错位相减法数列求和十题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)求数列{an}的通项公式;(2)若bn=2kn•an,求数列{bn}的前n项和Tn.
3.数列 的前 项和为 ,且 是 和 的等差中项,等差数列 满足
(1)求数列 、 的通项公式
(Hale Waihona Puke )设 = ,求数列 的前 项和 .
4.(本小题满分12分)已知数列{an}的前n项和为Sn,且an是Sn与2的等差中项,数列{bn}中,b1=1,点P(bn,bn+1)在直线 上。
(2)设cn=1+an·bn,求cn的前n项和Tn。
8.已知等差数列{an}的公差d不为0,设Sn=a1+a2q+…+anqn-1,Tn=a1-a2q+…+(-1)n-1anqn-1,q≠0,n∈N*,
(1)若q=1,a1=1,S3=15,求数列{an}的通项公式;
(2)若a1=d,且S1,S2,S3成等比数列,求q的值;
(II)设数列{an}的公比q=f(λ),数列{bn}满足b1=1/2,bn=f(bn-1)(n∈N*,n≥2)求数列{bn}的通项公式;
(III)记λ=1,记Cn=an( 1/bn-1),求数列{Cn}的前n项和为Tn.
6.已知数列 的前 项和 ,数列 满足
(1)求数列 的通项公式 ;(2)求数列 的前 项和 ;
(3)求证:不论 取何正整数,不等式 恒成立
7.已知等差数列{an}的前n项和为Sn,满足a1=1,S6=36,数列{bn}是等比数列且满足b1+b2=3,b4+b5=24。
(1)求数列{an}和{bn}的通项公式;
错位相减法数列求和十题
1.设正项等比数列{an}的前n项和为Sn,且a3=4,S2=3.
(1)求数列{an}的通项公式;
(2)令bn=(2n-1)an(n∈N*),求数列{bn}的前n项和为Tn.
2.已知函数f(x)=x2+2x,数列{an}的前n项和为Sn,对一切正整数n,点Pn(n,Sn)都在函数f(x)的图象上,且过点Pn(n,Sn)的切线的斜率为kn.
(1)求a1和a2的值;
(2)求数列{an},{bn}的通项an和bn;
(3)设cn=an·bn,求数列{cn}的前n项和Tn.
5.已知数列{an}的前n项和为Sn,点(an+2,Sn+1)在直线y=4x-5上,其中n∈N*.令bn=an+1-2an.且a1=1.求数列{bn}的通项公式;若f(x)=b1x+b2x2+b3x3+…+bnxn,计算f′(1)的结果.
(3)若q≠±1,证明(1-q)S2n-(1+q)T2n= ,n∈N*。
9.(1)已知:等差数列{an}的首项a1,公差d,证明数列前n项和 ;
(2)已知:等比数列{an}的首项a1,公比q,则证明数列前n项和 .
10.设数列{an}的前n项和为Sn,且Sn=(1+λ)-λan,其中λ≠-1,0;
(I)证明:数列{an}是等比数列.
相关文档
最新文档