2020届浙江高三五校联考数学卷
浙江省高三“五校联考”考试参考答案
![浙江省高三“五校联考”考试参考答案](https://img.taocdn.com/s3/m/1e93d0e5fd0a79563c1e72ab.png)
2020学年第一学期浙江省高三“五校联考”考试参考答案1-10.CBCADCDBBA11.{|1}x x ≠,{|12}x x << 12.43π,1213.2y x =±,8314.54e -,(27,12](11,)---+∞ 15.43 16.1217.335[,]41218.解:1cos 2()sin (sin )22-=+=x f x x x x x 1sin(2)62π=-+x (3)分由3222262πππππ+≤-≤+k x k ,∈k Z 得536ππππ+≤≤+k x k ,∈k Z ∴()f x 的单调递减区间为5[,]36k k k Z ππππ++∈ ……………6分 (2)∵13()sin(2)622π=-+=f A A ,则sin(2)16π-=A , ∵0π<<A ,∴112666πππ-<-<A , 262ππ-=A ,解得3π=A . ……………8分 法一: ∵2=a ,3π=A ,由余弦定理得,2222cos3a b c bc π=+-,即224b c bc +-= ……10分∴2()43b c bc +-=,则22()43()2b c b c ++-≤ …………12分 又∵2b c +>,∴24b c <+≤ …………13分 ∴△ABC 周长的范围是(6,8] …………14分法二:由正弦定理得2sin sin sin a b cR A B C====∴sin )b c B C +=+ …………10分∵23sin sin sin sin()sin )3226B C B B B B B ππ+=+-=+=+ ………12分 又∵2(0,)3B π∈,∴1sin()(,1]62B π+∈,∴(4,6]b c +∈ …………13分∴△ABC 周长的范围是(6,8] …………14分 19.(1)BC ABAM PB PA ABCD BC PA BC PAB AM BC AM PBC BC ABCD AB PA A PB BC B AM PAB PC PBC ⊥⊥⎫⎫⎫⎫⊥⎫⎪⎪⎪⎪⇒⊥⇒⊥⇒⊥⇒⊥⎬⎬⎬⎬⎬⊂⎭⎪⎪⎪⎪==⊂⊂⎭⎭⎭⎭面面面面面面 =PC AMPC AN PC AMN AM AN A ⇒⊥⎫⎪⊥⇒⊥⎬⎪⎭面 ………7分(2)方法一:作DE AC E ⊥于,EF PC F ⊥于,连DF ,PA ABCD ⊥面,PAC ABCD ∴⊥面面,DE PAC ∴⊥面,DDE PC ∴⊥,EF PC ⊥,EF DE E =,PC DEF ∴⊥面,DF PC ∴⊥,DFE ∴∠是二面角D PC A --的平面角,………11分2PA AD ==,AB =AC ∴=,30PCA ∴∠=︒DE ∴=,CE =,EF =tan DE DFE EF ∴∠== DFE ∴∠是二面角D PC A --. ………15分方法二:建立坐标系(以AD 为x 轴,以AB 为y 轴,以AP 为z 轴).(0,0,0),(0,(2,(2,0,0),(0,0,2)A B C D P (0,22,0),(2,22,2),(0,0,2)DC PC AP ==-=平面DPC 的法向量1(1,0,1)n =,平面APC 的法向量2(2,1,0)n =-设二面角D PC A --的平面角为α,12cos |cos ,|n n α=<>=tan α= 20. (1)证明:1222a a +-=,23210a a +=,两式作差得112c =…………3分对任意*n N ∈,21212231n n n a a ---++=①,2221231n n n a a ++=+② …………2分②-①,得21212134n n n a a -+-⨯-=,即2134n n c -⨯=,于是14n nc c +=.所以{}n c 是等比数列. …………7分 (2)证明当*n N ∈且2n ≥时,2113153752123()()()()n n n a a a a a a a a a a =+-+-+-+⋅⋅⋅-+---22131(19)92922129n n --=+++++⋅⋅⋅=⋅+ …………10分由(1)得112339321922n n n a --⋅++=-⋅+,所以2194n n a -= …………12分12123(19)4n n n a a --+=-,得2391()48n n S n -=- …………15分21.解:(1)由已知c e a ==,2b =,222a b c =+得2b a ==,故椭圆C 的22142x y +=;……………………5分(2)设()()()112200,,,,,A x y B x y M x y ,则由2224x y y kx m⎧+=⎨=+⎩得()222214240k x mkx m +++-= 2121222424,2121mk m x x x x k k -⇒+=-=++,点O 到直线l的距离d =1122S d AB =⋅⋅=()222242221m k m k ++-=≤=+S 22242m k m =+-即2221m k =+,① ……………10分此时21200022221,221x x mk k k x y kx m m k m m m+==-=-=+=-+=+,法一:即00001,22x m m k x y y ==-=-代入①式整理得()22000102x y y +=≠,即点M 的轨迹为椭圆()221:102x C y y +=≠ ………13分且点N 恰为椭圆1C 的左焦点,则MN的范围为)1 ……………15分法二:MN ==由①得kMN m===- ………13分 设k t m =代入2221m k =+得22221m m t =+,即22(12)1t m -=,221012m t =>-∴22t -<<,即22k m -<<∴)1MN ∈……………15分22、解答:(Ⅰ)当2a =时,()2sin sin 2f x x x =+,于是()2cos 2cos22(1cos )(2cos 1)f x x x x x '=+=+- …………3分于是()0f x '>,解得(0,)3x π∈;()0f x '<,解得(,)3x ππ∈即(0,)3x π∈函数()f x 单调递增,(,)3x ππ∈函数()f x 单调递减 …………6分(Ⅱ)当1a =时,()sin sin 2cos f x x x bx x =+≥对任意2(0,)3x π∈恒成立首先考察(0,)2x π∈时,易得0b >∵()sin sin 2sin (12cos )cos f x x x x x bx x =+=+≥∴2(,)23x ππ∈时,()0cos f x bx x ≥≥,显然成立 …………9分于是只考察()sin sin 2cos f x x x bx x =+≥对任意(0,)2x π∈恒成立由()14242f b ππ=+≥⋅,于是18b +≤138+>,所以3b ≤…11分 下证:()sin sin 23cos f x x x x x =+≥对任意(0,)2x π∈恒成立考察函数()tan 2sin 3g x x x x =+-,(0,)2x π∈32222212cos 3cos 1(cos 1)(2cos 1)()2cos 30cos cos cos x x x x g x x x x x-+-+'=+-==> 于是()g x 在(0,)2x π∈上单调递增,则()(0)0g x g >=即tan 2sin 30x x x +->,则sin sin 23cos x x x x +≥ 综上可知,max 3b = ………15分。
浙江省2020届高三数学第二次五校联考试题 理
![浙江省2020届高三数学第二次五校联考试题 理](https://img.taocdn.com/s3/m/db5d049acc7931b765ce15aa.png)
第5题2020学年浙江省第二次五校联考数学(理科)试题卷第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{|31}M x y x ==-,22{|log (2)}N x y x x ==-,则()R C M N ⋂=( )A. 11(,)32B. 11(,)[,)32-∞⋃+∞C. 1[0,]2D. 1(,0][,)2-∞⋃+∞ (2)复数226(12)a a a a i --++-为纯虚数的充要条件是( )A .3a =或2a =-B .3a =或4a =-C .3a =D .2a =- (3)若函数cos(2)(0)y x ωϕω=+>的图象相邻两条对称轴之间的距离为2π,则ω为( ) A .21B .1C .2D .4 (4)已知A 、B 是两个不同的点,n m 、是两条不重合的直线,βα、是两个不重合的平面,则①α⊂m ,α∈⇒∈A m A ;②A n m =I ,α∈A ,α∈⇒∈B m B ;③α⊂m ,β⊂n ,βα////⇒n m ;④⊂m α,βαβ⊥⇒⊥m .其中真命题为( )A .①③B .②③C .①④D .②④ (5)若函数)1,0()1()(≠>--=-a a a a k x f xx在R 上既是奇函数,又是减函数,则)(log )(k x x g a +=的图像是( )(6)已知点F 是双曲线)0,0(12222>>=-b a by a x 的左焦点,点E 是该双曲线的右顶点,过F 且垂直于x轴的直线与双曲线交于B A ,两点,若ABE ∆是直角三角形,则该双曲线的离心率等于( )A. 3B.2C.3D.4第9题(7)已知ABC ∆中,4,43AB AC BC ===,点P 为BC 边所在直线上的一个动点,则()AP AB AC ⋅+u u u r u u u r u u u r满足( )A.最大值为16B.为定值8C.最小值为4D.与P 的位置有关(8)实数,,,a b c d 满足,,,0a b c d a b c d ab cd <<+<+=<,则,,,a b c d 四个数的大小关系为( )A. c d a b <<<B. a b c d <<<C. c a d b <<<D. a c b d <<< (9)如图所示的三角形数阵叫“莱布尼兹调和三角形”, 它们是由整数的倒数组成的,第n 行有n 个数且两端 的数均为1n(2n ≥),每个数是它下一行左右相邻两数的和,如111122=+,111236=+,1113412=+,…, 则第10行第4个数(从左往右数)为( )A .1360 B .1504 C .1840D .11260(10),P Q 是两个定点,点M 为平面内的动点,且MP MQλ=(0λ>且1λ≠),点M 的轨迹围成的平面区域的面积为S ,设()S f λ=(0λ>且1λ≠)则以下判断正确的是( )A .)(λf 在)1,0(上是增函数,在),(∞+1上是减函数B .)(λf 在)1,0(上是减函数,在),(∞+1上是减函数C .)(λf 在)1,0(上是增函数,在),(∞+1上是增函数D .)(λf 在)1,0(上是减函数,在),(∞+1上是增函数第Ⅱ卷(共100分)二、填空题:本大题共7小题,每小题4分,共28分.(11)学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为n 的样本,其频率分布直方图如图所示,其中支出在[50,60]元的同学有30人,则n 的值为 .(12)如图所示的流程图是将一系列指令和问题用框图的形式排列而成,箭头将告诉你下一步到哪一个框图.阅读右边的流程图,并回答下面问题:若01,,,mm m m a m b m c m <<===,则输出的数是 .元频率 组距20 30 40 50 600.010.036 0.024 第11题第12题(13)已知x ,y 满足⎪⎩⎪⎨⎧≤++≤+≥041c by ax y x x 且y x z +=2的最大值为7,最小值为1,则b ca + .(14)已知四棱锥P-ABCD 的三视图如图所示,则四棱锥P-ABCD 的体积为________.(15)有,,,A B C D 四个城市,它们各有一个著名的旅游点依此记为,,,a b c d .把,,,A B C D 和,,,a b c d 分别写成左、右两列,现在一名旅游爱好者随机用4条线把左右全部连接起来,构成“一一对应”,如果某个旅游点是与该旅游点所在的城市相连的(比如A 与a 相连)就得2分,否则就得0分;则该爱好者得分的数学期望为 .(16)已知向量,,a b c r r r 满足2,1a b c ===r r r ,()()0a c b c -⋅-=r r r r ,则a b -r r的取值范围为 .(17)已知函数931()931x x x xk f x +⋅+=++,若对任意的实数123,,x x x ,均存在以123(),(),()f x f x f x 为三边长的三角形,则实数k 的取值范围为 .三、解答题:本大题共5小题, 共72分. 解答应写出文字说明、 证明过程或演算步骤. (18)(本小题满分14分)已知函数2π()2sin 3cos 24f x x x ⎛⎫=+- ⎪⎝⎭,ππ,42x ⎡⎤∈⎢⎥⎣⎦.(Ⅰ)求()f x 的最大值和最小值;(Ⅱ)若不等式()2f x m -<在ππ,42x ⎡⎤∈⎢⎥⎣⎦上恒成立,求实数m 的取值范围(19)(本小题满分14分)已知数列{}n a 的相邻两项1,n n a a +是关于x 的方程2*20()n n x x b n N -+=∈的两实根,且1 1.a =(Ⅰ)求证:数列1{2}3nn a -⨯是等比数列; (Ⅱ)n S 是数列{}n a 的前n 项的和.问是否存在常数λ,使得n n b S λ>对*n N ∀∈都成立,若存在,求出λ的取值范围,若不存在,请说明理由.第14题(20)(本小题满分15分)如图,已知等腰直角三角形RBC ,其中∠RBC =90º,2==BC RB . 点A 、D 分别是RB 、RC 的中点,现将△RAD 沿着边AD 折起到△PAD 位置, 使PA ⊥AB ,连结PB 、PC . (Ⅰ)求证:BC ⊥PB ;(Ⅱ)求二面角P CD A --(21)(本小题满分15分)已知点(,1)P a -(a R ∈),过点P 作抛物线2:C y x =的切线,切点分别为11(,)A x y 、22(,)B x y (其中12x x <).(Ⅰ)求1x 与2x 的值(用a 表示);(Ⅱ)若以点P 为圆心的圆E 与直线AB 相切,求圆E 面积的最小值.(22)(本小题满分14分)已知函数32,1,()ln , 1.x x x f x a x x ⎧-+<=⎨≥⎩(Ⅰ)求()f x 在[1,]e -(e 为自然对数的底数)上的最大值;(Ⅱ)对任意给定的正实数a ,曲线()y f x =上是否存在两点,P Q ,使得POQ 是以O 为直角顶点的直角三角形,且此三角形斜边中点在y 轴上2020学年浙江省第二次五校联考数学(理科)答案第Ⅰ卷(共50分)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目第Ⅱ卷(共100分)二.填空题:本大题共7小题,每小题4分,共28分.(11)100.(12)c .(13)3-.(14)23. (15)2分.(16)1]+.(17)142k -≤≤.三.解答题:本大题共5小题, 共72分. 解答应写出文字说明、 证明过程或演算步骤. (18)解:(Ⅰ)π()1cos 221sin 222f x x x x x ⎡⎤⎛⎫=-+=+ ⎪⎢⎥⎝⎭⎣⎦∵π12sin 23x ⎛⎫=+- ⎪⎝⎭. ……3分又ππ,42x ⎡⎤∈⎢⎥⎣⎦∵,ππ2π2633x -∴≤≤,即π212sin 233x ⎛⎫+- ⎪⎝⎭≤≤,max min ()3,()2f x f x ==∴.……7分(Ⅱ)()2()2()2f x m f x m f x -<⇔-<<+∵,ππ,42x ⎡⎤∈⎢⎥⎣⎦,……9分max ()2m f x >-∴且min ()2m f x <+,14m <<∴,即m 的取值范围是(1,4).……14分(19)解:(Ⅰ)证明:1,n n a a +Q 是关于x 的方程2*20()n n x x b n N -⋅+=∈的两实根,112nn n n n n a a b a a ++⎧+=⎪∴⎨=⋅⎪⎩ ……2分111111222(2)333 1.111222333n n n n n n n n n nn n n a a a a a a +++-⨯--⨯--⨯===--⨯-⨯-⨯Q 故数列1{2}3n n a -⨯是首项为12133a -=,公比为-1的等比数列.……4分(Ⅱ)由(Ⅰ)得1112(1)33n n n a --⨯=⨯-,即1[2(1)]3n n n a =--2321211(2222)[(1)(1)(1)]33n n n n S a a a ∴=+++=++++--+-++-L L L11(1)1[22].32n n +--=-- ……8分 因此,1121111[2(1)][2(1)][2(2)1]99n n n n n n n n n b a a ++++=⋅=--⨯--=---要使n n b S λ>,对*n N ∀∈都成立,即211*1(1)1[2(2)1][22]0,()932n n nn n N λ++-------->∈(*) ……10分①当n 为正奇数时,由(*)式得:2111[221](21)093n n n λ+++--->即111(21)(21)(21)093n n n λ++-+-->, 11210,(21)3n n λ+->∴<+Q 对任意正奇数n 都成立,因为1(21)(3n n +为奇数)的最小值为1.所以 1.λ<……12分②当n 为正偶数时,由(*)式得:2111(221)(22)093n n n λ++---->, 即112(21)(21)(21)093n n nλ++--->11210,(21)6n n λ+->∴<+Q 对任意正偶数n 都成立,因为11(21)(6n n ++为偶数)的最小值为3.23.2λ∴< 所以,存在常数λ,使得n n b S λ>对*n N ∀∈都成立时λ的取值范围为(,1)-∞. ……14分BC . (20)解:(Ⅰ)∵点A 、D 分别是RB 、∴∠RBC RAD PAD ∠=∠==90º.∴AD PA ⊥.∴ BC PA ⊥, ……3分∵A AB PA AB BC =⊥I ,,∴BC ⊥平面PAB ∵⊂PB 平面PAB ,∴PB BC ⊥. ……7分(Ⅱ)取RD 的中点F ,连结AF 、PF . ∵1==AD RA ,∴RC AF ⊥ ∵AD AP AR AP ⊥⊥,, ∴⊥AP 平面RBC .∵⊂RC 平面RBC ,∴AP RC ⊥. ∵,A AP AF =I ∴⊥RC 平面PAF . ∵⊂PF 平面PAF , ∴PF RC ⊥.∴∠AFP 是二面角P CD A --的平面角. ……12分 在Rt△RAD 中, 22212122=+==AD RA RD AF , 在Rt△PAF 中, 2622=+=AF PA PF ,cos 3AF AFP PF ∠==.∴ 二面角P CD A --的平面角的余弦值是33. ……15分 (21)解:(Ⅰ)由2y x =可得,2y x '=. ……1分 ∵直线PA 与曲线C 相切,且过点(,1)P a -,∴211112x x x a+=-,即211210x ax --=, ……3分∴1x a ==1x a = ……4分同理可得:2x a =2x a =……5分 ∵12x x <,∴1x a =2x a =+ ……6分 (Ⅱ)由(Ⅰ)可知,122x x a +=,121x x ⋅=-, ……7分则直线AB 的斜率221212121212y y x x k x x x x x x --===+--, ……8分∴直线AB 的方程为:1121()()y y x x x x -=+-,又211y x =, ∴22112112()y x x x x x x x -=+--,即210ax y -+=.∵点P 到直线AB 的距离即为圆E的半径,即2r =, (10)∴22222222222222131913()()()4(1)(1)424164411141444a a a a a r a a a a ++++++++====++++221933()3142216()4a a =+++≥=+,当且仅当22191416()4a a +=+,即21344a +=,2a =±时取等号. 故圆E 面积的最小值23S r ππ==.……15分(22)解:(Ⅰ)因为32,1,()ln , 1.x x x f x a x x ⎧-+<=⎨≥⎩①当11x -≤≤时,()(32)f x x x '=--,解()0f x '>得到203x <<;解()0f x '<得到 10x -<<或213x <<.所以()f x 在(1,0)-和2(,1)3上单调递减,在2(0,)3上单调递增,从而()f x 在23x =处取得极大值24()327f =.……3分,又(1)2,(1)0f f -==,所以()f x 在[1,1)-上的最大值为2.……4分②当1x e ≤≤时,()ln f x a x =,当0a ≤时,()0f x ≤;当0a >时,()f x 在[1,]e 上单调递增,所以()f x 在[1,]e 上的最大值为a .所以当2a ≥时,()f x 在[1,]e -上的最大值为a ;当2a <时,()f x 在[1,]e -上的最大值为2. ……8分(Ⅱ)假设曲线()y f x =上存在两点,P Q ,使得POQ 是以O 为直角顶点的直角三角形,则,P Q 只能在y 轴的两侧,不妨设(,())(0)P t f t t >,则32(,)Q t t t -+,且1t ≠. ……9分因为POQ ∆是以O 为直角顶点的直角三角形,所以0OP OQ ⋅=u u u r u u u r,即:232()()0t f t t t -+⋅+=(1)……10分 是否存在点,P Q 等价于方程(1)是否有解. 若01t <<,则32()f t t t =-+,代入方程(1)得:4210t t -+=,此方程无实数解. ……11分若1t >,则()ln f t a t =,代入方程(1)得到:1(1)ln t t a=+,……12分 设()(1)ln (1)h x x x x =+≥,则1()ln 0h x x x'=+>在[1,)+∞上恒成立.所以()h x 在[1,)+∞上单调递增,从而()(1)0h x h ≥=,所以当0a >时,方程1(1)ln t t a=+有解,即方程(1)有解.……14分 所以,对任意给定的正实数a ,曲线()y f x =上是否存在两点,P Q ,使得POQ 是以O 为直角顶点的直角三角形,且此三角形斜边中点在y 轴上.……15分。
浙江省五校2020届高三上学期联考数学试题 含解析
![浙江省五校2020届高三上学期联考数学试题 含解析](https://img.taocdn.com/s3/m/a0ea2951f61fb7360b4c65d4.png)
由图像可得:平面区域面积: S 16 1 4 2 12 , 2
-4-
故选 D 【点睛】本题考查根据新定义表示线性规划区域,对可行域面积的求解,难点在于通过分类 讨论合理表示出符合条件的区域
8.函数 f x sin 2x 2 cos x 0 x ,则 f x ( )
A.
在
0,
值;当公差 d 0 时, d 0 , Sn 有最小值, d 0 , Sn 有最大值
-2-
5.已知关于 x 的不等式 ax2 2x 3a 0 在 0, 2 上有解,则实数 a 的取值范围是( )
A.
,
3 3
B.
,
4 7
C.
3 3
,+
D.
4 7
,
【答案】A
【解析】
【分析】
【点睛】本题考查集合的交运算,属于基础题.
2.已知向量
a
1,
b
2
,且
a
与
b
的夹角为
60
,则(
)
A. a a b
B. b a b
C. a a b
b ab
【答案】C
【解析】
【分析】
逐项采用向量数量积的公式进行验证即可
【详解】解析:对 A: a
a
b
2020 学年浙江五校联考
1.已知集合 A x lg x 0 , B x x2 4 ,则 A B ( )
A. 1, 2
B. 1, 2
C. 0, 2
【答案】B 【解析】 【分析】
分别计算出集合 A, B 后可得两个集合的交集.
【详解】 A 1, , B 2,2 ,故 A B 1, 2 ,故选 B.
a
2020届浙江省五校联考高考数学二模试卷(理科)(有答案)
![2020届浙江省五校联考高考数学二模试卷(理科)(有答案)](https://img.taocdn.com/s3/m/85407479915f804d2b16c1d6.png)
浙江省五校联考高考数学二模试卷(理科)一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项符合题目要求.)1.定义集合A={x|f(x)=},B={y|y=log2(2x+2)},则A∩∁R B=()A.(1,+∞)B.[0,1]C.[0,1)D.[0,2)2.△ABC的三内角A,B,C的对边分别是a,b,c,则“a2+b2<c2”是“△ABC为钝角三角形”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.对任意的θ∈(0,),不等式+≥|2x﹣1|恒成立,则实数x的取值范围是()A.[﹣3,4] B.[0,2]C.D.[﹣4,5]4.已知棱长为1的正方体ABCD﹣A1B1C1D1中,下列命题不正确的是()A.平面ACB1∥平面A1C1D,且两平面的距离为B.点P在线段AB上运动,则四面体PA1B1C1的体积不变C.与所有12条棱都相切的球的体积为πD.M是正方体的内切球的球面上任意一点,N是△AB1C外接圆的圆周上任意一点,则|MN|的最小值是5.设函数f(x)=,若函数g(x)=f(x)﹣m在[0,2π]内恰有4个不同的零点,则实数m的取值范围是()A.(0,1)B.[1,2]C.(0,1]D.(1,2)6.已知F1,F2是双曲线﹣=1(a>0,b>0)的左右焦点,以F1F2为直径的圆与双曲线在第一象限的交点为P,过点P向x轴作垂线,垂足为H,若|PH|=a,则双曲线的离心率为()A.B.C.D.7.已知3tan+=1,sinβ=3sin(2α+β),则tan(α+β)=()A.B.﹣C.﹣D.﹣38.如图,棱长为4的正方体ABCD﹣A1B1C1D1,点A在平面α内,平面ABCD与平面α所成的二面角为30°,则顶点C1到平面α的距离的最大值是()A.2(2+)B.2(+)C.2(+1)D.2(+1)二、填空题(本大题共7小题,前4题每题6分,后3题每题4分,共36分)9.已知空间几何体的三视图如图所示,则该几何体的表面积是;几何体的体积是.10.若x=是函数f(x)=sin2x+acos2x的一条对称轴,则函数f(x)的最小正周期是;函数f(x)的最大值是.11.已知数列{a n}满足:a1=2,a n+1=,则a1a2a3…a15=;设b n=(﹣1)n a n,数列{b n}前n项的和为S n,则S2016=.12.已知整数x,y满足不等式,则2x+y的最大值是;x2+y2的最小值是.13.已知向量,满足:||=2,向量与﹣夹角为,则的取值范围是.14.若f(x+1)=2,其中x∈N*,且f(1)=10,则f(x)的表达式是.15.从抛物线y2=2x上的点A(x0,y0)(x0>2)向圆(x﹣1)2+y2=1引两条切线分别与y轴交B,C两点,则△ABC的面积的最小值是.三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤)16.如图,四边形ABCD,∠DAB=60°,CD⊥AD,CB⊥AB.(Ⅰ)若2|CB|=|CD|=2,求△ABC的面积;(Ⅱ)若|CB|+|CD|=3,求|AC|的最小值.17.如图(1)E,F分别是AC,AB的中点,∠ACB=90°,∠CAB=30°,沿着EF将△AEF折起,记二面角A﹣EF﹣C的度数为θ.(Ⅰ)当θ=90°时,即得到图(2)求二面角A﹣BF﹣C的余弦值;(Ⅱ)如图(3)中,若AB⊥CF,求cosθ的值.18.设函数f(x)=ax2+bx+c,g(x)=c|x|+bx+a,对任意的x∈[﹣1,1]都有|f(x)|≤.(1)求|f(2)|的最大值;(2)求证:对任意的x∈[﹣1,1],都有|g(x)|≤1.19.已知椭圆C: +=1(a>b>0)的离心率为,焦点与短轴的两顶点的连线与圆x2+y2=相切.(Ⅰ)求椭圆C的方程;(Ⅱ)过点(1,0)的直线l与C相交于A,B两点,在x轴上是否存在点N,使得•为定值?如果有,求出点N的坐标及定值;如果没有,请说明理由.20.已知正项数列{a n}满足:S n2=a13+a23+…+a n3(n∈N*),其中S n为数列{a n}的前n项的和.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求证:<()+()+()+…+()<3.浙江省五校联考高考数学二模试卷(理科)参考答案与试题解析一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项符合题目要求.)1.定义集合A={x|f(x)=},B={y|y=log2(2x+2)},则A∩∁R B=()A.(1,+∞)B.[0,1]C.[0,1)D.[0,2)【考点】交、并、补集的混合运算.【分析】求出A中x的范围确定出A,求出B中y的范围确定出B,找出A与B补集的交集即可.【解答】解:由A中f(x)=,得到2x﹣1≥0,即2x≥1=20,解得:x≥0,即A=[0,+∞),由2x+2>2,得到y=log2(2x+2)>1,即B=(1,+∞),∵全集为R,∴∁R B=(﹣∞,1],则A∩∁R B=[0,1].故选:B.2.△ABC的三内角A,B,C的对边分别是a,b,c,则“a2+b2<c2”是“△ABC为钝角三角形”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】在△ABC中,由“a2+b2<c2”,利用余弦定理可得:C为钝角,因此“△ABC为钝角三角形”,反之不成立.【解答】解:在△ABC中,“a2+b2<c2”⇔cosC=<0⇒C为钝角⇒“△ABC为钝角三角形”,反之不一定成立,可能是A或B为钝角.∴△ABC的三内角A,B,C的对边分别是a,b,c,则“a2+b2<c2”是“△ABC为钝角三角形”的充分不必要条件.故选:A.3.对任意的θ∈(0,),不等式+≥|2x﹣1|恒成立,则实数x的取值范围是()A.[﹣3,4] B.[0,2]C.D.[﹣4,5]【考点】基本不等式.【分析】对任意的θ∈(0,),sin2θ+cos2θ=1,可得+=(sin2θ+cos2θ)=5++,利用基本不等式的性质可得其最小值M.由不等式+≥|2x﹣1|恒成立,可得M≥|2x﹣1|,解出即可得出.【解答】解:∵对任意的θ∈(0,),sin2θ+cos2θ=1,∴+=(sin2θ+cos2θ)=5++≥5+2×2=9,当且仅当时取等号.∵不等式+≥|2x﹣1|恒成立,∴9≥|2x﹣1|,∴﹣9≤2x﹣1≤9,解得﹣4≤x≤5,则实数x的取值范围是[﹣4,5].故选:D.4.已知棱长为1的正方体ABCD﹣A1B1C1D1中,下列命题不正确的是()A.平面ACB1∥平面A1C1D,且两平面的距离为B.点P在线段AB上运动,则四面体PA1B1C1的体积不变C.与所有12条棱都相切的球的体积为πD.M是正方体的内切球的球面上任意一点,N是△AB1C外接圆的圆周上任意一点,则|MN|的最小值是【考点】命题的真假判断与应用.【分析】A.根据面面平行的判定定理以及平行平面的距离进行证明即可.B.研究四面体的底面积和高的变化进行判断即可.C.所有12条棱都相切的球的直径2R等于面的对角线B1C的长度,求出球半径进行计算即可.D.根据正方体内切球和三角形外接圆的关系进行判断即可.【解答】解:A.∵AB1∥DC1,AC∥A1C1,且AC∩AB1=A,∴平面ACB1∥平面A1C1D,长方体的体对角线BD1=,设B到平面ACB1的距离为h,则=×1=h,即h=,则平面ACB1与平面A1C1D的距离d=﹣2h==,故A正确,B.点P在线段AB上运动,则四面体PA1B1C1的高为1,底面积不变,则体积不变,故B正确,C.与所有12条棱都相切的球的直径2R等于面的对角线B1C=,则2R=,R=,则球的体积V==×π×()3=π,故C正确,D.设与正方体的内切球的球心为O,正方体的外接球为O′,则三角形ACB1的外接圆是正方体的外接球为O′的一个小圆,∵点M在与正方体的内切球的球面上运动,点N在三角形ACB1的外接圆上运动,∴线段MN长度的最小值是正方体的外接球的半径减去正方体的内切球相切的球的半径,∵正方体ABCD﹣A1B1C1D1的棱长为1,∴线段MN长度的最小值是﹣.故D错误,故选:D.5.设函数f(x)=,若函数g(x)=f(x)﹣m在[0,2π]内恰有4个不同的零点,则实数m的取值范围是()A.(0,1)B.[1,2]C.(0,1]D.(1,2)【考点】函数零点的判定定理.【分析】画出函数f(x)的图象,问题转化为f(x)和y=m在[0,2π]内恰有4个不同的交点,结合图象读出即可.【解答】解:画出函数f(x)在[0,2π]的图象,如图示:,若函数g(x)=f(x)﹣m在[0,2π]内恰有4个不同的零点,即f(x)和y=m在[0,2π]内恰有4个不同的交点,结合图象,0<m<1,故选:A.6.已知F1,F2是双曲线﹣=1(a>0,b>0)的左右焦点,以F1F2为直径的圆与双曲线在第一象限的交点为P,过点P向x轴作垂线,垂足为H,若|PH|=a,则双曲线的离心率为()A.B.C.D.【考点】双曲线的简单性质.【分析】运用双曲线的定义和直径所对的圆周角为直角,运用勾股定理,化简可得|PF1|•|PF2|=2c2﹣2a2,再由三角形的等积法,结合离心率公式,计算即可得到所求值.【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,①由直径所对的圆周角为直角,可得PF1⊥PF2,可得|PF1|2+|PF2|2=|F1F2|2=4c2,②②﹣①2,可得2|PF1|•|PF2|=4c2﹣4a2,即有|PF1|•|PF2|=2c2﹣2a2,由三角形的面积公式可得, |PF1|•|PF2|=|PH|•|F1F2|,即有2c2﹣2a2=2ac,由e=可得,e2﹣e﹣1=0,解得e=(负的舍去).故选:C.7.已知3tan+=1,sinβ=3sin(2α+β),则tan(α+β)=()A.B.﹣C.﹣D.﹣3【考点】两角和与差的正切函数.【分析】由已知式子可得sin[(α+β)﹣α]=3sin[(α+β)+α],保持整体展开变形可得tan(α+β)=2tanα,再由3tan+=1和二倍角的正切公式可得tanα的值,代入计算可得.【解答】解:∵sinβ=3sin(2α+β),∴sin[(α+β)﹣α]=3sin[(α+β)+α],∴sin(α+β)cosα﹣cos(α+β)sinα=3sin(α+β)cosα+3cos(α+β)sinα,∴2sin(α+β)cosα=4cos(α+β)sinα,∴tan(α+β)===2tanα,又∵3tan+=1,∴3tan=1﹣,∴tanα==,∴tan(α+β)=2tanα=,故选:A.8.如图,棱长为4的正方体ABCD﹣A1B1C1D1,点A在平面α内,平面ABCD与平面α所成的二面角为30°,则顶点C1到平面α的距离的最大值是()A.2(2+)B.2(+)C.2(+1)D.2(+1)【考点】点、线、面间的距离计算.【分析】如图所示,O在AC上,C1O⊥α,垂足为E,则C1E为所求,∠OAE=30°,由题意,设CO=x,则AO=4﹣x,由此可得顶点C1到平面α的距离的最大值.【解答】解:如图所示,AC的中点为O,C1O⊥α,垂足为E,则C1E为所求,∠AOE=30°由题意,设CO=x,则AO=4﹣x,C1O=,OE=OA=2﹣x,∴C1E=+2﹣x,令y=+2﹣x,则y′=﹣=0,可得x=,∴x=,顶点C1到平面α的距离的最大值是2(+).故选:B.二、填空题(本大题共7小题,前4题每题6分,后3题每题4分,共36分)9.已知空间几何体的三视图如图所示,则该几何体的表面积是8π;几何体的体积是.【考点】由三视图求面积、体积.【分析】根据三视图可知几何体是组合体:中间是圆柱上下是半球,由三视图求出几何元素的长度,利用柱体、球体的体积公式计算出几何体的体积,由面积公式求出几何体的表面积.【解答】解:根据三视图可知几何体是组合体:中间是圆柱上下是半球,球和底面圆的半径是1,圆柱的母线长是2,∴几何体的表面积S=4π×12+2π×1×2=8π,几何体的体积是V==,故答案为:.10.若x=是函数f(x)=sin2x+acos2x的一条对称轴,则函数f(x)的最小正周期是π;函数f(x)的最大值是.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】利用辅助角公式化f(x)=sin2x+acos2x=(tanθ=a),由已知求出θ得到a值,则函数的周期及最值可求.【解答】解:∵f(x)=sin2x+acos2x=(tanθ=a),又x=是函数的一条对称轴,∴,即.则f(x)=.T=;由a=tanθ=tan()=tan=,得.∴函数f(x)的最大值是.故答案为:.11.已知数列{a n}满足:a1=2,a n+1=,则a1a2a3…a15=3;设b n=(﹣1)n a n,数列{b n}前n项的和为S n,则S2016=﹣2100.【考点】数列的求和.【分析】利用递推式计算前5项即可发现{a n}为周期为4的数列,同理{b n}也是周期为4的数列,将每4项看做一个整体得出答案.【解答】解:∵a1=2,a n+1=,∴a2==﹣3,a3==﹣,a4==,a5==2.∴a4n+1=2,a4n+2=﹣3,a4n+3=﹣,a4n=.∴a4n+1•a4n+2•a4n+3•a4n=2×=1.∴a1a2a3…a15=a13a14a15=a1a2a3=2×(﹣3)×(﹣)=3.∵b n=(﹣1)n a n,∴b4n+1=﹣2,b4n+2=﹣3,b4n+3=,b4n=.∴b4n+1+b4n+2+b4n+3+b4n=﹣2﹣3++=﹣.∴S2016=﹣×=﹣2100.故答案为:3,﹣2100.12.已知整数x,y满足不等式,则2x+y的最大值是24;x2+y2的最小值是8.【考点】简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,代入最优解的坐标得答案.第二问,转化为点到原点的距离的平方,求出B的坐标代入求解即可.【解答】解:由约束条件作出可行域如图,由z=2x+y,得y=﹣2x+z,由图可知,当直线y=﹣2x+z过A时,直线在y轴上的截距最大,由可得,A(8,8)z最大等于2×8+8=24.x2+y2的最小值是可行域的B到原点距离的平方,由可得B(2,2).可得22+22=8.故答案为:24;8.13.已知向量,满足:||=2,向量与﹣夹角为,则的取值范围是.【考点】平面向量数量积的运算.【分析】不妨设=(x,0)(x≥0),=θ,=,=,=.由于向量与﹣夹角为,可得:∠AOB=θ∈.∈[﹣1,1].在△OAB中,由正弦定理可得:==,化简整理可得:=2+﹣=+2,即可得出.【解答】解:不妨设=(x,0)(x≥0),=θ,=,=,=.∵向量与﹣夹角为,∴∠AOB=θ∈.∴∈,∈[﹣1,1].在△OAB中,由正弦定理可得:==,∴=,=sinθ=,∴=2+﹣=+2=+2=+2∈.∴的取值范围是.故答案为:.14.若f(x+1)=2,其中x∈N*,且f(1)=10,则f(x)的表达式是f(x)=4•()(x∈N*).【考点】数列与函数的综合.【分析】由题意可得f(x)>0恒成立,可对等式两边取2为底的对数,整理为log2f(x+1)﹣2=(log2f (x)﹣2),由x∈N*,可得数列{log2f(x)﹣2)}为首项为log2f(1)﹣2=log210﹣2,公比为的等比数列,运用等比数列的通项公式,整理即可得到f(x)的解析式.【解答】解:由题意可得f(x)>0恒成立,由f(x+1)=2,可得:log2f(x+1)=1+log2,即为log2f(x+1)=1+log2f(x),可得log2f(x+1)﹣2=(log2f(x)﹣2),由x∈N*,可得数列{log2f(x)﹣2)}是首项为log2f(1)﹣2=log210﹣2,公比为的等比数列,可得log2f(x)﹣2=(log210﹣2)•()x﹣1,即为log2f(x)=2+log2•()x﹣1,即有f(x)=22•2=4•().故答案为:f(x)=4•()(x∈N*).15.从抛物线y2=2x上的点A(x0,y0)(x0>2)向圆(x﹣1)2+y2=1引两条切线分别与y轴交B,C两点,则△ABC的面积的最小值是8.【考点】抛物线的简单性质.【分析】设B(0,y B),C(0,y C),A(x0,y0),其中x0>2,写出直线AB的方程为(y0﹣y B)x﹣x0y+x0y B=0,由直线AB与圆相切可得(x0﹣2)y B2+2y0y B﹣x0=0,同理:(x0﹣2)y A2+2y0y A﹣x0=0,故y A,y B是方程(x0﹣2)y2+2y0y﹣x0=0的两个不同的实根,因为S=|y C﹣y B|x0,再结合韦达定理即可求出三角形的最小值.【解答】解:设B(0,y B),C(0,y C),A(x0,y0),其中x0>2,所以直线AB的方程,化简得(y0﹣y B)x﹣x0y+x0y B=0直线AB与圆相切,圆心到直线的距离等于半径,两边平方化简得(x0﹣2)y B2+2y0y B﹣x0=0同理可得:(x0﹣2)y A2+2y0y A﹣x0=0,故y C,y B是方程(x0﹣2)y2+2y0y﹣x0=0的两个不同的实根,所以y C+y B=,y C y B=,所以S=|y C﹣y B|x0==(x0﹣2)++4≥8,所以当且仅当x0=4时,S取到最小值8,所以△ABC的面积的最小值为8.故答案为:8.三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤)16.如图,四边形ABCD,∠DAB=60°,CD⊥AD,CB⊥AB.(Ⅰ)若2|CB|=|CD|=2,求△ABC的面积;(Ⅱ)若|CB|+|CD|=3,求|AC|的最小值.【考点】余弦定理.【分析】(Ⅰ)由已知可求∠DCB,利用余弦定理可求BD,进而求得AC,AB,利用三角形面积公式即可得解.(Ⅱ)设|BC|=x>0,|CD|=y>0,由已知及基本不等式可求BD的最小值,进而可求AC的最小值.【解答】(本题满分为15分)解:(Ⅰ)∵∠DAB=60°,CD⊥AD,CB⊥AB,可得A,B,C,D四点共圆,∴∠DCB=120°,∴BD2=BC2+CD2﹣2CD•CB•cos120°=1+4+2=7,即BD=,∴,∴,∴.…(Ⅱ)设|BC|=x>0,|CD|=y>0,则:x+y=3,BD2=x2+y2+xy=(x+y)2﹣xy,∴,当时取到.…17.如图(1)E,F分别是AC,AB的中点,∠ACB=90°,∠CAB=30°,沿着EF将△AEF折起,记二面角A﹣EF﹣C的度数为θ.(Ⅰ)当θ=90°时,即得到图(2)求二面角A﹣BF﹣C的余弦值;(Ⅱ)如图(3)中,若AB⊥CF,求cosθ的值.【考点】二面角的平面角及求法.【分析】(Ⅰ)推导出AE⊥平面CEFB,过点E向BF作垂线交BF延长线于H,连接AH,则∠AHE为二面角A﹣BF﹣C的平面角,由此能求出二面角A﹣BF﹣C的余弦值.(Ⅱ)过点A向CE作垂线,垂足为G,由AB⊥CF,得GB⊥CF,由此能求出cosθ的值.【解答】解:(Ⅰ)∵平面AEF⊥平面CEFB,且EF⊥EC,∴AE⊥平面CEFB,过点E向BF作垂线交BF延长线于H,连接AH,则∠AHE为二面角A﹣BF﹣C的平面角设,,,∴,∴二面角A﹣BF﹣C的余弦值为.(Ⅱ)过点A向CE作垂线,垂足为G,如果AB⊥CF,则根据三垂线定理有GB⊥CF,∵△BCF为正三角形,∴,则,∵,∴,∴cosθ的值为.18.设函数f(x)=ax2+bx+c,g(x)=c|x|+bx+a,对任意的x∈[﹣1,1]都有|f(x)|≤.(1)求|f(2)|的最大值;(2)求证:对任意的x∈[﹣1,1],都有|g(x)|≤1.【考点】二次函数的性质;绝对值三角不等式.【分析】(1)由|f(x)|≤得|f(0)|≤,|f(1)|≤,|f(﹣1)|≤,代入解析式即可得出a,b,c的关系,使用放缩法求出|f(2)|的最值;(2)由(1)得出|g(±1)|,故g(x)单调时结论成立,当g(x)不单调时,g(x)=a,利用不等式的性质求出a的范围即可.【解答】解:(1)∵对任意的x∈[﹣1,1]都有|f(x)|≤.|f(0)|≤,|f(1)|≤,|f(﹣1)|≤,∴|c|≤,|a+b+c|≤,|a﹣b+c|≤;∴|f(2)|=|4a+2b+c|=|3(a+b+c)+(a﹣b+c)﹣3c|≤|3(a+b+c)|+|(a﹣b+c)|+|﹣3c|≤=.∴|f(2)|的最大值为.(2)∵﹣≤a+b+c≤,﹣≤a﹣b+c≤,﹣≤c≤,∴﹣1≤a+b≤1,﹣1≤a﹣b≤1,∴﹣1≤a≤1,若c|x|+bx=0,则|g(x)|=|a|,∴|g(x)|≤1,若c|x|+bx≠0,则g(x)为单调函数,|g(﹣1)|=|a﹣b+c|≤,|g(1)|=|a+b+c|≤,∴|g(x)|.综上,|g(x)|≤1.19.已知椭圆C: +=1(a>b>0)的离心率为,焦点与短轴的两顶点的连线与圆x2+y2=相切.(Ⅰ)求椭圆C的方程;(Ⅱ)过点(1,0)的直线l与C相交于A,B两点,在x轴上是否存在点N,使得•为定值?如果有,求出点N的坐标及定值;如果没有,请说明理由.【考点】椭圆的简单性质.【分析】(Ⅰ)由椭圆的离心率为,焦点与短轴的两顶点的连线与圆x2+y2=相切,列出方程组,求出a,b,由此能求出椭圆方程.(Ⅱ)当直线l的斜率存在时,设其方程为y=k(x﹣1),A(x1,y1),B(x2,y2),直线方程与椭圆立,利用韦达定理、根的判别式、向量的数量积,结合已知条件能求出存在点满足.【解答】解:(Ⅰ)∵椭圆C: +=1(a>b>0)的离心率为,焦点与短轴的两顶点的连线与圆x2+y2=相切,∴,解得c 2=1,a 2=4,b 2=3 ∴椭圆方程为(Ⅱ)当直线l 的斜率存在时,设其方程为y=k (x ﹣1),A (x 1,y 1),B (x 2,y 2),则△>0,,若存在定点N (m ,0)满足条件,则有=(x 1﹣m )(x 2﹣m )+y 1y 2 =如果要上式为定值,则必须有验证当直线l 斜率不存在时,也符合. 故存在点满足20.已知正项数列{a n }满足:S n 2=a 13+a 23+…+a n 3(n ∈N *),其中S n 为数列{a n }的前n 项的和. (Ⅰ)求数列{a n }的通项公式; (Ⅱ)求证:<()+()+()+…+()<3.【考点】数列与不等式的综合;数列递推式. 【分析】(Ⅰ)通过S n 2=a 13+a 23+…+a n 3(n ∈N *)与S n ﹣12=a 13+a 23+…+a n ﹣13(n ≥2,n ∈N *)作差、计算可知S n +S n ﹣1=,并与S n ﹣1﹣S n ﹣2=作差、整理即得结论;(Ⅱ)通过(Ⅰ)可知,一方面利用不等式的性质、累加可知()+()+()+…+()>,另一方面通过放缩、利用裂项相消法计算可知++…+<2,进而整理即得结论.【解答】解:(Ⅰ)∵S n 2=a 13+a 23+…+a n 3(n ∈N *), ∴S n ﹣12=a 13+a 23+…+a n ﹣13(n ≥2,n ∈N *),两式相减得:﹣=,∴a n(S n+S n﹣1)=,∵数列{a n}中每一项均为正数,∴S n+S n﹣1=,又∵S n﹣1﹣S n﹣2=,两式相减得:a n﹣a n﹣1=1,又∵a1=1,∴a n=n;证明:(Ⅱ)由(Ⅰ)知,,∵,∴,即,令k=1,2,3,…,n,累加后再加得:()+()+()+...+()>2+2+ (2)=(2n+1)=,又∵+++…+<3等价于++…+<2,而=<=(﹣)=(﹣)<(﹣)=2(﹣),令k=2,3,4,…,2n+1,累加得:++…+<2(1﹣)+2(﹣)+…+2(﹣)=2(1﹣)<2,∴.。
浙江省杭州市学军中学等五校2020届高三数学下学期联考试题
![浙江省杭州市学军中学等五校2020届高三数学下学期联考试题](https://img.taocdn.com/s3/m/be38d91aa200a6c30c22590102020740be1ecd06.png)
浙江省杭州市学军中学等五校2020届高三数学下学期联考试题选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U=R ,集合{|1,},R A x x x ∈=集合{|21,R}xB x x ∈=.则集合A∩B 是 ( )A .(],1-∞B .[]0,1C .[]1,0-D .[)1,-+∞2.已知双曲线221x y a b-=(a>0,b>0)的离心率为2,则其渐近线方程为( ) A .3y x =± B .2y x =± C .32y x =± D .22y x =±3某几何体的三视图如图所示,则该几何体的最短的棱与最长的棱长度之比是 ( )A .22B .23C .24D .134.已知x ,y 满足约束条件1,2,30x x y x y ≥⎧⎪+≤⎨⎪-≤⎩,若2x y m +≥恒成立,则m 的取值范围是( )A .3m ≥B .3m ≤C .72m ≤D .73m ≤5.在△ABC 中”sin cos A B >”是“△ABC 为锐角三角形”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.函数()|2|122x f x x ⎛⎫=-+ ⎪⎝⎭图象可能是( )7.新冠来袭,湖北告急!有一支援鄂医疗小队由3名医生和6名护士组成,他们全部要分配到三家医院。
每家医院分到医生1名和护士1至3名,其中护士甲和护士乙必须分到同一家医院,则不同的分配方法有( )种A .252B .540C .792D .6848.如图,矩形ABCD 中,1,2,AB BC E ==是AD 的中点,将△ABE 沿BE 翻折,记为,AB E '∆在翻折过程中,①点A ’在平面BCDE 的射影必在直线AC 上; ②记A ’E 和A ’B 与平面BCDE 所成的角分别为α,β,则tan tan βα-的最大值为0;③设二面角'A BE C --的平面角为θ,则'A BA θπ+∠≥.其中正确命题的个数是( )A .0B .1C .2D .39.已知()f x 是定义域为()0,+∞的单调函数,若对任意的(0,),x ∈+∞都有()134f f x log x ⎡⎤+=⎢⎥⎣⎦,且方程()32|3|694f x x x x a -=--++在区间(]0,3上有两解,则实数a 的取值范围是( )A .05a <≤B .5a <C .05a <<D .5a ≥10.已知数列{}+1,(N ),0,n nn na a n a a ∈+>则当2n ≥时,下列判断不一定...正确的是 ( ) A .n a n ≥ 211..n n n n B a a a a +++-≥-c .211n n n na a a a +++≤ D .存在正整数k ,当n≥k 时,1n a n ≤+恒成立. 非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.二项式()*42N nx n x ⎛∈ ⎝的展开式中,所有二项式系数之和为256,则n = ▲ ;且此展开式中含x 项的系数是 ▲12.已知复数,(,,R)z x yi x y =+∈若|2|1z i +=,则max ||z = ▲ ;2x y +的取值范围是 ▲13.两个实习生每人加工一个零件加工为一等品的概率分别为23和12,两个零件是否加工为一等品相互独立,设两人加工的零件中为一等品的个数为ζ,则E ζ= ▲ ;若η=3ζ-1,则D η= ▲4.已知在ABC ∆中,1,8,3cosB AB AC ===延长2,BC D CD =至,使则AD = ▲ ,sin CAD ∠= ▲ .15.已知||3,||||4,(),a aa b c c a b a b⋅====-⋅若则||a b c --的最大值为 ▲ 16.已知实数x,y,z 满足2222248xy z x y z +=⎧⎨++=⎩,则xyz 的最小值为 ▲ 17.设直线与抛物线23y x =相交于A ,B 两点,与圆()()22240x y r r -+=>相切于点M ,且M 为线段AB的中点.若这样的直线恰有4条,则r 的取值范围是 ▲三、解答题:本大题共5小题,共74分解答应写出文字说明、证明过程或演算步骤.18.(本小题满分14分)已知函数()()252cos 0cos 32f x x x x ωωωωπ⎛⎫=+-+> ⎪⎝⎭,()f x 且图像上相邻两个最低点的距离为π。
浙江省台州五校联考2020届高三数学上学期阶段性考试试题(含解析)
![浙江省台州五校联考2020届高三数学上学期阶段性考试试题(含解析)](https://img.taocdn.com/s3/m/d84e25975f0e7cd1842536da.png)
浙江省台州五校联考2020届高三数学上学期阶段性考试试题(含解析)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合则为()A. B. C. D.【答案】A【解析】由已知得,因为,且,所以,又因为,所以,因此,故选A.2.已知为虚数单位),则“”是“为纯虚数”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】C【解析】当时,是纯虚数,充分性成立,当是纯虚数时,则,解得必要性成立,是为纯虚数的充分必要条件,故选C.3.已知直线、与平面下列命题正确的是()A. 且则B. 且则C. 且则D. 且则【答案】D【解析】【详解】A. 且则,m与n可能相交,故A不对;B.当m与n都与α和β的交线平行时,也符合条件,但是,故B不对;C.由面面垂直的性质定理知,必须有β时,,否则不成立,故C不对;D.由且,得或,又因,则,故D正确,故选D.【点睛】本题主要考查线面平行的判定与性质、面面垂直的性质及线面垂直的判定,属于难题.空间直线、平面平行或垂直等位置关系命题的真假判断,除了利用定理、公理、推理判断外,还常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.4.为了得到函数的图象,可以将函数的图象()A. 向左平移个单位长度B. 向右平移个单位长度C. 向左平移个单位长度D. 向右平移个单位长度【答案】C【解析】由题意,由于函数,观察发现可由函数向左平移个单位长度,可得到函数的图象,故选C.5.已知点满足,目标函数仅在点处取得最小值,则的范围为()A. B. C. D.【答案】B【解析】【分析】画出不等式组对应的可行域,分两类讨论即可.【详解】不等式组对应的可行域如图所示:其中若,因目标函数仅在点处取得最小值, 所以动直线的斜率,故.若,因目标函数仅在点处取得最小值, 所以动直线的斜率,故.综上,,选B.【点睛】二元一次不等式组条件下的二元函数的最值问题,常通过线性规划来求最值,求最值时往往要考二元函数的几何意义,比如表示动直线的横截距的三倍 ,而则表示动点与的连线的斜率.含参数的目标函数的最值问题,注意根据斜率分类讨论. 6.直线与圆交于两点,则的面积为 ( )A. B.C.D.【答案】B 【解析】 由题意,圆心为,半径为,则的高,底边长为,所以.故选B.7.设函数,若不等式对任意实数恒成立,则的取值集合是()A. B. C.D.【答案】B【解析】由题意,不令,不等式对任意实数恒成立,等价于函数大于或等于的最大值,由函数的解析式,可对的取值范围进行分段讨论,当时,;当时,;当时,;当时,,从而可得的最大值为,所以有,即或,解得或.故选B.8.已知平面平面,,且.是正方形,在正方形内部有一点,满足与平面所成的角相等,则点的轨迹长度为 ( ) A. B. C. D.【答案】C【解析】根据题意,以为原点,分别以所在直线为轴,建立空间直角坐标系,如图1所示,则,,设,易知直线与平面所的角分别为,均为锐角,且,所以,即,因此,整理得,由此可得,点在正方形内的轨迹是以点为圆心,半径为的圆弧上,如图2所示,易知圆心角,所以.故选C.点睛:此题主要考查了线面角、坐标法、弧长公式、轨迹方程等各方面的知识,属于中高档题,同时这些知识点也是高频考点,在问题的解决过程中,经历了平面图形立体图形建系代数运算建模平面图形的过程,加强了知识点的综合性,充分体现了“坐标法”在解决几何问题中的优越性.9.在平面内,,若则的取值范围是()A. B. C. D.【答案】D【解析】根据题意,不妨以原点,分别以为轴建立平面直角坐标系,如图所示,由,且,则,设,所以,,将两式相加得,即,又,所以.故选D.点睛:此题主要考查了坐标法在平面向量中的应用,以及向量模的运算等有关方面的知识,属于中档题型,也是高频考点.根据题意,结合图形特点合理科学地建立直角坐标系,同时给出相关点的坐标,从而得到相关向量的坐标表示,通过向量的坐标运算,从而解决问题,采用坐标法使问题的解决过程显得直观形象易懂.10.若集合,则集合中的元素个数是()A. 2016B. 2017C. 2018D. 2019【答案】A【解析】由题意知,,所以,必为一奇一偶,即共2016种情况,又.故选A.二、填空题.11.已知,,则的最大值是_______.【答案】【解析】由已知得,,则,所以,当时,等号成立.12.某几何体的三视图如图所示,且该几何体的体积是,则正视图中的的值是_______,该几何体的表面积是_______.【答案】 (1). 2 (2).【解析】由三视图可知,该几何体是底面为直角梯形的四棱锥,其直观图如图所示,由棱锥的体积公式得,,侧面为直角三角形,侧面是以为底的等腰三角形,所以该几何体的表面积为.13.设等比数列的前项和为,满足对任意的正整数,均有,则_______,公比_______.【答案】 (1). (2). 2【解析】由,则,两式相减得,,则,由等比数列前项和公式得,,即,从而解得.14.在中,角分别对应边,为的面积.已知,,,则_______,_______.【答案】 (1). 6. (2). .【解析】由正弦定理得,,由余弦定理得,,则,所以.15.一个口袋里装有大小相同的6个小球,其中红色、黄色、绿色的球各2个,现从中任意取出3个小球,其中恰有2个小球同颜色的概率是_______.若取到红球得1分,取到黄球得2分,取到绿球得3分,记变量为取出的三个小球得分之和,则的期望为_____.【答案】 (1). (2). 6【解析】根据题意,红、黄、绿球分别记为,则任取3个小球共有种,而其中恰有2个小球同颜色的有,故所求概率为;由题意得,变量的取值为4,5,6,7,8,,,,,,因此.16.设双曲线的右焦点为,过点作与轴垂直的直线交两渐近线于两点,且与双曲线在第一象限的交点为,设为坐标原点,若,,则双曲线的离心率的值是_______.【答案】【解析】由题意可知,双曲线的渐近线为,右焦点为,则点的坐标分别为,所以的坐标为,又,则,即,又,易解得,所以.点睛:此题主要考查双曲线的渐近线、离心率等,以及向量的坐标运算、解方程等相关知识,属于中档题型,也是高频考点.根据题意,通过双曲线方程、渐近线方程分别求出点的坐标,从而得到向量的坐标,再根据条件建立关于的方程,由离心率公式,由此问题可得解.17.设函数的两个零点分别为,且在区间上恰好有两个正整数,则实数的取值范围_______.【答案】【解析】由题意得,由方程,不妨令,,又因在区间上恰好有两个正整数,结合图形,易知.三、解答题.解答应写出文字说明、证明过程或演算步骤.18.已知,函数.(Ⅰ)若,求的单调递增区间;(Ⅱ)若的最大值是,求的值.【答案】(Ⅰ),;(Ⅱ).【解析】(Ⅰ)由,可先由两角和差正弦公式、二倍角公式将函数解析式化简为,再根据余弦函数的单调递增区间,求出函数的单调递增区间;(Ⅱ)利用两角和余弦公式、二倍角公式整理得,由函数最大值为,且对于型函数的最大值为,又,从而问题可得解.试题解析:(Ⅰ)由题意由,得.所以单调的单调递增区间为,.(Ⅱ)由题意,由于函数的最大值为,即,从而,又,故.19.如图,在四棱锥中,底面为梯形,,,,平面,分别是的中点.(Ⅰ)求证:平面;(Ⅱ)若与平面所成的角为,求线段的长.【答案】(Ⅰ)见解析; (Ⅱ).【解析】(Ⅰ)由条件可知四边形为平行四边形(菱形),则与的交点为的中点,又为的中点,根据线面平行判定定理,问题可得证;(Ⅱ)由题意,通过计算证明可得,与平面所成的角为,且三角形是以为直角的直角三角形,从而可求线段的长.试题解析:(Ⅰ)连接交与,连接.因为为的中点,,所以.又因为,所以四边形为平行四边形,所以为的中点,因为为的中点,所以.又因为,,所以平面.(Ⅱ)由四边形为平行四边形,知,所以为等边三角形,所以,所以,即,即.因为平面,所以.又因,所以平面,所以为与平面所成的角,即,所以.20.已知,函数.(Ⅰ)若函数在上递减, 求实数的取值范围;(Ⅱ)当时,求的最小值的最大值;(Ⅲ)设,求证:.【答案】(Ⅰ);(Ⅱ)最大值为;(Ⅲ)见解析.【解析】(Ⅰ)根据题意,由函数为减函数,其导数小于或等于零,从而可算出实数的取值范围;(Ⅱ)利用导数求出函数的极小值函数,再利用导数求出极小值函数的最大值;(Ⅲ)由(Ⅱ)可结论,对参数时行分类讨论,利用导数判断函数的单调性,并求其最小值,从而问题可得证.试题解析:(Ⅰ)函数在上递减, 恒有成立,而,恒有成立,而, 则满足条件.(Ⅱ)当时,-0 +↘极小值↗的最小值=,+0 -↗极大值↘的最大值为(Ⅲ)当时,所以在上是增函数,故当时,解得或,综上所述:21.已知椭圆的左、右焦点分别为,离心率为,直线与的两个交点间的距离为.(Ⅰ)求椭圆的方程;(Ⅱ)分别过作满足,设与的上半部分分别交于两点,求四边形面积的最大值.【答案】(Ⅰ);(Ⅱ)3.【解析】(Ⅰ)由已知,根据椭圆对称性易知椭圆过点,结合离心率及,即可求出椭圆方程;(Ⅱ)根据题意可设直线,,由弦长公式可求出被椭圆截得的弦长,由点到直线距离公式可求出点到直线距离,从而可得的面积,并求出其最大值,由椭圆对称性可知四边形面积与的面积,从而问题得解.试题解析:(Ⅰ)易知椭圆过点,所以,①又,②,③③得,,所以椭圆的方程为.(Ⅱ)设直线,它与的另一个交点为.与联立,消去,得,.,又到的距离为,所以.令,则,所以当时,最大值为3.又所以四边形面积的最大值为3.点睛:此题主要考查椭圆方程,椭圆与直线位置关系,以及面积最大值问题等有关方面知识,属于中高档题型,也是高频考点. 在(Ⅰ)的解答中,根据题意结合椭圆对称性可知椭圆过点,再结合离心率、椭圆中的关系,从而可求出椭圆方程;在(Ⅱ)解答中,把四边形分割为两个三角形,从而得到其面积的计算函数,再利用函数的最大值来进行求解即可.22.已知函数.(Ⅰ)求方程的实数解;(Ⅱ)如果数列满足,(),是否存在实数,使得对所有的都成立?证明你的结论.(Ⅲ)在(Ⅱ)的条件下,设数列的前项的和为,证明:.【答案】(Ⅰ);(Ⅱ)存在使得;(Ⅲ)见解析.【解析】(Ⅰ)由题意,通过解分式方程即可得方程的实数解析;(Ⅱ)通过函数的单调性判断数列通项的范围,再利用数学归纳法进行证明;(Ⅲ)由(Ⅱ)可得通项的范围,构造新数列,通过计算数列的前和及其范围,再利用数学归纳法证明之.试题解析:(Ⅰ);(Ⅱ)存在使得.证法1:因为,当时,单调递减,所以.因为,所以由得且.下面用数学归纳法证明.因为,所以当时结论成立.假设当时结论成立,即.由于为上的减函数,所以,从而,因此,即.综上所述,对一切,都成立,即存在使得.证法2:,且是以为首项,为公比的等比数列.所以.易知,所以当为奇数时,;当为偶数时,即存在,使得.(Ⅲ)证明:由(2),我们有,从而. 设,则由得.由于,因此n=1,2,3时,成立,左边不等式均成立.当n>3时,有,因此.从而.即.解法2: 由(Ⅱ)可知,所以,所以所以所以当为偶数时,;所以当为奇数时,即.(其他解法酌情给分)点睛:此题主要考查了函数零点、单调性,数列单调性、求和与不等式关系,以及数学归纳法、分式方程的解等有关知识,属于高档题型,也是高频考点.在(Ⅱ)的证明中,首先利用函数单调性,确定函数值的范围,由此得出数列通项的取值范围,从而找到常数,再用数列归纳法进行证明;在(Ⅲ)的证明中,根据题意构造新数列,再通过讨论其前项和的取值范围,从而问题得证.。
2020届浙江省杭州市学军中学等五校2017级高三下学期联考数学试卷及答案
![2020届浙江省杭州市学军中学等五校2017级高三下学期联考数学试卷及答案](https://img.taocdn.com/s3/m/aba5b06c0912a21615792916.png)
2020届杭州市学军中学等五校2017级高三下学期联考数学试卷★祝考试顺利★选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U=R ,集合{|1,},R A x x x ∈=„集合{|21,R}x B x x ∈=„.则集合A∩B 是 ( )A .(],1-∞B .[]0,1C .[]1,0-D .[)1,-+∞2.已知双曲线221x y a b-=(a>0,b>0)的离心率为2,则其渐近线方程为( ) A.y = B.y = C.y x = D.y x = 3某几何体的三视图如图所示,则该几何体的最短的棱与最长的棱长度之比是 ( )A.2 B.3 C.4 D .134.已知x,y 满足约束条件1,2,30x x y x y ≥⎧⎪+≤⎨⎪-≤⎩,若2x y m +≥恒成立,则m 的取值范围是( )A .3m ≥B .3m ≤C .72m ≤D .73m ≤ 5.在△ABC 中”sin cos A B >”是“△ABC 为锐角三角形”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.函数()|2|122x f x x ⎛⎫=-+ ⎪⎝⎭图象可能是( )7.新冠来袭,湖北告急!有一支援鄂医疗小队由3名医生和6名护士组成,他们全部要分配到三家医院。
每家医院分到医生1名和护士1至3名,其中护士甲和护士乙必须分到同一家医院,则不同的分配方法有( )种A .252B .540C .792D .6848.如图,矩形ABCD 中,1,AB BC E ==是AD 的中点,将△ABE 沿BE 翻折,记为,AB E '∆在翻折过程中,①点A ’在平面BCDE 的射影必在直线AC 上; ②记A ’E 和A ’B 与平面BCDE 所成的角分别为α,β,则tan tan βα-的最大值为0;③设二面角'A BE C --的平面角为θ,则'A BA θπ+∠≥.其中正确命题的个数是( )。
浙江省杭州市学军中学等五校2020届高三第二学期联考数学试题卷附答案
![浙江省杭州市学军中学等五校2020届高三第二学期联考数学试题卷附答案](https://img.taocdn.com/s3/m/305ae79eda38376baf1fae89.png)
浙江省杭州市学军中学等五校2020届高三第二学期联考数学试卷选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U=R ,集合{|1,},R A x x x ∈=„集合{|21,R}x B x x ∈=„.则集合A∩B 是 ( )A .(],1-∞B .[]0,1C .[]1,0-D .[)1,-+∞ 2.已知双曲线221x y a b-=(a>0,b>0)的离心率为2,则其渐近线方程为( )A .y =B .y =C .y =D .y x =±3某几何体的三视图如图所示,则该几何体的最短的棱与最长的棱长度之比是 ( )A .2B .3C .4D .134.已知x ,y 满足约束条件1,2,30x x y x y ≥⎧⎪+≤⎨⎪-≤⎩,若2x y m +≥恒成立,则m 的取值范围是( )A .3m ≥B .3m ≤C .72m ≤D .73m ≤ 5.在△ABC 中”sin cos A B >”是“△ABC 为锐角三角形”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.函数()|2|122x f x x ⎛⎫=-+ ⎪⎝⎭图象可能是( )7.新冠来袭,湖北告急!有一支援鄂医疗小队由3名医生和6名护士组成,他们全部要分配到三家医院。
每家医院分到医生1名和护士1至3名,其中护士甲和护士乙必须分到同一家医院,则不同的分配方法有( )种A .252B .540C .792D .6848.如图,矩形ABCD中,1,AB BC E ==是AD 的中点,将△ABE 沿BE 翻折,记为,AB E '∆在翻折过程中,①点A ’在平面BCDE 的射影必在直线AC 上; ②记A ’E 和A ’B 与平面BCDE 所成的角分别为α,β,则tan tan βα-的最大值为0;③设二面角'A BE C --的平面角为θ,则'A BA θπ+∠≥.其中正确命题的个数是()A .0B .1C .2D .39.已知()f x 是定义域为()0,+∞的单调函数,若对任意的(0,),x ∈+∞都有()134f f x log x ⎡⎤+=⎢⎥⎣⎦,且方程()32|3|694f x x x x a -=--++在区间(]0,3上有两解,则实数a 的取值范围是( ) A .05a <≤B .5a <C .05a <<D .5a ≥ 10.已知数列{}+1,(N ),0,n nn n a a n a a ∈+>则当2n ≥时,下列判断不一定...正确的是 ( ) A .n a n ≥ 211..n n n n B a a a a +++-≥-c .211n n n na a a a +++≤ D .存在正整数k ,当n≥k 时,1n a n ≤+恒成立. 非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.二项式()*N n n ⎛∈ ⎝的展开式中,所有二项式系数之和为256,则n = ▲ ;且此展开式中含x 项的系数是 ▲12.已知复数,(,,R)z x yi x y =+∈若|2|1z i +=,则max ||z = ▲ ;2x y +的取值范围是 ▲。
浙江省2019-2020学年第一学期五校联考试题高三年级数学试题卷
![浙江省2019-2020学年第一学期五校联考试题高三年级数学试题卷](https://img.taocdn.com/s3/m/574837a06137ee06eff918a8.png)
2020届浙江省五校联考高三数学试卷考生须知:1.本卷共4页满分120分,考试时间100分钟;2.答题前,在答题卷指定区域填写班级、姓名、考场号、座位号及准考证号并填涂相应数字。
3.所有答案必须写在答题纸上,写在试卷上无效; 4.考试结束后,只需上交答题纸。
一、选择题:本大题共10小题,共40分 1. 已知集合{}|lg 0A x x =>,{}2|4B x x =≤,AB =( ) A .()1,2B .(]1,2C .(]0,2D .()1,+∞ 2. 已知向量1=a ,2=b ,且a 与b 的夹角为60︒,则( ) A .()⊥+a a b B .()+⊥b a bC .()⊥-a a bD .()⊥-b a b3. 函数()332xx xf x =+的值域为( ) A .[)1,+∞B .()1,+∞C .(]0,1D .()0,14. 已知数列{}n a 是公差为d 的等差数列,其前n 项和为n S ,则( )A .0d <时,n S 一定存在最大值B .0d >时,n S 一定存在最大值C .n S 存在最大值时,0d <D .n S 存在最大值时,0d >5. 已知关于x 的不等式2230ax x a -+<在(]0,2上有解,则实数a 的取值范围是( )A.⎛-∞ ⎝⎭ B .4,7⎛⎫-∞ ⎪⎝⎭ C.⎫+∞⎪⎪⎝⎭ D .4,7⎛⎫+∞ ⎪⎝⎭ 6. 已知a ,b 为实数,则01b a <<<,是log log a b b a >的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7. 定义{}max ,a a ba b b a b ≥⎧=⎨<⎩,则关于实数x ,y 的不等式组{}22max ,0x y x y x y ⎧≤⎪≤⎨⎪+-≥⎩所表示的平面区域的面积是( )A .4B .6C .8D .128. 函数()()sin 22cos 0f x x x x π=+≤≤,则()f x ( )A .在0,3π⎡⎤⎢⎥⎣⎦上递增B .在0,6π⎡⎤⎢⎥⎣⎦上递减C .在5,66ππ⎡⎤⎢⎥⎣⎦上递减D .在2,63ππ⎡⎤⎢⎥⎣⎦上递增9. 在三角形ABC 中,已知sin cos 0sin AC B+=,tan A =tan B =( ) AB.CD10. 若不等式()sin 06x a b x ππ⎛⎫--+≤ ⎪⎝⎭对[]1,1x ∈-上恒成立,则a b +=( )A .23B .56C .1D .2二、填空题:本大题共7小题,共36分11. 已知集合{}2|210A x x x =--<,{}|B x a x b =<<,若{}|21AB x x =-<<,则a = ;若(){}|13A B x x =≤<R,则b = .12. 已知0,2πα⎛⎫∈ ⎪⎝⎭,若2sin sin 21αα+=,则tan α= ;sin 2α= .13. 不等式1231122xx --⎛⎫< ⎪⎝⎭的解集是 ;不等式212log (31)log 4x -<的解集是 .14. 设数列{}n a 的前n 项和为n S ,满足()()*112nnn n S a n N ⎛⎫=--∈ ⎪⎝⎭,则3a = ,7S = .15. 定义{},max ,,a a ba b b a b ≥⎧=⎨<⎩,已知(){}max 11,2f x x x =++,()g x ax b =+.若()()f x g x ≤对[)1+x ∈∞,恒成立,则2a b +的最小值是 .16. 已知向量,,a b c ,其中||2-=a b ,||1-=a c ,b 与c 夹角为60︒,且()()1-⋅-=-a b a c .则a 的最大值为 .17. 已知实数,a b 满足:2224b a -=,则2a b -的最小值为 .三、解答题:本大题共5小题,共74分18. (14分)已知()sin 3f x x x π⎛⎫=+ ⎪⎝⎭,ABC △中,角A ,B ,C 所对的边为a ,b ,c .(1)若,22x ππ⎡⎤∈-⎢⎥⎣⎦,求()f x 的值域;(2)若()13f A =,a =2b =,求sin B 的值.19. (15分)已知多面体P ABCD -中,AB CD ∥,90BAD PAB ==︒∠∠,12AB PA DA PD DC ====, M 为PB 中点.(1)求证:PA CM ⊥;(2)求直线BC 与平面CDM 所成角的正弦.20. (15分)设数列{}n a 是等比数列,数列{}n b 是等差数列,若223a b ==,359a b ==.(1)若nn n n b c a ⋅=,数列{}n c 中的最大项是第k 项,求k 的值;(2)设n n n d a b =⋅,求数列{}n d 的前n 项和n T .21. (15分)过椭圆2212x y +=的左焦点F 作斜率为1k (10k ≠)的直线交椭圆于A ,B 两点,M 为弦AB的中点,直线OM 交椭圆于C ,D 两点. (1)设直线OM 的斜率为2k ,求12k k 的值;(2)若F ,B 分别在直线CD 的两侧,2MB M M C D =⋅,求△FCD的面积.22. (15分)设函数()1x f x e x =+≥-M BPAD C(1)当1a =-时,若0x 是函数()f x 的极值点,求证:0102x -<<;(2)(i )求证:当0x ≥时,()2112f x x x ≥+++(ii )若不等式()25242f x ax x a++≤对任意0x ≥恒成立,求实数a 的取值范围.注:e=2.71828…为自然对数的底数.。
2020-2021学年浙江省五校联考高考数学二模试卷(理科)及答案解析
![2020-2021学年浙江省五校联考高考数学二模试卷(理科)及答案解析](https://img.taocdn.com/s3/m/a67cc278f705cc1754270931.png)
浙江省五校联考高考数学二模试卷(理科)一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项符合题目要求.)1.定义集合A={x|f(x)=},B={y|y=log2(2x+2)},则A∩∁R B=()A.(1,+∞)B.[0,1] C.[0,1)D.[0,2)2.△ABC的三内角A,B,C的对边分别是a,b,c,则“a2+b2<c2”是“△ABC为钝角三角形”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.对任意的θ∈(0,),不等式+≥|2x﹣1|恒成立,则实数x的取值范围是()A.[﹣3,4] B.[0,2] C.D.[﹣4,5]4.已知棱长为1的正方体ABCD﹣A1B1C1D1中,下列命题不正确的是()A.平面ACB1∥平面A1C1D,且两平面的距离为B.点P在线段AB上运动,则四面体PA1B1C1的体积不变C.与所有12条棱都相切的球的体积为πD.M是正方体的内切球的球面上任意一点,N是△AB1C外接圆的圆周上任意一点,则|MN|的最小值是5.设函数f(x)=,若函数g(x)=f(x)﹣m在[0,2π]内恰有4个不同的零点,则实数m的取值范围是()A.(0,1)B.[1,2] C.(0,1] D.(1,2)6.已知F1,F2是双曲线﹣=1(a>0,b>0)的左右焦点,以F1F2为直径的圆与双曲线在第一象限的交点为P,过点P向x轴作垂线,垂足为H,若|PH|=a,则双曲线的离心率为()A.B.C.D.7.已知3tan+=1,sinβ=3sin(2α+β),则tan(α+β)=()A.B.﹣C.﹣D.﹣38.如图,棱长为4的正方体ABCD﹣A1B1C1D1,点A在平面α内,平面ABCD与平面α所成的二面角为30°,则顶点C1到平面α的距离的最大值是()A.2(2+)B.2(+)C.2(+1)D.2(+1)二、填空题(本大题共7小题,前4题每题6分,后3题每题4分,共36分)9.已知空间几何体的三视图如图所示,则该几何体的表面积是;几何体的体积是.10.若x=是函数f(x)=sin2x+acos2x的一条对称轴,则函数f(x)的最小正周期是;函数f(x)的最大值是.11.已知数列{a n}满足:a1=2,a n+1=,则a1a2a3…a15= ;设b n=(﹣1)n a n,数列{b n}前n项的和为S n,则S2016= .12.已知整数x,y满足不等式,则2x+y的最大值是;x2+y2的最小值是.13.已知向量,满足:||=2,向量与﹣夹角为,则的取值范围是.14.若f(x+1)=2,其中x∈N*,且f(1)=10,则f(x)的表达式是.15.从抛物线y2=2x上的点A(x0,y0)(x0>2)向圆(x﹣1)2+y2=1引两条切线分别与y轴交B,C两点,则△ABC的面积的最小值是.三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤)16.如图,四边形ABCD,∠DAB=60°,CD⊥AD,CB⊥AB.(Ⅰ)若2|CB|=|CD|=2,求△ABC的面积;(Ⅱ)若|CB|+|CD|=3,求|AC|的最小值.17.如图(1)E,F分别是AC,AB的中点,∠ACB=90°,∠CAB=30°,沿着EF将△AEF折起,记二面角A﹣EF﹣C的度数为θ.(Ⅰ)当θ=90°时,即得到图(2)求二面角A﹣BF﹣C的余弦值;(Ⅱ)如图(3)中,若AB⊥CF,求cosθ的值.18.设函数f(x)=ax2+bx+c,g(x)=c|x|+bx+a,对任意的x∈[﹣1,1]都有|f(x)|≤.(1)求|f(2)|的最大值;(2)求证:对任意的x∈[﹣1,1],都有|g(x)|≤1.19.已知椭圆C:+=1(a>b>0)的离心率为,焦点与短轴的两顶点的连线与圆x2+y2=相切.(Ⅰ)求椭圆C的方程;(Ⅱ)过点(1,0)的直线l与C相交于A,B两点,在x轴上是否存在点N,使得•为定值?如果有,求出点N的坐标及定值;如果没有,请说明理由.20.已知正项数列{a n}满足:S n2=a13+a23+…+a n3(n∈N*),其中S n为数列{a n}的前n项的和.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求证:<()+()+()+…+()<3.参考答案与试题解析一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项符合题目要求.)1.定义集合A={x|f(x)=},B={y|y=log2(2x+2)},则A∩∁R B=()A.(1,+∞)B.[0,1] C.[0,1)D.[0,2)【考点】交、并、补集的混合运算.【分析】求出A中x的范围确定出A,求出B中y的范围确定出B,找出A与B补集的交集即可.【解答】解:由A中f(x)=,得到2x﹣1≥0,即2x≥1=20,解得:x≥0,即A=[0,+∞),由2x+2>2,得到y=log2(2x+2)>1,即B=(1,+∞),∵全集为R,∴∁R B=(﹣∞,1],则A∩∁R B=[0,1].故选:B.2.△ABC的三内角A,B,C的对边分别是a,b,c,则“a2+b2<c2”是“△ABC为钝角三角形”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】在△ABC中,由“a2+b2<c2”,利用余弦定理可得:C为钝角,因此“△ABC为钝角三角形”,反之不成立.【解答】解:在△ABC中,“a2+b2<c2”⇔cosC=<0⇒C为钝角⇒“△ABC为钝角三角形”,反之不一定成立,可能是A或B为钝角.∴△ABC的三内角A,B,C的对边分别是a,b,c,则“a2+b2<c2”是“△ABC为钝角三角形”的充分不必要条件.故选:A.3.对任意的θ∈(0,),不等式+≥|2x﹣1|恒成立,则实数x的取值范围是()A.[﹣3,4] B.[0,2] C.D.[﹣4,5]【考点】基本不等式.【分析】对任意的θ∈(0,),sin2θ+cos2θ=1,可得+=(sin2θ+cos2θ)=5++,利用基本不等式的性质可得其最小值M.由不等式+≥|2x﹣1|恒成立,可得M≥|2x﹣1|,解出即可得出.【解答】解:∵对任意的θ∈(0,),sin2θ+cos2θ=1,∴+=(sin2θ+cos2θ)=5++≥5+2×2=9,当且仅当时取等号.∵不等式+≥|2x﹣1|恒成立,∴9≥|2x﹣1|,∴﹣9≤2x﹣1≤9,解得﹣4≤x≤5,则实数x的取值范围是[﹣4,5].故选:D.4.已知棱长为1的正方体ABCD﹣A1B1C1D1中,下列命题不正确的是()A.平面ACB1∥平面A1C1D,且两平面的距离为B.点P在线段AB上运动,则四面体PA1B1C1的体积不变C.与所有12条棱都相切的球的体积为πD.M是正方体的内切球的球面上任意一点,N是△AB1C外接圆的圆周上任意一点,则|MN|的最小值是【考点】命题的真假判断与应用.【分析】A.根据面面平行的判定定理以及平行平面的距离进行证明即可.B.研究四面体的底面积和高的变化进行判断即可.C.所有12条棱都相切的球的直径2R等于面的对角线B1C的长度,求出球半径进行计算即可.D.根据正方体内切球和三角形外接圆的关系进行判断即可.【解答】解:A.∵AB1∥DC1,AC∥A1C1,且AC∩AB1=A,∴平面ACB1∥平面A1C1D,长方体的体对角线BD1=,设B到平面ACB1的距离为h,则=×1=h,即h=,则平面ACB1与平面A1C1D的距离d=﹣2h==,故A正确,B.点P在线段AB上运动,则四面体PA1B1C1的高为1,底面积不变,则体积不变,故B正确,C.与所有12条棱都相切的球的直径2R等于面的对角线B1C=,则2R=,R=,则球的体积V==×π×()3=π,故C正确,D.设与正方体的内切球的球心为O,正方体的外接球为O′,则三角形ACB1的外接圆是正方体的外接球为O′的一个小圆,∵点M在与正方体的内切球的球面上运动,点N在三角形ACB1的外接圆上运动,∴线段MN长度的最小值是正方体的外接球的半径减去正方体的内切球相切的球的半径,∵正方体ABCD﹣A1B1C1D1的棱长为1,∴线段MN长度的最小值是﹣.故D错误,故选:D.5.设函数f(x)=,若函数g(x)=f(x)﹣m在[0,2π]内恰有4个不同的零点,则实数m的取值范围是()A.(0,1)B.[1,2] C.(0,1] D.(1,2)【考点】函数零点的判定定理.【分析】画出函数f(x)的图象,问题转化为f(x)和y=m在[0,2π]内恰有4个不同的交点,结合图象读出即可.【解答】解:画出函数f(x)在[0,2π]的图象,如图示:,若函数g(x)=f(x)﹣m在[0,2π]内恰有4个不同的零点,即f(x)和y=m在[0,2π]内恰有4个不同的交点,结合图象,0<m<1,故选:A.6.已知F1,F2是双曲线﹣=1(a>0,b>0)的左右焦点,以F1F2为直径的圆与双曲线在第一象限的交点为P,过点P向x轴作垂线,垂足为H,若|PH|=a,则双曲线的离心率为()A.B.C.D.【考点】双曲线的简单性质.【分析】运用双曲线的定义和直径所对的圆周角为直角,运用勾股定理,化简可得|PF1|•|PF2|=2c2﹣2a2,再由三角形的等积法,结合离心率公式,计算即可得到所求值.【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,①由直径所对的圆周角为直角,可得PF1⊥PF2,可得|PF1|2+|PF2|2=|F1F2|2=4c2,②②﹣①2,可得2|PF1|•|PF2|=4c2﹣4a2,即有|PF1|•|PF2|=2c2﹣2a2,由三角形的面积公式可得,|PF1|•|PF2|=|PH|•|F1F2|,即有2c2﹣2a2=2ac,由e=可得,e2﹣e﹣1=0,解得e=(负的舍去).故选:C.7.已知3tan+=1,sinβ=3sin(2α+β),则tan(α+β)=()A.B.﹣C.﹣D.﹣3【考点】两角和与差的正切函数.【分析】由已知式子可得sin[(α+β)﹣α]=3sin[(α+β)+α],保持整体展开变形可得tan(α+β)=2tanα,再由3tan+=1和二倍角的正切公式可得tanα的值,代入计算可得.【解答】解:∵sinβ=3sin(2α+β),∴sin[(α+β)﹣α]=3sin[(α+β)+α],∴sin(α+β)cosα﹣cos(α+β)sinα=3sin(α+β)cosα+3cos(α+β)sinα,∴2sin(α+β)cosα=4cos(α+β)sinα,∴tan(α+β)===2tanα,又∵3tan+=1,∴3tan=1﹣,∴tanα==,∴tan(α+β)=2tanα=,故选:A.8.如图,棱长为4的正方体ABCD﹣A1B1C1D1,点A在平面α内,平面ABCD与平面α所成的二面角为30°,则顶点C1到平面α的距离的最大值是()A.2(2+)B.2(+)C.2(+1)D.2(+1)【考点】点、线、面间的距离计算.【分析】如图所示,O在AC上,C1O⊥α,垂足为E,则C1E为所求,∠OAE=30°,由题意,设CO=x,则AO=4﹣x,由此可得顶点C1到平面α的距离的最大值.【解答】解:如图所示,AC的中点为O,C1O⊥α,垂足为E,则C1E为所求,∠AOE=30°由题意,设CO=x,则AO=4﹣x,C1O=,OE=OA=2﹣x,∴C1E=+2﹣x,令y=+2﹣x,则y′=﹣=0,可得x=,∴x=,顶点C1到平面α的距离的最大值是2(+).故选:B.二、填空题(本大题共7小题,前4题每题6分,后3题每题4分,共36分)9.已知空间几何体的三视图如图所示,则该几何体的表面积是8π;几何体的体积是.【考点】由三视图求面积、体积.【分析】根据三视图可知几何体是组合体:中间是圆柱上下是半球,由三视图求出几何元素的长度,利用柱体、球体的体积公式计算出几何体的体积,由面积公式求出几何体的表面积.【解答】解:根据三视图可知几何体是组合体:中间是圆柱上下是半球,球和底面圆的半径是1,圆柱的母线长是2,∴几何体的表面积S=4π×12+2π×1×2=8π,几何体的体积是V==,故答案为:.10.若x=是函数f(x)=sin2x+acos2x的一条对称轴,则函数f(x)的最小正周期是π;函数f(x)的最大值是.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】利用辅助角公式化f(x)=sin2x+acos2x=(tanθ=a),由已知求出θ得到a值,则函数的周期及最值可求.【解答】解:∵f(x)=sin2x+acos2x=(tanθ=a),又x=是函数的一条对称轴,∴,即.则f(x)=.T=;由a=tanθ=tan()=tan=,得.∴函数f(x)的最大值是.故答案为:.11.已知数列{a n}满足:a1=2,a n+1=,则a1a2a3…a15= 3 ;设b n=(﹣1)n a n,数列{b n}前n 项的和为S n,则S2016= ﹣2100 .【考点】数列的求和.【分析】利用递推式计算前5项即可发现{a n}为周期为4的数列,同理{b n}也是周期为4的数列,将每4项看做一个整体得出答案.【解答】解:∵a1=2,a n+1=,∴a2==﹣3,a3==﹣,a4==,a5==2.∴a4n+1=2,a4n+2=﹣3,a4n+3=﹣,a4n=.∴a4n+1•a4n+2•a4n+3•a4n=2×=1.∴a1a2a3…a15=a13a14a15=a1a2a3=2×(﹣3)×(﹣)=3.∵b n=(﹣1)n a n,∴b4n+1=﹣2,b4n+2=﹣3,b4n+3=,b4n=.∴b4n+1+b4n+2+b4n+3+b4n=﹣2﹣3++=﹣.∴S2016=﹣×=﹣2100.故答案为:3,﹣2100.12.已知整数x,y满足不等式,则2x+y的最大值是24 ;x2+y2的最小值是8 .【考点】简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,代入最优解的坐标得答案.第二问,转化为点到原点的距离的平方,求出B的坐标代入求解即可.【解答】解:由约束条件作出可行域如图,由z=2x+y,得y=﹣2x+z,由图可知,当直线y=﹣2x+z过A时,直线在y轴上的截距最大,由可得,A(8,8)z最大等于2×8+8=24.x2+y2的最小值是可行域的B到原点距离的平方,由可得B(2,2).可得22+22=8.故答案为:24;8.13.已知向量,满足:||=2,向量与﹣夹角为,则的取值范围是.【考点】平面向量数量积的运算.【分析】不妨设=(x,0)(x≥0),=θ,=,=,=.由于向量与﹣夹角为,可得:∠AOB=θ∈.∈[﹣1,1].在△OAB中,由正弦定理可得:==,化简整理可得:=2+﹣=+2,即可得出.【解答】解:不妨设=(x,0)(x≥0),=θ,=,=,=.∵向量与﹣夹角为,∴∠AOB=θ∈.∴∈,∈[﹣1,1].在△OAB中,由正弦定理可得:==,∴=,=sinθ=,∴=2+﹣=+2=+2=+2∈.∴的取值范围是.故答案为:.14.若f(x+1)=2,其中x∈N*,且f(1)=10,则f(x)的表达式是f(x)=4•()(x∈N*).【考点】数列与函数的综合.【分析】由题意可得f(x)>0恒成立,可对等式两边取2为底的对数,整理为log2f(x+1)﹣2=(log2f(x)﹣2),由x∈N*,可得数列{log2f(x)﹣2)}为首项为log2f(1)﹣2=log210﹣2,公比为的等比数列,运用等比数列的通项公式,整理即可得到f(x)的解析式.【解答】解:由题意可得f(x)>0恒成立,由f(x+1)=2,可得:log2f(x+1)=1+log2,即为log2f(x+1)=1+log2f(x),可得log2f(x+1)﹣2=(log2f(x)﹣2),由x∈N*,可得数列{log2f(x)﹣2)}是首项为log2f(1)﹣2=log210﹣2,公比为的等比数列,可得log2f(x)﹣2=(log210﹣2)•()x﹣1,即为log2f(x)=2+log2•()x﹣1,即有f(x)=22•2=4•().故答案为:f(x)=4•()(x∈N*).15.从抛物线y2=2x上的点A(x0,y0)(x0>2)向圆(x﹣1)2+y2=1引两条切线分别与y轴交B,C两点,则△ABC的面积的最小值是8 .【考点】抛物线的简单性质.【分析】设B(0,y B),C(0,y C),A(x0,y0),其中x0>2,写出直线AB的方程为(y0﹣y B)x ﹣x0y+x0y B=0,由直线AB与圆相切可得(x0﹣2)y B2+2y0y B﹣x0=0,同理:(x0﹣2)y A2+2y0y A﹣x0=0,故y A,y B是方程(x0﹣2)y2+2y0y﹣x0=0的两个不同的实根,因为S=|y C﹣y B|x0,再结合韦达定理即可求出三角形的最小值.【解答】解:设B(0,y B),C(0,y C),A(x0,y0),其中x0>2,所以直线AB的方程,化简得(y0﹣y B)x﹣x0y+x0y B=0直线AB与圆相切,圆心到直线的距离等于半径,两边平方化简得(x0﹣2)y B2+2y0y B﹣x0=0同理可得:(x0﹣2)y A2+2y0y A﹣x0=0,故y C,y B是方程(x0﹣2)y2+2y0y﹣x0=0的两个不同的实根,所以y C+y B=,y C y B=,所以S=|y C﹣y B|x0==(x0﹣2)++4≥8,所以当且仅当x0=4时,S取到最小值8,所以△ABC的面积的最小值为8.故答案为:8.三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤)16.如图,四边形ABCD,∠DAB=60°,CD⊥AD,CB⊥AB.(Ⅰ)若2|CB|=|CD|=2,求△ABC的面积;(Ⅱ)若|CB|+|CD|=3,求|AC|的最小值.【考点】余弦定理.【分析】(Ⅰ)由已知可求∠DCB,利用余弦定理可求BD,进而求得AC,AB,利用三角形面积公式即可得解.(Ⅱ)设|BC|=x>0,|CD|=y>0,由已知及基本不等式可求BD的最小值,进而可求AC的最小值.【解答】(本题满分为15分)解:(Ⅰ)∵∠DAB=60°,CD⊥AD,CB⊥AB,可得A,B,C,D四点共圆,∴∠DCB=120°,∴BD2=BC2+CD2﹣2CD•CB•cos120°=1+4+2=7,即BD=,∴,∴,∴.…(Ⅱ)设|BC|=x>0,|CD|=y>0,则:x+y=3,BD2=x2+y2+xy=(x+y)2﹣xy,∴,当时取到.…17.如图(1)E,F分别是AC,AB的中点,∠ACB=90°,∠CAB=30°,沿着EF将△AEF折起,记二面角A﹣EF﹣C的度数为θ.(Ⅰ)当θ=90°时,即得到图(2)求二面角A﹣BF﹣C的余弦值;(Ⅱ)如图(3)中,若AB⊥CF,求cosθ的值.【考点】二面角的平面角及求法.【分析】(Ⅰ)推导出AE⊥平面CEFB,过点E向BF作垂线交BF延长线于H,连接AH,则∠AHE 为二面角A﹣BF﹣C的平面角,由此能求出二面角A﹣BF﹣C的余弦值.(Ⅱ)过点A向CE作垂线,垂足为G,由AB⊥CF,得GB⊥CF,由此能求出cosθ的值.【解答】解:(Ⅰ)∵平面AEF⊥平面CEFB,且EF⊥EC,∴AE⊥平面CEFB,过点E向BF作垂线交BF延长线于H,连接AH,则∠AHE为二面角A﹣BF﹣C的平面角设,,,∴,∴二面角A﹣BF﹣C的余弦值为.(Ⅱ)过点A向CE作垂线,垂足为G,如果AB⊥CF,则根据三垂线定理有GB⊥CF,∵△BCF为正三角形,∴,则,∵,∴,∴cosθ的值为.18.设函数f(x)=ax2+bx+c,g(x)=c|x|+bx+a,对任意的x∈[﹣1,1]都有|f(x)|≤.(1)求|f(2)|的最大值;(2)求证:对任意的x∈[﹣1,1],都有|g(x)|≤1.【考点】二次函数的性质;绝对值三角不等式.【分析】(1)由|f(x)|≤得|f(0)|≤,|f(1)|≤,|f(﹣1)|≤,代入解析式即可得出a,b,c的关系,使用放缩法求出|f(2)|的最值;(2)由(1)得出|g(±1)|,故g(x)单调时结论成立,当g(x)不单调时,g(x)=a,利用不等式的性质求出a的范围即可.【解答】解:(1)∵对任意的x∈[﹣1,1]都有|f(x)|≤.|f(0)|≤,|f(1)|≤,|f(﹣1)|≤,∴|c|≤,|a+b+c|≤,|a﹣b+c|≤;∴|f(2)|=|4a+2b+c|=|3(a+b+c)+(a﹣b+c)﹣3c|≤|3(a+b+c)|+|(a﹣b+c)|+|﹣3c|≤=.∴|f(2)|的最大值为.(2)∵﹣≤a+b+c≤,﹣≤a﹣b+c≤,﹣≤c≤,∴﹣1≤a+b≤1,﹣1≤a﹣b≤1,∴﹣1≤a≤1,若c|x|+bx=0,则|g(x)|=|a|,∴|g(x)|≤1,若c|x|+bx≠0,则g(x)为单调函数,|g(﹣1)|=|a﹣b+c|≤,|g(1)|=|a+b+c|≤,∴|g(x)|.综上,|g(x)|≤1.19.已知椭圆C:+=1(a>b>0)的离心率为,焦点与短轴的两顶点的连线与圆x2+y2=相切.(Ⅰ)求椭圆C的方程;(Ⅱ)过点(1,0)的直线l与C相交于A,B两点,在x轴上是否存在点N,使得•为定值?如果有,求出点N的坐标及定值;如果没有,请说明理由.【考点】椭圆的简单性质.【分析】(Ⅰ)由椭圆的离心率为,焦点与短轴的两顶点的连线与圆x2+y2=相切,列出方程组,求出a,b,由此能求出椭圆方程.(Ⅱ)当直线l的斜率存在时,设其方程为y=k(x﹣1),A(x1,y1),B(x2,y2),直线方程与椭圆立,利用韦达定理、根的判别式、向量的数量积,结合已知条件能求出存在点满足.【解答】解:(Ⅰ)∵椭圆C:+=1(a>b>0)的离心率为,焦点与短轴的两顶点的连线与圆x2+y2=相切,∴,解得c2=1,a2=4,b2=3∴椭圆方程为(Ⅱ)当直线l的斜率存在时,设其方程为y=k(x﹣1),A(x1,y1),B(x2,y2),则△>0,,若存在定点N(m,0)满足条件,则有=(x1﹣m)(x2﹣m)+y1y2=如果要上式为定值,则必须有验证当直线l斜率不存在时,也符合.故存在点满足20.已知正项数列{a n}满足:S n2=a13+a23+…+a n3(n∈N*),其中S n为数列{a n}的前n项的和.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求证:<()+()+()+…+()<3.【考点】数列与不等式的综合;数列递推式.【分析】(Ⅰ)通过S n2=a13+a23+…+a n3(n∈N*)与S n﹣12=a13+a23+…+a n﹣13(n≥2,n∈N*)作差、计算可知S n+S n﹣1=,并与S n﹣1﹣S n﹣2=作差、整理即得结论;(Ⅱ)通过(Ⅰ)可知,一方面利用不等式的性质、累加可知()+()+()+…+()>,另一方面通过放缩、利用裂项相消法计算可知++…+<2,进而整理即得结论.【解答】解:(Ⅰ)∵S n2=a13+a23+…+a n3(n∈N*),∴S n﹣12=a13+a23+…+a n﹣13(n≥2,n∈N*),两式相减得:﹣=,∴a n(S n+S n﹣1)=,∵数列{a n}中每一项均为正数,∴S n+S n﹣1=,又∵S n﹣1﹣S n﹣2=,两式相减得:a n﹣a n﹣1=1,又∵a1=1,∴a n=n;证明:(Ⅱ)由(Ⅰ)知,,∵,∴,即,令k=1,2,3,…,n,累加后再加得:()+()+()+…+()>2+2+…+2+=(2n+1)=,又∵+++…+<3等价于++…+<2,而=<=(﹣)=(﹣)<(﹣)=2(﹣),令k=2,3,4,…,2n+1,累加得:++…+<2(1﹣)+2(﹣)+…+2(﹣)=2(1﹣)<2,∴.。
2020年浙江省高三数学文科第二次五校联考试卷
![2020年浙江省高三数学文科第二次五校联考试卷](https://img.taocdn.com/s3/m/4d823e8614791711cd791725.png)
2020年浙江省高三数学文科第二次五校联考试卷参考公式:如果事件 A , B 互斥,那么P ( A+ B )= P( A)+ P( B) , P( A+ B)= P( A)⋅P( B) 如果事件A 在一次试验中发生的概念是p ,那么n 次独立重复试验中恰好发生 k 次的概率:k n k n n p p C k P +-=)1()(4球的表面积公式:S=24R π, 其中 R 表示球的半径 球的体积公式V=234R π,其中R 表示球的半径卷一一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知四边形ABCD 上任意一点P 在映射f :),(y x →)2,1(+-y x 作用下的象P ‘构成的图形为四边形D C B A ''''。
若四边形ABCD 的面积等于6,则四边形D C B A ''''的面积等于 ( )A .9B .26C .34D .6 2.方程3330x x --=的根所在的区间是( )A .()1,0-B .()0,1C .()1,2D .()2,33.有一正方体,六个面上分别写有数字1、2、3、4、5、6,有三个人从不同的角度观察的结果如图所示.如果记3的对面的数字为m ,4的对面的数字为n ,那么m+n 的值为( ) A .3 B .7 C .8 D .114.以下通项公式中,不是数列3,5,9,L 的通项公式的是 ( ) A .21n n a =+B .23n a n n =-+C .21n a n =+D .322255733n a n n n =-+-+5.有一种波,其波形为函数sin()2y x π=-的图象,若其在区间[0,t ]上至少有2个波峰(图象的最高点),则正整数t 的最小值是( )A .5B .6C .7D .8 6.已知集合A 中有10个元素,B 中有6个元素,全集U 中有18个元素,设∁U (A∪B)有x个元素,则x 的取值范围是( )A .3≤x ≤8且x ∈NB .2≤x ≤8且x ∈NC .8≤x ≤12且x ∈ND .10≤x ≤15且x ∈N7.已知平面向量1122(,),(,),||2,||3,6====⋅=-若a x y b x y a b a b ,则1122x y x y ++的值为( )A .32 B .-32 C .65 D .-65 8.要从10名女生与5名男生中选取6名学生组成课外兴趣小组,如果按性别分层随机抽样,则能组成课外兴趣小组的概率是 ( )A .61525410C C CB .61535310C C C C .615615A CD .61525410A A C 9.已知直线l 通过抛物线24x y =的焦点F ,且与抛物线相交于,A B 两点,分别过,A B 两点的抛物线的两条切线相交于M 点,则AMB ∠的大小是 ( )A .4πB .3πC .2πD .34π10.设,a b 是异面直线,给出下列四个命题:①存在平面,αβ,使,,//a b ⊂α⊂βαβ;②存在惟一平面α,使,a b 与α距离相等;③空间存在直线c ,使c 上任一点到,a b 距离相等;④与,a b 都相交的两条直线,m n 一定是异面直线。
精品解析:浙江省宁波市五校(奉化中学、宁波中学、北仑中学等)2020届高三高考适应性考试数学试题(解析版)
![精品解析:浙江省宁波市五校(奉化中学、宁波中学、北仑中学等)2020届高三高考适应性考试数学试题(解析版)](https://img.taocdn.com/s3/m/078d37580242a8956aece447.png)
A. B. C. D.
【答案】A
【解析】
【分析】
根据展开式的各项二项式系数和为 求出 ,利用二项展开式的通项公式即可求出常数项.
【详解】因为展开式中所有二项式系数和为512,
所以 ,
解得 .
二项展开式的通项为 ,
令 ,即
所以展开式中的常数项为 ,
故选:A
【点睛】本题主要考查了二项式定理的应用,二项式系数的性质,特定项的求法,考查了运算能力,属于中档题.
3.若 ,则“ 且 ”是“ 且 ”的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件
【答案】A
【解析】
【分析】
根据不等式性质证明充分性成立,举例说明必要性不成立.
【详解】因为 且 ,所以根据同向正数不等式相乘得 ,根据同向不等式相加得 ,即 成立,因此充分性成立;
故选:C.
【点睛】本题以等比数列为载体,考查了等比数列前 项和,均值不等式,换元法,二次函数的最值,是多个基本知识的综合题,属于中档题.
8.一个袋中放有大小、形状均相同的小球,其中红球1个、黑球2个,现随机等可能取出小球,当有放回依次取出两个小球时,记取出的红球数为 ;当无放回依次取出两个小球时,记取出的红球数为 ,则( )
台体的高
第Ⅰ卷(选择题共40分)
一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知全集 ,集合 则 ()
A. B. C. D.
【答案】C
【解析】
【分析】
先求出集合A,B的交集,再根据全集求其补集即可.
浙江省五校联考2020届高三数学第一次联考试题 理
![浙江省五校联考2020届高三数学第一次联考试题 理](https://img.taocdn.com/s3/m/753a44cc8762caaedd33d4f8.png)
2020学年浙江省第一次五校联考数学(理科)试题卷第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是符合要求的. 1.在复平面内,复数1i i++(1+3i )2对应的点位于 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.若nxx )2(2-的展开式中只有第六项的二项式系数最大,则展开式中的常数项是 ( )A .45B .90C .180D .3603.若数列{}n a 满足p p a a nn (221=+为常数,)*N n ∈,则称数列{}n a 为等方比数列.已知甲:{}n a 是等方比数列,乙:{}n a 为等比数列,则命题甲是命题乙的 ( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件4.已知盒中装有3只螺口与7只卡口灯炮,这些灯炮的外形与功率都相同且灯口向下放着,现需要一只卡口灯炮使用,电工师傅每次从中任取一只且不放回,则他直到第3次才取得卡口灯炮的概率是( ) A .2140 B .1740C .310 D .71205.函数()sin()f x A x B ωϕ=++的一部分图象如图,则)(x f 的解析式和++=)1()0(f f S (2)(2011)f f +⋯+的值分别是( )A .12sin 21)(+π=x x f , 2011S =B .12sin 21)(+π=x x f , 2012S =C .1()sin 124f x x π=+ , 2012S =D.1 ()sin122f x xπ=+,2011S=6.函数)(xfy=的定义域是),(+∞-∞,若对于任意的正数a,函数()()()g x f x a f x=+-是其定义域上的增函数,则函数)(xfy=的图象可能是()7.在锐角三角形ABC∆中,1tan,1tan-=+=tBtA,则t的取值范围是()A.),2(+∞B.),1(+∞ C.)2,1(D.)1,1(-8.已知向量OA(1,sin)θ=u u u r,OB(cos,1)θ=u u u r,(0,)2πθ∈,则AOB∆面积的最小值是()A.1B.18C.12D.149.若函数f(X)=x2+2ax+b有两个不同的零点,则a b+的取值范围是()A.(0,3]B.(0,2)C.(1,3)D.[0,3]10.设三位数abcn=,若以cba,,为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数n共有()A.185个B.170个C.165个D.156个第II卷(共100分)二、填空题:本大题共7小题,每小题4分,共28分.11.执行如图的程序框图,那么输出S的值是 .12.定义:区间)](,[2121x x x x <长度为12x x -.已知函数|log |5.0x y =定义域为],[b a ,值域为]2,0[,则区间],[b a 长度的最大值为 .13.随机变量ξ的分布列如下:ξ 1-0 1Pabc其中a b c ,,成等差数列,若3E ξ=,则D ξ的值是 .14. 对于等差数列{n a },有如下一个真命题:“若{n a }是等差数列,且1a =0,s 、t 是互不相等的正整数,则(1)(1)0t s s a t a ---=”.类比此命题,对于等比数列{n b },有如下一个真命题:若{n b }是等比数列,且1b =1,s 、t 是互不相等的正整数,则 .15.若不等式组02(1)1y y x y a x ≥⎧⎪≤⎨⎪≤-+⎩表示的平面区域是一个三角形,则a 的取值范围是 .16.设G 为ABC ∆的内心, 5,4,3AB AC CB ===,AG x AB yBC =+u u u r u u u r u u u r (X,Y ∈R ),则y的值是 .17.已知函数22,1()44,1x xf xx x x⎧>⎪=⎨-+≤⎪⎩,若2(21)(2)f m f m+>-,则实数m的取值范围是.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(本题14分)设集合1{24}32xA x-=≤≤,{}012322<--+-=mmmxxxB.(1)当x Z∈时,求A的非空真子集的个数;(2)若BA⊇,求实数m的取值范围.19.(本题14分)(如右图)半径为1,圆心角为0120的扇形,点P 是扇形AB 弧上的动点,设POA x ∠=.(1)用x 表示平行四边形ODPC 的面积()S f x =; (2)求平行四边形ODPC 面积的最大值.20.(本题14分)数列{}n a 的前n 项和为n S ,已知()211,1,1,2,2n n a S n a n n n ==--=⋅⋅⋅ (1)证明:数列1{}n n S n+是等差数列,并求n S ; (2)设3nn S b n =,求证:121n b b b +++<L .21. (本题15分)已知函数32(),(0)f x px qx r p =++>图象的对称中心为(1,0),且()f x 的极小值为2-.(1)求()f x 的解析式;(2)设()()T x f x m =+,若()T x 有三个零点,求实数m 的取值范围; (3)是否存在实数k ,当2a b +≤时,使函数1()'()3g x f x k =+在定义域[a,b] 上的值域恰为[a,b],若存在,求出k 的范围;若不存在,说明理由.22.(本题15分)已知函数b x x ax x f ++=ln )(是奇函数,且图像在点(,())e f e (e 为自然对数的底数)处的切线斜率为3. (1) 求实数a 、b 的值; (2) 若Z k ∈,且1)(-<x x f k 对任意1>x 恒成立,求k 的最大值; (3) 当1,(,)n m n m Z >>∈时,证明:()()nm mn nm mn >.2020学年浙江省第一次五校联考数学(理科)答案一、选择题二、填空题11. 2 ; 12.415; 13. 5.9; 14. 111=--t ss t b b15.(,0)a ∈-∞; 16.512;17. (3,1)(1,3)m ∈--U三、解答题18.解:化简集合A={}52≤≤-x x ,集合{}(1)(21)0B x x m x m =-+--<. ………….4分(1){}5,4,3,2,1,0,1,2,--=∴∈A Z x Θ,即A 中含有8个元素,∴A 的非空真子集数为254228=-个. .7分(2)①m= -2时,B A =Φ⊆;………….9分②当m<-2 时,()()21120m m m +--=+<,所以B=()21,1m m +-,因此,要A B ⊆,则只要⎩⎨⎧≤≤-⇒≤--≥+62351212m m m ,所以m 的值不存在;…………11分③当m>-2 时, B=(m-1,2m+1),因此,要A B ⊆,则只要⎩⎨⎧≤≤-⇒≤+-≥-2151221m m m . 综上所述,知m 的取值范围是:m=-2或.21≤≤-m …………14分 19.由题意得:001sin(120)sin 60a x ==- ………….3分0)a x =-000)sin ,(0,120)ODPC S x x x =-∈Y …………7分1cos sin sin 22x x x ⎤=+⎥⎦2cos sin x x x =1cos 2x x ⎤-=+⎥⎦11sin 2cos 22x x ⎡⎤=-+⎥⎦g()01sin 2302x ⎤=-+⎥⎦ ………….11分 当023090x -=时达最大值00029030120x =+=即,当060(0,120)x =∈. ………….14分20.解:(1)由()21n n S n a n n =--()2n ≥得:()21()1n n n S n S S n n -=---,即()221(1)1n n n S n S n n ---=-,所以1111n n n nS S n n -+-=-,对2n ≥成立。
2020届浙江省五校高三上学期联考数学试题(解析版)
![2020届浙江省五校高三上学期联考数学试题(解析版)](https://img.taocdn.com/s3/m/544be59df61fb7360b4c65f0.png)
(2)设 ,求数列 的前 项和
【答案】(1)
(2)
【解析】(1)根据题设已知条件利用通项公式直接表示出 , 的关系式,求解出 与 的通项公式,表示出 的通项公式,利用 进行判断
(2)采用错位相减法进行求解即可
【详解】
解析:
(1)设公差为 ,公比为
则 ,
所以 , ;
2020届浙江省五校高三上学期联考数学试题
一、单选题
1.已知集合 , ,则 ()
A. B. C. D.
【答案】B
【解析】分别计算出集合 后可得两个集合的交集.
【详解】
, ,故 ,故选B.
【点睛】
本题考查集合的交运算,属于基础题.
2.已知向量 , ,且 与 的夹角为 ,则()
A. B. C. D.
【答案】C
22.设函数
(1)当 时,若 是函数 的极值点,求证: ;
(2)(i)求证:当 时, ;
(ii)若不等式 对任意 恒成立,求实数 的取值范围.
注:e=2.71828...为自然对数的底数.
【答案】(1)证明见解析
即有 ,
不妨设 ,即有: ,所以
法二:由 得: ; 如图建系得:
, , , , ,
(1) , 则
(2)设面 的法向量为 , , ,
即有: ,
故
【点睛】
本题考查利用线面垂直证线线垂直,求线面角的正弦值,相对来说,立体图形比较规整,也可采用建系法进行求解,属于中档题
20.设数列 是等比数列,数列 是等差数列,若 , .
,由正弦定理得:
【点睛】
本题考查复合三角函数值域的求法,三角恒等变换中关于具体角的求解问题,正弦定理在解三角形中的应用,对于角的拼凑问题是解题过程中经常会遇到的问题,如本题中 ,常见的还有 , , 等
2020届浙江省新高考研究联盟高三第五次联考数学试题
![2020届浙江省新高考研究联盟高三第五次联考数学试题](https://img.taocdn.com/s3/m/b0328794fab069dc502201cf.png)
2020届浙江省新高考研究联盟高三第五次联考数学试题★祝考试顺利★ 注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
8、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合(){}10A x x x =+>, {}1B x y x ==-,则A B ⋂=( )A . {}0x x >B . {}1x x ≥C . {}01x x <≤ D . R2. 若0.50.5ln 2,log 1.2, 1.2a b c ===,则,,a b c 的大小关系是 ( )A .c b a <<B . a b c <<C .b a c <<D .b c a << 3.已知复数1z 对应复平面上的点()1,1-,复数2z 满足122z z =-,则2||z =( )A .2 B . 2 C . 10 D . 104.函数2cos 2sin y x x =+,x R ∈的值域是( )A .[0,1]B .1[,1]2C .[1,2]-D .[0,2]5.函数1()ln ||1xf x x-=+的大致图象为( )A .B .C .D . 6.下列命题中正确的是( ) A .函数()1013≠>+=-a a a yx 且的图象恒过定点()3,1B . “0a >,0b >”是“2b aa b+≥”的充分必要条件 C . 命题“若2320x x -+=,则1x =或2x =”的逆否命题为“若1x ≠或2x ≠,则2320x x -+≠” D .若2017201820182019101101,101101M N ++==++,则M N >7.已知ABC ∆内角,,A B C 的对边分别为,,a b c ,若()2222222cos a b c A b c +-=+,2a c =,则ABC ∆的形状是( )A .等腰三角形B .等边三角形C .等腰直角三角形D .等腰三角形或直角三角形8.函数()sin cos f x a x b xωω=+ (,,0a b R ω∈>),满足()23f x f x π⎛⎫-+=-- ⎪⎝⎭,且对任意x R ∈,都有()6f x f π⎛⎫≤- ⎪⎝⎭,则以下结论正确的是( )A . ()max f x a =B . ()()f x f x -=C . 3a b =D .3ω=9.若不等式组00x y x y x a +≥⎧⎪-≥⎨⎪≤⎩(a 为常数),表示的平面区域的面积4,则2x y +的最小值为( )A .34-B .41-C .0D .210. 已知函数()f x 在区间(0,)+∞上满足()0f x >,且()'()0f x f x +<.设()a xf x =,11b f x x ⎛⎫=⎪⎝⎭,则当01x <<时,下列不等式成立的是( ) A . a b > B .a b = C .a b < D . 不能确定二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( )若不等式 对任意 恒成立,求实数 的取值范围.
注:e=2.71828…为自然对数的底数.
18.(14分)已知 , 中,角A,B,C所对的边为a,b,c.
(1)若 ,求 的值域;
(2)若 , , ,求 的值.
19.(15分)已知多面体 中, , , ,
M为PB中点.
(1)求证: ;
(2)求直线BC与平面CDM所成角的正弦.
20.(15分)
设数列 是等比数列,数列 是等差数列,若 , .
(1)若 ,数列 中的最大项是第k项,求k的值;
A.4B.6C.8D.12
8.函数 ,则 ()
A.在 上递增B.在 上递减
C.在 上递减D.在 上递增
9.在三角形 中,已知 , ,则 ()
A. B. C. D.
10.若不等式 对 上恒成立,则 ()
A. B. C.1D.2
二、填空题:本大题共7小题,共36分
11.已知集合 , ,若 ,则 ;若 ,则 .
12.已知 ,若 ,则 ; .
13.不等式 的解集是;不等式 的解集是.
14.设数列 的前n项和为 ,满足 ,则 , .
15.定义 ,已知 , .若 对 恒成立,则 的最小值是.
16.已知向量 ,其中 , , 与 夹角为 ,且 .则 的最大值为.
17.已知实数 满足: ,则 的最小值为.
三、解答题:本大题共5小题,共74分
(2)设 ,求数列 的前n项和 .
21.(15分)过椭圆 的左焦点 作斜率为 ( )的直线交椭圆于 , 两点, 为弦
的中点,直线 交椭圆于 , 两点.
(1)设直线 的斜率为 ,求 的值;
(2)若 , 分别在直线 的两侧, ,求△ 的面积.
22.(15分)设函数
(1)当 时,若 是函数 的极值点,求证: ;
C. 存在最大值时, D. 存在最大值时,
5.已知关于 的不等式 在 上有解,则实数 的取值范围是()
A. B. C. D.
6.已知 , 为实数,则 ,是 的()
A.充充分也不必要条件
7.定义 ,则关于实数x,y的不等式组 所表示的平面区域的面积是()
2020届浙江五校联考
一、选择题:本大题共10小题,共40分
1.已知集合 , , ()
A. B. C. D.
2.已知向量 , ,且 与 的夹角为 ,则()
A. B. C. D.
3.函数 的值域为()
A. B. C. D.
4.已知数列 是公差为 的等差数列,其前 项和为 ,则()
A. 时, 一定存在最大值B. 时, 一定存在最大值