电子科大2010年信号与系统期末考题及标准答案1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
………密………封………线………以………内………答………题………无………效……
电子科技大学二零 一 零 至二零 一 一 学年第 一 学期期 末 考试
SIGNALS AND SYSTEMS 课程考试题 A 大纲A 卷 ( 120 分钟) 考试形式: 一页纸开卷 考试日期 20 年 月 日
课程成绩构成:平时 10 分, 期中 20 分, 实验 10 分, 期末 60 分
一 二 三 四 五 六 七 八 九 十 合计 复核人签名
得分
签名
Attention: You must answer the following questions in English.
1.(15 points ) Suppose ()1x t and ()2x t are two band-limited signals, where
πωω200,0)(1>=for j X ,πωω500,0)(2>=for j X .
Impulse-train sampling is performed on ()()()1234/22=+-*y t x t x t to obtain ()()()p n y t y nT t nT δ+∞
=-∞
=
-∑.Give out the expression of
)(ωj Y in terms of )(1ωj X and )(2ωj X ,where )(ωj Y
is the Fourier transform of )(t y . Specify the largest values of the sampling period T
which ensures that ()t y is recoverable from ()t y p .
………密………封………线………以………内………答………题………无………效……
2.(20 points )Consider a stable system illustrated in Figure 1, if we know )()(0t u e t h t
-=,()()1sin 5ππ=
t h t t , ()()
2sin 3ππ=t h t t
and the input ()()/2δ+∞
=-∞
=
-∑n x t t n ,determine the output ()y t .
Figure 1
3. ( 10 points ) Determine the function of time, []x n , for the Z transform ()X z and its associated regions of convergence:
()4
1
1X z z -=
- 1z >
)(0t h )
(t x )
(t y )
(1t h )
(2t h +
+
-
………密………封………线………以………内………答………题………无………效……
4.(15 points )Consider a system illustrated in Figure 2(a). The input signal has the Fourier tansform ()X j ω shown in Figure 2(b), and the output signal has the Fourier tansform ()ωY j shown in Figure 2(c). Determine a possible system S.
()
y t Figure 2(a)
()
x t S
ω
ππ
-1
()X j ωFigure 2(b)
Figure 2(c)
ω
01
()
ωY j 4π3π
4π-3π
-
………密………封………线………以………内………答………题………无………效……
5.(20 points) Consider a LTI system with unit impulse response ()()()β--=+t t h t e u t e u t ,where β is an unknown constant. When the input to the system is ()1=x t ,the output is ()43
=
y t . (a) Determine the system function ()s H of the system and sketch the pole-zero pattern, then indicate the ROC of ()s H . (b) Is this system causal and stable ?
(c) Draw a block diagram representation of this system.
………密………封………线………以………内………答………题………无………效……
6.(20 points) A stable LTI system is described by the difference equation
[][][][]1271
42
--+
-=y n n y n x n y . (a) Find the system function ()H z , sketch the pole-zero pattern of ()H z , then indicate the ROC of ()H z . (b) Determine the unit impulse response []h n . Is this system causal? (c) Compute the output of this system, if the input signal is []cos x n n π=.