大数据学习基础知识点分享
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大数据需要的编程语言Java
java可以说是大数据最基础的编程语言,据老师这些年的经验,老师接触的很大一部分的大数据开发都是从Jave Web开发转岗过来的(当然也不是绝对,老甚至见过产品转岗大数据开发的,逆了个天)。、
一是因为大数据的本质无非就是海量数据的计算,查询与存储,后台开发很容易接触到大数据量存取的应用场景。
二就是java语言本事了,天然的优势,因为大数据的组件很多都是用java开发的像HDFS,Yarn,Hbase,MR,Zookeeper等等,想要深入学习,填上生产环境中踩到的各种坑,必须得先学会java然后去啃源码。
说到啃源码顺便说一句,开始的时候肯定是会很难,需要对组件本身和开发语言都有比较深入的理解,熟能生巧慢慢来,等你过了这个阶段,习惯了看源码解决
问题的时候你会发现源码真香。
Python和Shell
shell应该不用过多的介绍非常的常用,属于程序猿必备的通用技能。python 更多的是用在数据挖掘领域以及写一些复杂的且shell难以实现的日常脚本。分布式计算
什么是分布式计算?分布式计算研究的是如何把一个需要非常巨大的计算能力才能解决的问题分成许多小的部分,然后把这些部分分配给许多服务器进行处理,最后把这些计算结果综合起来得到最终的结果。
举个栗子,就像是组长把一个大项目拆分,让组员每个人开发一部分,最后将所有人代码merge,大项目完成。听起来好像很简单,但是真正参与过大项目开发的人一定知道中间涉及的内容可不少。比如这个大项目如何拆分?任务如何分配?每个人手头已有工作怎么办?每个人能力不一样怎么办?每个人开发进度不一样怎么办?开发过程中组员生病要请长假他手头的工作怎么办?指挥督促大家干活的组长请假了怎么办?最后代码合并过程出现问题怎么办?项目延期怎么办?项目最后黄了怎么办?
仔细想想上面的夺命十连问,其实每一条都是对应了分布式计算可能会出现的问题,具体怎么对应大家思考吧老师就不多说了,其实已经是非常明显了。也许有人觉得这些问题其实在多人开发的时候都不重要不需要特别去考虑怎么办,但是在分布式计算系统中不一样,每一个都是非常严重并且非常基础的问题,需要有很好的解决方案。
最后提一下,分布式计算目前流行的工具有:
离线工具Spark,MapReduce等实时工具Spark Streaming,Storm,Flink
等
分布式存储
传统的网络存储系统采用的是集中的存储服务器存放所有数据,单台存储服务器的io能力是有限的,这成为了系统性能的瓶颈,同时服务器的可靠性和安全性也不能满足需求,尤其是大规模的存储应用。分布式存储系统,是将数据分散存储在多台独立的设备上。采用的是可扩展的系统结构,利用多台存储服务器分担存储负荷,利用位置服务器定位存储信息,它不但提高了系统的可靠性、可用性和存取效率,还易于扩展。
主流的分布式数据库有很多hbase,mongoDB,GreenPlum,redis等等等等,没有孰好孰坏之分,只有合不合适,每个数据库的应用场景都不同,其实直接比较是没有意义的。