梁格法
谈谈梁格法
谈谈梁格法目前解决曲线桥梁计算方法有以下几种:1、空间梁元模型法2、空间薄壁箱梁元模型法3、空间梁格模型法4、实体、板壳元模型法第一种方法,是不能考虑桥梁的横向效应的,使用时要求桥梁的宽跨比不易太大。
第二种方法,是第一种方法的改进,主要区别是采用了不同的单元模型,考虑了横向作用如翘曲和畸变。
第四种方法,是解决问题最有效的方法,能够考虑各种结构受力问题。
第三种方法,是目前设计及科研中常采用的方法,其特点是容易掌握,且对设计能保证足够的精度,其中采用比较多的方法是剪力-柔性梁格法,能充分考虑弯桥横向的受力特性。
剪力-柔性梁格法的原理是当梁格节点与结构重合的点承受相同挠度和转角时,由梁格产生的内力局部静力等效与结构的内力。
其实质是将传统的一维杆单元计算模式推进到二维计算模型,用一个二维的空间网格来模拟结构的受力特性。
对于梁格法的讨论这里也有不少帖子进行了讨论,实际与梁格之间的等效关系,主要表现在梁格各个构件的刚度计算上,理论上,原型和等效梁格承受相等的外荷载时,必须具有恒等的挠曲和扭转,等效梁格中每一构件的内力也必须等于该构件所代表的原型截面的,事实上这种理想状况是达不到的,模拟也是近似的,但事实是按梁格计算能把握住结构的总体性能,对于设计来说应该是能满足精度的。
梁格也是近似的模拟,只要计算者能够和好的模拟了横向纵向的特性,应该是可以作为设计依据的。
你在这里说的横向的切分使得预应力产生的次内力问题我不太清楚你指的什么,但是只要横向的刚度业等效了原型,对于计算应该不会出现逆所说的结构内力失真,这条可以通过结果验证。
当然任何结构,只要不怕麻烦都可以用实体单元来分析,只要正确模拟,实体分析也是最精确的,但是对于这种模型要准确模拟可不是一件容易的事,并且预应力的损失计算,施加等等都非常麻烦,还有最后结果的查看也不方便,因此除了结构局部的分析,一般是没有拿实体来进行全桥的整体分析的,至于说单梁我也说了,有些时候精度是可以的,但是对于这种结构相对于梁格来说单梁的精度是不如梁格的。
梁格法在箱梁结构中的实践
汇报人: 2023-12-02
contents
目录
• 引言 • 梁格法的基本理论 • 梁格法在箱梁结构中的应用 • 梁格法在箱梁结构中的优化和改进 • 工程实例分析 • 结论与展望
引言
01
研究背景与意义
梁格法是一种广泛应用于箱梁 结构分析的方法,能够有效地 模拟箱梁结构的整体性能和局 部细节。
06
结论与展望
研究结论
梁格法在箱梁结构分析中的应用已经得 到了广泛认可,其准确性和实用性得到
了验证。
通过本次研究,我们发现梁格法能够有 效地用于箱梁结构的分析和设计,并且
能够准确地模拟箱梁的力学行为。
梁格法的应用不仅可以提高箱梁结构的 设计效率和准确性,同时也为箱梁结构
的优化设计提供了有力的工具。
总结词
可靠、安全
详细描述
铁路桥梁设计对于安全性和可靠性要求较高。梁格法在铁路桥梁设计中得到了广泛应用,能够实现对 箱梁结构的详细分析和计算,确保铁路桥梁的安全性和可靠性。同时,梁格法还为铁路桥梁设计提供 了多种设计方案,为优化设计提供了更多的选择。
工程三:城市高架桥设计
总结词
美观、经济
详细描述
城市高架桥设计需要考虑到美观和经济性。梁格法在城市高架桥设计中能够实现 精确的分析和计算,确保桥梁的结构合理和安全性。同时,梁格法还能够根据城 市高架桥的不同需求进行灵活的设计,提高桥梁的美观度和经济性。
工程实例分析
05
工程一:高速公路桥梁设计
总结词
精确、高效
详细描述
梁格法在高速公路桥梁设计中具有较高的应用价值。通过采用梁格法,能够实现对箱梁结构的精确分析和设计, 提高桥梁的整体性能和稳定性。同时,梁格法还具有较高的计算效率和准确性,为高速公路桥梁设计提供了有效 的技术支持。
迈达斯梁格法讨论
1.在用桥博进行梁格法计算时,在单元的截面信息中输入的自定义抗扭惯性矩是整个纵向构件单元截面的抗扭惯性矩,还是如【桥梁上部构造性能】中所提,不包括腹板在内的仅由顶、底板构成的抗扭惯性矩?答:我曾经对同一座简支弯桥分别用桥博单梁、梁格和MIDAS单梁、梁格建模计算进行比较分析。
结果表明:1、仅考虑恒载的情况;对于梁格法,无论是桥博还是MIDAS,内力而言,四种模型计算结果弯矩结果一致(我所说的一致指误差在5%以内),程序无法提供腹板剪力流产生的扭矩,在手动计算并组合后,两种程序梁格法计算的扭矩结果一致,且均较单梁计算的扭矩略偏大,约10%左右(这应该是由于刚度模拟误差产生的),由此可以得出汉勃利对于梁格法力学理论的阐述是正确的,因此,对于梁格法,我个人的观点,其可以考虑弯扭耦合而得出较精确的弯矩并指导整体受力配筋是没有疑问的,问题在于,梁格法扭矩需修正的适用性,我们可以通过手动计入两侧腹板剪力流产生的扭矩来得到较为正确的扭矩并无异议,但对于很多情况这并不利于直接指导我们设计,比如我们需要观察扭矩包络图来判断弯桥偏心的设置时,会发现我们直接用单梁模型可以更为节省时间和精力(至少无需你去修正组合)而得到可以直接应用的数据,单梁的缺陷在于不能正确考虑各片梁实际受力的差异,但这并不影响整体的设计,比如偏心的设计,整体抗扭性能的评估,而在细节上的处理,我们需要用梁格法的计算去确保安全。
2、关于活载的情况,梁格法而言,出于分析对比,我也用桥博和MIDAS分别计算了活载下的关键截面扭矩对比,在这里就不说弯矩了,因为结果比较吻合(8%的差别)。
MIDAS自定义车道比较方便,可以同时考虑多种工况,这比桥博方便许多,但需要注意的是,对于同一工况,如果你用不同的梁来做偏心实现的话,产生的内力差别很大,且用哪片梁直接导致这片梁内力变大,我用的是V6.71,不知道MIDAS2006是否没有这样的问题,为了解决这一问题,我在活载偏载于哪片梁时,采取该片梁去定义车道偏心,结果表明,两种程序计算结果比较吻合。
midas梁格法t梁经典算例
梁格法是工程力学中常用的一种分析方法,用于计算梁的内力和挠度。
在工程实践中,梁格法被广泛应用于桥梁、建筑物和机械结构等工程项目的设计和分析中。
本文将通过具体的案例分析,探讨梁格法在工程实践中的应用和价值。
一、梁格法的基本原理梁格法是一种基于力学原理的计算方法,其基本原理包括静定性原理和虚位移原理。
静定性原理指出,在结构静定的状态下,结构的所有部分都处于平衡状态,即内力和外力相互抵消。
而虚位移原理则是假设结构发生微小位移后,结构的内部工作做功为零,即结构在平衡状态下满足力与位移的乘积为零。
二、梁格法的基本步骤使用梁格法进行梁的内力和挠度计算主要包括以下步骤:1. 建立梁的受力模型在进行梁的内力和挠度计算前,需要对梁的受力情况进行分析,包括受力的位置、作用力的大小和方向等。
通过建立梁的受力模型,可以清楚地描述梁在受力下的变形和内力分布情况。
2. 划分梁的小段将梁划分为若干个小段,每个小段之间的长度相对较小,可以近似认为是直线段。
通过对梁进行划分,可以简化梁的分析和计算,同时也为后续的计算提供了便利。
3. 建立梁的受力方程针对每个小段,建立其在受力下的平衡方程,包括受力平衡方程和弯矩平衡方程。
通过对小段的受力方程进行建立和求解,可以得到该小段内力的大小和分布情况。
4. 求解梁的挠度根据虚位移原理,可以利用小段内力的大小和分布情况,通过积分的方法求解梁的挠度。
通过对梁的挠度进行求解,可以了解梁在外载荷作用下的变形情况。
5. 综合分析综合考虑各个小段的内力和挠度情况,得出整个梁的内力和挠度分布情况。
三、梁格法的经典算例下面将通过一个具体的案例,展示梁格法在工程实践中的应用和价值。
案例:简支梁的内力和挠度分析考虑一个简支梁,长度为L,受均布载荷q作用。
根据梁格法的基本步骤,进行简支梁的内力和挠度分析。
1. 建立梁的受力模型根据简支梁的受力情况,可以建立梁的受力模型,包括受力位置、作用力大小和方向等。
考虑梁在均布载荷q作用下的受力情况,可以建立梁的受力模型。
第6讲 曲线梁桥空间有限元分析方法—梁格法
id 2 h t1t 2 t1 t 2
2
(2-4)
式中: t 1 、 t 2 分别为顶板、底板的厚度,主要纵向构件的有效剪切面积等于腹板面积。
10
湖南大学土木工程学院桥梁工程系
1/ 4 , 箱形桥横向梁格构件的间距至少应接近于纵向弯曲的反弯点之间的间距的 采用太稀的横向构件 将使结果不精确。当有横隔板时,横隔板位置处一般也应设置横向构件。悬臂板部分横向构件的截面特性 按所代表的悬臂宽度进行计算;箱室部分横向构件(如无横隔板)的抗弯惯矩应按绕顶、底板的共同重心 处的水平中心轴进行计算,每单位宽度抗弯惯性矩的计算公式:
)
18
湖南大学土木工程学院桥梁工程系
3.3 横向梁格构件刚度确定
1)横向梁格构件的弯曲刚度
EIx=E· (横向梁格所代表的截面对X中性轴惯性矩),如果横梁内包
梁格法
当桥梁上部结构宽度和跨度之比较大时,荷载作用时不仅使 上部构造产生纵向弯曲、整体扭转,同时还使截面产生横向 变形——此时,不能采用空间直梁、曲线梁简化模型,而必 须考虑具有弹性刚度横向构件的结构体系 ——自然也需要采 用其它方法如实体单元、梁格法等。
方法二:空间实体单元(块体、板壳)
属于通用方法,可作精确分析、适用范围广 ; 存在应力集中现象 某些情况下模拟存在问题——横梁(尺寸大) 给出的是应力状态与桥规按内力配筋不匹配。 数据量大、烦琐,不便于结构设计与验算,也 无法正确评价结构受力特征。 移动活载作用效应的计算较为麻烦。 桥梁结构计算方法及应用
大量的研究和分析表明 对于大部分桥梁结构形式 使用梁格法具有足够的精度 大量的研究和分析表明:对于大部分桥梁结构形式,使用梁格法具有足够的精度。
桥梁结构计算方法及应用
梁格法的应用
四种典型结构
板式 肋板式 箱形梁 铰接板、梁
方向规定(右手螺旋法则)
x x—— 纵桥向 y——横桥向 z——竖桥向
横梁水平轴、竖向轴抗弯惯性矩按矩形板截面绕其自身形心 横梁水平轴 竖向轴抗弯惯性矩按矩形板截面绕其自身形心 主轴计算。扭转惯性矩仍按矩形板公式: bd 3
IT
6
桥梁结构计算方法及应用
二、肋板式上部结构空间构架分析
肋板式上部结构是一薄板贯通多根纵横梁顶面连接成一个整体(图10)。
(a)小跨径、纵梁密布、只在端部设置横隔板
方法一:空间梁单元
采用一维梁单元,能给出结构整体意义上的内力 和变形。 根据受载后截面是否保持平面,可分为自由扭转 理论和翘曲扭转理论。一般混凝土梁可用前者分 析 钢箱梁则必须用后者分析 析。钢箱梁则必须用后者分析。 对于宽箱梁分析,本方法计算有问题——不能得 到横梁内力
hambly梁格法 -回复
hambly梁格法-回复什么是梁格法?梁格法(Hambly法)是一种结构计算方法,用于分析梁的弯曲和剪切行为,特别适用于非均匀截面梁和断面变形较大的梁。
它是由英国工程师D.R. Hambly在20世纪70年代提出的,目的是简化和加速梁的分析过程。
梁格法的基本原理梁格法的基本原理是将梁的截面划分为若干个网格,并假设每个网格内的应力均匀分布。
这样,梁的整体刚度矩阵可以通过求解每个网格的刚度矩阵得到,并通过组合所有网格的刚度矩阵得到整个梁的刚度矩阵。
最后,应力和变形可以通过求解支座反力和梁内部力得出。
梁格法的步骤梁格法的应用可以分为以下几个步骤:1. 网格划分首先,将梁的截面划分为若干个网格。
网格的划分可以基于材料的特性、几何形状或具体的问题要求。
一般来说,网格的大小应使得网格内的应力和变形分布情况尽可能均匀。
2. 确定边界条件确定边界条件是梁格法的重要一步。
边界条件包括支座反力、梁的外力和约束条件。
支座反力可以通过梁的静力平衡条件或其他约束条件进行求解。
外力可以是集中力、分布力或力矩。
约束条件可以是固定端、铰接端或自由端。
3. 求解刚度矩阵求解每个网格的刚度矩阵是梁格法的核心。
刚度矩阵描述了网格内应力和变形之间的关系。
刚度矩阵的计算可以利用经典弹性力学理论,根据材料的本构关系和几何形状进行求解。
4. 组装整体刚度矩阵将所有网格的刚度矩阵组装成整体刚度矩阵。
这可以通过将每个网格的刚度矩阵按照其相对位置进行组合得到。
整体刚度矩阵描述了梁整体的应力和变形之间的关系。
5. 求解支座反力和梁内部力通过求解整体刚度矩阵和边界条件,可以得到支座反力和梁内部力。
支座反力是梁上支座的反力大小和方向。
梁内部力包括弯矩、剪力和轴向力等。
6. 分析结果和验证最后,分析得到的结果可以进行后处理和验证。
后处理包括计算应力、变形和应变等。
验证可以通过与其他分析方法或实验数据进行比较来进行。
总结梁格法是一种适用于非均匀截面梁和断面变形较大的梁的结构计算方法。
梁格法原理
梁格法原理
梁格法是一种对桥梁结构进行有限元分析的方法,特别是在模拟桥梁上部结构时有着重要的应用。
其基本原理是将桥梁结构等效为一系列的梁格,这些梁格既可以是单一的梁,也可以是由多个梁组成的梁组。
梁格法的关键步骤包括梁格划分、荷载施加以及计算结果分析等。
1. 梁格划分:首先需要根据桥梁结构的实际形状和尺寸将其划分为不同的梁格,并利用有限元软件如桥梁博士V4等自动划分梁格截面,自动强制移轴,自动修正截面抗扭刚度等,以尽可能准确地模拟原型结构的弯曲刚度和抗扭刚度。
梁格的划分需要考虑到桥梁的内力、荷载静力的灵敏度和关键部分的形心轴等因素,以保证梁格模型的准确性。
2. 荷载施加:在梁格模型上施加合适的荷载,如自重、活荷载、风荷载、温度荷载等,以模拟实际结构的受力情况。
3. 计算结果分析:对计算结果进行分析,可以得到各控制点的位移、应力等数据,以及桥梁的整体刚度、应力、变形等信息。
梁格法对于分析宽跨比较大的连续箱梁的荷载试验数据具有很大的优势,能够准确得到箱梁腹板的应力及桥面两侧的挠度数据。
综上所述,梁格法是一种非常有效的分析方法,可以模拟不规则结构的受力情况,在设计和分析桥梁上部结构时具有重要的应用价值。
梁格法在斜交宽空心板梁桥荷载试验中的应用
应变(με)
300
实测值
理论值
250
200
150
100
50
0
Y1
Y2
Y3
Y4
Y5
测点编号
图3 中载工况下满载应变实测值与理论值比较图
300
实测值
理论值
250
200
150
100
50
0
Y1
Y2
Y3
Y4
Y5
测点编号
图4 偏载工况下满载应变实测值与理论值比较图
应变(με)
挠度(mm)
5.0
4.5
4.0
3.5
基于斜交板的ቤተ መጻሕፍቲ ባይዱ力分布具特点,斜交桥网格划分原则 一般如下 :①斜交角小于 20°时,采用斜交网格 ;②桥 面较窄且斜交角较大时,梁格划分应平行于设计强度线 ; ③当桥台宽度大于跨度时,以受力方向进行划分。
二、工程实例 1. 工程概况 某桥上部结构采用 1×13m 普通钢筋砼简支现浇空 心板,斜交角 30°。桥面横向布置 :0.5m(防撞护栏) +9.5m(车行道)+0.5m(防撞护栏)=10.5m,主梁混 凝土强度为 C40,荷载等级为公路 -II 级。 2. 桥梁模型 (1)单梁模型 对该桥用单梁进行分析,得出该桥在设计荷载下的 弯矩包络图,可知在跨中位置弯矩最大,最大正弯矩为 2031.2kN.m。 (2)梁格模型 ①梁格截面划分如图 1 所示,梁格纵向杆件的中心轴 尽量与原整体截面中性轴一致,空间梁格杆系模型如图 2 所示。
J YAN JIU IAN SHE
技术应用
Liang ge fa zai xie jiao kuan kong xin ban liang qiao he zai shi yan zhong de ying yong
梁格法
梁格法
对于单箱单室或者双室的截面可以将顶底板均分,基本上中性轴是一致的。
对于单箱多室截面,建议参考《桥梁上部构造性能》相关部分的讲解。
一定要注意不论怎么划分要保证截面特性的一致性,抗弯惯性距是按照原来的中性轴来计算的。
箱梁在纵向弯曲时应符合平截面假定,而箱梁的纵向弯曲由各纵向单元的弯曲来模拟,因此各纵向单元顶底板的纵向划分位置应尽量使各单元截面的中性轴在同一水平面,并和原箱梁整体截面的中性轴在同一位置。
梁格法划分完的结果最好是“各单元截面的中性轴在同一水平面,并和原箱梁整体截面的中性轴在同一位置”,请问大家是怎么做到的,是cad中一遍一遍试,还是有自己的方法或经验,希望大家不啬赐教!
midas应该还做不到将每个截面划分梁格的中性轴和整体中性轴一样,都是通过移轴来实现的,不过midas划分截面貌似是保证在顺桥向,每个纵梁的各个截面的质心大致在一条直线上。
T梁梁格法 ppt课件
5、移动荷载 ⑴根据公路工程技术标准 的规定,计算车道的横向 布置位置,车道定义窗口 中的车轮间距输入后,程 序会将车道荷载除2后分 成两个车道加载计算。 ⑵车道荷载的分布,可以 采用车道单元和横向联系 梁两种方法。如果采用横 向联系梁,则当车道偏离 出横向联系梁范围时,无 法将车 原则上来说对于单箱多室箱梁的纵梁梁格划分,主要以试 算为主,但盲目的试算只会浪费时间,通常情况下对于单 箱单室,以对称面划分为两个纵梁,对于单项多室(大于 等于三室)的情况,因为翼缘对整体截面中性轴位置的影 响变小,因此可以以每个室的对称面作为划分位置,采用 一刀切的方式建立对称的中腹板纵梁和非对称的边腹板纵 梁。
7
01-T梁梁格法
注意定义截面偏心的设置(为保证结构的整体性,边横隔梁和边端虚横梁通常需要自 定义偏心点,其他各横梁大多采用中上偏心即可)
8
01-T梁梁格法
2、定义主梁、盖梁和桥墩混凝土的收缩徐变 ⑴MIDAS/Civil程序不仅提供混凝土的收缩徐变函数,而且还可以定义抗压强度随时间 变化的函数。 ⑵一般对于变截面梁,当采用程序中非数值型截面 (不含设计用数值型截面)时,可以 通过修改单元依存材料特性功能自动计算构件的理论厚度。
4
01-T梁梁格法
❖ T梁格理论要点
1、T梁计算前应先对有效宽度进行计算。 2、对于非密排的T梁,可取单个T梁为一个纵向梁格。若T梁未设横隔板则纵向弯曲由T
形截面承受,横向视为通过翼板连接的板条。一般来说,纵横方向上结构的部分刚度 可以假定为相似横截面的梁一样。 3、梁格网格的划分以最能反映上部结构的结构性能为好。没有跨中横隔板的横向梁格, 其间距可以任意选择,一般约取有效跨径的1/4~1/8;如有横隔板则必须在横隔板处 设横向梁格。
梁格法截面特性计算知识讲解
梁格法截面特性计算梁格法截面特性计算读书报告目录第一章梁格法简介 (1)1.1梁格法基本思想 (1)1.2梁格网格的划分 (1)1.2.1 纵梁的划分 (2)1.2.2 虚拟横梁的设置间距 (2)第二章梁格分析板式上部结构 (3)2.1 结构类型 (3)2.2 梁格网格 (3)2.3 截面特性计算 (4)2.3.1 惯性矩 (4)2.3.2 扭转 (4)第三章梁格法分析梁板式上部结构 (5)3.1 结构类型 (5)3.2 梁格网格 (5)3.3 截面特性计算 (6)3.3.1 纵向梁格截面特性 (6)3.3.2 横向梁格截面特性 (7)第四章梁格法分析分格式上部结构 (8)4.1 结构形式 (8)4.2 梁格网格 (8)4.3 截面特性计算 (9)4.3.1 纵向梁格截面特性 (9)4.3.2 横向梁格截面特性 (12)第五章箱型截面截面特性计算算例 (15)第一章梁格法简介1.1梁格法基本思想梁格法主要思路是将上部结构用一个等效梁格来模拟,如图1.1示,将分散在板式或箱梁每一段内弯曲刚度和抗扭刚度集中于最邻近的等效梁格内,实际结构的纵向刚度集中于纵向梁格内,而横向刚度则集中于横向梁格构件内。
从理论上讲,梁格必须满足一个等效原则:当原型实际结构和对应的等效梁格承受相同荷载时,两者的挠曲应是恒等的,而且在任一梁格内的弯矩、剪力和扭矩应等于该梁格所代表的实际结构的部分内力。
图1.1 (a)原型上部结构(b)等效梁格1.2梁格网格的划分采用梁格法对桥梁结构进行分析时,首先考虑的是如何对梁格单元的合理划分。
网格划分的枢密程度是保证比拟梁格与实际结构受力等效的必要条件之一。
合理的网格划分,不仅能准确反映结构的受力特征,还能提高工作效率。
1.2.1纵梁的划分纵梁的划分是梁格划分的关键,其划分原则有:1.纵梁划分后,每片纵梁的形心高度大概一致,也就是要保证箱梁截面在纵梁划分之后,每片纵梁的中性轴与箱梁整体截面的中性轴保持一致,这样才能使梁格模型与实际结构在纵向弯曲上等效。
空间梁格法一
优点
可以借助于电算手段直接计算结构内力 计算精度相对较高
斜交板
特点
靠近钝角处出现上拱弯矩 在钝角处出现较大的反力和剪力,在锐角角隅处出现较小的 反力,还可能出现翘起 承受扭转较大
网格划分原则
尽量与力的作用方向或结构的配筋方向一致 梁格间距参考正交板 当斜交角较小于20 当桥面较窄且斜交角较大(大于20) 当桥面较宽且斜交角较大(大于20)
空间梁格体系-梁板或梁结构
移动荷载
当中有车道单元和 横向联系梁两种分 布情况。 对于梁格模型,依 赖横向联系梁进行 内力的横向分部, 所以需要选择横向 联系梁,并指定最 有横梁作为横向联 系梁组。
不同车道种类的对比
箱梁处虚拟横梁 计算截面
虚拟横梁
翼板处的单片虚拟横梁的抗弯 惯性矩为I 惯性矩为 HY/nH 箱体处的单片横梁抗弯惯性矩 为IHX/nH 若有横隔板或横梁,则按T梁来 若有横隔板或横梁,则按 梁来 计算其真实刚度
模型例题
主梁类型:部分预应力A类构件 汽车荷载等级:公路二级 T梁混凝土等级:C50 盖梁、桥墩混凝土等级:C30 普通钢筋:HRB335(纵筋)、 R235(箍筋) 钢绞线:strand1860(低松弛) 波纹管内径:90mm 预应力钢筋与管道壁摩擦系数:0.2 管道每米局部偏差对摩擦的影响系 数:0.0015 1/m 锚具变形、钢筋回缩和接缝压缩值: 6mm(开始点)、6mm(结束点) 预应力张拉控制应力:1395 MPa 张拉方式:两端张拉
梁格法在箱梁结构中的实践
CATALOGUE 目录•引言•梁格法的基本原理•梁格法在箱梁结构中的实践应用•实践结果分析与评价•结论与展望梁格法简介基本概念梁格法自提出以来,经过数十年的发展和完善,已经成为桥梁工程领域一种重要的分析方法。
发展历程适用范围工程应用箱梁结构广泛应用于公路桥、铁路桥、城市立交桥等各类桥梁工程中。
结构特点箱梁结构由顶板、底板、腹板和横梁等构件组成,具有良好的承载能力和抗扭刚度。
面临挑战随着桥梁跨度增大和荷载作用复杂化,箱梁结构设计和施工面临更高的挑战,需要精确有效的分析方法作为支持。
箱梁结构的重要性梁格法在箱梁结构中的应用价值优化设计方案指导施工过程提高设计精度定义应用范围梁格法的基本概念梁格法的分析步骤1. 结构离散化2. 确定梁格体系的刚度矩阵3. 施加边界条件和荷载4. 求解线性方程组梁格法在结构设计中的优点与局限性优点简化计算:通过将复杂结构离散化为简单梁单元,大大简化了计算过程,提高了计算效率。
适用性广:梁格法适用于各种不同类型的结构和荷载条件,具有较强的通用性。
梁格法在结构设计中的优点与局限性梁格法在结构设计中的优点与局限性某大型桥梁工程某城市高架桥项目工程实例介绍1梁格法在箱梁设计中的具体应用23根据箱梁的结构形式和受力特点,合理划分梁格,使得每个梁格都能承受一定的荷载,并保证整体的稳定性。
梁格划分通过分析箱梁所承受的荷载类型、大小及分布情况,利用梁格法计算每个梁格的受力状态,为设计提供依据。
荷载计算根据梁格法的计算结果,对箱梁结构进行优化设计,如调整截面尺寸、改变材料类型等,以提高结构的承载能力和经济性。
结构优化实践过程中的关键点与注意事项精确建模合理选择参数考虑非线性因素结合实践经验03耐久性箱梁结构的性能表现01承载能力02刚度与变形梁格法在实践中的效果评估精度效率适用性与传统设计方法的对比分析方法特点精度对比设计效率有效性验证简化设计流程适用性广泛梁格法在箱梁结构实践中的总结参数敏感性复杂荷载处理困难精细化程度有限当前实践的不足之处精细化改进进一步完善梁格法的理论基础,提高其在局部细节和非线性效应方面的精细化程度,以更准确地模拟箱梁结构的实际行为。
梁格法在箱梁结构中的实践
结合人工智能和机器学习等智能化技术,可以实现箱梁结构的智能化 设计,提高设计效率和精度。
THANKS
谢谢的观看
动态响应分析
为了更好地模拟箱梁结构的动力性 能,梁格法需要深入研究动态响应 分析,包括地震、风载等外部激励 下的结构响应。
梁格法的技术进步
高性能计算技术
利用高性能计算技术,如并行计算和云计算,可以提高梁格法的 计算效率和精度。
智能化技术
结合人工智能和机器学习等智能化技术,可以实现梁格法的自动化 建模和分析,提高工作效率。
04
梁格法在箱梁结构中的实践效 果与评价
实践效果分析
提高了计算精度
梁格法能够更准确地模拟箱梁结构的 受力情况和变形,提高了计算精度。
适用于多种箱梁结构形式
梁格法适用于各种类型的箱梁结构, 包括单箱单室、多箱多室等。
方便进行结构优化设计
梁格法可以方便地调整网格大小和布 置,优化箱梁结构的设计。
实践效果评价
详细描述
针对某大型桥梁的加固改造,采用梁格法进行详细分析,通过增设横梁和纵梁,有效提高了箱梁的承 载能力和稳定性。改造后的桥梁经过实载测试,表现出良好的加固效果,满足了安全使用的要求。
案例三:某城市高架桥的施工监控
总结词
实时监控、确保施工安全
详细描述
在某城市高架桥施工过程中,采用梁格法进行施工监控,实时监测箱梁的应力、应变状态以及施工荷载情况。通 过及时调整施工方案和优化结构布局,确保了施工过程的安全顺利进行。同时,梁格法还为施工控制提供了可靠 的理论依据和技术支持。
箱梁结构由顶板、底板和腹板 组成,具有较好的整体性和刚 度。
箱梁结构的分析需要考虑结构 的几何形状、材料特性、边界 条件和载荷分布等因素。
梁格法在箱梁结构中的实践
案例二:某铁路桥梁工程的梁格法应用
总结词
简化建模、工程应用
详细描述
在某铁路桥梁工程中,梁格法被用于简化建模和实际工程应用。由于铁路桥梁通常较长,使用梁格法 可以大大简化模型,同时保持足够的精度。这种方法在铁路桥梁工程中得到了广泛应用,为设计、施 工和监测提供了重要的理论支持。
案例三:某大型跨海桥梁工程的梁格法实践
梁格法
将箱梁结构视为由多个梁格组成,每 个梁格由一组简化的弹性梁元模拟, 通过分析这些梁元的变形和内力来得 到结构的整体响应。
梁格法在箱梁结构分析中的实现方式
建立梁格模型 根据箱梁结构的实际尺寸和形状 ,将箱梁划分为多个梁格,并确 定每个梁格的位置和尺寸。
汇总结果 将各个梁格的内力和变形汇总, 得到箱梁结构的整体响应。
04
进行整体稳定性分析和 抗震设计,确保箱梁结 构的整体稳定性和抗震 性能。
箱梁结构中梁格法的优化设计
优化梁格布置
优化梁格截面设计
根据桥梁的跨度、荷载和地质条件等因素 ,合理布置梁格的位置和数量,以提高箱 梁结构的承载能力和稳定性。
根据受力分析结果,优化梁格截面的尺寸 、材料和连接方式等,以减小结构自重、 提高承载能力和耐久性。
局限性
梁格法对于一些细节结构的模拟可能不够精确,例如对于一 些细长的结构或具有较大变形的结构,需要采用更精细的方 法进行分析。此外,梁格法的计算量也相对较大,需要较高 的计算资源。
02
梁格法在箱梁结构设计中的应 用
箱梁结构的特点与要求
箱梁结构是一种常见的桥梁结构 形式,具有较大的承载能力和刚 度,能够满足各种复杂桥梁跨度
THANKS
谢谢您的观看
优化整体稳定性
优化抗震设计
桥梁博士梁格法建模
桥梁博士梁格法建模
梁格法(Lagrangian method)是一种常用的工程力学建模方法,用于描述和分析桥梁的力学行为。
该方法将桥梁系统抽象为一个多自由度的振动系统,并利用拉格朗日动力学原理建立桥梁的运动方程。
在桥梁的梁格法建模中,需要进行以下几个步骤:
1. 确定自由度:根据桥梁系统的几何形状和边界条件,确定桥梁系统的自由度。
一般来说,桥梁系统可以表示为位移的函数,包括水平位移、垂直位移和转角等。
2. 建立拉格朗日方程:根据拉格朗日动力学原理,建立桥梁系统的动力学方程。
该方程描述了桥梁系统在运动过程中的动力学行为。
具体而言,可以利用系统的动能和势能来构建拉格朗日函数,并通过对拉格朗日函数进行变分推导出系统的运动方程。
3. 考虑边界条件:根据桥梁的边界条件,对系统的运动方程进行修正。
边界条件包括支座条件、固定边界条件、荷载条件等。
通过对系统的边界条件进行施加,可以得到更加准确的桥梁运动方程。
4. 数值解法:对得到的桥梁运动方程进行求解。
在实际应用中,一般采用数值解法对桥梁系统的运动方程进行求解。
常用的数值求解方法包括有限元法、有限差分法和时步法等。
通过梁格法建模,可以对桥梁的运动特性、振动频率、受力分布等进行分析和评估。
这对于桥梁的设计、优化和检测具有重要意义,可以帮助工程师预测桥梁的结构响应和寿命,并制定相应的维护和修复方案。
梁格法
单元温度
温度梯度
梁截面温度
5.定义施工阶段
6.输入移动荷载数据
选择规范
定义车道
定义车辆
移动荷载工况
7.支座沉降
定义支座沉降组
定义支座沉降荷载工况
8.运行结构分析
9.查看分析结果
10.PSC设计
PSC设计参数确定
PSC设计参数
PSC设计材料
PSC设计截面位置
运行设计
查看设计结果
使用材料以及容许应力
长度> m ; 力>tonf
图4.单位体系设定
定义材料和截面特性
定义结构所使用的混凝土和钢束的材料特性。
模型/材料和截面特性/ 材料
类型>混凝土 ; 规范>JTG04(RC)
数据库>C50
名称(Strand1860) ; 类型>钢材; 规范>JTG04(S)
数据库>Strand1860
图5. 定义材料对话框
预应力混凝土连续T梁桥的分析与设计
(梁格法)
北京迈达斯技术有限公司
概要
梁格法是目前桥梁结构分析中应用的比较多的
在本例题中将介绍采用梁格法建立一般梁桥结构的分析模型的方法、施工阶段分析的步骤、横向刚度的设定以及查看结果的方法和PSC设计的方法。本例题中的桥梁模型如图1所示为一三跨的连续梁桥,每跨均为32m。
分析与设计步骤
预应力混凝土梁桥的分析与设计步骤如下。
1.定义材料和截面特性
材料
截面
定义时间依存性材料(收缩和徐变)
时间依存性材料连接
2.建立结构模型
建立结构模型
修改单元依存材料特性
3.输入PSC截面钢筋
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
梁格的几点认识:
1.它是一种将空间分析近似为平面干系分析的方法,精确程度可以满足工程需求。
2.适用范围:梁格法主要针对的是宽跨比较大的直线桥以及圆心角较大的曲线梁桥。
我个人的理解,只所以需要用梁格子体系来分析结构,就是因为原本当作干系构件的梁因为承受了不能忽视的扭矩以及横向弯曲作用。
如对于直线宽桥,活载的偏心布置所产生的扭矩不能简单的用偏载系数这一概念简化。
而对于曲线梁桥更是如此,首先恒载的不对称就会产生一部分扭矩,这种效应更使结构不能再用一根杆来进行分析计算。
要么在杆件上添加扭矩,要么就得使用梁格法以增加横向杆件数量了。
3.梁格原理:模拟梁格体系,使其受荷效应与原结构等效(不可能那么精确,只能说接近等效)
4.梁格需要注意的几个方面:
第一.关于梁格的划分,为保证荷载的正确传递,横向杆件的间距不宜超过纵向梁肋的间距。
也就是说纵向梁格的划分以横向梁格划分为标尺,而横向的梁格划分又得遵循划分后各个梁格的中性轴与原截面保持在同一水平高度处(这点很关键,主要是保证梁格纵向弯曲与原结构的等效性)。
对于箱梁而言,一般来说,横向梁格划分一个腹板一个梁格。
且假若能尽量满足划分梁格后的各个梁格质心与原箱梁腹板的中心重合将对预应力效应模拟的准确性很有帮助。
而纵向梁格每跨8到10个梁格可以基本满足精度要求。
第二.截面几何特性值的修正,(主要针对箱梁截面)因为划分梁格的截面几何特性相对原截面有较大偏差,需要对纵梁格的抗扭惯性矩,剪切面积以及横向梁格的抗弯惯性矩以及剪切面积进行修正,具体公式我参考的是《上部结构性能》一书上第五章的剪力-柔性梁格法的公式。
5.梁格法的不足:由于梁格法依照平截面假定,因此它考虑不了剪力滞后效应。
因此对于少横隔梁的结构假如需要计算其剪力滞效应的话可以使用空间有限元分析软件计算,midas是算不了的,ansys可以。
而且梁格法最后所得结果的准确性在很大程度上是于人对梁格的理解掌握能力成正比的,建议假若不需要使用梁格的时候,尽量不用。
比如圆心角大于30度的曲桥用midas的单梁模拟精度完全可以相信。
用梁格要分割箱梁,箱梁纵截面应该是可以用midas里面提供的PSC截面的,但是要选择分割后对应的形状,比如单箱双室箱梁按三个腹板分成三条纵梁,那么两边梁是τ(希腊字母tao),中间是工字形,划分时要通过试算使三个截面的形心轴高度与未划分前整个截面基本一致,为了加载在箱梁两边还可建两个虚纵梁(截面输很小使刚度小于实纵梁的千分一)
有横隔板处设置横向梁格,截面可按<桥梁工程>中比拟正交异性板中介绍的横隔板输入断面,在横隔板之间可多设几道横向梁,截面输成工字形但该工字中间的腹板可输个很小值(这是使截面的主要惯矩是顶底板绕它们的共同重心轴的惯矩)
梁格法建模注意事项
在梁桥中会经常会使用梁格法建立模型,因为不同的设计人员对横向联系的模拟(虚梁的设置)不尽相
同,所以分析结果会略有差异。
下面就一些注意事项供设计人员参考。
1. 将多室箱梁分割为梁格时,注意纵梁的中和轴位置应尽量一致。
2. 每跨内的虚拟的横向联系梁数量不应过少(划分为1.5m左右一个在精度上应能满足要求)。
3. 虚拟的横向联系梁之间尽量要设为铰接(可将纵梁之间的虚拟横梁分割为两个单元,将其中一个释放梁
端约束)。
4. 虚拟的横向联系梁的刚度可按一字或二字形矩形截面计算。
5. 虚拟的横向联系梁的重量应设为零(可在截面刚度调整系数中调整)。
6. 当虚拟的横向联系梁悬挑出边梁外时,应设置虚拟的边纵梁(为了准确地计算自振周期和分配荷载),
此时可将虚拟的边纵梁作为一个梁格进行划分。
7. 定义移动荷载的车道时,应尽量选择按“横向联系梁”方法分布移动荷载,此时应将所有的横向联系
梁定义为一个结构组,并在定义车道时选择该结构组。
8. 定义车道时最好定义两次车道,一次按横向偏载定义,一次按横向中间向两边定义。
定义移动荷载工
况时可定义偏载和居中两个工况(荷载组合中会自动找到包络结果)。
9. 定义支座时尽量遵循一排支座中只约束其中一个支座在X, Y方向的自由度的原则(否则温度荷载结果
会偏大)。
另外,多支座时一般可不约束旋转自由度。
10. 注意输入梁截面温度荷载时宽度B的取值为实际翼缘宽度(或腹板宽度之和)。
11. 弯桥时应注意支座的约束方向(设置节点局部坐标系)。
以上注意事项仅供参考。