【微生物工程】第八章_基因工程菌的培养
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
提高质粒稳定性的方法
提高基因工程菌稳定性的策略
固定化 固定化可以提高基因重组大肠杆菌的稳定性 基因重组大肠杆菌进行固定化后,质粒的稳定性及目的产物的 表达率都有了很大提高。 在游离重组菌系统中常用抗生素,氨基酸等选择性压力稳定质 粒的手段,往往在大规模生产中难以应用。而采用固定化方法 后,这种选择压力则可被省去。 不同的宿主菌及质粒在固定化系统中均表现出良好的稳定性。
基因工程菌培养方式
连续培养 连续培养是将种子接入发酵反应器中,搅拌培养至菌体浓度达到一定程
度后,开动进料和出料蠕动泵,以一定稀释率进行不间断培养。 连续培养可以为微生物提供恒定的生活环境,控制其比生长速率,为研
究基因工程菌的发酵动力学、生理生化特性、环境因素对基因表达的影响等 创造了良好的条件。
但是由于基因工程菌的不稳定性,连续培养比较困难。为了解决这一问 题,人们将工程菌的生长阶段和基因表达阶段分开,进行两阶段连续培养。 在这样的系统中关键的控制参数是诱导水平、稀释率和细胞比生长速率。优 化这三个参数以保证在第一阶段培养时质粒稳定,菌体进入第二阶段后可获 得最高表达水平或最大产率。
基因工程菌的稳定性
重组质粒逃逸的原因有: 高温培养、表面活性剂(SDS)、药物(利福平)、染料促使重 组质粒渗漏 受体细胞中的核酸酶降解重组质粒 重组质粒在受体细胞分裂时不均匀分配,细胞所含重组质粒拷贝 数的差异随着细胞分裂次数的增多而加剧
基因工程菌的稳定性
影响基因工程菌稳定性的因素
载体的选择
遗传特性
宿主的选择 外源基因是否整合到宿主染色体上
发酵工艺
培养基 生长速率 限制性基质 温度 pH 和溶氧 外源基因表达
基因工程菌的稳定性
提高基因工程菌稳定性的策略
改进载体受体系统 以增加质粒稳定性为目的的构建方法有:
将 R1 质粒上的 parB 基因引入表达型载体中 其表达产物可以选择性地杀死由于分配不均匀所产生的无质粒细胞
提高质粒稳定性的方法
提高基因工程菌稳定性的策略
施加选择压力 根据载体上的抗药性标记,向培养系统中添加相应的抗生素 药物和食品生产时禁止使用抗生素 加入大量的抗生素会使生产成本增加 添加一些容易被水解失活的抗生素,只能维持一定时间 添加抗生素选择压力对质粒结构不稳定无能为力 载体上的营养缺陷型标记,向培养系统中添加相应的营养组份 培养基复杂,成本较高
提高质粒稳定性的方法
提高基因工程菌稳定性的策略
分阶段控制培养 因外源基因表达造成质粒不稳定时,可以考虑将发酵过程分阶段控制 在生长阶段使外源基因处于阻遏状态,避免因表达造成不稳定性问 题的发生;在获得需要的菌体密度后,再去阻遏或诱导外源基因表 达。
提高质粒稳定性的方法
提高基因工程菌稳定性的策略
优化基因工程菌的培养工艺 培养温度: 较低的培养温度有利于重组质粒的稳定
第八章 基因工程菌的培养
基因工程菌的遗传不稳定性及其对策
基因工程菌遗传不稳定性的表现与机制 改善基因工程菌不稳定性的策略
பைடு நூலகம்
基因工程菌的稳定性
基因工程菌的遗传不稳定性的表现
基因工程菌的遗传不稳定性主要表现在重组质粒的不稳定性, 这种 不稳定性具有下列两种表现形式:
结构不稳定性 重组 DNA 分子上某一区域发生缺失、重排、修饰,导致其表 观生物学功能的丧失
发酵罐体 保证高传质作用的搅拌器、 精细的温度控制和灭菌系统、 空气无菌过滤装置 残留气体处理装置 参数测量与控制系统(如 pH、O2、CO2 等) 培养液配制及连续操作装置等。
基因工程菌的培养设备
基因工程菌在发酵培养过程中要求 环境条件恒定,不影响其遗传特性,更不能引起所带质粒丢失。
对发酵罐有特殊要求 如要提供菌体生长的最适条件 培养过程不得污染 保证纯菌培养 培养及消毒过程中不得游离出异物,干扰细菌代谢活动
基因工程菌的稳定性
基因工程菌的遗传不稳定性的的产生机制
受体细胞中的限制修饰系统对外源重组 DNA 分子的降解 外源基因的高效表达严重干扰受体细胞正常的生长代谢
能量、物质的匮乏和外源基因表达产物的毒性诱导受体细胞产生 应激反应:关闭合成途径,启动降解程序 重组质粒在受体细胞分裂时的不均匀分配 这是重组质粒逃逸的基本原因 受体细胞中内源性的转座元件促进重组分子的缺失重排
分配不稳定性 整个重组 DNA 分子从受体细胞中逃逸(curing)
基因工程菌的稳定性
基因工程菌的遗传不稳定性的的产生机制
受体细胞中的限制修饰系统对外源重组 DNA 分子的降解 外源基因的高效表达严重干扰受体细胞正常的生长代谢
能量、物质的匮乏和外源基因表达产物的毒性诱导受体细胞产生 应激反应:关闭合成途径,启动降解程序 重组质粒在受体细胞分裂时的不均匀分配 这是重组质粒逃逸的基本原因 受体细胞中内源性的转座元件促进重组分子的缺失重排
基因工程菌的培养
一、基因工程菌的培养方式 二、基因工程菌的发酵工艺
基因工程菌培养方式
基因工程菌发酵的基本操作方式有:
分批培养 分批培养操作简单,但因不能控制生长,获得的菌体密度也有限
半连续培养(补料分批) 在一次投料发酵的基础上,流加一定量的营养,使细胞进一步的 生长,或得到更多的代谢产物
连续培养 不断地流加营养,并不断地取出发酵液。 连续培养则多用于动力学特性和稳定性等研究。
固定化培养
基因工程菌培养方式
补料分批培养 补料分批培养是将种子接入发酵反应器中进行培养,经过一段时间,
间歇或连续地补加新鲜培养基,使菌体进一步生长的培养方法。 在分批培养中,为保持基因工程菌生长所需的良好微环境,延长其生
长对数期,获得高密度菌体,通常把溶氧控制和流加补料措施结合起来, 根据基因工程菌的生长规律来调节补料的流加速率。
基因工程菌的培养方式
固定化培养 基因工程菌培养的一大难题是如何维持质粒的稳定性。有人将固定化
技术应用到这一领域,发现基因工程菌经固定化后,质粒的稳定性大大提 高,便于进行连续培养,特别是对分泌型菌更为有利。由于这一优点,基 因工程菌固定化培养研究已得到迅速开展。
基因工程菌的培养设备
发酵罐的组成部分有: