植物的光合作用(PPT)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、光合色素化学结构与性质 ⑴叶绿素(chlorophyll) 叶绿素不溶于水,但能溶于酒精、丙酮和石油醚等有 机溶剂。其化学组成如下:
chla: C55H72O5N4Mg chlb: C55H70O6N4Mg
叶绿素是叶绿酸的酯。叶绿酸是双羧酸,其羧基中的 羟基分别被甲醇和叶绿醇所酯化。所以其分子式为:
基粒类囊体 (grana thylakoid) 基质类囊体 (stroma thylakoid)下一页
外膜
内膜 基质 基粒
㈡叶绿体的成分 1、 水分(75%) 2 、 蛋白质(30~45%)—催化剂 3 、脂类(20~40%)—膜成分 4 、色素(8%)—与蛋白质结合,电子传递 5 、无机盐(10%) 6 、储藏物质(如淀粉等,10~20%) 7 、NAD+、NADP+、醌(如质体醌),起传递氢原
第一节 叶绿体和叶绿体色素
I一、叶绿体(Chloroplast) ㈠叶绿体的结构:
椭圆形,一般直径为3~6um,厚为2~3um。每平方 毫米的蓖麻叶就含3~5百万个叶绿体。 1、叶绿体膜—选择性屏障,控制物质进出。 2 、基质—CO2的固定,淀粉的合成和储藏(含酶类) 3 、基粒—光能-化学能(光合色素) 4 、嗜锇滴—基质中与锇酸容易结合的颗粒(醌类) 5 、类囊体—光合作用能量转换(又称光合膜)
叶绿醇则以酯键与在 第Ⅳ吡珞环侧键上的 丙酸结合
庞大的共轭体系,起着吸收 光能,传递电子,以诱导共 振的方式传递能量,但不参 与H的传递或氧化还原
H+,Cu2+可取代Mg
图3-3 叶绿素a的结构式
返回
⑵胡萝卜素和叶黄素:四萜类、有α- 、β-、γ- 三种异构 体。不溶于水,但能溶于有机溶剂。
①胡萝卜素:
chla: C32H30ON4Mg
COOCH3 COOC20H39
COOCH3 chlb: C32H28O2N4Mg COOC20H39 下一页
看下图
极 性 头 部
疏 水 尾 部
叶绿素b以-CHO
代替-CH3
CH3
4个吡咯环和4个甲烯基
连成一个大环—卟啉环
镁原子居卟啉环的中央
1个含羰基和羧基的副 环(同素环Ⅴ),羧 基以酯键和甲醇结合
是一不饱和的碳氢化合物,分子式为C40H56。它的两头 具有一个对称排列的紫罗兰酮环,它们中间以共轭双键
(4个异戊二烯)相联接。
②叶黄素由胡萝卜素衍生而来,分子式为C40H56O2,是 个醇类物质,它在叶绿体的结构中与脂类物质相结合。
⑶藻胆素
藻类进行光合作用的主要色素,不溶于有机溶剂,溶于
水。常与蛋白质结合为藻胆蛋白(藻红蛋白和藻蓝蛋 白)。
E2
第二单线态
E1
第一单线态
第一三线态




E0
图3-10 色素分子吸收光子后能量转变
叶绿素b 叶绿素a
图3-7 叶绿素a和叶绿素b在乙醇溶液中的吸收光谱
α-胡萝卜素 叶黄素
λ/nm
图3-8 α-胡萝卜素和叶黄素的吸收光谱 返回
⑶作用光谱
指在能量相同而波长不同的光下,测定其光合强 度所得的变化曲线。
作用光谱与叶绿素a的吸收光谱基本一致,说明光合作用吸 收的光一般是由叶绿素a吸收的,其它色素吸收的光都传递给叶 绿素a,然后引起光化学反应。
植物的光合作用
概述
一、自养植物和异养植物
1、异养植物(Heterophyte)
2、自养植物(Autophyte)
二、碳素同化作用(Carbon assimilation)
1、光合作用(Photosynthesis)

CO2 +H2O
(CH2O ) + O2
叶绿体
什么是光合作用?
绿色植物在光下,把二氧化碳和水转化 为糖,并释放出氧气的过程。
子或电子的作用。
二、光合色素
1、分类
叶绿素a:蓝绿色
1、叶绿素 叶绿素b:黄绿色
胡萝卜素:橙黄色
光合色素 2 、类胡萝卜素 叶黄素: 黄色
3 、藻胆素 藻蓝素
藻红素
叶绿素:类胡萝卜素=3:1 所以叶片一般呈绿色 叶绿素a:叶绿素b=3:1 叶黄素:胡萝卜素=2:1
解释:秋后或衰老的叶片多呈黄色,秋后枫树叶子呈红色
两个最强烈的吸收区,一个是波长为640~660的红 光部分,另一个是430~450的蓝紫光部分。此外,在光 谱的橙光,黄光和绿光部分只有不明显的吸收带,其 中尤以对绿光的吸收最少,所以叶绿素的溶液呈绿色。
chla和chlb的吸收光谱很相似,但略有不同。 ②类胡萝卜素的的吸收光谱 最大吸收在蓝紫光部分,不吸收红光等波长的光。
光速 波----长----
阿伏伽德罗常数 普朗克常数
上式表明:光子的能量与波长成反比。
⑵吸收光谱
太阳光谱
10 390
770
100000nm
紫外光 可见光 红外光
390 430 470 500 560 600 650 700
①叶绿素的吸收光谱 叶绿素吸收光的能力很强,如果把叶绿素溶液放在
光源和分光镜之间,就可以看到有些波长的光线被吸 收了。在光谱中就出现了暗带,这种光谱叫吸收光谱。
⑷荧光现象和磷光现象
✓ 荧光现象:叶绿素溶液在透射光下呈绿色,而在反 射光下呈红色的现象。10-8~10-9秒(寿命短)
✓ 磷光现象:叶绿素除了在照光时能辐射出荧光外,当去掉光源 后,还能继续辐射出极微弱的红光(用精密仪器可测知),这个现 象叫~。 10-2秒(寿命长)
这两种现象说明叶绿素能被光激发,而被光激发是将光能转变为 化学能的第一步。
厂房 叶绿体
动力 光能
原料 二氧化碳和水
叶绿体:CO2+H2O
产物 有机物和氧
光能 叶绿体
(CH2O)
+O2
2、细菌光合作用 (Bacterial photosynthesis) 光、叶绿素
CO2 + H2S
CH2O + H2O+S
3、化能合成作用(Chemosynthesis) 化能合成细菌
三、光合作用的重要性 1、有机物质的重要来源 2、把光能转化成化学能 3、大气中氧气的重要来源
wenku.baidu.com-胡萝卜素
叶黄素
图3-4 β-胡萝卜素和叶黄素结构式
3、光合色素的光学特性
⑴辐射能量
光波是一种电磁波,对光合作用有效的可见
光的波长是400~700nm之间。光同时又是运
动着的粒子流,这些粒子称为光子,或光量
子。光子携带的能量和光的波长的关系如下:
E=N h c/λ
E=(6.02×1023)×(6.6262×10-34)×频率=( ) ×
相关文档
最新文档