32__解一元一次方程(一)—合并同类项与移项(第1课时

合集下载

2014版新人教版七年级上3.2解一元一次方程(一)——合并同类项与移项第1课时学案配套课件

2014版新人教版七年级上3.2解一元一次方程(一)——合并同类项与移项第1课时学案配套课件

知识点 1 用合并同类项解一元一次方程
【例1】解方程:(1)-3x+0.5x=10.
(2)3y-4y=-25-20.
【思路点拨】先合并同类项,然后系数化为1,求得方程的解.
【自主解答】(1)合并同类项得-2.5x=10, 系数化为1,得x=-4. (2)合并同类项得-y=-45, 系数化为1,得y=45.
【总结提升】解“总量等于各部分量的和”问题的四个步骤 1.设:弄清问题中的总量及各分量,适当设未知数 . 2.列:根据“总量等于各部分量的和”这一相等关系正确列出 方程. 3.解:解方程,求出未知数的值. 4.答:按问题要求作答.
题组一:用合并同类项解一元一次方程 1.下列合并同类项,结果正确的是( A.3a+3b=6ab C.2y+3y+y=5y B.3m-2m=1 D. ax 1.5ax 0
2.一个水池有甲、乙两个水龙头,单独开甲水龙头2小时可把 空池灌满;单独开乙水龙头3小时可把空池灌满,若同时开放 两个水龙头,灌满水池需( A. 6 小时
5
)
B. 5 小时
6
C.2小时
D.3小时
【解析】选A.设同时开放两个水龙头,灌满水池需x小时,则
1 1 6 x x 1, 所以x . 2 3 5
(打“√”或“×”) (1)-3x+7x的结果等于10x.( × ) (2)解方程2x+x=9时,合并同类项得,3x=9.( √ ) (3)解方程 x 4 得,x=2.( × ) (4)方程x-4x=15的解是x=-5.( √ ) (5)方程-x+6x=-2-8的解是x=-1.( × )
1 2
【总结提升】合并同类项解一元一次方程的实质 合并同类项是一种恒等变形,就是利用乘法分配律把含有 未知数的项结合在一起、把常数项结合在一起 ,最终化为“ax=b (a≠0)”,再根据等式的性质2,两边同除以a,把系数化为1,

解一元一次方程(一)合并同类项与移项(第一课时)教学设计-精选教学文档

解一元一次方程(一)合并同类项与移项(第一课时)教学设计-精选教学文档

解一元一次方程(一)合并同类项与移项(第一课时)教学设计教材分析合并同类项与移项是解方程的基础,解方程其移项根据是等式性质1、系数化为1其根据是等式性质2,解方程是今后进一步学习不可缺少的知识。

因而,解方程是初中数学中必须要掌握的重点内容。

学生分析学生已学会了有理数运算,掌握了单项式、多项式的有关概念及同类项、合并同类项,和等式性质,进一步将所学知识运用到解方程中,虽然所教班级的学生受基础知识和思维发展水平的限制,抽象概括能力不强,但学生上进心强,有强烈的好奇心和好胜心,初步养成了与他人合作交流、勇于探索的良好习惯。

【教学目标】(一)知识技能1.掌握解方程中的合并同类项.2.理解并掌握移项变号法则进行解方程.3.灵活的运用移项变号法则解决一些实际问题.(二)数学思考使学生在解决问题的过程中进一步体验方程是刻画现实世界的一个有效的模型,感受方程的作用.(三)解决问题能够用合并同类项和移项法则解相应的一元一次方程;能够解决相关实际问题.(四)情感态度解方程时渗透数学变未知为已知的数学思想,培养学生独立思考问题的能力【教学重点】利用合并同类项、移项变号法则解方程.【教学难点】合并同类项、移项变号法则.【学习过程】一、新课导入1.约公元825年,数学家阿尔-花拉子米写了一本代数书,重点论述了怎样解方程.这本书的译本名称为《对消与还原》.“对消”“还原”是什么意思呢?我们先讨论下面的内容,然后再回答这个问题。

2.引导学生探索新知问题1:某校三年共买了新桌椅270套,去年买的数量是前年的2倍,今年又是去年的3倍,前年这个学校买了多少套桌椅?【师生活动】教师:同学们,在我们生活中存在很多这样的问题,请你帮忙解决一下,你准备怎么做,谁能说一说自己的想法。

请说出你的理由?学生:我准备用方程解决这个问题。

用方程解比较简单,设出的未知数就可以当成已知的条件来用了。

教师:那我们就按这位同学的意思用方程的方法来解,哪位同学能说一下第一步应当先干什么呢?举手回答。

解一元一次方程(一)-合并同类项与移项PPT课件__数学七年级上册PPT完美版(人教版)

解一元一次方程(一)-合并同类项与移项PPT课件__数学七年级上册PPT完美版(人教版)
解:(1) 列方程,得3x+2=2x-1. 移项,得3x- 2x=-1-2. 合并同类项,得x=-3.
3.利用方程解答下列问题: (1) x的3倍与2的和等于x的2倍与1的差,求x的值; (2) y与-3的积等于y与1的和,求y的值; (3) 已知整式-3x+2 与2x-1的值互为相反数,求x的值.
设这个班有x名学生. 每人分3本,共分出3x本,加上剩余的20本,这批书共 (3x+20)本. 每人分4本,共需要4x本,减去缺少的25本,这批书共 (4x-25) 本. 这批书的总数是一个定值,表示它的两个式子应相等, 根据这一相等关系列得方程3x+20=4x- 25. 这与前边方
程有何不同?
方程3x+20=4x-25的两边都有含x的项(3x与4x)和不含 字母的常数项(20与-25),怎样才能把它转化为x=a(a 为常数)的形式呢?
对于方程 x+2m=3,移项,得 x=3-2m. 知由识上点 可知解,一这元个一班次有方4程5名—学—生移. 项
合甲并赶同 羊类群项逐,草得茂,-x乙=-拽1. 一羊随其后, 如为果了每 使人方分程4的本右,边则没还有缺含25x本的. 项,等号两边同时减4x;
因为两个方程的解相同,所以 -m-9=3- 2m. 每知人识分 点3本解,一共元分一出次方3x程本—,—加移上项剩余的20本,这批书共(3x+20)本.
移项的依据 移项的依据是等式的性质1,移项的目的是将含有未知 数的项移到方程的一边,将常数项移到方程的另一边, 使方程更接近 x=a 的形式.
注意:1. 移项必须是由等号的一边移到另一边,而不 是在等号的同一边交换位置. 2. 方程中的各项均包括它们前面的符号,如x-2=1中, 方程左边的项有x,-2,移项时所移动的项一定要变号. 3.移项时,一般都习惯把含未知数的项移到等号左边, 把常数项移到等号右边.

3.2 合并同类项与移项教案

3.2   合并同类项与移项教案

教案反思一元一次方程的解法是在学生已经具备了代数初步知识、系统学习了整式加减的基础上安排的,是对整式运算的进一步深化和认识。

本节课是在教授了一元一次方程解法第一课时因此尤为重要。

同时着力培养学生积极思维的优良品格,逐步形成具体问题具体分析的哲学思想,养成正确思考,善于思考的良好习惯,从而提高分析问题,解决问题的能力。

教学过程方程的有关概念1.方程:含有未知数的等式就叫做方程.2. 一元一次方程:只含有一个未知数(元)x ,未知数x 的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x )=5等都是一元一次方程.3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.等式的性质等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.用式子形式表示为:如果a=b ,那么a±c=b±c等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,用式子形式表示为:如果a=b ,那么ac=bc;如果a=b(c≠0),那么a c =b c合并同类项法则:把同类项的系数相加,所得的结果作为系数,字母和字母指数保持不变。

移项法则:把等式一边的某项变号后移到另一边,叫做移项.新课例1.某校三年级共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?分析:设前年这个学校购买了x 台计算机,已知去年购买数量是前年的2倍,那么去年购买___台,又知今年购买数量是去年的2倍,则今年购买了______(即____)台;题目中的相等关系为:三年共购买计算机140台,即前年购买量+去年购买量+今年购买量=140列方程:_____________如何解这个方程呢?根据分配律,x+2x+4x=(______)x=7x ;这样就可以把含x 的项合并为一项,合并时要注意x 的系数是1,不是0;下面的框图表示了解这个方程的具体过程:x+2x+4x=140↓合并同类项7x=140↓系数化为1x=20由上可知,前年这个学校购买了20台计算机.上面解方程中“合并”起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax=b 的形式,其中a 、b 是常数.练习:1.合并:x+3x-6x,z+0.5z-1.8z,5y+4y-y2.解方程:5x-2x=9 -3x+0.5x=10例2.某班学生共60人,外出参加种树活动,根据任务的不同,要分成三个小组且使甲、乙、丙三个小组人数之比是2:3:5,求各小组人数.思路:这里甲、乙、丙三个小组人数之比是2:3:5,就是说把总数60•人分成___份,甲组人数占___份,乙组人数占___份,丙组人数占___份,如果知道每一份是多少,•那么甲、乙、丙各组人数都可以求得,所以本题应设每一份为x人.关键:本题中相等关系是什么?_____________________________________.解:设每一份为x人,则甲组人数为__人,乙组人数为___人,丙组为___人,•列方程:_______________合并,得________系数化为1,得x=___所以2x=____,3x=_____,5x=______答:甲组_____人,乙组___人,丙组______人.请同学们检验一下,答案是否合理,即这三组人数的比是否是2:3:5,•且这三组人数之和是否等于60;【要点归纳】:列一元一次方程解决实际问题的一般步骤中,找等量关系是关键也是难点,本节课的两个问题的相等关系都是:“各部分量的和=总量”;这是一个基本的相等关系;合并就是把类型相同的项系数相加合并为一项,也就是逆用乘法分配律,合并时,注意x或-x的系数分别是1,-1,而不是0;例3.足球的表面是由若干个黑色五边形和白色六边形皮块围成的,黑白皮块的数目比为3:5,一个足球的表面一共有32个皮块,黑色皮块和白色皮块各有多少?解:设每份为_____个,则黑色皮块有_____个,白色皮块有_______个列方程_________合并,得_________系数化为1,得x=_____黑色皮块为___×___=____(个),白色皮块有____×___=____(个)例4. 某学生读一本书,第一天读了全书的三分之一多2页,第二天读了全书的二分之一少1页,还剩23页没读,问全书共有多少页?解:设全书共有____页,那么第一天读了()页,第二天读了()页.本问题的相等关系是:_____________+_______________+_____________=全书页数;列方程:_______________________。

32解一元一次方程合一合并同类项与移项

32解一元一次方程合一合并同类项与移项
解:合并同类项,得
2x=7
系数化为1,得
x= 7 2
(3)-3 x+0.5 x=10
解:合并同类项,得
-2.5x=10
系数化为1,得
x=-4
(4)7x-4.5x=2.5 3-5
解:合并同类项,得
2.5x 2.5
系数化为1,得
x=1
这是小明做的几道题,请同学们帮他检查一 下,如果不对,指出他错在哪,并进行纠正
(一)介绍数学史,创设情境
约公元825年,中亚数学家阿 尔—花拉子米写了一本代数书, 重点论述怎样解方程。这本书 的拉丁译本为《对消与还原》。 “对消”与“还原”是什么意 思呢?我们先讨论下面的内容, 然后在回答这个问题。
热身训练
1. 含有相同的(字母 ),并且相同字母的(指数 )也相 同的单项式,叫做同类项,合并同类项时,把( 系数) 相加减,字母和字母的指数(不变 )。
2.合并下列各式中的同类项
(1)100t+252t= 352t (2)12x-20x= -8x
(3)x+7x-5x= 3x
(4)x-x+2x= 2x
(5)3x+2x= 5x
(6)3ab-4ab= -ab
3.前面我们学习了用等式的性质解简单的方程,解方 程的基本目标是什么? 把方程化成x=a的形式
《对消与还原》
“对消”指的就是“合并”
, “还原”将在下一节继 续学习。
小结
1.你今天学习的解方程有哪些步骤? 合并同类项,系数化成1(根据等式性质2) 2.合并同类项在解方程的过程中起到了什么作用?
合并同类项的目的就是化简方程, 它是一种恒等变形,可以使方程变得简
单,并逐步使方程向x=a的形式转化 .

人教版七年级上册解一元一次方程——合并同类项与移项(第1课时)课件x

人教版七年级上册解一元一次方程——合并同类项与移项(第1课时)课件x
2
2 7 − 2.5 + 3 − 1.5 = −15 × 4 − 6 × 3
1
2
解:(1)合并同类项,得− = −2,系数化为1,得 = 4
(2)合并同类项,得6 = -78.系数化为1,得 = -13
教学新知
例2 有一列数,按一定规律排列成1,-3,9,-27,81,-243……
课堂练习
解:设原两位数十位上数为
则原两位数为10 + 2 = 12,新两位数为10 × 2 + = 21.
根据题意知21 − 12=36.合并同类项,得9 = 36.
系数化为1,得 = 4.12 × 4 = 48.
答:原两位数为48.
3.一条环形跑道长400米,甲练习骑自行车平均每分钟550米,乙练习
3.2 一元一次方程
3.2 解一元一次方程(一)
——合并同类项与移项(1)

2 4 = 140
课题引入
问题1:约公元820年,中亚细亚数学家阿尔一花拉子米
写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本
取名为《对消与还原》.“对消”与“还原”是什么意思呢?
通过下面几节课的学习讨论,相信同学们一定能回答这个问题.
10
180吨
量为1800吨,那么1月份的产量为_________________.
6.某超市的收银员在记帐时发现现金少了153.9元,查帐后得知是一
笔支出款的小数点被看错了一位,则她查出这笔看错了的支出款实际
17.1
是_______元.
知识拓展
如图,将一列数按如图的方式排列成一个方阵,用一个长方形框
白皮块数目比为3:5,一个足球表面一共有32个皮块,黑色皮块和白色

七年级数学上册_3.2《解一元一次方程(一)-合并同类项与移项》(第1课时)课件_(新版)新人教版

七年级数学上册_3.2《解一元一次方程(一)-合并同类项与移项》(第1课时)课件_(新版)新人教版

例2 :有一列数,按一定规律排列 成 1,-3,9,-27,81,-243,…,其 中某三个相邻数的和是-1701,这 三个数各是多少?
解:设所求的三个数分别为 x, -3x, 9x 根据题意可得: x-3x+9x=-1701
合并同类项,得 7x=-1701 系数化为1,得 x=-243 所以 -3x=729 9x=-2187 答:这三个数是-243,729, -2187
x+2x+4x=140 7x=140
x=20
答:前年我校购买了20台计算机.
解方程:
(1)
解:
1 合并同类项,得 - x=-2 2 系数化为1,得 x=4
:
5 2x 2
x=6-8
(2) 7x-2.5x+3x-1.5x=-15×4-6×3 解: 合并同类项,得 6x=-78
系数化为1,得
x=-13
1. 5x-2x=9 x 3x 7 2. 2 2 3. -3x+0.5x=10 4. 7x-4.5x=2.5×3-5
这是小明做的几道题,请同学们帮他检查 一下,如果不对,指出他错在哪,并进行纠正
1. 4a+a+3a=10 解: 7a =10 8a =10 5 a= 10 a= 4 7 3. 4x-5x=7 解:-x=7 x= 1 7 x=-7 2. -2x-4x=2 解:-6x=2 x=-3 x= 1 3 4. x 2 x 3 x 10 2 5 x 10 2 x 10( 5) x=10×(- 2 ) 2 5 x=-25 x =- 4
x+2x+4x=140
x 2x 4x 140
合并同类项
分析:解方程,就是把 方程变形,变为 x = a (a为常数)的形式.

3.2 解一元一次方程(一)——合并同类项与移项(2课时)

3.2 解一元一次方程(一)——合并同类项与移项(2课时)

3.2解一元一次方程(一)——合并同类项与移项第1课时合并同类项一、基本目标【知识与技能】1.学会合并同类项,会解“ax+bx=c”类型的一元一次方程.2.学会探索实际问题中的数量关系,正确地求解一元一次方程.【过程与方法】经历运用方程解决实际问题的过程,发展抽象、概括、分析和解决问题的能力.【情感态度与价值观】初步体会一元一次方程的应用价值,感受数学文化.培养学生乐于思考,不怕困难的精神.二、重难点目标【教学重点】会解“ax+bx=c”类型的一元一次方程.【教学难点】分析实际问题中的数量关系,会列方程并能正确求解.环节1 自学提纲,生成问题【5min阅读】阅读教材P86~P87的内容,完成下面练习.【3min反馈】1.教材第87页“思考”:通过合并同类项可以化简方程,把方程化为ax=b(a、b为常数且a≠0)的形式,从而求出方程的解.2.合并同类项的法则:同类项的系数相加,字母连同它的指数不变.3.解形如ax+bx=c的一元一次方程先合并,再将系数化为1.4.列方程步骤:(1)设未知数;(2)找相等关系;(3)列方程.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】解下列方程:(1)3x-20x=-34;(2)+=1-.【互动探索】(引发学生思考)利用合并同类项的方法求解.【解答】(1)合并同类项,得-17x=-34.系数化为1,得x=2.(2)合并同类项,得=.系数化为1,得y=.【互动总结】(学生总结,老师点评)用合并同类项法解一元一次方程的步骤:(1)合并同类项,即把方程中含有未知数的项合并,常数项合并,把方程化为ax=b(a≠0)的形式;(2)系数化为1,即根据等式的性质2,将形如ax=b(a≠0)的方程两边都除以一次项系数,化成x=(a≠0)的形式,即得方程的解为x =.系数化为1时注意:(1)利用等式的性质2,方程的两边同时除以未知项的系数,把系数化为1;(2)不要颠倒分子、分母的位置.【例2】有一列数,按一定规律排列成1,-3,9,-27,81,-243,….其中某三个相邻数的和是-1701,这三个数各是多少?【解答】见教材第87页例2活动2 巩固练习(学生独学)1.下列各式的变形错误的是( C )A.由7x-6x=1,得x=1B.由3x-4x=10,得-x=10C.由x-2x+4x=15,得x=15D.由-7y+y=6,得-6y=62.已知关于x的方程4x-3m=2的解是x=m,则m的值是( A )A.2 B.-2C. D.-2.一个两位数,个位上的数字是十位上数字的3倍,两个数字的和是12,这个两位数是39.3.顺安旅行社组织200人到怀集和德庆旅游,到德庆的人数是到怀集的人数的2倍少1人,到两地旅游的人数各是多少人?解:设到怀集的旅游人数为x人,则到德庆旅游的人数为(2x -1)人.根据题意,得x+2x-1=200.解得x=67.则2x-1=133.即到怀集和德庆旅游的人数分别是67人,133人.活动3 拓展延伸(学生对学)【例3】有一些分别标有6,12,18,24,…的卡片,后一张卡片上的数比前一张卡片上的数大6,小彬拿了相邻的3张卡片,且这些卡片上的数字之和为342.(1)小彬拿到哪3张卡片?(2)小彬能否拿到相邻的3张卡片,使得这3张卡片上的数的和为86?如果能拿到,请求出这3张卡片上的数各是多少;如果不能拿到,请说明理由.【互动探索】(1)根据题意可以求得相邻的三个数;(2)先判断这三个数字的和能否是86,然后说明理由即可.【解答】(1)设小彬拿到相邻的3张卡片上的数分别为x-6,x,x+6,则有x-6+x+x+6=342.解得x=114.所以x-6=108,x+6=120.即小彬拿到相邻的3张卡片上的数分别为108,114,120.(2)假设能拿到和为86的3张卡片,设这3张卡片上的数分别为y-6,y,y+6,则有y-6+y+y+6=86.解得y≈28.67,显然不符合题意,说明上述假设不成立.故小彬不能拿到相邻的3张卡片,使得这3张卡片上的数的和为86.【互动总结】(学生总结,老师点评)解答本题的关键是由后一张卡片上的数比前一张卡片上的数大6的特点,可设中间的一张卡片分别为x,那么另外两张卡片为x-6和x+6.然后根据每一问中的具体等量关系列出方程即可.环节3 课堂小结,当堂达标(学生总结,老师点评)1.合并同类项法则:把同类项的系数相加,字母的指数不变.利用合并同类项法则可使方程转化为ax=b的形式.2.利用一元一次方程解应用题,当问题中有多个未知数时,可设其中一个为x,再利用它们之间的关系,设出其他未知数,然后列方程求解.请完成本课对应训练!第2课时移项一、基本目标【知识与技能】1.通过分析实际问题中的数量关系,建立方程解决问题,进一步认识方程模型的重要性.2.掌握移项的方法,学会解“ax+b=cx+d”类型的一元一次方程.【过程与方法】通过解形如ax+b=cx+d的方程,使学生感受化归的思想方法.【情感态度与价值观】1.培养学生积极思考,勇于探索的精神.2.通过探究实际问题与一元一次方程的关系,感受数学的应用价值.二、重难点目标【教学重点】会解“ax+b=cx+d”类型的一元一次方程.【教学难点】分析实际问题中的相等关系,列出方程.环节1 自学提纲,生成问题【5min阅读】阅读教材P88~P90的内容,完成下面练习.【3min反馈】1.教材第88页思考:先移项,将方程变为3x-4x=-25-20的形式;再合并同类项,得-x=-45;最后将系数化为1,得x=45.2.把等式一边的某项变号后移到另一边,叫做移项.3.移项的根据是等式的性质1.4.教材第89页思考:通过移项,可以把含有未知数的项与常数项分别移到等号的两边,通过合并同类项,使方程化为ax=b(a、b为常数且a≠0)的形式,再化系数为1,即可求出方程的解.5.解方程20-3x=5时,移项后正确的是( B )A.-3x=5+20 B.20-5=3xC.3x=5-20 D.-3x=-5-20环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】解下列方程:(1)x-2018=82-5x;(2)-2x+3.5=3x-8.【互动探索】(引发学生思考)解简单的一元一次方程的步骤有哪些?移项的关键是什么?【解答】(1)移项,得x+5x=82+2018.合并同类项,得6x=2100.系数化为1,得x=350.(2)移项,得-2x-3x=-8-3.5.合并同类项,得-5x=-11.5.系数化为1,得x=2.3.【互动总结】(学生总结,老师点评)移项是解方程的关键步骤,移项时,一般把含有未知数的项移到等号左边,常数项移到等号右边,注意移项时一定要变号.【例2】某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200t;如用新工艺,则废水排量比环保限制的最大量少100t.新、旧工艺的废水排量之比在2∶5,两种工艺的废水排量各是多少?【解答】见教材第90页例4【教师点拨】列方程解决应用题的关键是找出题中的等量关系.本题的等量关系:旧工艺废水排量-200t=新工艺废水排量+100t.活动2 巩固练习(学生独学)1.解下列方程:(1)x-2=3-x;(2)-x=1-2x;(3)5=5-3x;(4)x-2x=1-x;(5)x-3x-1.2=4.8-5x.解:(1)x=.(2)x=1.(3)x=0.(4)x=-3.(5)x=2.2.把若干块糖果分给若干个小朋友,若每人分3块,则多12块;若每人分5块,则少10块.则一共有多少个小朋友?多少块糖?解:设一共有x个小朋友.根据题意,得5x-10=3x+12.移项,得5x-3x=12+10.合并同类项,得2x=22.系数化为1,得x=11.所以共有糖5x-10=45(块).即一共有11个小朋友,糖45块.3.一个三位数,十位上的数字比个位上的数字多1,且是百位上的数字的4倍,百位上的数字与个位上的数字之和比十位上的数字大1,求这个三位数.解:设十位上的数字为x.根据题意,得x-1+=x+1.移项,得x+-x=1+1.合并同类项,得=2.系数化为1,得x=8.所以个位上的数字为x-1=8-1=7,百位上的数字是==2,则这个三位数是287.活动3 拓展延伸(学生对学)【例3】某中学组织七年级的同学去游玩,原计划租用45座客车(不包括司机)若干辆,但有15人没有座位,如果租用同样数量的60座客车(不包括司机),则多出一辆且其余客车恰好坐满.则七年级有多少人?原计划租用45座客车多少辆?【互动探索】本题中的等量关系为:45×45座客车辆数+15=学生总数,60×(45座客车辆数-1)=学生总数,据此可列方程组求出45座客车辆数,进而可求出七年级的学生人数.【解答】解:设原计划租用45座客车x辆,则七年级有(45x +15)人.根据题意,得45x+15=60x-60.移项,得45x-60x=-60-15.合并同类项,得-15x=-75.系数化为1,得x=5.当x=5时,45x+15=45×5+15=240.即七年级有240人,原计划租用45座客车5辆.【互动总结】(学生总结,老师点评)列方程解应用题的一般步骤:审题→找相等关系→设未知数→列方程→解方程→检验(不在解题过程中体现)→写出答案.环节3 课堂小结,当堂达标(学生总结,老师点评)1.移项:移项是解方程的重要变形,一般把含有未知数的各项移到同一边(通常移到左边),而把常数项移到另一边(通常移到右边),不管是从左边到右边,还是从右边到左边,注意移项要变号.2.题目中含有比的应用题在设未知数时,一般根据比去设,如果题目告诉的比是a∶b,一般设为ax、bx两部分,如果比是a∶b∶c,一般设为ax、bx、cx三部分,然后找出题目中的等量关系列出方程,并解答.请完成本课对应训练!。

3.2_解一元一次方程(一)——合并同类项与移项第1课时

3.2_解一元一次方程(一)——合并同类项与移项第1课时

这个方程呢?
“总量=各部分量的和”是一个基本的相等关系.
x 2 x 4 x 140
合并
分析:解方程,就是把方
程变形,变为 x = a(a 为常数)的形式.
7 x 140
系数化为1
x 20
x 2 x 4 x 140
解:合并得 7x 140 系数化为1 (合并同类项) (等式性质2)
意思呢?
合 并 同 类 项
(1) x+2x+4x =(1+2+4)x =7x (3)4a-1.5a-2.5a =(4-1.5-2.5)a
(2)5y-3y-4y =(5-3-4)y =-2y
=0
设未知数 实际问题
列方程 一元一次方程
分析实际问题中的数量关系,利用其中的相等
关系列出方程,是解决实际问题的一种数学方法.
某校三年共购买计算机140台,去年购买数量是前年的
2倍,今年购买数量又是去年的2倍,前年这个学校购买了 多少台计算机?
2 x 设前年购买x台.可以表示出:去年购买计算机___中的相等
前年购买量+去年购买量+今年购买量=140台
思考:怎样解
x+2x+4x=140
4.太阳下山晚霞红,我把鸭子赶回笼;一半在外闹哄哄, 一半的一半进笼中;剩下十五围着我,共有多少请算清. 你能列出方程来解决这个问题吗? 解:设鸭子一共有x只. 1 1 x x x 15 2 4 1 x 15 4 x 60 答:设鸭子一共有60只.
1.会用合并同类项的方法解一元一次方程.
2.洗衣厂今年计划生产洗衣机25500台,其中Ⅰ型,Ⅱ型,Ⅲ
型三种洗衣机的数量之比为1:2:14,这三种洗衣机计划

七年级数学上册 3.2 解一元一次方程(一)—合并同类项与移项(第1课时)教学反思素材 (新版)新人

七年级数学上册 3.2 解一元一次方程(一)—合并同类项与移项(第1课时)教学反思素材 (新版)新人

解一元一次方程(一)第1课时教学反思本节课以学生自主探究,合作学习的课堂模式展开教学活动,核心环节均由学生在动手、动脑与小组交流中顺利达到教学目标,学生表现得兴趣盎然,并在探索与合作的过程中体验了认识事物、寻求规律与解决问题的过程,在掌握知识、发展能力的同时促进了积极的情感的形成。

注重引导学生在课堂活动过程中感悟知识的生成、发展和变化,每个问题的设计都以问题串的形式前后联系,由浅入深,从具体到抽象,再通过探索交流、反思、归纳,形成一个完整的思考过程,使学生学会探索规律的方法。

这样的安排符合掌握知识与发展思维、能力相统一的原则、教师的主导作用与学生的主体作用相结合的原则,顺利的完成了教学任务。

但我感觉到存在着一些不足:本节课的内容比较少,完全可以与下节课《合并同类项》一起讲。

但正因为这节课的内容比较少,才可以最大限度地利用本节课培养学生参与的意识,启发、鼓励他们大胆发言、细心探究。

使他们充分感受到探求的乐趣,成功地喜悦,合作的快乐,从而提高学习的兴趣,增强自己的自信心。

教学不仅仅是一种告诉,更重要的是如何引导学生在情境中去经历、去体验、去感悟、去创造。

教学过程中,学生常常会于不经意间产生出“奇思妙想”、生发出创新火花,教师不仅应在课堂上及时将这些细微之处流露出来的信息捕捉、加以重组整合,并借机引发学生开展讨论,给课堂带来一份精彩,给学生带来几分自信。

这样既尊重了教材的安排,又能为下节课打下坚实的基础。

百度文库是百度发布的供网友在线分享文档的平台。

百度文库的文档由百度用户上传,需要经过百度的审核才能发布,百度自身不编辑或修改用户上传的文档内容。

网友可以在线阅读和下载这些文档。

百度文库的文档包括教学资料、考试题库、专业资料、公文写作、法律文件等多个领域的资料。

百度用户上传文档可以得到一定的积分,下载有标价的文档则需要消耗积分。

当前平台支持主流的doc(.docx)、.ppt(.pptx)、.xls(.xlsx)、.pot、.pps、.vsd、.rtf、.wps、.et、.dps、.pdf、.txt 文件格式。

《3.2 第1课时 用合并同类项的方法解一元一次方程》教案、同步练习(附导学案)

《3.2 第1课时 用合并同类项的方法解一元一次方程》教案、同步练习(附导学案)

3.2 解一元一次方程(一)——合并同类项与移项《第1课时用合并同类项的方法解一元一次方程》教案【教学目标】:1.经历运用方程解决实际问题的过程,体会方程是刻画现实世界的有效数学模型.2.学会合并同类项,会解“ax+bx=c”类型的一元一次方程.3.能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程.【教学重点】:建立方程解决实际问题,会解“ax+bx=c”类型的一元一次方程.【教学难点】:分析实际问题中的已知量和未知量,找出相等关系,列出方程.【教学过程】:一、设置情境,提出问题(出示背景资料)约公元820年,中亚细亚的数学家阿尔-花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本取名为《对消与还原》.“对消”与“还原”是什么意思呢?通过下面几节课的学习讨论,相信同学们一定能回答这个问题.出示课本P86问题1:某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍.前年这个学校购买了多少台计算机?二、探索分析,解决问题引导学生回忆:实际问题一元一次方程设问1:如何列方程?分哪些步骤?师生讨论分析:(1)设未知数:前年这个学校购买计算机x台;(2)找相等关系:前年购买量+去年购买量+今年购买量=140台.(3)列方程:x+2x+4x=140.设问2:怎样解这个方程?如何将这个方程转化为“x=a”的形式?学生观察、思考:根据分配律,可以把含 x的项合并,即x+2x+4x=(1+2+4)x=7x老师板演解方程过程:略.为帮助有困难的学生理解,可以在上述过程中标上箭头和框图.设问3:在以上解方程的过程中“合并”起了什么作用?每一步的根据是什么?学生讨论回答,师生共同整理:“合并”是一种恒等变形,它使方程变得简单,更接近“x=a”的形式.三、拓广探索,比较分析学生思考回答:若设去年购买计算机x台,得方程+x+2x=140.若设今年购买计算机x台,得方程++x=140.课本P87例2.问题:①每相邻两个数之间有什么关系?②用x表示其中任意一个数,那么与x相邻的两个数怎样表示?③根据题意列方程解答.四、综合应用,巩固提高1.课本P88练习第1,2题.2.一个黑白足球的表面一共有32个皮块,其中有若干块黑色五边形和白色六边形,黑、白皮块的数目之比为3:5,问黑色皮块有多少?(学生思考、讨论出多种解法,师生共同讲评.)3.有一列数按一定规律排成-1,2,-4,8,-16,32,……,其中某三个相邻数的和是-960.求这三个数.五、课时小结1.你今天学习的解方程有哪些步骤,每一步的依据是什么?2.今天讨论的问题中的相等关系有何共同特点?学生思考后回答、整理:解方程的步骤及依据分别是:合并和系数化为1;总量=各部分量的和.《3.2.1合并同类项解一元一次方程》同步练习一.选择题1.方程-2x=3的解是()A.x=−32B.x=−23C.x=32D.x=232.方程2x-1=3的解是()A.-1 B.-2 C.1 D.23.方程x+x=2+2的解是()A.x=1 B.x=-1 C.x=2 D.x=04.方程2x-3x=2+1的解为()A.x=1 B.x=-1 C.x=3 D.x=-3A.B C.1 D.-16.如果2x与x-3的值互为相反数,那么x等于()A.-1 B.1C.-3D.3解析:∵2x与x-3的值互为相反数,∴2x+x-3=0,∴x=1.故选B.二.填空题7.已知代数式8x-7与6-2x的值互为相反数,那么x的值等于.8.方程2x-3x=1+2的解为.9.方程:-3x-2x-1=9的解是.10.如果4m-5的值与3m-9的值互为相反数,那么m等于.三.解答题11.解下列方程(1)3x+4x-6x=-2+7.(2)4x-2x=12+4.(3)5x-7x=2+8.(4)2x-3x=5+2(5)2y-5y=7-112.根据以下对话,分别求小红所买的笔和笔记本的价格.答案:1.A 2.D 3.C4.D解析:合并得:-x=3.解得:x=-3.5.A6.B解析:∵2x与x-3的值互为相反数,∴2x+x-3=0,∴x=1.7.16解析:根据题意得:8x-7+6-2x=0,移项合并得:6x=1,解得:x=16.8.x=-3 9.x=-210.2解析:根据题意得:4m-5+3m-9=0,移项合并得:7m=14,解得:m=2.11.解:(1)合并同类项得,x=5.(2)合并得:2x=16,解得:x=8.(3)合并同类项得:-2x=10方程两边同除以-2得:x=-5(4)合并同类项得,-x=7,化系数为1得,x=-7;(5)合并同类项,得-3y=6系数化为1,得y=-212.解:设笔的价格为x元/支,则笔记本的价格为3x元/本。

《解一元一次方程(一)——合并同类项与移项》第1课时精品课件

《解一元一次方程(一)——合并同类项与移项》第1课时精品课件

化简,得
2x=4
根据等式性质2,两边除以2,得
化=各部分量的和
某校三年共购买计算机140台,去年购买数量
是前年的2倍,今年购买的数量又是去年的2倍.前
年这个学校购买了多少台计算机?
前年购买量+去年购买量+今年购买量=140台
x
2x
4x
解:设前年这个学校购买了计算机x台,根据题意 可列方程
练习1 2.解下列方程
(1)5x-2x=9
x=3
(2)x +3x=7 x= 7
22
2
(3)-3x+0.5x=10 x= 4
(4)7x-4.5x=2.53-5 x=1
这一组数有什
探究2
么特点呢?
例2 有一列数,按一定规律排列成 1,-3,9,-27,81,-243,···,
其中某三个相邻数的和是-1 701,这三个数 各是多少?
如果a=b(c≠0),那么
a=b. cc
知识回顾
2.用等式的性质解下列方程.
(1)3x=12
(2)2x+3=7
解:(1)根据等式性质2,两边除以3,得
3x 12 33
化简,得 x=4
知识回顾
2.用等式的性质解下列方程.
(1)3x=12
(2)2x+3=7
解:(2)根据等式性质1,两边减3,得
2x+3-3=7-3
【义务教育教科书人教版七年级上册】
解一元一次方程
——合并同类项与移项 第1课时
知识回顾 1.什么是等式的性质?
等式的性质1:等式两边加(或减)同一个数 (或式子),结果仍相等.
如果a=b,那么a±c=b±c
等式的性质2:等式两边乘同一个数,或除以 同一个不为0的数,结果仍相等.

解一元一次方程(一)——合并同类项与移项 优秀教案设计

解一元一次方程(一)——合并同类项与移项  优秀教案设计

解一元一次方程(一)——合并同类项和移项【课时安排】2课时【第一课时】【教学目标】1.知识目标:会利用合并同类项解一元一次方程。

2.能力目标:探究并掌握利用合并同类项解一元一次方程。

3.情感、态度与价值观目标:通过对实例的分析,体会一元一次方程作为实际问题的数学模型的作用。

【教学重难点】教学重点:探究并掌握利用合并同类项解一元一次方程。

教学难点:通过对实例的分析,体会一元一次方程作为实际问题的数学模型的作用。

【教学过程】一、引入新课。

(一)预习任务。

(1)解一元一次方程时,把含有未知数的项合并,把常数项也合并。

(2)解一元一次方程时,第一步:合并同类项,得;第二步系数2251x x +=⨯+113=x 化为1,得。

311=x (二)预习自测。

(1)下列各组中,两项不能合并的是( )A .与b 3b-B .与y 6-x3C .与a 21-a D .与23-100知识点:同类项的概念。

解题过程:解:A .与所含字母相同,并且相同字母的指数也相同的为同类项。

所b 3b -以可以合并;B .与所含字母不同,所以不是同类项,不能进行合并;C .与y 6-x 3a 21-a 所含字母相同,并且相同字母的指数也相同的为同类项,所以可以合并;D .与所有23-100的常数项也叫同类项,所以可以合并;因此选择B .思路点拨:所含字母相同,并且相同字母的指数也相同的项称为同类项,所有的常数项也叫同类项。

答案:B(2)方程两边合并后的结果是?16210+=-x x 知识点:合并同类项解一元一次方程。

解题过程:解:合并同类项,得:;系数化为1,得:。

78=x 87=x 思路点拨:解一元一次方程时,同类项有两类,即未知数的一次项和常数项,合并同类项是一种恒等变形,它使方程变得简单,更接近的形式。

a x =答案:87=x (3)方程的解是( )21022=++x x x A .20=x B .40=x C .60=x D .80=x 考点:合并同类项解一元一次方程。

新人教版七年级数学上册第3章 一元一次方程《3.2 解一元一次方程(一)——合并同类项与移项》优质课件

新人教版七年级数学上册第3章 一元一次方程《3.2 解一元一次方程(一)——合并同类项与移项》优质课件
三种洗衣机的数量之比为1:2:14,这三种洗衣机计划各生产 多少台?
3.2 解一元一次方程(2)
学习目标
1、 学会用移项的方法解一元一次方程。 2、掌握“表示同一个量的两个不同的式子相
等”这个基本的相等关系,并能灵活运用它 列方程。
自 研自探
认真看课本P88-90页例4上面的内容: 1、看88页的问题2,问题中的相等关系是什么?如
最大量如何表示? • 4、如何列方程?思考云图中的问题. • 5、本题还有其他列方程的方法吗?
合作交流
• • 1、对子交流 • .自研自探中各问题的答案; • .对子用自己的语言互说:怎样根据题意
寻找数量关系。 • 小组交流:如何列一元一次方程解决实际
问题?
展示提升
• 例4完整的解题过程 • 备注:展示方法:先给学生留1分钟思考时
间,然后老师通过抽签决定展示人员(先 抽组号,再抽成员号),展示完不让本组 其他成员纠错, • 等点评时由其他组纠错点评并给以加分
达标训练
• 一: P91 第6题 第7题 • 二:甲比乙大15岁,5年前甲的年龄是乙的
年龄的2倍,乙现在年龄是多少岁?
日清反馈:
• 必做题: P91 第9题 第10题
3、2解一元一次方程(3)
学习目标
1、会用一元一次方程解决实际问 题。 2、会通过移项、合并同类项解一 元一次方程。
自研自探(10分钟)
• 按以下程序认真看课本P90页内容: • 1、例4属于什么类型的应用题? • 2、这类型的应用题该怎样设未知数? • 3、问题中的相等关系是什么?环保限制的
何表示这批图书的总数,如何列方程?思考云图中 的问题. 2、怎样移项,注意移项时符号的变化. 3、回答P89页的思考:在解方程时,移项起什么作 用? 4、仔细看例3,观察解题格式和步骤;分几步解方 程的?每步分别是什么?移项时应注意什么?

《解 一元一次方程(一)——合并同类项与移项(第1课时)》教案 人教数学七年级上册

《解 一元一次方程(一)——合并同类项与移项(第1课时)》教案 人教数学七年级上册

第三章一元一次方程3.2 解一元一次方程(一)——合并同类项与移项第1课时一、教学目标【知识与技能】1、通过运用算术和列方程两种方法解决实际问题的过程,使学生体会到列方程解应用题的优越性。

2、掌握合并同类项解“ax+bx=c”类型的一元一次方程的方法,能熟练求解一元一次议程(数字关系),并判别解的合理性。

【过程与方法】通过对实例的分析,体会一元一次方程作为实际问题的数学模型的作用。

【情感态度与价值观】通过学生观察、独立思考等过程,培养学生归纳、概括的能力,进一步让学生感受到并尝试寻找不同的解决问题的方法,初步体会一元一次方程的应用价值,感受数学文化。

二、课型新授课三、课时第1课时,共2课时。

四、教学重难点【教学重点】建立列方程解决实际问题的思想方法,学会合并同类项,会解“ax+bx=c”类型的一元一次方程【教学难点】分析实际问题中的已经量和未知量,找出相等关系,列出方程,使学生逐步建立列方程解决实际问题的思想方法五、课前准备教师:课件、直尺、阿尔-花拉子米简介等。

学生:三角尺、练习本、圆珠笔或钢笔、铅笔。

六、教学过程(一)导入新课程大位,明代商人,珠算发明家,历经二十年,于明万历壬辰年(1592年)写就巨著《算法统宗》.《算法统综》搜集了古代流传的595道数学难题并记载了解决方法,堪称中国16—17世纪数学领域集大成的著作.在该书中,有一道“百羊问题”:甲赶羊群逐草茂,乙拽一羊随其后,戏问甲及一百否?甲云所说无差谬,若得这般一群凑,于添半群小半群,得你一只来方凑,玄机奥妙谁猜透.(注:小半即四分之一)如何解这个方程呢?(出示课件2)(二)探索新知1.师生互动,探究合并同类项解一元一次方程问题:某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍。

前年这个学校购买了多少台计算机?(出示课件4)教师问1:设前年购买计算机x台。

那么去年购买计算机多少台?今年购买计算机多少台?学生回答:去年购买计算机2x台,今年购买计算机4x台。

3.2 解一元一次方程(一)—合并同类项与移项 教案-人教版七年级数学上册

3.2  解一元一次方程(一)—合并同类项与移项 教案-人教版七年级数学上册

3.2 解一元一次方程(一)——合并同类项与移项第1课时 用合并同类项的方法解一元一次方程学习目标:1.学会运用合并同类项解形如ax +bx = c 类型的一元一次方程,进一步体会方程中的“化归”思想.2. 能够根据题意找出实际问题中的相等关系,列出方程求解.重点:用合并同类项的方法解一元一次方程.难点:能够通过自主分析,找出实际问题中的等量关系.教学过程:要点探究探究点1:利用合并同类项解简单的一元一次方程合作探究:试一试:把一元一次方程x +2x +4x = 140转化为x = m 的形式.依据:______________ 依据:_________________归纳:解方程中“合并”起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax = b 的形式,其中a,b 是常数,“合并”的依据是逆用分配律.典例精析例1 解下列方程:(1) 1115;24x x x --= 221(2)423.32x x x -++=-⨯+.方法总结:合并同类项解方程的一般步骤如下:(1)合并同类项;(2)系数化为1.针对训练:解下列方程:(1) 5x -2x = 9; (2) 72321=+x x .\探究点2:根据“总量=各部分量的和”列方程解决问题例2 足球表面是由若干个黑色五边形和白色六边形皮块围成的,黑、白皮块数目的比为3:5,一个足球表面一共有32个皮块,黑色皮块和白色皮块各有多少个?方法总结:方法归纳:当题目中出现比例时,一般可通过间接设元,设其中的每一份为,然后用含x的代数式表示各数量,根据等量关系,列方程求解.例3 有一列数,按一定规律排列成1,-3,9,-27,81,-243 ,···. 其中某三个相邻数的和是-1701,这三个数各是多少?检测:1.下列方程合并同类项正确的是( )A. 由3x-x=-1+3,得2x=4B. 由2x+x=-7-4,得3x=-3C. 由15-2=-2x+x,得3=xD. 由6x-2-4x+2=0,得2x=02.如果2x与x-3的值互为相反数,那么x等于()A.-1 B.1 C.-3 D.33.某中学七年级(5)班共有学生56人,该班男生的人数是女生人数的2倍少1人.设该班有女生有x人,可列方程为_____________.4.解下列方程:(1) -3x + 0.5x =10;(2) 6m-1.5m-2.5m =3;(3) 3y-4y =-25-20.5.某洗衣厂2016年计划生产洗衣机25500台,其中Ⅰ型、Ⅱ型、Ⅲ型三种洗衣机的数量之比为1:2:14,这三种洗衣机计划各生产多少台?二、课堂小结1. 解形如“ax + bx + ···+ mx = p”的一元一次方程的步骤.2. 用方程解决实际问题的步骤.3.2 解一元一次方程(一)——合并同类项与移项第2课时用移项的方法解一元一次方程学习目标:1. 理解移项的意义,掌握移项的方法.2. 学会运用移项解形如“ax+b=cx+d”的一元一次方程.3. 能够抓住实际问题中的数量关系列一元一次方程解决实际问题.重点:理解移项法则,会用移项的方法解一元一次方程.难点:能够通过自主分析,找出实际问题中的等量关系,并能正确运用移项的方法进行解答.教学过程:一.要点探究探究点1:用移项解一元一次方程合作探究:请运用等式的性质解下列方程:(1) 4x-15 = 9①;(2) 2x = 5x-21③.两边同时_______,得两边同时_______,得②________________; ④________________;合并同类项,合并同类项,得________________; ________________;系数化为1,得系数化为1,得________________; ________________;比一比:从方程①到方程②,从方程③到方程④,有哪些项发生了变化,它们是如何变化的?说一说:利用移项解一元一次方程的步骤:__________ ____________ ______________.例1解下列方程:(1)5x-7=2x-10;(2)-0.3x+3=9+1.2x .要点归纳:移项得目的是为了把所有含有未知数的项移到方程的左边,把所有常数项移到方程的右边,使得一元一次方程更接近“x = a”的形式.针对训练由方程3x-5=2x-4变形得3x-2x=-4+5,那么这是根据()变形的.A.合并同类项法则B.乘法分配律C.移项D.等式性质22.若代数式y-7与2y-1的值相等,则y的值是.3.利用移项的方法解下列方程:(1) 3x=2x+2; (2) 4x=-x+25.探究点2:列方程解决问题例2我区期末考试一次数学阅卷中,阅B卷第28题(简称B28)的教师人数是阅A卷第18题(简称A18)教师人数的3倍,在阅卷过程中,由于情况变化,需要从阅B28题中调12人到A18阅卷,调动后阅B28剩下的人数比原先阅A18人数的一半还多3人,求阅B28题和阅A18题的原有教师人数各为多少?方法总结:列方程解决含有多个未知量的实际问题中,一般先根据题意找出这些未知量之间存在的数量关系,然后设合适的未知数列方程求解.针对训练:下面是两种移动电话计费方式:问:一个月内,通话时间是多少分钟时,两种移动电话计费方式的费用一样?解形如“ax +b = cx + d ”的方程的一般步骤:(1)移项;(2)合并同类项;(3)化未知数的系数为1.1. 通过移项将下列方程变形,正确的是 ( )A. 由5x -7=2,得5x =2-7B. 由6x -3=x +4,得3-6x =4+xC. 由8-x =x -5,得-x -x =-5-8D. 由x +9=3x -1,得3x -x =-1+92. 已知 2m -3=3n +1,则 2m -3n = .3. 如果415+m 与41+m 互为相反数,则m 的值为 . 4. 当x =_____时,式子2x -1的值比式子5x +6的值小1.5. 解下列一元一次方程:(1) 7-2x =3-4x ; (2) 1.8t =30+0.3t ;(3)x x +=+3121; (4) .383113435-=+x x6. 小明和小刚每天早晨坚持跑步,小明每秒跑4米,小刚每秒跑6米. 若小明站在百米起点处,小刚站在他前面10米处,两人同时同向起跑,几秒后小明追上小刚?课堂小结 (1) 一般地,把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项.(2) 移项的依据是等式的性质1.3.3 解一元一次方程(二)——去括号与去分母第1课时利用去括号解一元一次方程学习目标:1.了解“去括号”是解方程的重要步骤.2.准确而熟练地运用去括号法则解带有括号的一元一次方程.重点:能正确运用去括号法则解一元一次方程.难点:能够较为灵活、熟练地运用去括号法则解一元一次方程.教学过程:一,要点探究探究点1:利用去括号解一元一次方程合作探究:观察下面的方程,结合去括号法则,你能求得它的解吗?6x+ 6 ( x-2000 ) = 150000解:去括号,得_______________.移项,得____________.合并同类项,得_______________.系数化为1,得_____________.典例精析例1解下列方程:(1)x-2(x-2) = 3x+5(x-1); (2)312 71423x x x ⎛⎫⎛⎫--⎪ ⎪⎝⎭⎝⎭+8=3-6要点归纳:解含有括号的一元一次方程的一般步骤:去括号→移项→合并同类项→系数化为1.针对训练1.解方程3-5(x+2)=x去括号正确的是()A.3-x+2=x B.3-5x-10=x C.3-5x+10=x D.3-x-2=x2.若2(x+3)的值与4(1-x)的值相等,则x的值为.3.解下列方程:(1) 6x=-2 (3x-5) +10;(2)-2 (x+5) = 3 (x-5)-6 .探究点2:去括号解方程的应用例2一架飞机在两城之间航行,风速为24 km/h,顺风飞行要2小时50分,逆风飞行要3小时,求两城距离.方法总结:涉及水流或风速的行程问题,需要找准路程、时间、速度间的等量关系,且要注意顺流(风)和逆流(风)时的速度不同.例3 为鼓励居民节约用电,某地对居民用户用电收费标准作如下规定:每户每月用电如果不超过100度,那么每度按0.50元收费;如果超过100度不超过200度,那么超过部分每度按0.65元收费;如果超过20度,那么超过部分每度按0.75元收费.若某户居民在9月份缴纳电费310元,那么他这个月用电多少度?方法总结:对于此类阶梯收费的题目,需要弄清楚各阶段的收费标准,以及各节点的费用.然后根据缴纳费用的金额,判断其处于哪个阶段,然后列方程求解即可. 针对训练1.某市出租车的收费标准是:起步价7元(行驶距离不超过3km ,都需付7元车费),超过3km每增加1km ,加收1.2元,小陈乘出租车到达目的地后共支付车费19元,那么小陈坐车可行驶的路最远是( )A .12km B.13km C .14km D .15km2.一艘轮船在A 、B 两港口之间行驶,顺水航行需要5h ,逆水航行需要7h ,水流的速度是5km/h ,则轮船在静水中航行的速度为 ,A 、B 两港口之间的路程是 .3.水浒中学要把420元奖学金分给22名获一、二等奖的学生,一等奖每人50元,二等奖每人10元.求获得一、二等奖的人数分别是多少?1. 对于方程 2( 2x -1 )-( x -3 ) =1 去括号正确的是 ( )A. 4x -1-x -3=1B. 4x -1-x +3=1C. 4x -2-x -3=1D. 4x -2-x +3=1 2. 若关于x 的方程 3x + ( 2a +1 ) = x -( 3a +2 ) 的解为x = 0,则a 的值等于 __3.爷爷现在的年龄是孙子的5倍,12年后,爷爷的年龄是孙子的3倍,现在孙子的年龄是___岁.4. 解下列方程: (1) 3x -5(x -3) = 9-(x +4); (2).12165326⎪⎭⎫ ⎝⎛+-=-⎪⎭⎫ ⎝⎛-x x x5. 某羽毛球协会组织一些会员到现场观看羽毛球比赛.已知该协会购买了每张300元和每张400元的两种门票共8张,总费用为2700元.请问该协会购买了这两种门票各多少张?6. 当x 为何值时,代数式2(x 2-1)-x 2的值比代数式x 2+3x -2的值大6.二、课堂小结1. 解一元一次方程的步骤:去括号→移项→合并同类项→系数化为1.2. 若括号外的因数是负数,去括号时,原括号内各项的符号要改变.3.3 解一元一次方程(二)——去括号与去分母第2课时 利用去分母解一元一次方程学习目标:1.掌握含有分数系数的一元一次方程的解法.2. 熟练利用解一元一次方程的步骤解各种类型的方程.重点:利用去分母解一元一次方程.难点:熟练利用解一元一次方程的步骤解各种类型的方程.教学过程:一、要点探究探究点1:解含分母的一元一次方程合作探究:1.解方程:()()13128231-=-x x . 方法一: 方法二解:去括号,得 解:方程两边同时乘3, ________________________ ________________________移项,得 去括号,得________________________ ________________________合并同类项,得 移项,得________________________ ________________________合并同类项,得____________2.对比方法一与方法二,想一想如何解含分母的方程更简便?3.用你认为更简便的方法解方程:.5210232213x x x --=-+要点归纳: 解含分母的一元一次方程的一般步骤:去分母→去括号→移项→合并同类项→系数化为1. 观察与思考:下列方程的解法对不对?如果不对,你能找出错在哪里吗? 解方程:.122312=+--x x 解:去分母,得4x -1-3x + 6 = 1,移项,合并同类项,得x =4.如果上述解法错误,你能写出正确解法吗?典例精析例1 解下列方程:(1)121163x x -+-=; (2) 490.30.25.50.32x x x ++--=解法:_______(填“对”或“错”) 错误原因:_________________ _________________________________________________________________________________要点归纳:1. 去分母时,应在方程的左右两边乘以分母的 ;2. 去分母的依据是 ,去分母时不能漏乘 ;3. 去分母与去括号这两步分开写,不要跳步,防止忘记变号.针对训练:A .3(x+1)-2x-3=6B .3(x+1)-2x-3=1C .3(x+1)-(2x-3)=12D .3(x+1)-(2x-3)=6(1);34= (2) 1.32x +=-探究点2:去分母解方程的应用例2 火车用26秒的时间通过一个长256米的隧道(即从车头进入入口到车尾离开出口),这列火车又以16秒的时间通过了长96米的隧道,求火车的长度.方法总结:火车过桥问题中,火车行驶的路程等于桥的长度加上火车的长度.针对训练清人徐子云《算法大成》中有一首诗:巍巍古寺在山林,不知寺中几多僧.三百六十四只碗,众僧刚好都用尽.三人共食一碗饭,四人共吃一碗羹.请问先生名算者,算来寺内几多增?诗的意思:3个僧人吃一碗饭,四个僧人吃一碗羹,刚好用了364只碗,请问寺内有多少僧人?1. 方程4172753+-=+-x x 去分母正确的是 ( ) A. 3-2(5x +7) = -(x +17) B. 12-2(5x +7) = -x +17C. 12-2(5x +7) = -(x +17)D. 12-10x +14 = -(x +17)2. 若代数式21-x 与56的值互为倒数,则x = . 3. 解下列方程: (1)154353+=--x x ; (2).1255241345--=-++y y y4. 某单位计划“五一”期间组织职工到东江湖旅游,如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车则可以少租一辆,并且有40个剩余座位.该单位参加旅游的职工有多少人?5. 有一人问老师,他所教的班级有多少学生,老师说:“一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在学外语,还剩六位学生正在操场踢足球.”你知道这个班有多少学生吗?趣味拓展“坟中安葬着丢番图,多么令人惊讶,它忠实地记录了所经历的道路.上帝给予的童年占六分之一.又过十二分之一,两颊长胡.再过七分之一,点燃结婚的蜡烛.五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进入冰冷的墓.悲伤只有用数论的研究去弥补,又过四年,他也走完了人生的旅途.”你知道丢番图去世时的年龄吗?请你列出方程来算一算.二、课堂小结:3.4 实际问题与一元一次方程第1课时产品配套问题和工程问题学习目标:1. 理解配套问题、工程问题的背景.2. 分清有关数量关系,能正确找出作为列方程依据的主要等量关系.3. 掌握用一元一次方程解决实际问题的基本过程.重点:掌握用一元一次方程解决实际问题的基本过程.难点:能够准确找出实际问题中的等量关系,并建立模型解决问题.教学过程:二、要点探究:探究点1:产品配套问题填一填:1.某厂欲制作一些方桌和椅子,1张方桌与4把椅子刚好配成一套,为了使桌椅刚好配套,商家应制作椅子的数量是桌子数量的倍. 方桌与椅子的数量之比是.2.一个油桶由两个圆形铁片和一个长方形铁片相配套.某车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.设安排x名工人生产圆形铁片,可使圆形铁片和长方形铁片刚好配套,请填写下表:等量关系:(1)每小时生产的圆形铁片=_____×每小时生产的长方形铁片.(2)生产的套数相等.方法总结:生产调配问题通常从调配后各量之间的倍、分关系寻找相等关系,建立方程.解决配套问题的思路:1.利用配套问题中物品之间具有的数量关系作为列方程的依据;2.利用配套问题中的套数不变作为列方程的依据.典例精析例1 如图,足球是由32块黑白相间的牛皮缝制而成的,黑皮可看作正五边形,白皮可看作正六边形,求白皮,黑皮各多少块?针对训练1.某车间有30名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个,现有一部分工人生产螺栓,其他部分工人生产螺母,恰好每天生产的螺栓螺母:按1:3配套.若每天每天生产的螺栓螺母刚好配套,设安排x人生产螺栓,可列方程为.2.一套仪器由一个A部件和三个B部件构成. 用1立方米钢材可做40个A部件或240个B部件. 现要用6立方米钢材制作这种仪器,应用多少钢材做A部件,多少钢材做B部件,才能恰好配成这种仪器?共配成多少套?人数每小时生产铁片的数量生产的套数生产圆形铁片x生产长方形铁片探究点2:工程问题填一填:一件工作,甲独做需要6天完成,乙独做需要5天完成.(1)若把工作总量设为1,则甲的工作效率(甲一天完成的工作量)是,乙的工作效率是.(2)甲做x天完成的工作量是,乙做x天完成的工作量是,甲乙合做x天完成的工作量是.议一议工程问题中,涉及哪些量?它们之间有什么数量关系?(1)工程问题中,涉及的量有工作量、_________________________________________;(2)请写出这些量之间存在的数量关系:___________________________________________________________________________________________ _______________________________________________________________.典例精析例2加工某种工件,甲单独作要20天完成,乙只要10就能完成任务,现在要求二人在12天内完成任务.问乙需工作几天后甲再继续加工才可正好按期完成任务?【提示:可运用表格列出题中存在的各种量.】工作效率工作时间工作量甲乙想一想:若要求二人在8天内完成任务,乙先加工几天后,甲加入合作加工,恰好能如期完成任务?要点归纳:解决工程问题的基本思路:1.三个基本量:工作量、工作效率、工作时间. 它们之间的关系是:工作量= 工作效率×工作时间;合作的工作效率=工作效率之和.2.相等关系:工作总量=各部分工作量之和=合作的工作效率×工作时间.3. 通常在没有具体数值的情况下,把工作总量看作1.针对训练一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天. 如果由这两个工程队从两端同时施工,要多少天可以铺好这条管线?1. 某人一天能加工甲种零件50个或加工乙种零件20个,1个甲种零件与2个乙种零件配成一套,30天制作最多的成套产品,若设x 天制作甲种零件,则可列方程为 . 2. 一项工作,甲独做需18天,乙独做需24天,如果两人合做8天后,余下的工作再由 甲独做x 天完成,那么所列方程为 .3. 某家具厂生产一种方桌,1立方米的木材可做50个桌面或300条桌腿,现有10立方 米的木材,怎样分配生产桌面和桌腿使用的木材,才能使桌面、桌腿刚好配套,共可 生产多少张方桌?(一张方桌有1个桌面,4条桌腿)4. 一件工作,甲单独做20小时完成,乙单独做12小时完成,现在先由甲单独做4小时,剩下的部分由甲、乙合做. 剩下的部分需要几小时完成?5. 一个道路工程,甲队单独施工9天完成,乙队单独做24天完成.现在甲乙两队共同施工3天,因甲另有任务,剩下的工程由乙队完成,问乙队还需几天才能完成?二、课堂小结用一元一次方程解决实际问题的基本过程如下:实际问题实际问题的答案 一元一次方程的解(x =a )设未知数,列方程检验3.4 实际问题与一元一次方程第2课时 销售中的盈亏学习目标:1. 理解商品销售中的相关概念及数量关系.2. 根据商品销售中的数量关系列一元一次方程解决与打折销售有关的实际 问题,并掌握解此类问题的一般思路.重点:掌握商品销售中成本(进价)、售价(卖价)、标价(原价)、利润、利润率、折 扣等量之间的数量关系,知道销售中的盈亏取决于售价与成本之差.难点:能够通过自主分析,建立一元一次方程模型解决同类型问题,并掌握解此类问题 的一般思路. 教学过程:三、要点探究:探究点:销售中的盈亏合作探究:连一连:正确理解销售问题中的几个重要概念进价 也称成交价,是商店销售商品时的销售价格. 标价 商店销售商品时所赚的钱. 售价 商店购进商品时的价格.利润 商店销售商品时标出的价格,也称定价. 填一填1. 商品原价200元,九折出售,卖价是 元.2. 商品进价是150元,售价是180元,则利润是 元,利润率是_____.3. 某商品原来每件零售价是a 元,现在每件降价10%,降价后每件零售价是 元.4. 某种品牌的彩电降价20%以后,每台售价为a 元,则该品牌彩电每台原价应为 元.5. 某商品按定价的八折出售,售价是12.8元,则原定售价是 元. 想一想:以上问题中有哪些量?你能说出它们之间的关系吗?要点归纳:销售问题中的常用数量关系:●售价、进价、利润的关系:商品利润= 商品售价-商品进价; ●进价、利润、利润率的关系:利润率=%商品进价商品利润100 ;●标价、折扣数、商品售价的关系:商品售价=标价×10折扣数; ●商品售价、进价、利润率的关系:商品售价=商品进价×(1+利润率). 议一议:销售中存在盈亏,说一说销售盈亏中存在哪几种可能情况,并分别说明在该种情况下,售价与进价的大小. (1)盈利:售价 进价(填“>”、“小于”或“=”),此时,利润 0(填“>”、“小 于”或“=”);(2)亏损:售价 进价(填“>”、“小于”或“=”),此时,利润 0(填“>”、“小 于”或“=”);(3)不盈不亏:售价 进价(填“>”、“小于”或“=”),此时,利润 0(填“>”、 “小于”或“=”).典例精析例1一商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?要点归纳:销售的盈亏取决于总售价与总成本之间的关系:总售价>总成本时,盈利;总售价<总成本时,亏损;总售价=总成本时,不盈不亏.针对训练1.某琴行同时卖出两台钢琴,每台售价为960元. 其中一台盈利20%,另一台亏损20%.这次琴行是盈利还是亏损,或是不盈不亏?2.某文具店有两个进价不同的计算器都卖64元,其中一个盈利60%,另一个亏本20%.这次交易中的盈亏情况?例2某商品的零售价是900元,为适应竞争,商店按零售价打9折(即原价的90%),并再让利40元销售,仍可获利10%,求该商品的进价.方法归纳:利用一元一次方程解决销售问题时,熟练、准确地运用销售问题中常用的等量关系是解题关键.针对训练1. 某商场把进价为1980元的商品按标价的八折出售,仍获利10%,则该商品的标价为 元.2. 我国政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品在2005年涨 价30%后,2007降价70%至a 元,则这种药品在2005年涨价前价格为 元.20元,则这种商品的原价是( )A .500元B .400元C .300元D .200元4.某商品的进价是1000元,售价是1500元,由于销售情况不好,商店决定降价出售, 但又要保证利润率不低于5%,那么商店最多可打几折出售此商品?5.据了解个体商店销售中售价只要高出进价的20% 便可盈利,但老板们常以高出进价 50%~100% 标价,假若你准备买一双标价为600元的运动鞋,应在什么范围内还价?二、课堂小结●售价、进价、利润的关系:商品利润= 商品售价-商品进价●进价、利润、利润率的关系:利润率=%商品进价商品利润100 ●标价、折扣数、商品售价的关系:商品售价=标价×10折扣数●商品售价、进价、利润率的关系:商品售价=商品进价×(1+利润率)3.4 实际问题与一元一次方程第3课时球赛积分表问题学习目标:1. 通过对实际问题的探究,认识到生活中数据信息传递形式的多样性.2. 会阅读、理解表格,并从表格中提取关键信息.3. 掌握解决“球赛积分表问题”的一般思路,并会根据方程的解的情况对实际问题作出判断.重点:能够阅读和理解表格中的信息.难点:能够通过自主分析,从表格中提取关键信息进行解题,并掌握解决“球赛积分表问题”的一般思路.教学过程:四、要点探究:探究点:比赛积分问题互动探究:某次篮球联赛积分榜如下:问题1你能从表格中了解到哪些信息?问题2你能从表格中看出负一场积多少分吗?问题3你能进一步算出胜一场积多少分吗?提示:设胜一场积x分,根据表中其他任何一行可以列方程求解.问题4怎样用式子表示总积分与胜、负场数之间的关系?问题5某队胜场总积分能等于它负场总积分吗?例某次篮球联赛共有十支队伍参赛,部分积分表如下:根据表格提供的信息,你能求出胜一场、负一场各积多少分吗?【提示:先观察C队的得分,可知胜场得分+负场得分=_____,然后再设未知数列方程求解】想一想:某队的胜场总积分能等于它的负场总积分吗?针对训练:某赛季篮球甲A 联赛部分球队积分榜如下:(1) 列式表示积分与胜、负场数之间的数量关系;(2) 某队的胜场总积分能等于它的负场总积分吗?为什么?1. 某球队参加比赛,开局9场保持不败,积21分,比赛规则:胜一场得3分,平一场得1分,则该队共胜( )A. 4场B. 5场C. 6场D. 7场2.中国男篮CBA职业联赛的积分办法是:胜一场积2分,负一场积1分,某支球队参加了12场比赛,总积分恰是所胜场数的4倍,则该球队共胜____场.3. 某次知识竞赛共20道题,每答对一题得8分,答错或不答要扣3分. 某选手在这次竞赛中共得116 分,那么他答对几道题?4.把互动探究中积分榜的最后一行删去(如下表),如何求出胜一场积几分,负一场积几分.二、课堂小结1. 解决有关表格的问题时,首先要根据表格中给出的相关信息,找出数量间的关系,然后再运用数学知识解决问题.2. 用方程解决实际问题时,要注意检验方程的解是否正确,且符合问题的实际意义.3.4 实际问题与一元一次方程第4课时 电话计费问题学习目标:1. 体会分类思想和方程思想在解决问题中的作用,能够根据已知条件选择 分类关键点对“电话计费问题”进行整体分析,从而得出整体选择方案. 2. 进一步深化对数学建模方法的体验,增强应用方程模型解决问题的意识和 能力.重点:能够理解题目信息,建立方程模型解决电话计费问题. 难点:关键点的选择,整体方案的确定.五、要点探究:探究点1:电话计费问题:下表中有两种移动电话计费方式:想一想 你觉得哪种计费方式更省钱?填填下面的表格,你有什么发现?问题1 设一个月内移动电话主叫为t min (t 是正整数),列表说明:当t 在不同时间范围内取值时,按方式一和方式二如何计费.想一想:计费多少是与__________有关;计费时,首先主要关注的是________________; 考虑t 值时,不同时间范围的划分点为_____________、___________________ 列表如下: 主叫时间t/min 方式一计费/元 方式二计费/元问题2 观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?通过计算验证你的看法.结论:当t________________时,选择方式一省钱;当t________________时,两种方式费用相同; 当t________________时,选择方式二省钱. 想一想:(1)回顾问题的解决过程,谈谈你的收获.月使用 费/元 主叫限定 时间/分 主叫超时 费/(元/分) 被叫 方式一 58 150 0.25 免费方式二 88 350 0.19 免费主叫时间(分) 100 150 250 300 350 450 方式一计费(元)方式二计费(元)。

解一元一次方程——合并同类项与移项(第1课时)教学设计

解一元一次方程——合并同类项与移项(第1课时)教学设计
教 学 重点 1 . 找相 等 关 系列 一 元 一 次 方 程 ; 2 . 用合 并 同类 项 解 一 元 一 次 方 程 . 难 点 找相 等 关 系。
活 动 流程 活动 内容 和 目的
合并 同类项根 据 的是 引导学 生回答 :合并 应用得 出的 ,使 学生 什么? 同 类 项 目 的 就 是 化 意 识 到解 方程 的过 程 上 面的合 并 同类 项起 简 ,逐 步使 方 程 向 是有依据产生的 ,知 到 了什 么作 用 ? x : a 的形式转化 。 识之 间是 有 联 系的 .
的转 化 作 用 . 体 会 方 程 中 的 化 归 思 想 , 会 用 合 并 同 类 项 解 决
解决 问题 “ a x + b = c x + d ”型方程 , 进一步认识如何 用方程解决 实
际 问题 .
方程 怎 么解?如 何 将 用,可以把含 有的项 展 示解方程 的过程 , 这 个 方程 转化 为 x = a 合 并,即 使 解 法 中各 步骤 的 的形式? 老 师详 细板 演解方程 先后顺序 清晰, 渗透 2 . 解 这 个 方程 的 具 体 的过程 算法程序化 的思想. 过程 : 教 师引导学生观 察 , 通 过 学 生 的 思考 和 x + 2 x + 4 x = 1 4 0 这 个 方 程 的 特 征 ,学 老 师 的 讲 解 明 白 此 解:合 并同类项,得 生观察后 发现等号的 类 方程 要 先合 并 同 7 x =1 4 0 左边含有 同类项 ,要 类项 . 这 里不要 求 学
教学方法
课 程 教 育 研 究
解 一 元 一 次方 程
— —
合 并 同类项 与移 项 ( 第 1课 时 ) 教 学设 计
5 6 2 4 0 0)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.设未知数:
二.分析题意找出等量关系: 三.根据等量关系列方程:
分析: 设前年购买了计算机x台,则
去年购买_2__x_台,今年购买_4_x___台,
等量关系:
前年购买量+去年购买量+今年购买量=140台
x + 2x +4x = 140
x 2x 4x 140
合并同类项7ຫໍສະໝຸດ 140系数化为1x 20
分析:解方程,就是把
方程变形,变为 x = a
(a为常数)的形式.
想一想:上面解方程中“合并同类项” 起了什么作用?
合并同类项的作用:
合并同类项起到了“化简”的 作用,即把含有未知数的项合并, 从而把方程转化为ax=b,使其更 接近x=a的形式(其中a,b是常 数) .
(四)例题规范,巩固新知
1.解方程:2x- 5 x=6-8 2
解:合并同类项,得- 1 x=-2 2
3.2 解一元一次方程(一) ——合并同类项与移项(第1课
时)
(一)介绍数学史,创设情境
约公元825年,中亚细亚数学家阿尔-花 拉子米写了一本代数书,重点论述怎样 解方程.这本书的拉丁文译本取名为《对 消与还原》.“对消”与“还原”是什么 意思呢?
问题1:
某校三年共购买计算机140台,去年购买数量是前年的2 倍,今年购买数量又是去年的2倍.前年这个学校购买了多少台 计算机?
43 34
×
-x=3
所以原系方数程化的为解1,为得-x=×3
x=-3
解下列方程
1 16x 9x 9 37
2 x 1 x 3x 7
2
3 x 0.5x 5 x 10 (4) 6m 1.5m 2.5m 3
2
1. 你今天学习的解方程有哪些步骤?
合并同类项 系数化为1 (等式性质2) 2:如何列方程?分哪些步骤?
系数化为1,得 x=4
例1 解方程
7x 2.5x 3x 1.5x 154 63
课堂练习:P 88 练习
火眼金睛
辩一辩: 判断下列方程的部分解题过程是否正确:
1、x+3x+4x=5
2、3x+2x-6x=3
解:合并同类项,得
解:合并同类项,得
87x=5 ×
3、3x=4
解:系数化为1,得
xx==
相关文档
最新文档