《对数与对数运算》教案-公开课-优质课(人教A版必修一精品)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.1对数与对数运算
教学任务:
(1)通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;
(2)能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;
(3)通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养学生数形结合的思想方法,学会研究函数性质的方法.
教学重点:掌握对数函数的图象和性质.
教学难点:对数函数的定义,对数函数的图象和性质及应用.
教学过程:
一、引入课题
1.(知识方法准备)
○
1 学习指数函数时,对其性质研究了哪些内容,采取怎样的方法? 设计意图:结合指数函数,让学生熟知对于函数性质的研究内容,熟练研究函数性质的方法——借助图象研究性质.
○
2 对数的定义及其对底数的限制. 设计意图:为讲解对数函数时对底数的限制做准备.
2.教材引例
处理建议:在教学时,可以让学生利用计算器填写下表:
P t 21
5730log
=,生物死亡年数t 都有唯一的值与之对应,从而t 是P 的函数” .(进而引
入对数函数的概念)
一、新课教学
对数函数的概念
1.定义:函数0(log >=a x y a ,且)1≠a 叫做对数函数(logarithmic function ) 其中x 是自变量,函数的定义域是(0,+∞).
注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别.如:x y 2log 2=,5
log 5x y = 都不是对数函数,而只能称其为对数型函数. ○
2 对数函数对底数的限制:0(>a ,且)1≠a . 归纳小结,强化思想
本小节的目的要求是掌握对数函数的概念、图象和性质.在理解对数函数的定义的基础上,掌握对数函数的图象和性质是本小节的重点.