运动中的时间t与路程s的关系;
2、相关关系是一种非确定的关系,如一 块农田的水稻产量与施肥量之间的关系。
根据上述数据,人体的脂肪含量与年龄之间 有怎样的关系?
人体脂肪含量百分比与年龄散点图
散点图:
脂肪含量
40 30 20 10 0
0 10 20 30 40 50 60 70
年龄
两个变量的散点图中点的分布的位置是从左 下角到右上角的区域,即一个变量值由小变大, 另一个变量值也由小变大,我们称这种相关关系 为正相关。
120 1Байду номын сангаас0 80 60 40 20
0 0 20 40 60 80 100
人体脂肪含量百分比与年龄散点图
脂肪含量
散
40
点
20
图
0
0
20
40
60
80
年龄
回归直线:如果散点图中点的分布从整体上看大致在 一条直线附近,我们就称这两个变量之间具有线性相 关关系,这条直线就叫做回归直线。
这条回归直线的方程,简称为回归方程。
在一次对人体脂肪含量和年龄关系的研究中, 研究人员获得了一组样本数据:
年龄 23 27 39 41 45 49 50 脂肪 9.5 17.8 21.2 25.9 27.5 26.3 28.2 年龄 53 54 56 57 58 60 61 脂肪 29.6 30.2 31.4 30.8 33.5 35.2 34.6
正相关:一个变量的值随着另一个 变量的值变大而变大,散点图中的 点散布在从左下角到右上角的区域
负相关:一个变量随另一个变量的 变大而变小,散点图中的点散布在 从左上角到右下角的区域.
练习2:下表是某小卖部6天卖出的热茶杯数与当天天 气温度的对比表
温度t /°c 22 18 13 10 4 1 杯数y 20 24 34 38 50 64
40 30 20 10
0 0
脂肪
脂肪
20
40
60
80
我们应该如何具体的求出这个回归方程呢?
方案三、在散点图中多取几组点,确定几条直 线的方程,分别求出各条直线的斜率和截距的 平均数,将这两个平均数作为回归方程的斜率 和截距。
脂肪
40 30 20 10
0 0
脂肪
20
40
60
80
上述三种方案均有一定的道理,但可靠性不强, 我们回到回归直线的定义。