直角三角形斜边中线定理
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
此课件下载可自行编辑修改,此课件供参考! 部分内容来源于网络,如有侵权请与我联系删除!
∵BE中点F ∴∠ABD=∠DBC=∠BDF
∠DFC=∠ABC ∵∠ABC=∠C ∴∠DFC=∠C ∴DF=DC ∴DF=1/2BE ∴CD=1/2BE
如图△ABC中,∠B=2∠C,AH为高,M是BC边的中点. 求证:AB=2HM.
取AC中点D,连HD,MD ∴MD∥AB,MD=1/2AB HD=1/2AC ∴∠C=∠DHM ∴∠B=∠ADH ∠CAB=∠CDM ∴∠HDM=∠C=∠DHM ∴DM=HM ∴AB=2HM
2
延长CD至点E 连接EA、EB
如图,在△ABC中,D是BC上的点,AD=AB,点F
是BD的中点,点E是AC上一点,且AE=EF,AC=6.
求EF的ห้องสมุดไป่ตู้.
∵AF⊥BC,AE=EF ∴∠EAF=∠EFA,∠C=90°∠EFA
∠EFC=90°-∠EFA ∴∠C=∠EFC,EF=EC ∴E为AC中点,AC=6,EF=3
如图,在△ABC中,AD是高,CE是中线,DC=BE, DF⊥CE,F为垂足. 求证:(1)F是CE的中点;(2)∠B=2∠BCE.
∵DE=1/2AB=AE=BE=CD ∵DF⊥CE ∴F为BC中点
ED=BE ∴∠B=∠EDB=2∠BCE
角平分线+斜边中线
如图,在△ABC中,AB=AC ,BD平分∠ABC,BD 与AC交于点D,DE⊥BD,DE与BC交于点E,猜想并 证明BE与CD的数量关系.
中 点 的 辅 助 倍长中线 线
三线合一
中位线定理 直角三角形斜边中线定理
直角三角形斜边中线的定义
直角三角形斜边中点和直角顶点的连线 叫做直角三角形斜边中线
观察并猜想CD与AB的关系
数量关系 CD 1 AB 2
直角三角形斜边上的中线等于斜边的一半
定理的证明
在△ABC中, ∠ACB=90°,D为AB中点,连接CD 求证:CD 1 AB