斐波那契数列的通项公式推导
斐波那契数列的性质
斐波那契数列的性质一、通项公式:a n = √5〔1+√52〕n - √5〔1−√52〕n二、设p,q,u,v 为自然数且p = min{ p ,q , u , v} . 若p + q = u + v , 则对于斐波那契数列{ an} ,以下公式恒成立: a p a q - a u a v = (-1)p +1a u-p a q-u三、a n+1a n−1 - a n 2 = (−1)n (n >= 1, n 属于 N)四、a 2n+1 = a n+12 + a n 2 (n 属于N )五、a n+12 - a n−12 = a n 2 (n >= 1, n 属于N)六、a n+m = a n−1a m + a n a m+1 (n >= 1, n 和m 属于N)七、a 2n+2a 2n−1 - a 2n a 2n+1 = 1(n >= 1, n 属于N)八、a m+n 2 - a m−n 2 = a 2m * a 2n (m > n >= 1)九、a n−1∗a n+2 - a n ∗a n+1 = (−1)n (n >= 2)十、{f 2n f 2n+1} 有极限且等于黄金分割率√5 −12下面是一篇文章:第四项3是奇数,但它是偶数项,第五项5是奇数,它是奇数项,如果认为数字3和5都是奇数项,那就误解题意,怎么都说不通)如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64=65?其实就是利用了斐波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的面积确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到。
斐波那契数列的第n项同时也代表了集合{1,2,...,n}中所有不包含相邻正整数的子集个数。
斐波那契数列(f(n),f(0)=0,f(1)=1,f(2)=1,f(3)=2……)的其他性质:1.f(0)+f(1)+f(2)+…+f(n)=f(n+2)-12.f(1)+f(3)+f(5)+…+f(2n-1)=f(2n)3.f(2)+f(4)+f(6)+…+f(2n) =f(2n+1)-14.[f(0)]^2+[f(1)]^2+…+[f(n)]^2=f(n)·f(n+1)5.f(0)-f(1)+f(2)-…+(-1)^n·f(n)=(-1)^n·[f(n+1)-f(n)]+16. f(m+n)=f(m-1)·f(n-1)+f(m)·f(n)利用这一点,可以用程序编出时间复杂度仅为O(log n)的程序。
斐波那契数列的通项求法不动点法
斐波那契数列是一个非常著名的数列,它由如下的递归关系定义:F(0) = 0,F(1) = 1,F(n) = F(n-1) + F(n-2) 对于n >= 2。
对于这个数列的通项公式(即直接计算第n项的公式而不需要计算之前所有项的值),存在一个非常著名的公式,称为Binet公式:F(n) = (φ^n - ψ^n) / √5,其中,φ= (1 + √5) / 2 约等于1.618033988749895...(黄金分割比),ψ = (1 - √5) / 2 约等于-0.618033988749895...。
这两个数实际上是方程x^2 - x - 1 = 0 的两个解。
不动点法是求解具有递归关系的数列通项的一种方法,它基于的思想是寻找一个函数的不动点(这里的不动点指的是满足f(x) = x的点),这在函数迭代和分形理论中非常常见。
但是,必须说明的是,斐波那契数列的通项公式并不是通过不动点法得出的。
不动点法在斐波那契数列的直接计算中并不是标准做法。
在数学中,不动点通常是指在迭代过程中不会改变的点。
例如,对于某个函数f(x),如果存在x*使得f(x*) = x*,则称x*为f的不动点。
但是对于斐波那契数列,我们通常不使用不动点法来求取其通项公式,因为现有的递推关系和Binet公式已经非常简洁且易于计算。
为了计算斐波那契数列的项,我们通常依赖于递归计算、Binet公式或者使用动态规划这类编程技术来避免重复计算已求出的项。
这些方法在实践中更加常见和有效。
要理解不动点的概念,一个简单的例子就是函数f(x) = x^2。
假设我们想要找到满足f(x) = x 的x值,我们可以简单求解方程x^2 = x,得到两个解x=0和x=1。
其中0和1就是这个函数的不动点。
不过这个例子和斐波那契数列的求解并没有直接关联。
总的来说,斐波那契数列的通项是通过数学推导得出的Binet公式,而不是通过不动点法,后者在其他类型的问题中更为常见,特别是在分析动态系统和迭代函数时。
数列的通项公式和求和公式如何推导
数列的通项公式和求和公式如何推导一、数列的通项公式推导在数学中,数列是按照一定规律排列的一组数。
每个数列都有一个通项公式,它能够用来计算数列中第n项的数值。
下面我将详细介绍数列通项公式的推导过程。
1. 等差数列的通项公式推导:等差数列是指数列中相邻两项之间的差始终相等。
设等差数列的首项为a1,公差为d,第n项为an,则可以得到如下关系式:an = a1 + (n-1)d该关系式可以推导如下:首项a1加上项数减一n-1与公差d的乘积。
2. 等比数列的通项公式推导:等比数列是指数列中相邻两项之间的比例始终相等。
设等比数列的首项为a1,公比为r,第n项为an,则可以得到如下关系式:an = a1 * r^(n-1)该关系式可以推导如下:首项a1乘以公比r的n-1次幂。
3. 斐波那契数列的通项公式推导:斐波那契数列是指数列中每一项都等于其前两项之和的数列。
设斐波那契数列的首项为a1,第二项为a2,第n项为an,则可以得到如下关系式:an = a(n-1) + a(n-2)该关系式表示,每一项等于其前一项与前两项之和。
二、数列的求和公式推导除了通项公式,数列还有求和公式,用来计算数列中一定范围内的数值之和。
下面我将详细介绍数列求和公式的推导过程。
1. 等差数列的求和公式推导:设等差数列的首项为a1,公差为d,前n项和为Sn,则可以得到如下求和公式:Sn = (n/2)(a1 + an)该公式可以推导如下:首项a1与末项an的和乘以项数n再除以2。
2. 等比数列的求和公式推导:设等比数列的首项为a1,公比为r,前n项和为Sn,则可以得到如下求和公式:Sn = (a1 * (1 - r^n))/(1 - r)该公式可以推导如下:根据等比数列前n项和与首项、公比的关系推导出来。
3. 斐波那契数列的求和公式推导:由于斐波那契数列没有固定的求和公式,所以求解斐波那契数列的前n项和时通常需要运用其他方法,如递推等。
通过以上推导过程,我们可以得到数列的通项公式和求和公式。
爬楼梯斐波那契数列通项
爬楼梯斐波那契数列通项
斐波那契数列在爬楼梯问题中应用的通项公式可以通过递归关系或矩阵快速幂等方法得到。
具体如下:
1.递归关系:在最简单的形式下,斐波那契数列由以下递推
关系定义:F(0) = 0, F(1) = 1, F(n) = F(n-1) + F(n-2),其中n
是台阶数。
这个递归关系意味着到达当前台阶的方法数等于到达前
两个台阶的方法数之和。
2.备忘录策略优化:由于递归算法会进行大量重复计算,我们可以使
用备忘录方法来存储已计算的值,避免重复计算,从而提高效率。
3.矩阵快速幂:对于较大的n值,还可以使用矩阵快速幂来计算斐波
那契数,这在时间复杂度上比直接递归要高效得多。
4.闭合公式:斐波那契数列也有所谓的“闭合”公式(也称为Binet公
式),即F(n) = (φ^n - (-φ)^-n) / √5,其中φ = (1 + √5) / 2
是黄金分割比。
不过这个公式在数值计算时可能会遇到浮点数精度
问题。
5.动态规划:动态规划是解决此类问题的另一种高效方式。
通过自底
向上的方式逐步构建出到达每个台阶的方法数。
6.数据范围考虑:在实际编程中,还需要考虑数据范围和整型溢出的
问题。
对于大数情况,可能需要使用更大范围的数据类型或者采用
其他避免溢出的策略。
综上所述,斐波那契数列在爬楼梯问题中的应用非常广泛,其核心思想是将复杂问题分解为简单的子问题,并利用子问题的解来构建原问题的解。
这种思想在计算机科学和数学中有着广泛的应用。
斐波那契数列 通项公式
斐波那契数列通项公式
fibonacci 数列由十九世纪意大利数学家莱昂内里·斐波那契首次提出,由数列1, 1, 2, 3, 5, 8, 13, 21, 34, …..构成的数列。
这个数列也被称为“黄金分割率数列”,因为其中数字之间的比值恰好等于黄金分割率(约为0.618)。
斐波那契数列的通式为:f(n) = f(n-1) + f(n-2),其中f(0) = 0,f(1) = 1。
当n大于1时,斐波那契数列将以前两项之和作为每一项的值,每一项都等于它前面两项之和。
斐波那契数列在许多领域都有应用,其中最主要的应用是算法和数学方面。
它可以用于解决计算机程序中的递归问题,也可以用来解决许多数学问题。
斐波那契数列也可以用来求一些规律性的物理问题,如分段弦的变形、碰撞的合力和振动的波型。
斐波那契数列不仅仅是一个数学概念,它也可以用来分析金融市场和投资过程。
它可以帮助我们更好地理解金融市场的发展情况,有助于投资者制定更有效的投资策略。
此外,斐波那契数列也可以用来帮助生物和医学研究。
斐波那契数列可以用来描述一些生物进化过程,也可以用来描述病毒抗性的下降趋势。
总之,斐波那契数列是一个十分重要的数学概念,它在科学研究、投资和金融分析等领域都得到了广泛的应用。
掌握斐波那
契数列的基本原理和特性,将有助于我们更好地实现解决各类问题的目标。
高三数学 教案 斐波那契数列通项公式推导过程
斐波那契数列斐波那契数列,又称黄金分割数列、因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递推的方法定义:F(1)=1,F(2)=1, F(n)=F(n-1)+F(n-2)(n>=3,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963年起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。
定义斐波那契数列指的是这样一个数列1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368........自然中的斐波那契数列这个数列从第3项开始,每一项都等于前两项之和。
斐波那契数列的定义者,是意大利数学家列昂纳多·斐波那契,生于公元1170年,卒于1250年,籍贯是比萨。
他被人称作“比萨的列昂纳多”。
1202年,他撰写了《算盘全书》(Liber Abacci)一书。
他是第一个研究了印度和阿拉伯数学理论的欧洲人。
他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点于阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。
他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯等地研究数学。
通项公式递推公式斐波那契数列:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...如果设F(n)为该数列的第n项(n∈N*),那么这句话可以写成如下形式::F(n)=F(n-1)+F(n-2)显然这是一个线性递推数列。
通项公式(如上,又称为“比内公式”,是用无理数表示有理数的一个范例。
) 注:此时通项公式推导方法一:利用特征方程(线性代数解法)线性递推数列的特征方程为:x²=x+1解得,.则∵∴解得方法二:待定系数法构造等比数列1(初等代数解法)设常数r,s .使得则r+s=1,-rs=1n≥3时,有……联立以上n-2个式子,得:∵,上式可化简得:那么……(这是一个以为首项、以为末项、为公比的等比数列的各项的和)。
斐波那契数列求通项公式
斐波那契数列求通项公式斐波那契数列,这可是数学世界里一个相当有趣的存在!咱先来说说啥是斐波那契数列。
它的特点就是从第三项开始,每一项都等于前两项之和。
比如说最开始的两项是 0 和 1 ,那接下来就是1 、2 、3 、 5 、 8 、 13 ...... 就这么一直往后延伸。
那咱们怎么求出它的通项公式呢?这可得好好琢磨琢磨。
我记得有一次给学生们讲这个知识点的时候,有个小家伙特别积极,一直眨巴着大眼睛,紧紧盯着黑板,那认真的模样简直太可爱了!我在黑板上写下数列的各项数字,然后开始引导他们思考其中的规律。
咱们设斐波那契数列的通项公式为 \(F(n)\) ,为了求出这个通项公式,咱们得用上一些数学方法。
一种常见的方法是利用特征方程。
假设 \(F(n)\) 满足线性递推关系\(F(n) = F(n - 1) + F(n - 2)\) ,对应的特征方程就是 \(x^2 = x + 1\) 。
解这个方程,能得到两个根 \(x_1\) 和 \(x_2\) 。
接下来,咱们可以设通项公式为 \(F(n) = A \times x_1^n + B \timesx_2^n\) ,其中 \(A\) 和 \(B\) 是需要确定的常数。
然后,咱们可以利用初始条件 \(F(0) = 0\) 和 \(F(1) = 1\) 来确定 \(A\) 和 \(B\) 的值。
把这些都搞清楚,经过一番计算,就能得出斐波那契数列的通项公式啦!其实啊,求出斐波那契数列的通项公式不仅仅是为了得到一个数学结果,更重要的是在这个过程中培养咱们的逻辑思维和解决问题的能力。
就像那次课堂上,孩子们一起思考、一起讨论,虽然过程中也会遇到困难,但是当最终得出答案的时候,他们脸上那兴奋和自豪的表情,让我觉得一切的努力都太值得了!数学的魅力就在于此,一个看似简单的数列,背后却隐藏着如此精妙的规律和方法。
所以啊,同学们,别害怕数学里的这些难题,只要咱们用心去探索,总能发现其中的乐趣和奥秘!相信大家在以后的学习中,遇到类似的问题,也能像求解斐波那契数列通项公式一样,勇往直前,找到答案!。
数学-以斐波那契数列为背景的高中数学问题
这就产生了斐波那契数列:1,1,2,3,5,8,13,21,34…其规律是从第三项起,每一项都是前两项的和.用递推公式表达表达就是:12211n n na aa a a++==⎧⎨=+⎩斐波那契数列通项公式为n nna⎡⎤⎥=−⎥⎝⎭⎝⎭1.斐波那契数列因意大利数学家斐波那契以兔子繁殖为例引入,故又称为“兔子数列”,即1,1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 …实标生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数,斐波那契数列在现代物理及化学等领域也有着广泛的应用.斐波那契数列{}n a 满足:12211, ()n n n a a a a a n N *++===+∈,则357920211a a a a a ++++++是斐波那契数列{}n a 中的第__________项.答案:2022解析:由题意得357920212357920214579202167920212020202120221.a a a a a a a a a a a a a a a a a a a a a a a ++++++=++++++=+++++=++++==+=2.“斐波那契数列”是数学史上一个著名数列, 在斐波那契数列{}n a 中, 12211, ()n n n a a a a a n N *++===+∈ .用n S 表示他的前n 项和,若已知2020S m = ,那么2022________.a =答案:m +1解析:()12211,1n n n a a a a a n N *++===+∈123234345,,a a a a a a a a a ∴+=+=+=201920202021202020212022,a a a a a a +=+=以上累加得:1234202020212222a a a a a a ++++⋯⋯++3420212022a a a a =++⋯⋯++12320202022220221a a a a a a m a m ∴+++⋯⋯+=−=∴=+3.“斐波那契数列”由13世纪意大利数学家斐波那契发现,因为斐波那契以兔子繁殖为例子而引入,故又称该数列为“兔子数列”,斐波那契数列{}n a 满足: 12121,(3)n n n a a a a a n −−===+≥,记其前n 项和为n S ,则6543( )S S S S +−−=A.8 B.13 C.21 D.34答案:C解析:【分析】由数列的递推式和斐波那契数列{}n a 的定义,计算可得所求值.【详解】()12121,1,3,n n n a a a a a n n *−−===+≥∈N 1n a −+++1n a −+++)21n a a −++++1n a a −+++2=1n a +−21n a −++=2n a a ++=31242323a a a a a a =+==+=,5346455,8a a a a a a =+==+= 65436453S S S S S S S S ∴+−−=−+−6554855321a a a a =+++=+++=故选C.4.若数列{}n F 满足,则称{}n F 为斐波那契数列.记数列{}n F 的前n 项和为n S ,则( ) A.26571F F F =+ B.681S F =−C.135910F F F F F +++= D.2222123678F F F F F F +++=答案:BC解析:()1212,A.11,3,n n n F F F F F n n N *−−===+>∈3214325436547658769871098226576576868132, 3,5, 8,13, 2134, 55,64,166, 1 ,A B.1123520, 120, B ;C.F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F S F S F F F F ∴=+==+==+==+==+==+==+==+=∴=+=≠+=++++=−=++故错误;=-1故正确591022221236222278123678125133455;D.114925641041321273,, .C F F F F F F F F F F F F F FD ++=++++==+++=+++++==⨯=∴++++≠.故确故错误正5.斐波那契数列,又称黄分割数列,它在很多方面与大自然神奇地契合,小到地球上的动植物,如向日葵、松果、海螺的成长过程,大到海浪、飓风、宇宙星系演变,都遵循着这个规律,人们亲切地称斐波那契数列为自然界的数学之美,在数学上斐波那契数列{}n a 一般以递推的方式被定义:12211, ()n n n a a a a a n N *++===+∈,则( )A.1055a = B .2211n n n a a a ++−=C. 1n n a +⎧⎫⎪⎪+⎨⎬⎪⎪⎩⎭是等比数列 D.设1n n na b a +=,则112n n n n b b b b +++−<−答案:ABC解析:12213A.1,,n n n a a a a a a ++===+开始各项依次为:则从102, 3 ,5 ,8 ,13 ,21 ,34 ,55 ,,55,;a ⋯⋯=因此正确()222211111B.n n n n n n n n n n a a a a a a a a a a ++++−+−=+−=−由222111n n n n n n a a a a a a ++−+−=−=⋯⋯可得:22132121 1.;a a a =−=⨯−=因此正确211111C.22n n n n n a a a a a ++++−+=++11111,222n n n n a a a a ++⎛⎫+=+=+ ⎪ ⎪⎝⎭21a +2111,,;22n n a a ++⎧⎫⎪⎪∴+⎨⎬⎪⎪⎩⎭数列是等比数列因此正确11211D.,n n n n n n n n n a a a b b b a a a +++++=−=−由则212111n n n n n n n a a a a a a a ++++−==12121,n n n n b b a a ++++−=同理可得:20,n n a a +>>由斐波那契数列的单调性可得:11211,.ABC.n n n n a a a a +++>因此因此不正确故选6.(多选)斐波那契螺旋线,也称“黄金螺旋”,是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线的图案,是自然界最完美的经典黄金比例.作图规则是在以斐波那契数为边的正方形拼成的长方形,然后在正方形里面画一个 90度的扇形,连起来的弧线就是斐波那契螺旋线.它来源于斐波那契数列,又称为黄金分割数列现将斐波那契数列记为{}n a ,12121,(3)n n n a a a a a n −−===+≥, 边长为斐波那契数a n 的正方形所对应扇形面积记为b n , (n ∈N *),则( )A.223 (3)n n n a a a n −+=+≥B. 123201920211a a a a a ++++=+C.()20202019201820214b b a a π−=⋅ D. 123202*********4b b b b a a π++++=⋅答案:AD解析:123,n n n a a a n −−=+≥由(递推公式)可得211212 n n n n n n n n a a a a a a a a ++−−−=+=+=−()221123A 3n n n n n n n a a a a a a n a +−−−+=++−=≥正确所以.故选项12313421,,,a a a a a a a ==−=−类似的有:11122(2),,1,n n n n n n a a a n a a a a +−++=−≥+−=−迭加可得123201920211B ;a a a a a +++⋯+=+故错误,故选项错误2112,,44n n n n n n b a b b a a ππ−+−=−=由题意可知,扇形面积为故()2020201920182021C ;4b b a a π−⋅=则错,故选项错误误121212223221(3),,,n n n a a a n a a a a a a a a −−=+≥==−由可得222211121,,n n n n n n n n a a a a a a a a a a +−+=−+++=迭加可得2123202020202021n n b a b b b b a a ππ=+++⋯+=⋅所以又.D AD.错误,故选故选项7.意大利著名数学家斐波那契在研究兔子的繁殖问题时,发现有这样的一列数:1,1,2,3,5,8…,这列数的特点是:前两个数均为1,从第三个数起,一个数都等于它前面两个数的和.人们把这样的一列数组成的数列{}n f 称为斐波那契数列,并将数列{}n f 中的各项除以4所得余数按原顺序构成的数列记为{}n g ,则下列说法正确的是( ) A.20211g = B.12320212696g g g g ++++=C.22221232020201920212f f f f f f ++++= D. 222123222022210f f f f f f −+−=答案:ABD解析:123451,1,2,3,1,g g g g g =====由已知得67891011120,1,1,2,3,1,0,,g g g g g g g ======={}6.n g 所以数列是以为周期的周期函数2021A ,202163365,1,A g =⨯+=对;故于选项因为所以选项正确1232021B ,g g g g ++++对于选项336(112310)(11231)2696,B ;=⨯++++++++++=故选项正确1221C ,,n n n f f f f f ++==+,对于选项()2211222312321,,f f f f f f f f f f f ∴==−=−()233423432,,f f f f f f f f =−=−()2112121,n n n n n n n n f f f f f f f f ++++++=−=−22221232020f f f f ++++所以()()()()122312343220192020201920182020202120202019f f f f f f f f f f f f f f f f f f =+−+−++−+−20202021,C ;f f =故错误()22222232122232221D ,,f f f f f f f f =−=−对于选项因为()22121222021222120,f f f f f f f f =−=−22212322202221212322232221202221222120f f f f f f f f f f f f f f f f f f −+−=++−+所以()20212221232223202321232223f f f f f f f f f f f f f =+−+−=+222322230,D .ABD.f f f f =−=故正确故选8.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 2na a ++=2211223n n n na a a +++=22223233n na a a a a a +++=+++224na a ++1n n a a +=称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论确的是() A.68a = B.954S =C.135********a a a a a ++++= D.22212201920202019a a a a a +++=答案:ACD解析:{}A ,61,1,2,3,5,8,A ;n a 对于选项数列的前项为故正确()81234256420192020201813520192020135201921221212231232B ,112358132154,B ;C ,,,,,:2020D ,,n n n S a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a ++=+++++++===−=−⋯⋯=−++++=++++=+==−=−对于选项故错误对于选项由项;可得故是斐波那契数波列对于选项,斐的那契数列总有中第则()()21334234232220182018201920172018201920172018201920192020201920182222123201920192020,,,,D ;:A ,CD.,a a a a a a a a a a a a a a a a a a a a a a a a a a a a =−=−⋯⋯=−=−=−++++=故正确故选312n a ++=是奇数时等于第n+12, 当 n1.半径为1的两个圆12,O O外切,l是它们的一条外公切线,作312O O O l和、、均相切,作234,O O O l和、、均相切……,作11n n nO O O l+−和、、均相切,求8O的半径.解析:111,,,n n n n nO R l O S l O l O R O S P Q−+−⊥⊥作作过的平行线、于、111,n n n n nO M O R M O M PQ O P O Q−++⊥==+作于,则1nO Q+==因为1,n nO P O M+==同理==可得1112(2),1,n n n na a a a n a a+−==+≥==令则且3124235346452,3,5,8a a a a a a a a a a a a =+==+==+==+=75686713,21a a a a a a =+==+=,8228111.21441r a ===所以2.(2012上海)已知1()1f x x=+,各项均为正数的数列{}n a 满足()121,n n a a f a +==.若20102012a a =, 则2011a a +=__________.解析:2010201020121,,,1a t a a t t t ===+设由得解得则:()201020082200811,,.12k a t a t a k N a *====∈+则同理123579111123581,,,,,,,1235813n n a a a a a a a a +=======+又则2011813a a +故。
几种推导斐波那契数列通项公式的方法
几种推导斐波那契数列通项公式的方法斐波那契数列是一个非常经典的数列,它的每个元素都是前两个元素之和,即F(n) = F(n-1) + F(n-2),其中F(0) = 0,F(1) = 1。
在这篇文章中,我将介绍几种推导斐波那契数列通项公式的方法。
方法一:递推法递推法是最直接的方法,通过不断迭代计算,得到斐波那契数列的通项公式。
具体步骤如下:1. 定义初始条件F(0) = 0,F(1) = 1;2. 通过迭代计算,求解F(n) = F(n-1) + F(n-2),直到计算到所需的第n个数;3. 得到通项公式F(n)。
方法二:矩阵法矩阵法是一种基于矩阵运算的方法,通过求解矩阵的幂次方,可以得到斐波那契数列的通项公式。
具体步骤如下:1. 定义初始条件F(0) = 0,F(1) = 1;2. 构造矩阵A = [1 1; 1 0];3. 求解A的幂次方A^n,其中n为所需的第n个数;4. 得到通项公式F(n) = (A^n)_(1,2)。
方法三:特征根法特征根法是一种利用矩阵的特征值和特征向量来求解斐波那契数列通项公式的方法。
具体步骤如下:1. 定义初始条件F(0) = 0,F(1) = 1;2. 构造矩阵A = [1 1; 1 0];3. 求解矩阵A的特征值λ1和λ2,以及对应的特征向量v1和v2;4. 根据特征值和特征向量的性质,可以得到通项公式F(n) = λ1^n*v1 + λ2^n*v2。
方法四:通项公式法通项公式法是一种直接求解斐波那契数列通项公式的方法,通过对数列进行观察和推理,可以得到通项公式。
具体步骤如下:1. 观察斐波那契数列的前几个数,例如0、1、1、2、3、5、8...;2. 推理数列的规律,发现每个数都是前两个数之和;3. 假设斐波那契数列的通项公式为F(n) = a^n,其中a为常数;4. 代入初始条件F(0) = 0,F(1) = 1,解得a = (1 + √5) / 2;5. 得到通项公式F(n) = ((1 + √5) / 2)^n。
斐波那契数列的通式求解
斐波那契数列的通式求解斐波那契数列[1]指的是这样一个数列:0、1、1、2、3、5、8、13、21……,每一项是其前面两项之和,即有通式:F0=0,F1=1,F2=1,F n+2=F n+1+F n(n∈非负整数)。
下面通过线性代数的方法来求得斐波那契数列的通式F n。
令U n=[F n+1F n],则F n+2=F n+1+F n F n+1=F n+1可表示为U n+1=[1110]U n,因此,U n=A n U0。
若λ1是矩阵A的特征根,相应的特征向量为x1,则有A n x1=λn x1,因此,若把U0表示成A的特征向量的线性组合,则U n可表示成A的特征向量的线性组合。
求解det(A−λI)=det([1−λ11−λ])=λ2−λ−1=0,可得A的特征根分别为:λ1=1+5√2≈1.618、λ2=1−5√2≈−0.618,相应的特征向量为x1=[λ11]、x2=[λ21],则有:U0=[10]=x1−x2λ1−λ2。
因此,斐波那契数列第n和n+1项为U n=[F n+1F n]=(λ1)n x1−(λ2)n x2λ1−λ2第n项为F n=15√⎡⎣(1+5√2)n−(1−5√2)n⎤⎦由上面的通式可以看出,当n→∞时,F n→15√(1+5√2)n,相邻两项之比F n+1F n→15√(1+5√2)≈0.618,即是当n趋向于无穷大时,后一项与前一项的比值越来越逼近黄金分割0.618。
以下列举斐波那契数列应用于组合数学的例子:(1)有一段楼梯有10级台阶,规定每一步只能跨一级或两级,要登上第10级台阶有几种不同的走法?这就是一个斐波那契数列:登上第一级台阶有一种登法;登上两级台阶,有两种登法;登上三级台阶,有三种登法;登上四级台阶,有五种登法……1,2,3,5,8,13……所以,登上十级,有89种走法。
(2)类似的,一枚均匀的硬币掷10次,问不连续出现正面的可能情形有多少种?答案是F12=144种。
斐波那契数列通项公式
斐波那契数列通项公式⽬录简介斐波那契数列是指的这样的⼀个数列,从第3项开始,以后每⼀项都等于前两项之和。
写成递推公式即:a n=a n−1+a n−2(n≥3)假设令a1=1,a2=1,则斐波那契数列指的是这样的⼀串数:1,1,2,3,5,8,13,21,34,55,89,...。
接下来,⽂章提到斐波那契数列特指a1=1,a2=1的这串数。
斐波那契数列的通项公式及证明通项公式斐波那契数列的通项公式⾮常对称:a n=1√5[(√5+12)n−(√5−12)n]可以发现,斐波那契数列都是整数,但斐波那契数列的通项公式确是由⽆理数拼凑⽽来的。
那么接下来,我们就来看看如何证明(求解)证明引⼊⾸先,我们来看看这样的⼀个题⽬:已知a n=k×a n−1+b(n≤2),求该数列的通项公式(⽤含有k,b,a1的式⼦表⽰)这不是⼀道原题,是我将题⽬中的数字⽤字母代替得到的。
闲话少说,我们来看看这要怎么做。
⾸先,我们要回到两种最基本的数列:等差数列和等⽐数列。
这两个数列的通项公式分别是:a n=a1+(n−1)×d(d为公差)a n=r n−1×a1(r为公⽐)知道了这两个公式,我们便要懂得转化。
可以看到当k=0时,该数列是⼀个常数列,通项公式为a n=a1当k=1时,该数列是⼀个等差数列,通项公式为a n=a1+b×(n−1)当k>1时,就是我们要讨论的重点。
⾸先,我们考虑能不能把他化为等差数列,然⽽,很显然不⾏。
那么,就考虑等⽐数列,我们把常数项b裂解,使之构成这样的⼀个式⼦:a n+t=k(a n−1+b−t)可以通过解⽅程算出t的值,于是原式便变成了⼀个等⽐数列,运⽤等⽐数列的通项公式,然后移项,数列{a n}的通项公式也就求出来了。
Ps.这种⽅法在⾼中必修五会重点讲到,这种计算数列通项公式的算法就叫裂项构造法,后⾯的篇幅讲重点讲⾼中不会涉及的⼆阶递推式的通项公式的求法。
数列的通项公式推导
数列的通项公式推导数列是数学中的一种重要概念,它由一组按照特定规律排列的数字组成。
在数列中,每一个数字被称为该数列的项。
而数列的通项公式是指能够通过该数列的项与项之间的关系式,来求出数列的第n项的公式。
数列的通项公式推导可以通过数列的规律进行观察和归纳,从而找到数列的通项公式。
下面,我们以一些常见的数列为例,来探讨数列通项公式的推导过程。
1. 等差数列的通项公式推导:等差数列是指数列中的每一项与前一项之间的差恒定的数列。
假设等差数列的首项为a₁,公差为d,第n项为aₙ。
观察等差数列的前几项,我们可以发现每一项与首项之间的差都是公差d的倍数。
根据这一规律,我们可以得到等差数列的通项公式的推导过程如下:a₂ - a₁ = da₃ - a₂ = d...aₙ - aₙ₋₁ = d观察到每两项之间的差都为d,我们可以将d视为公式中的常数。
根据观察,我们来总结n项之间的关系式:将上述关系式进行变形,得到:aₙ = a₁ + (n - 1)d因此,等差数列的通项公式为:aₙ = a₁ + (n - 1)d2. 等比数列的通项公式推导:等比数列是指数列中的每一项与前一项之间的比值恒定的数列。
假设等比数列的首项为a₁,公比为r,第n项为aₙ。
观察等比数列的前几项,我们可以发现每一项与前一项的比值都是公比r。
根据这一规律,我们可以得到等比数列的通项公式的推导过程如下:a₂ / a₁ = ra₃ / a₂ = r...aₙ / aₙ₋₁ = r观察到每两项之间的比值都为r,我们可以将r视为公式中的常数。
根据观察,我们来总结n项之间的关系式:aₙ = a₁ * r^(n - 1)因此,等比数列的通项公式为:3. 斐波那契数列的通项公式推导:斐波那契数列是一个特殊的数列,其前两项为1,后续项为前两项之和。
即f₁ = 1,f₂ = 1,fₙ = fₙ₋₁ + fₙ₋₂。
观察斐波那契数列的前几项,我们可以发现从第3项开始,每一项都是前两项之和。
斐波那契数列通项公式的推导方法ppt课件
16
问题一思路三:设 bn = a n +1,则bn1 = an1 +1, bn =3bn1 { bn }为等比数列,其中b1 =a1 +1=2,q=3, bn =2 3n1 = 2 3n1 an = 2 3n1 -1
…………
猜想: a n = 3n13n2 2 3n3 2 ... 3 2 2
2 1 3n1
=3n1 1 3
= 2
n1
3
1
n
2
上式当 n=1 时也成立, a n = 2
n1
3
1
n
N
(证略)
15
问题二的解答
思路: bn = an +1=(2 an1 +1)+1=2(an1 +1)=2bn1, 构造法
再设 bn = an 2n ,则 bn1 = an1 2n1 ,
bn1 =3 bn { bn }为等比数列,其中b1 =a1 +2=3,q=3,
bn =3n an =3n -2n
19
a1 1
问题三
:已知数列{
a
n
}满足
a
2
3
an 2an1 an2(n 3)
构造法
将(4)、 (5)两式相减得:
n
n
5a
n
1
2
5
1 2
5
an
斐波那契数列特征方程
斐波那契数列特征方程
通项公式
斐波那契数列的递推公式为:
具有形如:
递推公式的数列叫做线性递推数列。
这种数列的通项公式只与数列的第一、第二项和方程y2 = ay + b的两根有关。
此方程包含了线性递推数列的重要信息,故称之为线性递推数列的特征方程。
显然斐波那契数列是一个线性递推数列。
其特征方程为:
x2=x+1解得:
解得:
斐波那契数列的通项公式真的非常奇妙。
我们知道斐波那契数列的每一项都是由正整数构成的,但是它的通项公式居然含有无理数。
斐波那契的三个基本公式
斐波那契的三个基本公式斐波那契数列是一个非常有趣且在数学中具有重要地位的数列。
它的名字或许听起来有点高大上,但其实它就在我们的生活中,而且有着神奇的规律和应用。
先来说说斐波那契数列是什么吧。
斐波那契数列指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、…… 。
从第三项开始,每一项都等于前两项之和。
那斐波那契的三个基本公式是啥呢?第一个公式是通项公式。
斐波那契数列的通项公式是:$F(n)=\frac{1}{\sqrt{5}}[(\frac{1+\sqrt{5}}{2})^n - (\frac{1-\sqrt{5}}{2})^n]$ 。
这公式看起来是不是有点复杂?别担心,咱们慢慢理解。
第二个公式是递推公式,$F(n) = F(n - 1) + F(n - 2)$ ,其中$n \geq 2$,$F(0) = 0$ ,$F(1) = 1$ 。
这个公式就比较直观啦,说的就是后一项是前两项的和。
第三个公式是求和公式,前$n$项和$S(n) = F(n + 2) - 1$ 。
还记得我之前有一次给学生们讲斐波那契数列的时候,有个小调皮鬼一直嚷嚷着说这东西太难懂啦,根本没啥用。
我就笑着跟他们说:“别着急,咱们一起来找找它在生活中的影子。
” 然后我给他们举了个例子,比如说向日葵的花盘,大家仔细观察就会发现,葵花籽排列的方式就遵循着斐波那契数列的规律。
还有树枝的分叉,也有着斐波那契数列的踪迹。
这一下,孩子们都瞪大了眼睛,觉得太神奇啦!其实啊,斐波那契数列不仅仅在自然界中出现,在计算机科学、金融领域也都有它的身影。
比如在算法设计中,利用斐波那契数列的特性可以优化一些问题的解决方法。
在金融领域,股票价格的波动有时候也能呈现出类似斐波那契数列的规律。
咱们再回到这三个基本公式。
通项公式虽然复杂,但它能让我们精确地计算出数列中任意一项的值。
递推公式呢,就像是搭积木一样,一步一步地构建出整个数列。
求和公式则能帮助我们快速算出前若干项的总和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
斐波那契数列的通项公式推导
一个新的数学题初次接触时,会觉得这个题的解题技巧很妙,甚至有点非夷所思,但如果把同类型问题多做几个,你就会发现原来所谓的技巧,其实是一种再正常不过的想法,是一种由已知到未知的必然之路。
这样我们就由解题的技巧而转化到了通解通法,进一步就会形成解题的思想,所以我对于数学爱好者建议,做题时要把同类型题多种总结和分析,这样你的数学才会有长足的进步。
下面我们就由递推推导通项的问题,进行对比分析。
例1 在数列{}n a 中,1=5a ,2=2a ,13=23n n n a a a --+ (3)n ≥,求数列{}n a 的通项。
(普通高中课程标准实验教科书人教A 版必修5第69页6题)
分析:此题可分两步来进行,首先由构造一个等比数列,其中
,并写出的通项;然后利用,两边同除以得
,由累加法,就可求出数列{}n a 的通项。
解:(
设,则()所以数列
为等比数列,且首项为
,公比为3。
所以。
于是有,两边都除以得 设,则有
由累加法可得 因为 所以() 于是有。
总结:上面的求解过程实质,求是一个把已知条件逐步化简的过程,由相邻三项的递推关系化为相邻两项的递推关系,进一步求出通项公式。
下面我们来研究一下著名的斐波那契数列的通项。
已知数列{}n a ,其中,,求数列{}n a 的通项。
解:首先我们要构造一个等比数列,于是设
则有。
(1)
则由已知得(2)
对照(1)(2)两式得解得或。
我们取前一解,就会有。
设,则有
所以数列为等比数列,首项为,公比为
所以。
即(3)
再次构造等比数列,设
则有
对照(3)式,可得所以 x=.
于是有
设,则有数列为等比数列,首项为,公比为,于是=
所以有。