19.1.1变量与函数课件(公开课)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小结:函数的三种表示法及其优缺点
1.解析法 两个变量间的函数关系,有时可以用一个含有这两个变量及数学运算符 号的等式表示,这种表示法叫做解析法。解析法简单明了,能准确地反映整 个变化过程中自变量与函数的相依关系,但求对应值时,往往要经过比较复 杂的计算,而且在实际问题中,有的函数关系,不一定能用解析式表达出来。 2.列表法 把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系, 这种表示法叫做列表法。如平方根表、正弦函数表等。列表法一目了然, 表格中已有的自变量的每一个值,不需要计算就可以直接查出与它对应的 函数值,使用起来很方便,但列表法有局限性,因为列出的对应值是有限 的,而且在表格中也不容易看出自变量与函数之间的对应规律。 3.图象法 用图象表示函数关系的方法叫做图象法。图象法形象直观,通过函数的 图象,可以直接、形象地把函数关系表示出来,能够直观地研究函数的一些 性质,例如函数有没有最大值(或最小值)?最大(小)值是多少?函数值 是随自变量增大而增大,还是随自变量的增大而减小等等,函数图象是研究 函数性质的有力工具。但是,由函数图象观察只能得到近似的数量关系。 在解决问题时,我们常常综合地运用这三种表示法,来深入地 研究函数的性质。
练习
1.写出下列各问题中的关系式,并指出其中的常量与变量: (1)圆的周长C与半径r的关系式; (2)火车以90千米/时的速度行驶,它驶过的路程s(千米)和所 用时间t(时)的关系式; (3)n边形的内角和S与边数n的关系式.
1.解: (1)C=2r, (2) s=90t,
2、 是常量,r和C是变量. 90是常量,t和s是变量.
h(米)Hale Waihona Puke Baidu
11
3
t(分)
O 1 2 3 4 5 6 7 8 9 10 11 12
h(米)
37
11
3
t(分)
O 1 2 3 4 5 6 7 8 9 10 11 12
h(米)
45
37
11
3
t(分)
O 1 2 3 4 5 6 7 8 9 10 11 12
h(米)
45
37
11
3
t(分)
O 1 2 3 4 5 6 7 8 9 10 11 12
(3)S=(n-2) ×180,
2和180是常量, n和S是变量.
思考:
(1)购买单价为每本10元的书籍,付款总金额 y(元),
购买本数x(本).问:
变量是______ ,常量是______,_______是自变量, ______是因变量,______是_____的函数.函数关系
式为_____________.
1 3
2 12
3 27
5 75
10 300


在以上变化过程中存在着两个变量r和S,对于r每取一个值, S都有唯一的值与之对应. 我们就说r是自变量, S是因变量.也称S是r的函数.
概括
在某一变化过程中,可以取不同数值的量,叫做变量.
上面各个问题中,都出现了两个变量,它们互相依 赖,密切相关.
一般地,如果在一个变化过程中,有两个变量,例如 x和y, 对于x的每一个值, y都有唯一的值与之对应,我 们就说x是自变量, y是因变量, 此时也称y是x的函数. 函数的本质就是唯一确定的对应关系. 研究事物的运动变化,实际是从研究因变量与自 变量的对应关系入手的.
19.1.1 变量与函数
大千世界处在不停的运动变化之中,如何来研究 这些运动变化并寻找规律呢?
数学上常用变量与函数来 刻画各种运动变化.
先看什么叫变量?
(1) 你坐过摩
天轮吗?你 坐在摩天轮 上时,随着时 间t的变化,你 离开地面的 高度h是如何 变化的?
h(米)
3
t(分)
O 1 2 3 4 5 6 7 8 9 10 11 12
相应的利率,下表是2006年8月中国工商银行 为“整存整取”的存款方式规定的年利率:
存期x 利率y() 三月 1.80 六月 2.25 一年 2.52 二年 3.06 三年 3.69 五年 4.14
观察上表,说说随着存期x的增长,相应的年利率 y是如何变化的. 在以上变化过程中存在着两个变量x和y,对于x每 取一个值, y都有唯一的值与之对应. 我们就说x是自变量, y是因变量.也称y是x的函数.
因变量与自变量的对应关系又叫函数关系.
表示函数关系的方法通常有三种:
(1) 解析法,如问题3中的S=πr² ,这些表达式称为 函数的关系式. (2) 列表法,如问题2中的利率表,问题3中的波长与频 率关系表.
(3) 图象法,如问题1中的气温曲线.
在问题的研究过程中,还有一种量,它的取值始终保 持不变,我们称之为常量.如问题3中的π等 .
(2)半径为R的球, 体积为V,则V与R的函数关系 式为 V= 4 R³ ,自变量是_____, ____是_____ 3 的函数,常量是______.
h(米)
45
37
11
3
t(分)
O 1 2 3 4 5 6 7 8 9 10 11 12
h(米)
45
37
11
3
t(分)
O 1 2 3 4 5 6 7 8 9 10 11 12
下图反映了旋转时间t(分)与摩天轮上一点 的高度h(米)之间的关系。
根据上 图填表
t/分 h/米
0
3
1
11
2
37
3
45
4
37
第十九章
一次函数
世界是不断变化发展的, 生活中也充满着许许多多 变化的量,而这些变化的 量之间往往存在着这样或 那样的关系,请看
汽车行驶的路程随行驶的时间而变化
气温随海拔而变化
行星在宇宙中的位置随时间而变化
圆的面积随着圆的半径而变化
为了更深刻地认识千变 万化的世界,在这一章里我 们将学习有关一种量随另一 种量变化的一些基本知识, 其中包括如何用式子和图、 表来描述、刻画这种变化的 内容.
圆的面积随着半径的增大而增大.如果用r表示圆的 半径,S表示圆的面积则S与r之间满足下列关系: r² S=____________ . 利用这个关系式,试求出半径为1 cm、2 cm、3 cm、5 cm、 10 cm时圆的面积,并将结果填入下表:(≈3)
问题3
半径r(cm) 圆面积S(cm² )
这张图是怎样 来展示这天各时刻 的温度和刻画这天 的气温变化规律的?
4
6
8
10
12
14
16
18
20
22
时间 24 t(时)
-2
-4
在以上变化过程中存在着两个变量t和T,对于时间t每 取一个值,温度T都有唯一的值与之对应.
我们就说t是自变量,T是因变量.也称T是t的函数.
问题2 银行对各种不同的存款方式都规定了
5
11
· · · · · · · · · · · ·
汽车行驶的路程会随着行驶时间的变化而变化
(2) 一辆汽车以60千米/时的速度匀速行驶,行使的 路程S(千米)与行驶的时间t(时)之间有怎样的关系?
t(时间) 1
2 120
3 180
4 240
5
6
… …
s(路程)
60
300 360
S = 60t
刻画摩天轮转动过程的量是时间t和高度h,高度h 随着时间t的变化而变化,它们都会取不同的数值. 刻画汽车运动变化的量是路程S和时间t,路程S随 着时间t的变化而变化,它们都会取不同的数值.
以上各个问题中都出现了可以取不同数值的量.
像这样在某一变化过程中,可以取不同数值的量, 叫做变量.
什么叫函数呢?
问题1
这张图 告诉我们 温度 哪些信息 ? 8 T(C)
6 4 2 0 2
下图是某地一天的气温变化图,看图回答: ①这天的2时30分、9时和14时的气温分别为少?任 意给出这天中的某一时刻,说出这一时刻的气温. ②这一天中,最高气温是多少?最低气温是多少? ③这一天中,什么时段的气温在逐渐升高?什么时 段的气温在逐渐降低?
相关文档
最新文档