荧光纳米粒子的介绍及应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【专题】荧光纳米粒子的介绍及应用

荧光探针(fluorescent probe)在化学传感、光学材料及生物检测和识别等领域得到了广泛的应用,并成为实现上述功能的一种主要的技术手段。但以传统的有机荧光染料为主的荧光探针在应用中也存在一些难以克服的缺陷。最近,无机发光量子点、荧光聚合物纳米微球、复合荧光二氧化硅纳米粒子等荧光纳米探针的相继出现,在一定程度上克服了传统有机荧光试剂的缺陷,为生物分析提供了新的发展领域,成为了近年来研究的热点,在此我想作一简单介绍,希望能起到抛砖引玉的作用,如果大家觉得我有什么地方说错的话,欢迎批评指正!让我也从中受益!

1、荧光纳米粒子的分类

荧光纳米粒子是指可以发荧光的半导体纳米微晶体(量子点)或将荧光团(Fluorophore)通过包埋、共价键连接以及超分子组装等方式引入有机或无机纳米粒子中,并让纳米粒子承担有机小分子荧光染料的检测、标记等功能。与传统的荧光染料相比,荧光纳米粒子具有更高的亮度和光稳定性,也能更加容易地实现水分散性和生物相容性。另外,随着纳米制备技术的进一步提高,对纳米粒子的尺度的精确控制及对粒子功能化手段的日臻完善,这在很大程度上使荧光纳米粒子满足了化学传感器、生物探针等领域的要求。目前荧光纳米粒子主要有无机发光量子点、荧光高分子纳米微球、复合荧光二氧化硅纳米粒子三大类。

1.1.量子点

量子点(quantum dot, QD)又可称为半导体纳米微晶体,是由数百到数千个原子组成的无机纳米粒子,是一种由II-VI 族或者III-V 族元素组成的纳米颗粒。目前研究较多的主要是CdX(X = S、Se、Te)。量子点粒径很小,它们的电子和空穴被量子限域,连续能带变成具有分子特性的分立能级结构,因此光学行为与一些大分子很相似,可以发射荧光。量子点的体积大小严格控制着它的光谱特征。量子点的晶体颗粒越小,比表面积越大,分布于表面的原子就越多,而表面的光激发的正电子或负电子受钝化表面的束缚作用就越大,其表面束缚能就越高,吸收的光能也越高,即存在量子尺寸效应,从而使其吸收带蓝移,荧光发射峰也相应蓝移。可见,相对于其他传统的荧光染料而言,量子点由于其量子尺寸效应,粒径不同或组成材料不同即可发射不同颜色的荧光。由于量子点潜在的应用前景,研究者在量子点的制备方面展开了一系列的研究。

目前,量子点的制备方法根据其所用材料的不同,有以下两种方法:一、在有机体系中采用胶体化学方法以金属有机化合物为前体制备量子点,二、在水溶液中直接合成。在有机体系采用胶体化学方法制备量子点的研究中,Bawendi等将金属有机化合物注射入热的有机溶剂中,在高温下制备出具有单分散性的CdSe量子点。后来,人们使用无机物来钝化颗粒表面,发展了核壳结构的量子点。peng等人以CdO或Cd(Ac)2为原料,在一定条件下与S、Se、Te的储备液混合,一步合成了性能良好的CdS、CdSe、CdTe量子点。Nie等以此法合成了CdSeTe量子点,其荧光发射最大的波长为850 nm,量子产率高达60%。该法不但克服了先前合成方法中需要采用(CH3)2Cd作为原料的缺点,而且所合成的量子点荧光量子产率高、尺寸分布窄、波长覆盖范围广。此外,Reiss等人在Peng的基础上以CdO为前体在HDA-TOPO混合体系中合成CdSe,然后以硬脂酸锌为锌源,在CdSe的表面包覆一层ZnSe,首次合成了CdSe/ZnSe核壳结构的量子点,荧光量子产率高达85%。另外,也有研究者采用在水溶液中进行量子点的合成,Weller等人以六偏磷酸钠及巯基乙酸、巯基乙胺等巯基化

合物为稳定剂,以Cd(ClO4)2•6H2O为镉源合成了水溶性的CdS、CdSe、CdTe量子点。该法操作简单、可制备的量子点种类多、所用材料价格低、毒性小,且量子点表面修饰有可直接与生物分子偶连的羧基或氨基等官能团。然而,采用在水溶液中合成量子点的方法存在着量子产率不高、尺寸分布较宽等缺点。所以,目前人们仍较多的采用在有机体系中进行量子点的制备。

1.2. 高分子荧光纳米微球

高分子荧光纳米微球开始是以聚苯乙烯、聚甲基丙烯酸酯类、聚丙烯酰胺类为微粒主体,表面键合或吸附荧光素(Fluorescein,如FITC等)、罗丹明(Rhodamine,如Rhodamine 6G)、菁色素(Cy染料)等荧光物质的荧光纳米微球。因为单个纳米粒子可以键合多个荧光分子,所以荧光强度有所增强。但由于荧光分子没有被保护在高分子材料中,仍然受外界氧化或光漂白的影响,荧光的稳定性并没有提高。

近来,Kawaguchi等采用细乳液聚合的方法,开发出一种用聚苯乙烯内包铕与β-二酮类荧光配合物的高分子荧光纳米微球。这种高分子材料的表面键合有羧基,可以标记具有氨基等活性基团的生物分子。同样,采用细乳液聚合的方法还可以制备包埋其它染料的荧光高分子纳米微球,但是,由于该类高分子材料比重较小,在溶液中难以离心沉淀,分离非常困难,所以只能制备直径比较大的微粒,粒径一般在100 nm以上。而这又造成纳米颗粒在水中易聚集,并且它在有机溶剂中高分子又极易溶胀从而导致微粒内的荧光分子发生泄漏。

1.3复合荧光二氧化硅纳米粒子

复合荧光二氧化硅纳米粒子是由功能性的内核、可生物修饰的硅壳以及修饰在硅壳表面的生物分子构成,具有明显核壳结构的一类新型的纳米颗粒,其内核材料可以是有机荧光染料、稀土发光材料、量子点等。由于该类型的纳米颗粒采用油包水(W/O)反相微乳液方法成核,通过硅烷化试剂在微乳液中水解形成三维网状结构的硅壳进行包壳,所以采用不同的硅烷化试剂可以制备出表面带有不同官能团的核壳型生物纳米颗粒。通过对纳米颗粒的表面进行各种生物大分子的修饰,如:肽片断、抗体、生长因子等,可以实现对特异性细胞的识别、分离和检测。于是,复合荧光二氧化硅纳米粒子由于其具有良好的分散性、温和的合成条件、可重复合成及细胞毒性小等优点已在生物学领域得到了广泛的应用。目前,复合荧光二氧化硅纳米粒子在细胞水平上的研究主要集中在特定细胞的染色、识别和分离、细胞内pH 的检测及基因转染等方面。

目前,常用的复合荧光二氧化硅纳米粒子制备方法主要有反相微乳液法和改进的Stober 水解法。反相微乳液法是近年来制备复合荧光二氧化硅纳米粒子的一种最为经典的方法。在其制备机理研究方面,研究者们发现微乳颗粒不停地做布朗运动,不同颗粒的互相碰撞使微反应器内增溶的物质迅速交换、传递并发生化学反应如氧化-还原反应、沉淀反应和光引发反应等。这种再交换需要胶团在相互碰撞时产生一个大的孔洞,使胶团的表面化学剂膜的曲率发生巨大变化,因此可以阻止已在反应器内生成的颗粒发生物质再交换。微反应器内的粒子一经形成,表面活性剂分子就附着在粒子表面,使粒子稳定并防止其进一步长大。由于微反应器的直径只有0~100 nm,不同微反应器内的晶核或粒子间的物质交换受阻,从而可以通过控制微反应器的大小来控制生成粒子的尺寸,最后形成大小可控的核壳纳米颗粒。

改进的Stober 水解方法也常用于制备硅壳荧光纳米颗粒。Stober 水解方法指利用TEOS 的水解及缩合反应,形成SiO2 的方法。早在1968 年就有采用Stober方法合成单分散二氧化硅颗粒,V anBlaadere等首次报道了采用Stober 方法合成大小在几百个纳米的有机荧光染料嵌入的硅壳荧光纳米颗粒。Hooiswen等采用改进的Stober 水解方法制备了大小在20-30 nm 的硅壳荧光纳米颗粒,整个制备过程包括了两部分,一是首先将有机荧光染料共价修饰

相关文档
最新文档