3[1]4实际问题与一元一次方程(全部类型)
3_4_1实际问题与一元一次方程-配套问题教学设计
在练习中巩固新知。
[活动3]小组合作探究
11.1、一张方桌由1个桌面、4条桌腿组成,如果1立方米木料能够做方桌的桌面50个或做桌腿300条,现有5立方米木料,那么用多少立方米木料做桌面、多少立方米木料做桌腿,做出的桌面和桌腿,恰好配成方桌?能配成多少方桌?
12.
13.2、某水利工地派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土即时运走?
4.分析:(1)题目中哪些是已知量?哪些是未知的?如果设x名工人生产螺钉,则名工人生产螺母;
5.(2)为了使每天的产品刚好配套,则应生产的螺母刚好是螺钉数量的
产品类型
生产人数
每人产量
总产量
螺钉
螺母
6.思考:1、通过表格你能找出题目中所有的等量关系吗?
7.你能根据相等关系列出方程吗?
8.你还有其它的解决方法吗?独立思考后完成表格的内容,再与同学交流。
知识与技能
1、能根据实际问题中的等量关系列出方程,掌握配套问题;
2、培养学生分析问题,解决问题的水平.
过程与方法
通过自主探索与小组合作交流,学会合理清晰地表达自己的思维过程,掌握根据具体问题中的数量关系,列出方程,并依据乘法的分配律去括号,感悟方程是刻画现实世界的一个有效模型,训练学生使用新知识解决实际问题的水平.
学生对题目实行审题,找出已知量和未知量,分析题目中的数量关系
[活动2]变式练习
9.由学生自主探索解决。
10.某车间有19名工人,每人每天能够生产1 200个螺钉或2 000个螺母. 2个螺钉需要配3个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?
[教师活动]
实际问题与一元一次方程常用方法及公式
实际问题与一元一次方程(二元一次方程组也可用)知识点一、用一元一次方程解决实际问题的一般步骤:审、设、列、解、检验、答. 知识点二、常见列方程解应用题的几种类型1.和、差、倍、分问题(1)基本量及关系:增长量=原有量×增长率,则现有量=原有量+增长量=原有量×(1+增长率),也有降低的情况,则现有量=原有量-降低量=原有量×(1-降低率)例如原有量是a,增长率为10%,则现有量为(1+10%)×a=1.1 a ;若下降10%,则现有量为(1-10%)×a=0.9 a(2)寻找相等关系:抓住关键词,圈词列方程,常见的关键词有:多、少、和、差、不足、剩余以及倍,增长率等.2.行程问题(1)三个基本量间的关系: 路程=速度×时间(s=vt ) ,速度= ,时间=(2)基本类型有:①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×相遇时间Ⅱ.寻找相等关系:甲走的路程+乙走的路程=两地距离. ②追及问题:Ⅰ.基本量及关系:追及路程=速度差×追及时间Ⅱ.寻找相等关系:第一, 同地不同时出发:前者走的路程=追者走的路程;第二, 同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,顺水速度-逆水速度=2×水速;Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系3.工程问题如果题目没有明确指明总工作量,一般把总工作量设为1.基本关系式:(1) 每个人工作效率相同时:总工作量=工作效率×工作时间x人数;工作效率= (由上式可推导)(2)总工作量=各部分工作量之和.4.调配问题(表格分析法)(1)寻找相等关系的方法:抓住调配后甲处的数量与乙处的数量间的关系去考虑.(2)此消彼长:甲处调往乙处x 人,则甲处现有人数=原有人数-x ,乙处现有人数=原有人数+x5.利润问题:成本一般即进价,先审题看题中涉及几个量,再决定用哪(几)个公式(变形)(1) 利润=售价-进价 (2)=100% 利润利润率进价(3) 实际售价=标价×折扣数/10 (4) 售价-进价= 利润率×进价(公式4可由公式1和2得到)(5) 标价=进价×(1+利润率) 例一件夹克衫先按成本价提高50%标价,再将标价打8折出售,结果获利28元。
3.4实际问题与一元一次方程(第1课时 产品配套问题和工程问题)(课件)七年级数学上册(人教版)
D.3×5(33-x)=2×15x
2. 2020年,新冠疫情肆虐全球,口罩成了人们出行的“标配”,某口置生
产车间有26名工人,每人每天可以生产800个口置面或1000根口置带,1个
口置面需要配2根口置带,为了使每天生产口置面和口置带刚好配套,设安
排x名工人生产口置面,则下面所列方程正确的是(A )
A.1000(26-x)=2×800x
各是多少?若设有2个人,则可列方程是( C)
A.3(x+2)=2x-9
B.3(x+2)=2x-9
C. x 2 x 9
3
2
D. x 2 x 9
3
2
分层作业
【能力提升作业】
4. 我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到 店中,一房七客多七客,一房九客一房空,”诗中后面两句的意思是:如果 每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空 出一间客房.设有x间客房,可列方程为:7x+7=9(x-1).
新课 人教版 七年级上册
第三章一元一次方程 3.4实际问题与一元一次方程 (第一课时)产品配套问题和工程问题
学习目标
1.理解配套问题和工程问题的背景. 2.掌握用一元一次方程解决实际问题的基本过程. 3.分清有关数量关系,能正确找出作为列方程依据的主要等量关系.
复习提问 一元一次方程的求解步骤是什么?
当堂测试
1. 某机械厂加工车间有33名工人,平均每名工人每天加工大齿轮5个或小齿
轮15个,已知2个大齿轮和3个小齿轮配成一套,问分别安排多少名工人加
工大,小齿轮,才能刚好配套?若设加工大齿轮的工人有名,则可列方程
是(C )
A.2×5(33-x)=3×15x
七年级数学上册 第三章 一元一次方程 3.4 实际问题与一元一次方程(电话计费问题)课件
2.对问题的深入(shēnrù)探 究
主叫时间t /分 方式一计费/元
t >350
58+0.25(t-150)
方式二计费/元 88+0.19(t-350)
当t >350分时,两种计费(jìfèi)方式哪种更合算呢?
当t>350分时,可以看出,按方式一的计费为108元加 上超过350min部分(bùfen)的超时费0.25(t-350)元,按方式 二的计费为88元加上超过350min部分的超时费0.19(t350)元,按方式二的计费划算.
(1)t<150 (2)t=150 (20213/12)/5 150<t<350
(4)t=350 (5)t>350
第六页,共十八页。
问题2:深入月使(sh用ēnrù)探主究叫限定
费(元) 时间(分)
主叫超时 费(元/分)
被叫
问题3:设一个月内用移动电话主叫为t 分(t是正整 方式一数).根据58表格(biǎogé)1,5当0 t 在不同0时.2间5 范围内免取费值,
观察,分析,判断,解答,验证
2021/12/5
第十七页,共十八页。
内容(nèiróng)总结
创设情境引入新课。由上表可知,营业厅根据________的不同进行收费,所以。(3)150< t<350。问题3:设一个月内用移动电话主叫为t 分(t是正整。列表说明(shuōmíng)按方式一和
No 方式二如何计费.。150<t< 350。150<t< 350。150<t<350时,方式一话费从__元增加到
2021/12/5
第十四页,共十八页。
用A4纸在某誊印社复印文件,复印页数不超过20时每页收费0.12元;复印页 数超过20页时,超过部分每页收费0.09元. 在某图书馆复印同样的文件,不论复印 多少页,每页收费0.1元. 如何根据复印的页数选择(xuǎnzé)复印的地点使总价格 比较便宜?(复印的页数不为零)
人教版七年级上册数学教学课件 第3章 一元一次方程3.4实际问题与一元一次方程(第2课时)
解得x=400.
2.一件服装以120元销售,获利20%,则这件服装 的进价是( A ) A.100元 B.105元 C.108元 D.118元
【解析】解:设这件服装的进价为x元,依题意 得(1+20%)x=120,解得x=100,则这件服装 的进价是100元。
一件夹克衫先按成本提高50%标价,再以八折 (标价的80%)出售,获利28元,这件夹克衫的成 本是多少元?
(1)获利28元是怎么得来的? 利润=售价-进价
(2)设商品成本是x元,商品的标价是50%x 元, 商品售价是 50%×80%×x 元.
解:设商品的成本是x元 80%(1+50%)x-x=28 解得x=140 答:这件夹克衫的成本是140元。
盈利:售价>进价 利润=售价-进价>0
亏损:售价<进价 利润=售价-进价<0
解:设盈利25%的衣服的进价为x元
x+25%x=60
解得x=48
设亏损25%的衣服的进价为y元
y-25%y=60 解得y=80
两件衣服的进价和是x+y=128元,两件 衣服的售价和120元. 因为进价>售价 所以卖这两件衣服亏损了8元.
3.已知面包店的面包一个15元,小明去此店买面包, 结账时店员告诉小明:“如果你再多买一个面包就 可以打九折,价钱会比现在便宜45元”,小明说: “我买这些就好了,谢谢.”根据两人的对话,可 知结账时小明买的面包数是( B )
A.38 B.39 C.40 D.41 【解析】解:小明买了x个面包.则 15x﹣15 (x+1)×90%=45,解得x=39.
商店对某种商品调价,按原价的八折出售,此时 商品的利润率是10%,此商品的进价为1600元, 商品的原价是多少元?
§_3.4实际问题与一元一次方程(练习答案)
§ 3.4实际问题与一元一次方程(知识要点)一、销售问题在生活中,人们购买商品和销售商品时,经常会遇到进价、原价(标价)、售价、打折等概念,在了解这些概念后,还必须熟悉销售问题中的两个基本关系式:① 利润=售价-进价; ② 利润率=进价利润×100%. 在①式中若等式左边的“利润”为正,就是盈利;若为负,就是亏损;由①和②式可以得到:利润=售价-进价=利润率×进价。
【例1】 某商店将某种服装按进价提高30%作为标价,又以九折优惠卖出,结果仍可获利17元,则这种服装每件进价是多少元?分析:此题要用的等量关系是:利润=售价-进价,如果把进价设为x 元,则标价为(1+30%)x ,打九折后售价为0.9×(1+30%)x ,再减去进价x 元得到的就是利润17元。
解:设这种服装每件的进价为x 元,依题意列方程为:0.9×(1+30%)x -x =17解得x =100答:这种服装的进价是100元。
练习:某商店对一种商品进行调价,按原价的八折出售,打折后利润率是20%,已知商品的原价是63元,求该商品的进价?二、行程问题1、相遇问题:主要是指两车(戓人)从两地同时相向而行。
其基本等量关系为两车(戓人)所行的路程这和恰好等于两地的距离;两车(或人)人开始行驶到相遇所用的时间相等。
2、追赶问题:主要是指甲、乙同向而行,快者追慢者称为追赶问题。
① 基本公式:速度差×追赶时间=被追赶的路程;② 对于同向同地不同时出发的问题有相等关系:追赶者行进路程=被追赶者行进路程; ③ 对于同时同向不同地出发的问题有等量关系:追赶者的行驶时间=被追赶者的行驶时间。
3、航行问题:基本公式:顺水速度=静水速度+水速,逆水速度=静水速度-水速 顺风速度=无风速度+风速,逆风速度=无风速度-风速 符号公式:v 顺水=v 静水+v 水 v 顺风=v 无风+v 风v 逆水=v 静水-v 水 v 逆风=v 无风-v 风 4、行程问题一般都能通过画线段示意图来分析,通过线段示意图,等量关系就能直观地显示出来,进而用方程表示出来。
3_4_1实际问题与一元一次方程(第一课时)教案
3.4.1 实际问题与一元一次方程(第一课时)教案-------配套问题教学内容用一元一次方程探究配套问题教学目标知识技能1、能通过审题发现实际问题中的数量关系,能找出相等关系、列出方程;2、经历把实际问题抽象成数学方程的过程,体会方程是刻画现实世界的有效模型。
3、会用方程的思想方法解决实际问题中的配套问题。
数学思考1、通过列一元一次方程表达数量关系的过程,体会模型的思想;2、能独立思考,体会方程思想。
问题解决1、初步学会在具体的情境中从数学的角度去发现问题,并综合使用数学知识和方法解决实际问题中的简单配套问题;2、在合作交流过程中,培养语言表达的水平和倾听的素养。
情感态度在使用方程解决问题的过程中,进一步强化学以致用的思想意识,感受数学的抽象美和简洁美,激励学生积极思考、勇于探索的学习精神,体验成功的喜悦。
教学重点1、探究实际问题转化成数学方程的思路方法;2、列方程解决实际问题中的配套问题;教学难点在实际的配套问题中找到相等关系、建立方程模型、解决实际问题。
教学辅助手段学案、多媒体演示(PPT和展示平台)辅助教学教学设计一、创设情境提出问题教师通过多媒体展示艺术节相关的视频,引出本节课的活动主题——要求学生筹备一次校园文化艺术节。
(设计意图:利用学生们感兴趣的艺术节这个话题引起学生的注重,将本节课要求掌握的实际问题的解决串联成艺术节中会遇到的各个环节,在后面的自主探究、合作交流中一一表现。
)二、尝试发现探索新知问题22个老师培训初一和初二两个年级的同学参加团体操表演,每位老师每天能够培训初一年级12名同学或者初二年级的20名同学,表演要求2名初二同学与1名初一同学组成搭档,为了使每天培训的学生刚好配成搭档,应该怎样分配老师去培训?1、学生活动:阅读问题情境,画出文段中的关键信息;教师活动:给学生充分的时间独立思考后,引导学生找出问题中涉及到的数量和数量关系,2、师生活动:设适当的未知数,在找到的数量关系中提取相等关系;由“2名初二同学与1名初一同学组成搭档”可知“初二学生数量:初一学生数量= 2 :1”从而根据比例式中两内项之积等于两外项之积得到“参加表演的初一学生数量×2= 参加表演的初二学生数量”这个相等关系。
a3[1].4实际问题与一元一次方程————配套问题
3.4实际问题与一元一次方程(二)——配套问题班别:__________ 姓名:____________在实际问题中,大家常见到一些配套组合问题,如螺钉与螺母的配套,盒身与盒底的配套等.解决这类问题的方法是抓住配套关系,设出未知数,根据配套关系列出方程,通过解方程来解决问题. 一.配套与人员分配问题【例1】某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天生产的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母?)解:【配套练习】:某车间有工人85人,平均每人每天可以加工大齿轮8个或小齿轮10个,又知1个大齿轮和三个小齿轮配为一套,问应如何安排劳力使生产的产品刚好成套?二.配套与物质分配问题例2 用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套.现在有36张白铁皮,用多少张制盒身,多少张制盒底,可使盒身与盒底正好配套?(分析:本题的配套关系是)解:【配套练习】:一张方桌由1个桌面、4条桌腿组成,如果1立方米木料可以在方桌的桌面50个或做桌腿300条,现有5立方米木料,那么用多少立方米木料做桌面、多少立方米木料做桌腿,做出的桌面和桌腿,恰好配成方桌?能配成多少方桌?4个桌腿.)解:通过以上几例,我们可以看出,配套问题的背景虽然不同,但解决问题的方法是一样的,需要抓住配套问题的关键语句进行配套.【请你来试一试】:1.某车间有28名工人,生产一种螺栓和螺帽,平均每人每小时能生产螺栓12个或螺帽18个,两个螺栓要配三个螺帽,应分配多少人生产螺栓,多少人生产螺帽,才能使生产的螺栓和螺帽刚好配套?2.某服装厂要生产某种型号的学生校服,已知3m长的某种布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,库内存这种布料600m,应如何分配布料做上衣和做裤子才能恰好配套?3. 某工地需要派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应该怎样安排人员,正好能使挖的土及时运走?(分析:本题的配套关系是:每天挖的土方等于每天运走的土方.)解:。
3.4.1实际问题与一元一次方程(配套问题、工程问题)
110-5x=6x,
x=10. 相应地, 22-x=12. 答:应安排10名工人生产螺钉,12名工 人生产螺母.
例1:某车间有22名工人,每人每天可以生产1200个螺 钉或2000个螺母。1个螺钉需要配2个螺母,为使每天 生产的螺钉和螺母刚好配套,应安排多少名工人生产 螺钉和多少名工人生产螺母?
分析:题目中有哪些是已知量?哪些是未知量?
如果设x名工人生产螺钉,则 22-x 名工人生产螺母
为了使每天生产的螺钉和螺母刚好配套,则生产 的螺母数量刚好是螺钉数量的 2倍 。
例1:某车间有22名工人,每人每天可以生产1200个螺钉或2000
个螺母。1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母
刚好配套,应安排多少名工人生产螺钉和多少名工人生产螺母?
思考:如果配套比例是螺钉数量:螺母
数量=2:3,又该怎么列方程呢?(只列 方程,不解)
☞比一比,赛一赛.
一件工作,甲单独做20小时完成,乙单独做12小时 完成。
(1)两人合作32小时完成对吗?为什么?
1
(2)甲每小时完成全部工作的 20 ;
甲x小时完成全部工作的
1x 20
x 20
;
1
乙每小时完成全部工作的 乙x小时完成全部工作的
解:设 x天可以铺好这条管线. 根据题意得: x x 1
12 24
解方程,得:
x=8
答:两个工程队从两端同时施工,要8
天可以铺好这条管线.
1
12
x
x
12 12
; 。
工程问题中的基本量及其关系:
工作量=工作效率×工作时间
人教版七年级数学上册 第五章 “一元一次方程”《实际问题与一元一次方程(4)工程问题》精品课件
( ×2+ ×4)x=1.解得x=10.
答:现由2个老工人和4个徒工合作10天可以完成.
3.甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20
天完成,合同规定15天完成,否则每超过1天罚款1000元,甲、乙两
人经商量后签订了该合同.
(1)正常情况下,甲、乙两人能否履行该合同?为什么?
解:(1)设甲、乙合作需要x天完成.由题意,得
Hale Waihona Puke ( + )x=1.解得x=12.
因为12<15,所以甲、乙两人能履行该合同.
(2)现两人合做了这项工程的75%,因别处有急事,必须调走1人,
问调走谁合适些?为什么?
解:(2)设两人合做这项工程的75%用了y天,由题意,得
( + )y= ,解得y=9.
设每个人的工作效率相同,那么应先安排多少人工作?
解:设先安排x人工作.根据题意,得
x+ ×2(x+6)=1.解得x=6.
答:先安排6人工作.
1.甲、乙两个工程队参与某小区7200m 2 路面改造.其中甲队每天完
成160m 2 ,乙队每天完成的工程量是甲队的1.5倍.甲、乙两队合作
若干天后,乙队又单独做15天,最终完成任务.求乙队完成此项工
程参与的天数.
解:设乙队完成此项工程参与的天数为x天.
由题意,得160(x-15)+1.5×160x=7 200.解得x=24.
答:乙队完成此项工程参与的天数为24天.
2.一套家具,由一个老工人做40天完成,由一个徒工做80天完成.现由
2个老工人和4个徒工合作几天可以完成?
解:设合作x天可以完成.由题意,得
3_4实际问题与一元一次方程——行程问题(11_4)
实际问题与一元一次方程——行程问题例1、电动机车和磁悬浮列车从相距298千米的两地同时出发相对而行,磁悬浮列车的速度比电机车速度的5倍还快20千米/小时,半小时后相遇。
两车的速度各是多少?(课本P.102第6题)【配套练习】1.甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米.两人几小时后相遇?2. 一架飞机在A、B两地间航行。
从A地到B地需5.5小时,从B地到A地需6小时,风速为24千米/时,A、B两地的距离是多少?3.运动场跑道一圈长400米,甲、乙两人同时从同一处反向出发,甲每分钟跑290米,乙每分钟跑270米,那么经过多长时间首次相遇?又经过多长时间再次相遇?追及..问题例2:解放军某部从营地出发,以每小时6千米的速度向目的地前进,8小时后部队有急事,派通讯员骑摩托车以每小时54千米的速度前去联络,多长时间后,通讯员能赶上队伍?【配套练习】1. 小明每天早上要在7:50之前赶到距家1000米的学校上学。
小明以80米/分的速度出发,5分后,小明的爸爸发现他忘了带语文书。
于是,爸爸立即以180米/分的速度去追小明,并且在途中追上了他。
(1)爸爸追上小明用了多长时间?(2)追上小明时,距离学校还有多远?2.甲乙两人登一座山,甲每分钟登高10米,且甲先出发3 0分,乙每分钟登高15米,两人同时登上山顶,甲用多长时间登山?这座山有多高?(课本P.102第5题)3.跑得快的马每天走240里,跑得快的马每天走150里。
慢马先走12天,快马几天能够追上慢马?(课本P.113第5题)行船问题:1. 一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?2.一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间距离。
3、一轮船往返A,B两港之间,逆水航行需3时,顺水航行需2时,水流速度是3千米/时,则轮船在静水中的速度是多少?4. 某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时。
3.4实际问题与一元一次方程--精品课件
1、一批零件,甲每小时能加工80个,则
⑴甲3小时可加工工程2问40题个的零件基,本x数小量时关可加系工:80x个零件。
工作总量=工作时间×工作效率
⑵加工a个零件,甲需
小时完成。
2、一项工当程不甲知独道做需总6工天程完的成,具则体量时,一般
⑴甲独做一把天总可工完程成当这做项“工程1”的,如果一个人单
左边
右边
全部工 设甲、乙合做部分需要x小时完 作量为 成,甲独做部分完成的工作量
工程“问1”题基本为 等210量4关240系: 每个人的成工的作工甲为量、作21之0乙x量和合 做1=12一部x 分共完完成的工作量
全部工作量“1”
甲先做4
小时完
成的工 做量 4
20
合做x小时
甲完成的工
作量 1
20
x
合做x小时乙完成的
5)全部工作量之和=各队工作量之和
例1:甲每天生产某种零件80个,甲生产3天 后,乙也加入生产同一种零件,再经过5天, 两人共生产这种零件940个,问乙每天生产 这种零件多少个?
分析
解题
甲乙后5天生产零件的总个数
图 头3天甲生产 甲后5天生 示 零件的个数 产的个数
乙后5天生 产的个数
940个
相 等 关 系
利润率=
商品利润 商品进价
×100%
●标价、折扣数、商品售价关系 :
商品售价= 标价× 折扣数
10
●商品售价、进价、利润率的关系:
商品售价= 商品进价×(1+利润率)
驶向胜利 的彼岸
问题&情境
探究1
分析:售价=进价+利润 售价=(1+利润率)×进价
分析:① 设盈利25%衣服的进价是 x 元,则商 品利润是 0.25x 元;依题机队每天收割小麦12公顷,收割完一片麦地 的 后,该收割机改进操作,效率提高到原来的 倍,因此比预定时间提早1天完成.问这片麦地 有多少 公顷?
人教版七年级数学上册3.4实际问题与一元一次方程(问题)教学设计
5.评价与反馈:在教学过程中,教师要及时关注学生的学习状况,通过提问、作业、测验等方式了解学生的学习进度,针对性地给予评价和反馈,指导学生改进学习方法,提高学习效果。
二、学情分析
七年级的学生在数学学习上已经具备了一定的基础,理解了基本的算术运算,并能够解决一些简单的实际问题。在此基础上,学生对一元一次方程的概念和解法已有初步的了解,但在将实际问题抽象为一元一次方程的过程中,可能还存在一定难度。此外,学生在解决实际问题时,可能缺乏主动思考和深入探究的习惯,需要教师在教学过程中加以引导和培养。
5.完成一份关于一元一次方程的解题技巧和方法的手抄报,要求内容丰富、条理清晰、设计美观,以提高学生对一元一次方程的认识和运用能力。
教师在批改作业时,应关注学生的解题过程,及时发现学生的错误,给予针对性的指导和鼓励。同时,教师应关注学生的个体差异,对学习困难的学生给予更多关心和帮助,使他们在完成作业的过程中逐步提高。
(二)教学设想
1.创设情境,激发兴趣:在教学过程中,教师应注重创设与实际生活紧密相关的情境,激发学生的学习兴趣,使其在解决问题的过程中感受到数学的价值。
2.自主探究,合作交流:鼓励学生独立思考,引导学生通过小组合作、讨论等方式,共同解决实际问题。在合作交流中,培养学生的团队协作能力和表达能力。
3.分层次教学,关注个体差异:针对学生的个体差异,设计不同难度的实际问题,使每个学生都能在课堂上得到锻炼和提升。
过程:教师布置适量的课后作业,要求学生在课后独立完成,巩固本节课所学知识。同时,鼓励学生在生活中发现数学问题,运用所学知识解决实际问题。
人教版七年级上册3.4实际问题与一元一次方程(教案)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了实际问题和一元一次方程的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对一元一次方程的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
此外,小组讨论和成果展示环节也让我看到了同学们的积极性和合作精神。他们在讨论中能够互相启发、共同解决问题,这让我感到很欣慰。但同时,我也注意到有些小组在讨论过程中,个别同学参与度不高,这可能是因为他们对问题理解不够深入或者不知道如何表达自己的观点。针对这个问题,我打算在接下来的课程中,多关注这些同学,鼓励他们大胆发言,提高他们的自信心。
2.教学难点
-抽象出实际问题中的数量关系,正确建立一元一次方程模型;
-在解决实际问题时,正确识别未知数和已知数,避免在列方程过程中出现错误;
-对于一些复杂问题,能够分解问题,逐步求解。
举例:在购物问题中,当涉及到折扣、优惠等问题时,学生容易混淆数量关系,如“一件商品原价为100元,商场打8折销售,另需支付10元运费,问顾客实际支付了多少钱?”在此问题中,学生需要正确识别商品原价、折扣、运费等已知数和未知数,并建立正确的方程。
三、教学难点与重点
1.教学重点
-理解一元一次方程在实际问题中的应用,掌握从实际问题中抽象出一元一次方程的方法;
-学会列出一元一次方程解决实际问题,并能正确求解;
-感悟数学建模的过程,体会数学知识在实际生活中的价值。
举例:在行程问题中,理解速度、时间和路程的关系,能根据题目信息列出相应的方程,如“甲、乙两人从同一地点出发,甲以每小时4公里的速度行走,乙以每小时5公里的速度行走,问多少小时后乙比甲多走3公里?”
非常全面】实际问题与一元一次方程(十大题型总结)
非常全面】实际问题与一元一次方程(十大题型总结)第三章一元一次方程3.4 实际问题与一元一次方程用一元一次方程解决实际问题的一般步骤为:审、设、列、解、检、答。
具体解释如下:1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系。
2)“设”就是设未知数,一般求什么就设什么为x,但有时也可以间接设未知数。
3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一。
4)“解”就是解方程,求出未知数的值。
5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可。
6)“答”就是写出答案,注意单位要写清楚。
常见列方程解应用题的几种类型:题型一:和、差、倍、分问题常见以下四种题型:一般和差倍分问题、年龄问题、等积变形问题、比赛积分问题。
例题1:某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元?解:设去年该单位捐款钱数为x。
=2x+1000=2xx=(元)例题2:旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?解:设油箱里原有的汽油为x升。
x(1-25%)(1-40%)=25%x+x(1-25%)*40%-1x=10题型二:年龄问题例题3:兄弟二人今年分别为25岁和9岁,多少年后兄的年龄是弟的年龄的2倍?解:设x年后,兄的年龄是弟的年龄的2倍,则x年后兄的年龄是25+x,弟的年龄是9+x。
由题意,得2×(9+x)=25+x。
x=7答:7年后兄的年龄是弟的年龄的2倍。
例题4:三位同学甲乙丙,甲比乙大1岁,乙比丙大2岁,三人的年龄之和是41,求甲同学的年龄?解:设甲得年龄是x,乙得年龄是x-1,丙得年龄是x-1-2.x+x-1+x-1-2=41求解得x=15所以甲得年龄是15岁。
实际问题与一元一次方程(归类)
实际问题与一元一次方程(归类篇)归类1 和差倍分问题1.某企业原有管理人员与营销人员之比为3∶2,总人数为150人.为了扩大市场,从管理人员中抽调x 人参加营销工作,就能使营销人员是管理人员的2倍,依题意,可列方程为.2.(哈尔滨中考)美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品数量是国画作品数量的2倍多7幅,则展出的油画作品有幅.3.(吉林中考)为促进教育均衡发展,A 市实行“阳光分班”,某校七年级一班共有新生45人,其中男生比女生多3人,求该班男生、女生各有多少人.4.(福州中考)有48支队共520名运动员参加篮球、排球比赛,其中每支篮球队10人,每支排球队12人,每名运动员只能参加一项比赛,篮球、排球各有多少支队参赛?归类2数字问题1.一个两位数,个位上的数字的3倍加1是十位上的数字,个位上的数字与十位上的数字的和等于9,这个两位数是多少?2.一个两位数,个位上的数字是1,把这个两位的数字对调后,得到的新数比原两位数小18,求原两位数.3.一个两位数,十位上的数字比个位上的数字小1,十位与个位上数字之和是这个两位数的15.求这个两位数.归类3行程问题知识点1 相遇问题1.某公路的干线上有相距108公里的A 、B 两个车站,某日16点整,甲、乙两车分别从A 、B 两站同时出发,相向而行,已知甲车的速度为45公里/时,乙车的速度为36公里/时,则两车相遇的时间是()A .16时20分B .17时20分C .17时40分D .16时40分2.昆曲高速公路全长128千米,甲、乙两车同时从昆明、曲靖两地高速路收费站相向匀速开出,经过40分钟相遇,甲车比乙车每小时多行驶20千米.求甲、乙两车的速度.知识点2 追及问题3.甲以5千米/时的速度先走16分钟,乙以13千米/时的速度追甲,则乙追上甲的时间为(C)A .10小时B .6小时C.16小时D.130小时 4.A 、B 两地相距40千米,上午6时张强步行从A 地出发,于下午5时到达B 地;上午10时王丽骑自行车从A 地出发,于下午3时到达B 地,则王丽是在(填时刻)追上张强的.5.一队学生去校外进行训练,他们以5千米/时的速度行进,走了18分钟的时候,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员需多少时间可以追上学生队伍?知识点3 顺风逆风问题6.一艘轮船在甲、乙两地之间航行,已知水流速度是5千米/时,顺水航行需要6小时,逆水航行需要8小时,则甲、乙两地间的距离是()A .220千米B .240千米C .260千米D .350千米7.一艘船从甲码头顺流而下到达乙码头,然后逆流返回,因故障停泊在甲、乙两码头之间的丙码头修理,此时该船一共航行了7小时,距离甲码头还有12千米的路程.已知此船在静水中的速度为27千米/时,水流速度为3千米/时,求甲、乙两码头之间的路程.知识点4 过桥问题8.一列火车长150 m ,以15 m/s 的速度通过600 m 的隧道,从火车进入隧道口算起,到这列火车完全通过隧道,所需时间是()A .30 sB .40 sC .50 sD .60 s9.已知某铁路桥长500 m ,现在一列火车匀速通过该桥,火车从开始上桥到过完桥共用了30 s ,整列火车完全在桥上的时间为20 s ,则火车的长度为多少m?归类4产品配套问题1.用白铁皮做罐头盒,每张铁皮可制盒身15个,或制盒底42个,一个盒身与两个盒底配成一套罐头盒,现有108张白铁皮,怎样分配材料可以正好制成整套罐头盒?若设用x 张铁皮做盒身,根据题意可列方程为(D )A .2×15(108-x)=42xB .15x =2×42(108-x)C .15(108-x)=2×42xD .2×15x =42(108-x)2.有一个专项加工茶杯车间,一个工人每小时平均可以加工杯身12个,或者加工杯盖15个,车间共有90人.安排加工杯身的人数为多少时,才能使生产的杯身和杯盖正好配套?直接设法:设安排加工杯身的工人为x 人,则加工杯盖的工人为人,每小时加工杯身个,杯盖个,则可列方程为,解得x =.间接设法:设共加工杯身x 个,共加工杯盖x 个,则加工杯身的工人为人,加工杯盖的工人为人,则可列方程为.解得x =.故加工杯身的工人为人.3.某车间共有75名工人生产A 、B 两种工件,已知一名工人每天可生产A 种工件15件或B 种工件20件,但要安装一台机械时,同时需A 种工件1件,B 种工件2件,才能配套,则车间如何分配工人生产,才能保证连续安装机械时,两种工件恰好配套?归类5工程问题知识提要:解决工程问题,常把总工作量看作1,并利用“工作量=人均效率×人数×时间”的关系考虑问题.1.某项工作甲单独做4天完成,乙单独做6天完成,若甲先做一天,然后甲、乙共同完成此项工作,若甲一共做了x 天,所列方程为()A .x +14+x6=1B .x 4+x +16=1C .x 4+x -16=1 D .x 4+14+x +16=1 2.(铜仁中考)我国古代名著《九章算术》中有一题“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”(凫:野鸭)设野鸭与大雁从北海和南海同时起飞,经过x 天相遇,可列方程为(D )A .(9-7)x =1B .(9+7)x =1C .(17-19)x =1D .(17+19)x =13.一件工作,甲单独做15小时完成,乙单独做10小时完成,甲先单独做9小时,后因甲有其他任务调离,余下的任务由乙单独完成,那么乙还要多少小时完成?4.某车间接到一批加工任务,计划每天加工120件,可以如期完成,实际加工时每天多加工20件,结果提前4天完成任务,问这批加工任务共有多少件?归类6销售中的盈亏问题知识提要:商品利润和利润问题中的关系式:①商品利润=商品售价-商品成本价(商品进价); ②商品利润率=商品利润商品成本×100%;③商品销售额=商品销售价×商品销售量; ④商品的销售利润=(销售价-成本价)×销售量.1.(南宁中考)超市店庆促销,某种书包原价每个x 元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A .0.8x -10=90B .0.08x -10=90C.90-0.8x =10D .x -0.8x -10=902.(荆州中考)互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A .120元B .100元C .80元D .60元3.某种商品的进价为800元,出售时的标价为1 200元,后来由于该商品积压,商店准备打折出售,但要保持利润率为5%,则应打()A .6折B .7折C .8折D .9折4.某商店购进一批运动服,每件售价120元,可获利20%,设这种运动服每件的进价是x 元,则可列方程为. 5.(黔东南期末)一件商品售价180元,获得了20%的利润,则该商品的进价为元.6.(柳州中考)小陈妈妈做儿童服装生意,在“六一”这一天上午的销售中,某规格童装每件以60元的价格卖出,盈利20%,求这种规格童装每件的进价.7.某种商品每件的进价为250元,按标价的九折销售时,盈利15.2%,这种商品每件的标价是多少元?8.(海南中考)世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各为多少元.归类7球赛积分问题知识提要:球赛积分表中的数量关系:①比赛总场数=胜场数+负场数+平场数; ②比赛总积分=胜场积分+负场积分+平场积分.1.中超联赛中,甲足球队在联赛30场比赛中除输给乙足球队外,其他场次全部保持不败,取得了67个积分的骄人成绩,已知胜一场得3分,平一场得1分,负一场得0分,设甲足球队一共胜了x 场,则可列方程为()A.3x+(29-x)=67 B.x+3(29-x)=67C.3x+(30-x)=67 D.x+3(30-x)=672.11月5日,遂宁市中学生运动会篮球比赛在遂宁市中学外国语实验学校拉开帷幕,每场比赛都要决出胜负,每队胜一场得3分,负一场得1分,已知某篮球队在七场比赛中共得到15分,则该篮球队在这七场比赛中获胜了() A.六场B.五场C.四场D.三场3.小丽和爸爸一起玩投篮球游戏,两人商定规则为:小丽投中1个得3分,爸爸投中1个得1分,结果两人一共投中了20个,得分刚好相等,则小丽投中了个.4.(岳阳中考)某项球类比赛,每场比赛必须分出胜负,其中胜1场得2分,负1场得1分.某队在全部16场比赛中得到25分,求这个队胜、负场数分别是多少.归类8分段计费问题1.某市出租车起步价是5元(3公里及3公里以内为起步价),以后每公里是1.6元,不足1公里按1公里收费,小明乘出租车到达目的地时计价器显示为11.4元,则此出租车行驶的路程可能是()A.5.5公里B.6.9公里C.7.5公里D.8.1公里2.某市按如下规定收取每月煤气费:用户每月用煤气如果不超过60立方米,每立方米按1元收费,如果超过60立方米,超过部分每立方米按1.5元收费.已知12月份某用户的煤气费平均每立方米1.2元,那么12月份该用户用煤气立方米.3.为鼓励民众节约用电,城镇居民生活用电电费目前实行梯度收费,具体标准如下表:(1)若月用电100度时,应交电费多少元?若月用电200度时,应交电费多少元?(2)若某用户12月应交电费93元,则该用户12月的用电量是多少?归类9方案决策问题1.某服装商店出售一种优惠购物卡,花200元买这种卡后,凭卡可在这家商店按8折购物,下列情况买卡购物合算的是() A.购900元B.购500元C.购1 200元D.购1 000元2.下表是某地移动公司推出的两种话费收费方式:(1)设通话时间为x分钟,则方式一每月收费元,方式二每月收费元;(2)本地通话分钟时,两种收费方式一样;(3)当通话时间为250分钟时,选择比较合算;当通话时间为150分钟时,选择比较合算.3.(肇庆端州区期末)某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两店出售同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价48元,乒乓球每盒12元,经洽谈后,甲店每买一副乒乓球拍赠一盒乒乓球,乙店全部按定价的9折优惠,该班急需乒乓球拍5副,乒乓球若干盒(不少于5盒).乒乓球购买多少盒时,甲、乙两店所需费用一样?。
一元一次方程与实际问题的多种题型
一元一次方程与实际问题的多种题型实际问题与一元一次方程(1)一、数字问题1.一个两位数,十位数字比个位数字的4倍多1.将两个数字调换顺序后所得数比原数小63.求原数.2.日历的12月份上,爷爷生日那天的上、下、左、右4个日期的和为80,你能说出爷爷生日是几号吗?3.有一个三位数的百位数字是1,如果把1移到最后,其他两位数字顺序不变,所得的三位数比这个三位数的2倍少7,求这个三位数.二、人员分配问题4.某班同学参加平整土地劳动.运土人数比挖土人数的一半多3人.若从挖土人员中抽出6人运土,则挖土和运土的人数相等.求原来运土和挖土各多少人?5.某车间有62名工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?三、追击相遇问题6.甲、乙两车划分从相距XXX的两地相向开出,已知甲车速度60千米/时,乙车速度40千米/时,若甲车先开1个小时,问乙车开出多少小时后两车相遇?7.A、B两地相距31千米,甲从A地骑自行车去B地,1小时后乙骑摩托车也从A地去B地.已知甲每小时行12千米,乙每小时行28千米.(1)问乙动身后多少小时追上甲;(2)若乙抵达B地后立刻返回,则在返回路上与甲相遇时距乙动身多长工夫?8.某行军纵队以8千米/时的速度行进,队尾的通讯员以12千米/时的速度赶到队伍前送一个文件.送到后立即返回队尾,共用14.4分钟.求队伍长.9.某人有急事,预定搭乘一辆小货车从A地赶往B地,实际上他乘小货车行了三分之一路程后改乘一辆小轿车,车速提高了一倍,结果提前一个半小时抵达.已知小货车的速度是36千米/时,求两地间路程.四、工程问题10.一项工程甲、乙两队合作10天可以完成,甲队独做15天完成,现两队合作7天后,其余工程由乙队独做.乙队还需几天完成?11.检修一处住宅区的自来水管道,甲单独完成需14天,乙单独完成需18天,丙单独完成需12天,前7天由甲、乙两人合做,但乙中途离开了一段时间,后2天由乙、丙合作完成.问乙中途离开了几天?5、方案计划题目12.某中学组织初一同砚春游,原打算租用45座客车若干辆,但有15人没有坐位;如果租用同样数目的60座客车,则多出一辆,且其余客车正好坐满.已知45座客车日房钱为每辆220元,60座客车日房钱为每辆300元.试问:(1)初一年级人数是多少?原计划租用45座客车多少辆?(2)要使每个同学都有座位,怎样租车更合算?13.XXX和XXX在课外研究中,用20张白卡纸做包装盒,每张白卡纸可以做2个盒身或者做3个盒底盖.且1个盒身和2个底盖正好做成一个包装盒,为了充裕利用资料使做成的盒身和底盖恰好配套,他们设想了两种方案:方案一:把这些白卡纸分成两部分,一部分做盒身,一部分做底盖;方案二:先把一张白卡纸适当剪裁出一个盒身和一个盒盖,余下的白卡纸分成两部分,一部分做盒身一部分做底盖.想一想,他们的方案是否可行?实际题目与一元一次方程(2)一、销售与利润问题1.在商品销售经营中,触及的基本干系式:(1)商品的原销售价、提价的百分数与商品的现销售价之间的关系是__________________________________________________ ____________________.商品的原销售价、降价的百分数与商品的现销售价之间的关系是__________________________________________________ ____________________.(2)商品的实际售价、商品的进价与商品的利润之间的干系是(这里不考虑其他因素)___________________________________________________ ___________________.(3)商品的利润、商品的进价与商品的利润率之间的干系是(这里不考虑其他因素)___________________________________________________ ___________________.(4)在打折销售中,商品的标价、折扣数与商品打折后的实际售价之间的干系是__________________________________________________ ____________________.2.在我国银行储蓄存款计较利息的基本干系式首要有:(1)主顾存入银行的钱叫做______,银行付给主顾的酬金叫做______,它们的和叫做____,即__________________.(2)顾客将钱存入银行的时间叫做______.每个期数内的______与____的比叫做利率.这样,本金、利率、期数、利息这四个量的关系是____________.3.商店中某个玩具的进价为40元,标价为60元.(1)若按标价出售这个玩具,则所得的利润及利润率分别是多少?(2)顾客在与店主砍价时,店主为了保住15%的利润率,出售这个玩具的售价底线是多少元?(3)店主为吸引顾客,把这个玩具的标价提高10%后,再贴出打八八折的告示,则这个玩具的实际售价是多少元?(4)若店主设法将进价降低10%,标价不变,而贴出打八八折的告示,则出售这个玩具的利润及利润率划分是多少?4.(1)某个商品的进价是500元,把它提价40%后作为标价.如果商家要想保住12%的利润率搞促销活动,请你计算一下广告上可写出打几折?(2)想一想,如果(1)中该商品的进价没有具体给出,这时该题目怎样办理?5.某经销商经销一种商品,由于进货价降低了5%,售价不变,使得利润率由k%提高到(k+7)%,求k.〔售价=进货价×(1+利润率)〕6.XXX和XXX相约到图书城去买书,请你根据他们的对话内容,求出XXX上次所买书籍的原价.7.下表是甲商场电脑产品的进货单,其中进价一栏被墨迹污染,读了进货单后,请你算出这台电脑的进价是多少元.甲商场商品进货单供货单位品名与规格商品代码商品所属进价(商品的进货代价)标价(商品的预售价格)折扣利润(实际销售后的利润)乙单位P4200DN—63D7电脑专柜元5850元8折210元保修终生,三年内免收任何费用,三年后收取材料费,五日售后效劳快修,周起色备用,免费投诉,回访实际问题与一元一次方程(测试)一、选择题1.篮球赛的组织者出售球票,需要付给售票处12%的酬金,如果组织者要在扣除酬金后,每张球票净得12元,按精确到0.1元的要求,球票票价应定为().(A)13.4元(B)13.5元(C)13.6元(D)13.7元2.一市肆把彩电按标价的九折出售,仍可获利20%,若该彩电的进价是2400元,则彩电的标价为().(A)3200元(B)3429元(C)2667元(D)3168元3.某市肆将彩电按原价提高40%,然后在广告上写“大酬宾,八折优待”,结果每台彩电仍获利270元,那么每台彩电原价是()(A)2150元(B)2200元(C)2250元(D)2300元4.一个市肆以每3盘16元的代价购进一批灌音带,又从别的一处以每4盘21元的代价购进比前一批数目加倍的灌音带.如果两种合在一起以每3盘k元的代价全部出售可得到所投资的20%的收益,则k值等于()(A)17(B)18(C)19(D)20二、解答题5.某城市有50万户居民,平均每户有两个水龙头,估计其中有1%的水龙头漏水.若每个漏水龙头1秒钟漏一滴水,10滴水约重1克,试问该城市一年因此而浪费多少吨水(一年按365天计算).6.某市居民生活用电基本代价为每度0.4元,若每月用电量跨越a度,跨越部分按基本电价的70%收取.(1)某户5月份用电84度,共交电费30.72元,求a是多少;(2)若6月份的电费平均为每度0.36元,求该户6月份共用多少度电,应交纳多少电费?7.八年级三班在召开期末总结表彰会前,班主任放置班长XXX去市肆买奖品,下面是XXX与售货员的对话:XXX说:阿姨好!售货员:同砚,你好,想买点甚么?XXX说:我只要100元,请您帮忙放置买10支钢笔和15本笔记本。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
即本题的等量关系为 甲完成工作量+乙完成工作量=1
解:设挖完这条水渠估计要x天.
由题意得:
1 x 1 x 1 11 20 x 220
31
x ≈8
例1中的1210这个数据可以不用,解方程也简单。
例4 修筑一条公路,甲工程队单独承包要80天完成,乙工程队单独
承包要120天完成
1)现在由两个工程队合作承包,几天可以完成?
1 4
1
依题意得:
x
1
x1
60 120 4
x=10 答:两管同时注油10小时可注满油轮的
1
4
例6、 已知开管注水缸,10分钟可满,拨开底塞,满缸水 20 分钟流完,缸内的水流完后,现若管、塞同开,若干 时间后,将底塞塞住,又过了2倍的时间才注满水缸,求 管塞同开的时间是几分钟? 分析: 解:设两管同开x分钟
清仓处理
大放血
5折酬宾
跳楼价
大亏本
售价指商品 卖出去时的的实 际售价。
进价指的是商 家从批发部或厂家 批发来的价格。进 价指商品的买入价, 也称成本价。
知识探究
1、商品原价200元,九折出售,卖价是 180 元. 2、商品进价是30元,售价是50元,则利润 是 20 元. 2、某商品原来每件零售价是a元, 现在每件降价 10%,降价后每件零售价是 0.9a 元. 3、某种品牌的彩电降价20%以后,每台售价为a 元,则该品牌彩电每台原价应为 1.25a 元. 4、某商品按定价的八折出售,售价是14.8元,
x=3/2 答:两人合做这项工做的80%需3/2小时。
例题讲解
例3 挖一条长为1210米长的水渠,由甲施工队独做需要11 天完成,乙施工队独做需要20天完成,现在甲、乙两 施工队从两头同时施工,挖完这条水渠估计需几天?
解:设的米数+乙施工队挖的米数=1210米
完成,由乙组做需15天完成.为了早日完工,
现由甲、乙两组一起做,4天后甲组因另有任
务,余下部分由乙组单独做,问还需几天才能
完成? (1)可否用示意图来分析数量关系?
带 (2)总工作量怎么表示?甲乙两人的工作
着 效率怎么表示?
问 题
(3)设哪个未知数?相关的量怎样用它表示?
(4)根据怎样的数量关系列方程?
4)各队合作工作效率=各队工作效率之和
5)全部工作量之和=各队工作量之和
例1:甲每天生产某种零件80个,甲生产3天 后,乙也加入生产同一种零件,再经过5天, 两人共生产这种零件940个,问乙每天生产 这种零件多少个?
解:设乙每天生产零件的个数为x, 由题意得
380 580 5x 940 解得 x 60 答:乙每天生产零件60个.
可以 流完。现水槽内没水, 如果先开甲水管1小时,再把
乙水管也打开,再经过几小时水槽里的水恰好等于水槽容
量的 5 18
?
解:设再经过x小时水槽里的水恰好等于水槽的 5
18
5
等量关系:甲管流进水的水+乙管流出的水 =水槽的 18
依题意得: 1 5
1 5
x
1 6
x
5 18
x22
答:再经过 2 23小时水槽里的水恰好是水槽3容量的158
依题意得
1 30 1 y 1 80 120
y=75
答:两工程队合作需要48天完成,修好这条公路还需75天。
例5 甲、乙两输油管向油轮注油,甲管独注需60
小时,乙管独注需120小时,问两管同时注油
多少小时可注满油轮的 1?
4
解:设两管同时注油需x小时可注满油轮的
1 4
等量关系:甲管注油量+乙管注油量=
七年级数学(人教版)上册
3.4实际问题与一元一次方 程
做一做
1、一批零件,甲每小时能加工80个,则
⑴甲3小时可加工工程2问40题个的零件基,本x数小量时关可加系工:80x个零件。
工作总量=工作时间×工作效率
⑵加工a个零件,甲需
小时完成。
2、一项工当程不甲知独道做需总6工天程完的成,具则体量时,一般
例2、一件工作,甲单独做20个小时 完成,乙单独做12小时完成,现在先 由甲单独做4小时,剩下的部分由甲、 乙合做。剩下的部分需要几小时完成?
例2、一件工作,甲单独做20个小时完成,乙单独做12小时完成, 现在先由甲单独做4小时,剩下的部分由甲、乙合做。剩下的部 分需要几小时完成?
解:设剩下的部分需要x小时完成,
2)如果甲、乙两工程队合作了30天后,因甲工作队另有任务,
剩下工作由乙工作队完成,则修好这条公路共需要几天?
解: 1)设两工程队合作需要x天完成。
等量关系:甲工作量+乙工作量=1
依题意得 1 x 1 x 1 80 120 x=48
2)设修好这条公路共需要 y 天完成。 等量关系: 甲30天工作量+乙队y天的工作量 = 1
⑴甲独做一把天总可工完程成当这做项“工程1”的,如果一个人单
⑵若乙独做独比完甲快成2该天工完成程,需则要乙a独天做,一那天么可该完人成
这项工程的
的工作效率是1/a
工程问题中的数量关系:
1) 工作效率=
工作总量 ———————————
完成工作总量的时间
2)工作总量=工作效率×工作时间 工作总量
3)工作时间= ————— 工作效率
3.一收割 机队每天收割小麦12公顷,收割完一片麦地 的 后,该收割机改进操作,效率提高到原来的 倍,因此比预定时间提早1天完成.问这片麦地 有多少 公顷?
解:设这片麦地 有X公顷,由题意得
检验:x=180适合方程,且符合题意. 答:这片麦地 有180公顷
5
某装潢公司接到一项业务,如果由甲组需10天
根据题意,得
4 20
1 20
x
1 12
x
1
解这个方程,得
x=6
答:剩下的部分需要6小时完成。
注意:工作量=工作效率×工作时间
课练:
练习1、某工作由甲、乙两队单独做分 别需要3小时、5小时,求两人合做这项 工作的80%需要几小时?
解:设两人合做这项工做需x小时,根据 题意得,
(1/3+1/5)x=80% 解这个方程得
依题意得
1210 x 1210 x 1
11
20
x 220
31
x ≈8
答:两个施工队合作估计需要八天挖完。
例题讲解
例3 挖一条长为1210米长的水渠,由甲施工队独做需要11 天完成,乙施工队独做需要20天完成,现在甲、乙两 施工队从两头同时施工,挖完这条水渠估计需几天?
分析:把这个问题看成工程问题的话, 通常把总量(即本题中的这条水渠)看成“1”,
注入或放出率 注入或放出时间 注入或放出量
注入
1
10
放出
1
20
x+2x=3x(分钟)
3x 10
x(分钟)
1x 20
等量关系:注入量-放出量=缸的容量 依题意得: 3 x 1 x 1
10 20
x=4 答:管塞同开的时间为4分钟
例7 一个水槽有甲、乙两个水管。甲水管是进水管,,在5小时之内 可以把、空水槽装满。乙水管是出水管,满槽的水在6小时内