1#及3#承台钢板桩围堰计算

1#及3#承台钢板桩围堰计算
1#及3#承台钢板桩围堰计算

阿克苏纺织大桥

1、3#墩承台基坑支护钢板桩方案计算书

阿克苏青建路桥工程有限公司

二〇一六年八月

1、3#主墩钢板桩方案计算书

一、概述

纺织大桥主桥1、3号承台尺寸11.9×7.9×3m ,混凝土方量达282m3,也属大体积混凝土。

纺织大桥主桥1#~3#承台,承台底处于水位线以下(地下水位埋深约5.4m ),同时1#墩靠近铁路线,为了保证铁路路基的稳定,施工时采用钢板桩围堰进行支护,为保证支护的安全,对钢板桩围堰支护的强度与稳定进行了验算。

二、2#墩钢板桩围堰计算

承台顶标高为1108.84m ,地面标高约为1109.84m ,根据地质资料地下水位约为1104.6,拟采用钢板桩围护方案进行承台施工。

钢板桩选用拉森Ⅳ钢板桩;围囹选用2I40b 型组合截面,横撑、角撑选用φ500*8mm 钢管。

计算时按原地面标高为钢板桩围堰的顶标高。支护的最不利工况为开挖至基坑底,取此这种工况对结构进行验算。

结构所受的侧面压力为土压力,由于地下水处于承台底,为防止水位变化,进行50cm 砼封底,为计算方便,计算土压力不再计算静水压水(处于基坑以下,两侧平衡)。

根据钢板桩入土的深度,按单锚浅埋板桩计算,假定上端为简支,下端为自由支承。这种板桩相当于单跨简支梁,作用在桩后为主动土压力,作用在桩前为被动土压力,

根据地质报告,采用土力学库伦土压力理论公式进行。

各土层的物理参数根据经验取值如下:填筑土:r=18KN/m3, φ=15°

59.0)245(tan 2=-=?οa K ;粉砂:r=19KN/m3, φ=20°49.0)245(tan 2=-=?

οa K ,

04.2)245(tan 2=+=?οKp ;细砂:r=19KN/m3, φ=25°41.0)245(tan 2=-=?

οa K ,46.2)2

45(tan 2=+=?

οKp 。

将上述数据带入公式计算得。

填筑土底主动土压力:18*0.7*0.59=7.4KN/m2

粉砂层顶主动土压力:18*0.7*0.49=6.2KN/m2

基坑底处主动土压力:(18*0.7+19*3.95)*0.49=42.9KN/m2

粉砂层地下水位处主动土压力:(18*0.7+19*4.5)*0.49=48.1KN/m2

粉砂层底主动土压力:(18*0.7+19*4.5+9*1.4)*0.49=54.2KN/m2

细砂层顶主动土压力:(18*0.7+19*4.5+9*1.4)*0.41=45.4KN/m2

细砂层底桩底主动土压力:(18*0.7+19*4.5+9*1.4+9*2.3)*0.41=53.9KN/m2

基坑内粉砂水位处被动土压力:19*0.55*2.04=21.3 KN/m2

基坑内粉砂层底被动土压力:(19*0.55+9*1.4)*2.04=47.0KN/m2

基坑内细砂层顶被动土压力:(19*0.55+9*1.4)*2.46=56.7KN/m2

基坑内细砂层底即桩底被动土压力:(19*0.55+9*1.4+9*2.3)*2.46=107.6KN/m2

1、钢板桩计算

分析钢板桩的受力状态可知,钢板桩最不利受力是开挖至基坑底时,取此工况对结构进行验算。

取1m宽钢板桩进行分析,受力情况建模、弯矩图及支反力图如下:

计算可得,左侧支座反力为74.3KN ,最大弯矩为196.6KN 。 ⑴抗弯检算:

(满足要求)

MPa MPa W M x 215][9.91203700005.1106.1966

max =<=??==σγσ 1.3 结论

选用的钢板桩满足施工要求。 2、围囹计算

2.1 围囹及支撑内力计算 围囹及支撑结构如下:

采用MIDAS civil 2006建模计算如下:

围囹弯矩图、剪力图、轴力图及变形图如下:

⑴围囹长边最大弯矩为118.6KN.m,最大轴力为182.3KN,最大剪力为168.6KN;围囹短边最大弯矩为89.5N.m,最大轴力为176.6KN,最大剪力为146.3KN。

⑵横撑杆受轴力为320.7KN,角撑受轴力327.8KN。

2.2围囹及支撑检算

2.2.1围囹检算

围囹四周为2I40b工字钢:

a 、正应力检算

[]Mpa 215Mpa 2.592

11400001.0511860000029410182300A N m ax σγσχ≤=??+?=+=

x W M b 、抗剪检算 (满足要求)MPa MPa It QS 125][7.19 5

.1222102282666050102.16863=<=???????==ττ

C 、挠度

经检算,短边挠度较大,为2mm 。

挠度允许值△=3700/400=9mm ,故挠度满足要求。 2.2.2、内撑检算

中间撑杆为φ500*8mm ,所受轴力为320.7KN 自由长度l x =10m 5.5797

.17310000

===

x x x r l λ 查表得:82.0=? 故得:(满足要求)MPa MPa A N 2156.3112365

82.0107.3203

<=??=? 2.2.3、角撑检算

中间撑杆为φ500*8mm ,所受轴力为327.8KN 自由长度l x =460cm 212

.2194600===

x x x r l λ 查表得:967.0=? 故得:

(满足要求)MPa MPa A N 2154.2712365

967.0108.3273

<=??=? 2.2.4、结论

围囹及支撑结构满足施工需要。

水中承台钢板桩围堰计算书

新建铁路太原至中卫(银川)线重点控制工程第施工-Ⅱ标段永宁黄河特大桥 水中承台钢板桩围堰方案 编制: 受控状态: 复核: 审核: 批准: 有效状态: 中铁四局集团有限公司太中银铁路工程指挥部 二00六年十月十日

水中承台钢板桩围堰方案 一、工程概况 太中银铁路东自太原枢纽的榆次站引出,经陕西的太原、晋中、吕梁,跨黄河入陕西省榆林市,西进入宁夏自治区吴忠市,在包兰铁路黄羊湾站接轨至中卫;同时修建定边至银川的联络线。正线长约752km,联络线长约192km。 永宁黄河特大桥为全线重点控制工程的两桥一隧之一。永宁黄河桥中心里程LDK672+962.76,孔跨布置为(2-32m)+(4-24m)+(38-32m)单线简支T梁+(18-48m)单线简支箱梁+(13-96m)简支钢桁结合梁+(5-48m)单线简支箱梁+(4-32m)单线简支T梁,桥长3942.08m。 桥址位于银川平原中部,横跨黄河,河面宽约800米,最大水深5.7米,流速2.0米/秒,设计水位1111.68米, 最高通航水位1111.55米, 测时水位1110.09米;63#墩--70#墩处在河中,其中63#墩、67#墩--70#墩处在河中,64#墩--66#墩处在河中的冲积漫滩上,地层多为巨厚的粉、细砂层;承台尺寸均为14.6*14.6*6.5米, 底标高均为1099.06米, 每个承台下设16根φ1.5米钻孔桩,基础混凝土均为C30,桥址地质柱状图如下:

二、钢板桩围堰方案综述 综合考虑河中水文特点及地质情况,从节约成本出发,承台基坑施工拟采用钢板桩围堰方案。

承台平面尺寸为14.6m×14.6m,钢围堰平面尺寸设计为16.8m×16.8m。 方案一:采用2根15米宽0.4m的ISP-Ⅳ钢板桩接长至30m,围堰完成一般冲刷及局部冲刷后,钢板桩埋入砂层6米,未满足钢板桩固结所需求的入土深度,围堰外侧设30根φ800×10mm、30m长钢管桩用于稳定钢板桩围堰,防止其倾覆。 方案二:主要考虑钢板桩较长无法全部打入砂层中时,采用2根12米钢板桩接长至24m,围堰完成一般冲刷及局部冲刷后,河床面至钢板桩围堰底,采用抛填袋装碎石埋没钢板桩围堰,抛填高度为6米,围堰外侧设30根φ800×10mm、30m长钢管桩用于稳定钢板桩围堰,防止其倾覆。 承台底至水面钢板桩长12.49m,为保证抽水后钢板桩安全,基坑支撑的施工与基坑内水位的下降按“先支撑后降水,分层支撑分层降水”的原则进行,结合实际,共设五层支撑围囹,顶层采用2I40a槽钢制成,其余每层围囹采用2I45c工字钢制成,每层围囹间隔2.5m。每层围囹内侧采用8根φ600×10mm钢管斜支撑,钢管长分别为9.5m,4.75m。 钢围堰及外侧支撑钢管平面布置图如下:

钢板桩围堰设计计算书

钢板桩围堰设计计算书 1 工程概况 本方案陆地承台基坑开挖深度在3.0-5.0米之间,基坑开挖支护结构受力计算选择基坑最深、地质条件最差的最不利工况条件下进行受力计算。 本线路沿线地层以冲积、洪积、海积及海陆交互相沉积的粘性土、粉土、各类砂、软土为主,局部夹淤泥。 土层分层计算土压力,粘性土和粉土采用总应力法,即水土合算,强度指标采用快剪试验指标;对中、粗砂、碎石土,则应采用水土分算。 承台开挖高程范围内主要为人工填土、黏土、粉土,局部夹有淤泥质黏土,各土层已知条件:(1)人工填土:内摩擦角7?=?,粘聚力8kPa c =;(2)粘土:内摩擦角14?=?,粘聚力25kPa c =;(3)粉土:内摩擦角22?=?,粘聚力12kPa c =;(4)砂土:内摩擦角32?=?,粘聚力0kPa c =。土的天然重度γ取3 19kN/m 。非承压地下水位在地面下0.2~5.5处(承压水位不明)。 2 钢板桩围堰支撑结构受力计算 2.1钢板桩围堰 钢板桩围堰基坑开挖最大深度为5.0米,此类基坑承台最大高度为4.0米,设一道内支撑位于基坑底面以上3米,计算钢板桩围堰受力情况。 结合现场现有材料,拟采用WRU12a 钢板桩,其技术指标为:

单根钢板桩宽B=600mm,高H=360mm,厚t=9mm,每米截面积A=147.3cm2,单根钢板桩每米的重量69.5kg,每延米墙身每米的重量115.8kg,每延米墙身钢板桩惯性矩Ix=22213cm4,每延米的截面模量(抵抗矩)Wx=1234cm3,取钢板桩的允许拉应力σ=140Mpa,允许剪应力τ=80 Mpa。钢板桩长12m。由于钢板桩刚度较小,需加强内支撑。拟设置一道水平钢支撑,在距承台底面3.0m处设置,不设竖向支撑。水平钢支撑采用I40b型工字钢,沿钢板桩内壁设置长方形围檩,并在四角设置加强斜撑。 考虑施工堆载,假设基坑顶部(地面)作用有无限均布荷载q1=10kN/m2;在桩顶平台距离钢板桩桩顶2.0m处的坑外作用有宽度为0.6m的局部荷载(汽车荷载及其它荷载总和)q2=80kN/m2。 2.2计算作用于板桩上的土压力强度 依据《建筑基坑支护技术规程》(JGJ 120—99)第3.4~3.5节,计算土压力(水 平荷载及水平抗力)分布。土压力由四部 分组成:(1) 桩顶平台以下土自重引起; (2) 局部荷载(汽车荷载)q2=80kN/m2 引起;(3) 均布荷载q1=10kN/m2引起。 对人工填土、黏土及粉土地层,采 用水土和算法进行计算,在桩顶下2.0m 处设置一道内支撑,计算可得土压力分 布如右图所示。

30+45+30m预应力连续梁计算书

30+45+30米连续梁计算书 一、预应力钢筋砼上部结构纵向计算书 (一)工程概况: 本计算书是针对标段中的30+45+30米的预应力混凝土连续梁桥进行。桥宽为9.5m,采用单箱单室,单侧翼板长2.5米;梁高为1.6~2.3米,梁底按二次抛物线型变化。 箱梁腹板采用斜腹板,腹板的厚度随着剪力的增大而从跨中向支点逐渐加大,箱梁边腹板厚度为50~70cm。箱梁顶板厚22cm。为了满足支座布置及承受支点反力的需要,底板的厚度随着负弯矩的增大而逐渐从跨中向支点逐渐加大,厚度为22~35cm。其中跨跨中断面形式见图1.1,支承横梁边的截面形式见图1.2。结构支承形式见图1.3。主梁设纵向预应力。钢束采用?j15.24低松弛预应力钢绞线,标准强度为1860MPa,弹性模量为1.9X105 MPa,公称面积为140mm2。预应力钢束采用真空吸浆工艺,管道采用与其配套的镀锌金属波纹管。纵向钢束采用大吨位锚。钢束为19?s15.24的钢绞线,均为两端张拉,张拉控制应力为1339MPa。 图1.1 中跨跨中截面形式

图1.2 横梁边截面形式 图1.3 结构支承示意图 (二)设计荷载 结构重要性系数:1.0 设计荷载:桥宽9.5米,车道数为2,城-A汽车荷载。 人群荷载:没有人行道,所以未考虑人群荷载。 设计风载:按平均风压1000pa计, 地震荷载:按基本地震烈度7度设防, 温度变化:结构按整体温升200C,整体温降200C计,桥面板升温140C,降温70C。基础沉降:桩基础按下沉5mm计算组合。 其他荷载: (三)主要计算参数 材料:C50砼; 预应力钢束:高强度低松弛钢绞线,抗拉标准强度fpk=1860MPa,抗拉设计强度fpd=1260MPa,抗压设计强度fpd=390Mpa。

水中钢板桩围堰施工方案

一、背景资料 Q1%=4659m /s,H1%=5.004m,V1%=2.20m/s.该河道为Ⅲ级通航河道,线路法线与水流夹角为9.8°。通航净高为12m,净宽为120m,桥址处最高通航水位4.744m.该桥墩位于河道之中,墩位处水深9m多,桩径为2.3m,每个墩12根桩,桩间距4.6m,桩长65.5m.承台尺寸12.90m×17.5m×(5m+3m加台)。 地质资料:由上至下依次为淤泥质粉砂(9.553m)、淤泥质黏土(7.7m)、粗砂(6.2m)、全风化岩带(32.7m)、强风化岩带(6.0m)、弱分化岩带(10.3m)。 二、施工方案 1、方案比选备选方案主要有两种:钢套箱方案;钢板桩围堰方案。经比较,钢套箱方案钢材投入多、回收率低,下沉时设备及人员投入多,工序复杂;钢板桩围堰方案能够迅速展开施工,速度快,周期短,且支护材料可回收利用,经济性较钢套箱方案好,只是必须加强止水措施,所以选用钢板桩围堰方案。 2、总体方案大桥主墩深水基础采用钢板桩围堰进行支护施工,钢板桩采用拉森IV型钢板桩,长18m,钢板桩围堰范围15.9m×20.5m,比承台周边尺寸大1.5m.钢板桩周圈咬合紧密,有止水措施。围堰内侧四周圈采用双层工钢分上、中、下三层以围檩形式支护,顶层采用2I40工字钢,底下两层采用2I50 工字钢,中间纵向支承采用外径300mm壁厚10mm圆钢管,按一定间距布置,四角采用工字钢2I30斜撑。为增强工钢围檩抗弯强度,在每根钢管两端用2I30 型工钢作为斜撑加强。承台底面位于河床以上,围堰基底先用片石回填50cm,然后回填砂找平,基底采用C30混凝土封底,封底厚度50cm.抽水采用4台大功率抽水机,分层抽水,分层支护,周圈50cm以内设汇水渠、积水坑。承台施工分三次浇筑,按大体积砼考虑,钢板桩围堰内支撑同样分三次拆除。钢板桩施工采用一艘25t浮吊实施插打及拔除。 三、设计计算土的物理参数 1、根据钢板桩允许抵抗弯矩,计算板桩悬臂部分的最大允许跨度。 2、计算板桩墙上水土压力强度等于零的点离挖土面距离y,在y处板桩墙前的被动土压力等于板桩墙后的主动土压力与水压力之和。即: 钢板桩围堰施工方法

津秦钢板桩围堰计算单

钢板桩围堰计算书 一、基本参数 1、工程概况 津秦铁路下坞蓟运河特大桥工程地处平原,地表土层主要为淤泥质黏土,因此,开挖深度超过5m的拟采用钢板桩施工,根据承台尺寸及埋深,分类进行计算,分类表1。 表1 钢板桩及内支撑分类表 注1:类型1适用于494#、495#。 注2:倒用的支撑均按照最不利情况设计。 注3:按照计算开挖深度计算钢板桩入土深度,选择钢板桩,按照支撑类型设计内支撑形式。 2、材料选择 (1)、钢板桩采用拉森SKSP-Ⅳ钢板桩围堰,每米钢板桩截面特性:W=2043cm3,A=247.85cm2

(2)、内支撑采用2HM588、2I40a 、2[28a 型钢,Φ600×8钢管。 (3)、土层指标为: 根据地址报告,主要地表土层性质如表2。 二、钢板桩长度计算 1、计算指标 根据土压力计算理论,结合本工程实际情况,土压力采取水土合算,不考虑粘聚力提高内摩擦角的方法。参考相关文献,计算采用的指标为3/18m kN =γ, ?=15?,0=c 。 589.0)245(tan 2=-=? a K 698.1)2 45(tan 2=+=? p K 按照单锚深埋计算,被动土压力修正系数K =1.4。 钢板桩顶部悬臂端最大允许跨度: cm K W h a 284589 .010182043 102006][63353 =?????==γσ。 2、计算图示 本计算按照单锚深埋计算。 考虑距承台边2m 外有4m 宽施工荷载15kN/m 2,计算按照45°扩散。 绘制土压力分布图,如图1。

图1 板桩土压力分布图 3、分类一:埋深5.5m 取h =5.5m ,h B =1.0m 。 kPa hK e a Ch 31.58589.05.518=??==γ kPa qK e a Cq 8.8589.015=?== kPa e e P Cq Ch C 11.678.831.58=+=+= m K KK P y a p C 0.2) 589.0698.14.1(1811 .67)(=-??=-= γ 按简支梁计算等值梁的两支点反力(R B 和P O )及弯矩,计算结果如图2和图3:

30m箱梁模板计算书

中铁三局五公司右平项目 30m箱梁 模板计算书 山西昌宇工程设备制造有限公司 技术部 2015年11月21日

30米箱梁模计算书 本工程所用30m箱梁,梁底模板直接采用混凝土台座,不再另行配置底模板。 1.砼侧压力计算 最大侧压力可按下列二式计算,并取其最小值: F=0.22γ c t β 1 β 2 V1/2 F=γ c H 式中 F------新浇筑混凝土对模板的最大侧压力(KN/m2) γ c ---- 混凝土的重力密度(kN/m3)取26 kN/m3 t ------新浇混凝土的初凝时间(h),h=3.5小时。 V------混凝土的浇灌速度(m/h);取27方/h,即27/25/1=1.08 m H------混凝土侧压力计算位置处至新浇混凝土顶面的总高度(m);取1.4m β1------外加剂影响修正系数,不掺外加剂时取1; β2------混凝土塌落度影响系数,当塌落度小于30mm时,取0.85;50—90mm时,取1;110—150mm时,取1.15。此处取1.15, F=0.22γ c t β 1 β 2 V1/2 =0.22x26x3.5x1x1.15x1.081/2 =24kN/m2 F=γ c H =26x1.4=36.4kN/ m2 取二者中的较小值,F=24kN/ m2作为模板侧压力的标准值,并考虑倾倒混凝土产生的水平载荷标准值4 kN/ m2,分别取荷载分项系数1.2和1.4,则作用于模板的总荷载设计值为:F=24x1.2+4x1.4=34.4 kN/ m2,取为35 kN/ m2 有效压头高度:H0=35/26=1.35m 2.面板验算(6mm钢板) 最大跨距: l=300mm, 每米长度上的荷载:q=FD=35x0.8=28KN/m。D为背杠的间距

桥梁钢板桩围堰专项施工方案(含cad图)_secret

XX大桥钢板桩围堰专项施工方案 因工期需要,本项目主墩承台采用钢板桩围堰,现7#、8#右幅钢板桩围堰已施工完成,左幅采用右幅方式,9#采用左右幅一起围堰,中间分隔。原设计采用钢套箱,其从制作到安装施工周期单个为1个月以上,并且封底较困难,而钢板桩施工周期单个为1周左右,其封底较简单,施工安全保障。围堰尺寸定为:单个主墩为10.5m×10.5m,钢板桩选用德国拉森Ⅳ型,采用 长度为12m的钢板桩。 1、桥梁桩基、承台的相关参数: 7#、8#、9#墩共计设计有24根直径为1.8m、桩长为58m的钻孔灌注桩。桩基标高参数为:7#主墩桩顶56.178m、桩底-1.822m,8#主墩桩顶55.905m、-2.095m,9#主墩桩顶56.295m、桩底-1.705m。 7#、8#、9#墩设计承台6个、每个承台基础为4根桩。左右幅承台尺寸为均为7.5m×7.5m×3m。 2、地质资料情况介绍 经勘察查明,桥位区未见威胁桥梁安全的不良地质现象,地势开阔、平坦,地层分布简单,工程地质条件较好(详见地质勘察报告)。 3、钢板桩围堰简介 根据河床地质和水文情况及施工要求,初步确定围堰尺寸为10.5m×10.5m。钢板桩为宽0.4m的拉森IV型。钢板桩入土部分为粉质粘土层,入土深度为承台设计标高底下5m。其内支撑7#墩-9#墩均设置2道(详见另附图),第1层围囹斜撑均采用2I40a型钢,第2层围囹斜撑均采用2Hw400×400H型钢支撑,节点采用焊接(施工中严格执行钢结构施工规范)。 4、钢板桩的设计

7#墩-9#墩围堰尺寸相同,且内支撑材料形式一样,受力情况基本一致,均采用砼封底,因8#墩水位较深,故可只分析验算其中受力复杂的8#墩围堰受力情况即可。 (1)、平面几何尺寸的确定 主墩承台的几何尺寸为7.5m×7.5m,左右幅承台间距为4.5m,考虑到施工需要,主要体现在围堰打设方便、承台模板安装的作业空间,以及施工期间围堰内的抽水、集水井设置等因素,最后确定围堰的打设平面几何尺寸为10m×10m。这样,围堰距离承台砼边的距离为1.25m,满足施工需要。 (2)、钢板桩长度、入土深度确定 根据望虞河现场的施工条件,结合水深、水流速度、桥位处地质情况、钢板桩的施工工艺等因素综合考虑、均采用长度为12m的钢板桩。 5、钢板桩围堰的计算及验算 为确保大桥主墩钢板桩围堰的安全,在围堰设计时,采用不同的方法队围堰的稳定性、安全性进行验算,确保施工过程安全。 第一种方法,建立近似的计算模型,采用计算机程序进行计算。 8#主墩钢板桩围堰受力计算,详细的计算过程附后。 第二种方法,采用传统的手工计算方式,通过参考相关的专业书籍、规范、及计算手册,通过计算,来确定围堰的稳定性、安全性,是否满足施工需求。钢板桩围堰的稳定性验算 (1)、计算工况选定 通过分析施工过程的工艺流程,结合理论知识,可以确定8号主墩的最不利情况下的工作状况为,水下吸泥工序已经完成,还未进行封底砼的施工。此时,围堰内的土面比围堰外河床面要低4.8m,土压力达到最大,易失稳。 (2)、计算的理论依据及计算模型 取1延米长的钢板桩为计算单元体,按板桩墙计算。 通过参考相关计算手册、专业理论教材,确定按悬臂板桩的土压力计算

钢板桩围堰施工方法

钢板桩围堰施工法 钢板桩围堰适用于水深4m以上,河床覆盖层较厚的砂类土、碎土和半干性粘土,风化岩层等基础工程。钢板桩围堰有矩形、多边形、圆形等。钢板桩有直形、Z形、槽形、工字形等,可作成单层与双层围堰。在一般桥梁工程基坑施工中,浅基多用矩形及木导框,较深基坑多用圆形及型钢。因其防水性能好,多用单层围堰。如用双层围堰时,在双层围堰的夹层中间一般填粘土,特殊情况下,在夹层下部灌注水下砼提高防渗能力,在钢板桩围堰的施工中,多用槽形钢板桩。在施工钢板桩围堰时,围堰顶面比施工期间可能出现的最高水位高出0.5m以上。围堰侧工作面的大小,要满足基坑顶边缘之间要保留不小于1.0m的距离。当基础较深,坑壁土质不良,渗水量大,边坡(坑壁)容易坍塌,则围堰侧坡脚至基坑顶边缘的距离,适当增大,确保安全。同时,钢板桩的入土深度及是否使用支撑,要通过检算进行确定。 1.施工法: 1.1施工准备:将新旧钢板桩运到工地后,详细对其检查、丈量、分类、编号,同时对两侧锁口用一块同型号长2~3m的短桩作通过试验,以2~3人拉动通过为宜,或采用卷扬机拖拉,最大牵引力≤KN,有条件时,采用检查小车进行(如图1), 图1 检查小车示意图 锁口通不过或桩身有弯曲、扭曲、死弯等缺陷,采用冷弯,热敲(温度不超过

800~1000℃),焊补、铆补、割除、接长等法加以整修。同时接头强度与其它断面相等,接长焊接时,用坚固夹具夹平,以免变形,在焊接时,先对焊,再焊接加固板,对新桩或接长桩、在桩端制作吊桩。 在采用组桩插打时,每隔4~5m设有一道夹板,夹木在板桩起吊前夹好,插打时,逐付拆除,转使用。 组桩及单桩的锁口,涂以黄油混合物油膏(重量配合比为:黄油:沥青:干锯末:干粘土=2:2:2:1),以减少插打时的摩阻力,并加强防渗性能。 1.2导框安装与插打法 在进行安装导框时,先进行定位测量。水中导框距岸边或已成墩(或施工便桥)较远者,用前交会法定位。导框的安装,一般是先打定位桩或作临时施工平台。导框采用在工厂或现场分段制作,在平台上组装,固定在定位桩上。当不设定位桩时,直接悬挂在浮台上,待插打入少量钢板桩后,逐渐将导框固定到钢板桩上。 1.3钢板桩的吊运插打与合拢 钢板桩检查合格后,由两组平车运至码头,按插桩顺序堆码最多允堆放四层,每层用垫木隔开高差不得大于10mm,上下层垫木中线要在同一垂直线上,允误差不得大于20mm。 安插钢板桩使用高架索道对钢板桩进行水平和垂直运输,将钢板桩运至指定位置,然后运用两个吊钩的吊起和放下,使钢板桩成垂直状态,脱出小钩,移向安插位置,插入已就位的钢板桩锁口中。 起吊前,锁口嵌填黄油沥青混合料。箍紧钢板用的弧度卡箍,待插入锁口时逐个解除。 钢板桩逐块(组)插打到底或全围堰(矩形围堰可为一边),先插合拢后,再逐块

钢板桩围堰设计与计算

須台及敦岸施工禹堰演计与计算 L 工程?ι况 市六橫岛住于群岛的南部诲域,亦蚱舞门国际航道的西南側,是市的第三火岛,为市重点扶持的三大岛之一,占地约106o 8平方公里。厂址区域四周由穿山丰岛和群岛所环抱,形成一个近封网水域。本工程住于厂入号、九头之间。 工程囲: 1. 船台二座:船台长250m,宽45m,水下段长60m,滑道坡度1: 20,滑道底??-3o OOm,顶??12o 40m; 2. 陆域独立?车道:600T龙门起.重机轨道一组:2x437m; 150T 门机轨道三组:6x3O3m; 3. 直立荻岸约230m。 为了确保船台及驶岸的干地施工,须柱外海側顺變设囲堰,从而确保工程进度。本工程工作量大,施工时诃相对较紧,施工工期:2008 年1月IeJ ~6月30目,共6个月。 2,旬然条件 2.1水丈资料 设计水住:

设计壽水住:2」4m 设计低水住:?2.6Om 下水水住:1.5Om 2.2地质资料 场地地质构隹活动轶稳定,未见新构隹运动及活动断裂,不存在液化土层,故属基本稳定区。根据工程地质勘矗报告,场地地层自上而下分为:Q)I层杂色填土,为新近人工回填而成;Q)2层淤泥、②1 层灰色淤泥质粉质粘土、?)层粘土为软弱场地土;③1层睹绿?灰黄色粉质粘土、⑤1虎黄?灰绿色粉质扌占土及⑤2层粉质粘土夹抄砾、碎石为中硬场地土,⑥层强风化晶膚凝灰岩、⑦层中等风化晶屑凝灰岩为坚硬场地土。 由于拟是场地20.Orn深度囲无饱和抄性土及粉土存在,本场地为不液化场地。场地分布有轶厚的软弱土。该区域由于拟建场地周禹无污染源存在,对钢结枸具中等腐蚀性。 本次役计钢板桩插入②1层灰色淤泥质粉质粘土土层中,淤泥质粉质粘土的扬力力学性质指栋为:舍水串42.6%,比重 2.74,重度17.4kN∕π√,固快粘聚力13.34kPa, >f?角12.5。 其余参数详见地质勘採报告。 3、比选 囲堰是用于囲护水工建筑施工场地的临肘扌当水建筑扬。围堰具有不同于一般建筑物的施工和运行特点。其合理的结构应是断面简单、枸筑和拆除方便,满足稔定、卩方冲蚀、防渎漏的要求。既不可以永久建筑杨对待,又不可掉以轻心、马虎从事。

(参考资料)32m预制箱梁计算书

32m 预制箱梁计算书 1. 计算依据与基础资料 1.1. 标准及规范 1.1.1. 标准 ?跨径:桥梁标准跨径30m ; ?设计荷载:公路-I 级(城-A 级验算); ?桥面宽度:(路基宽26m ,城市主干路),半幅桥全宽13m ,0.5m (栏杆)12.25m (机动车道)+0.5/2m (中分带)=13m 。 ?桥梁安全等级为一级,环境类别一类。 1.1.2. 规范 《公路工程技术标准》JTG B01-2013 《公路桥涵设计通用规范》(JTGD60-2015);(简称《通规》) 《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2004(简称《预规》) 《城市桥梁设计规范》(CJJ11-2011); 1.1.3. 参考资料 《公路桥涵设计手册》桥梁上册(人民交通出版社2004.3) 1.2. 主要材料 1)混凝土:预制梁及现浇湿接缝、横梁为C50、现浇调平层为C40; 2)预应力钢绞线:采用钢绞线15.2s φ,1860pk f MPa =,51.9510p E Mpa = × 3)普通钢筋:采用HRB400,400=sk f MPa ,5 2.010S E Mpa =× 1.3. 设计要点 1)预制组合箱梁按部分预应力砼A 类构件设计; 2)根据小箱梁横断面,采用刚性横梁法计算汽车荷载横向分布系数,将小箱梁简化为单片梁进行计算,荷载横向分配系数采用刚性横梁法计算。 3)预应力张拉控制应力值0.75σ=con pk f ,混凝土强度达到90%时才允许张拉预

应力钢束; 4)计算混凝土收缩、徐变引起的预应力损失时张拉锚固龄期为7d; 5)环境平均相对湿度RH=80%; 6)存梁时间不超过90d。 2.标准横断面布置 2.1.标准横断面布置图 2.2.跨中计算截面尺寸

沮漳河特大桥99#水中墩专项施工方案(钢板桩围堰)

中国葛洲坝集团股份有限公司新建武汉至宜昌铁路工程HYZQ-6标 沮漳河特大桥99#水中墩施工专项方案 (钢板桩围堰) 编制: 审核: 审批: 二00九年三月

TA1 施工组织设计(方案)报审表工程项目名称:新建武汉至宜昌铁路工程施工合同段:HYZQ-6 编号: 致河南省长城工程建设咨询有限公司汉宜铁路监理四分部: 我单位根据施工合同的有关规定已编制完成沮漳河特大桥99#水中墩(钢板桩围堰)工程的施工方案设计,并经我单位技术负责人审查批准,请予以审查。 附:《沮漳河特大桥99#水中墩施工专项方案(钢板桩围堰)》 施工单位(章) 项目经理 日期 专业监理工程师意见: 专业监理工程师 日期 总监理工程师意见: 项目监理机构(章) 总监理工程师 日期

注:本表一式4份,施工单位2份,监理单位、建设单位各一份。 沮漳河特大桥99#水中墩施工专项方案 (钢板桩围堰) 一工程概况 1.工程总体概况 沮漳河特大桥是汉宜高速铁路线上的桥梁,位于湖北省荆州市与宜昌市交界的万城灌溉区,地势平坦、开阔。该处河段为通航河段,桥轴线与河流交角为65°。 沮漳河是位于长江左岸的一级支流,桥位河段属平原性河流。其水位受上游支流(东支漳河、西支沮河)山区性河流影响,同时也受长江水位顶托的影响。沮漳河洪水由暴雨形成,多发生在7~9月。洪峰历时48~60h。受长江水位顶托的影响,水位也可能较长时期处于高位。 99#、100#墩是沮漳河特大桥连续梁桥(48m+80m+48m)中跨主墩。99#墩承台平面尺寸为14.60m×10.60m,高3.5m。属低桩承台,底部高程26.099m,在冬季最大枯水位37.32m以下11.221m,墩身底部位于该水位以下7.7m。 该墩采用先桩后围堰方案施工,钻机土平台高程34.51m。由于工期及基础施工进度的原因,99#墩的承台墩身将于主汛初期(预计6月底拔桩)高水位的情况下进行施工。拟采用钢板桩围护后进行内部土层开挖及混凝土浇注施工,单个承台的钢板桩围护范围为16.80m×13.60m,其中上游靠栈桥侧空间狭窄,板桩距承台边沿0.7m,其余三边距离1.5m。采用拉森Ⅳ钢板桩,确定桩长为22m,入土深度8.5m。 99#水中墩工程数量表 99#墩承台尺寸 承 台砼 承台 钢筋 墩 高 墩 身砼 墩身钢筋量 长/2(m) 长 (m) 宽 (m) 高 (m) c30 (m3) Φ20 (kg) ( m) (m3 ) Ⅱ级 钢筋 Ⅰ级 钢筋 7. 30 14 .60 1 0.60 3 .50 541 .66 2185 2.12 2 0.35 858. 3 1474 2 2520 由于缺乏桥址详细流速、水位等资料,围堰暂按38.8m施工水位设置,洪水水头13.5m。根据《长江委沮漳河大堤防护加固专项方案》其枯水期设防水位37.7m,结合当地调查,河滩麦地常年可收,大约端午节左右河滩(高程约37~38m)上水;因此预计5月份尚可施工。 但需要特别强调的是,进入汛期必须与当地水利部门加强联系,超施工水位洪水来

承台基坑钢板桩围堰施工方案

承台基坑钢板桩围堰施工方案

承台钢板桩围堰施工方案 一、工程概况 D1K468+272辽河1号特大桥位于直线段,全长8970.33米,横跨铁岭市贺家屯、沙山子、康西村,地形起伏不大,地表多为农田,工程涉及的地层主要为:第四系全新统冲积粉质粘土、淤泥质粉质粘土、细砂、中砂、粗砂、砾砂、砾岩。桥梁孔跨布置为28-32m+1-24m+134-32m+1-24m+1-32+(32+48+32)m +106- 32m预应力混凝土双线箱梁。本桥下部结构采用矩形空心桥台、钢筋混凝土承台、圆端型实体桥墩、钻孔桩基础,桩径有1.0m、1.25m两种。 主墩基础采用8根或者11根钻孔灌注桩,承台底进入细砂层软基层中,基坑渗水量很大,造成基底流砂,易塌。承台的结构尺寸为11.2m×7.6m×3m,每个承台的工程量为混凝土255.6 方,钢筋 9.386吨。根据现场地质情况拟采用钢板桩围堰方案。 二、总体施工流程 施工准备→测量定位→导向桩制作→打钢板桩→钢板桩内支撑1→排水→堵漏→钢板桩内支撑2→排水→堵漏→清淤→封底→垫层→钢筋绑扎→模板安装→混凝土浇筑→钢板桩围堰拆除。 三、机械设备与人员进场计划 --------------------------可以编辑的精品文档,你值得拥有,下载后想怎么改就怎么改--------------------------- ==========================================================================

1、机械设备计划(每个工作面) 2、劳动力计划表(每工作面) --------------------------可以编辑的精品文档,你值得拥有,下载后想怎么改就怎么改--------------------------- ==========================================================================

水中主墩钢板桩围堰力学计算

某某大桥6、7号墩 钢板桩围堰受力计算书 一、计算依据 1、《某某大桥6、7号墩承台钢板桩围堰设计图》; 2、《注册结构工程师专业考试应试指南》(2008年施岚青主编) 3、《路桥施工计算手册》 4、《钢结构设计规范》(GB-50017-2003) 5、《板桩法》中国水利出版社 6、《公路桥涵设计规范》人民交通出版社 二、基本资料: 1、Q235钢材的允许应力:[σ]Q235=145Mpa 2、钢材重度:78.5kN/m 3、素砼重度:24kN/m3、水重度:γw=10kN/m3 3、封底混凝土C30抗拉强度设计值 MPa f td 43 .1 = 4、混凝土与钢的粘结力[τ]=150Kpa 5、原装日本日铁SKSP-Ⅳ型拉森钢板桩参数 宽度B=400mm、高度h=185mm、厚度t=16.1mm、一根桩截面积A=94.2cm2、重量W=76.1kg/m、惯性矩Ix=5300cm4、截面模量W x=400cm3、每延米桩墙重量W=185kg/m、惯性矩Ix=41600cm4/m、截面模量W x=2250cm3/m。 三、水土压力计算 1、基本计算数据 6号墩地质柱状图(围堰标高范围内)数据如下: 3.25m~-0.54m为水,天然容重γ0为10KN/m3。 -0.54~-9.64m为淤泥(地质柱状图中为-3.0m,因下面的粉质粘土层作为嵌固端支点位置位于淤泥层以下,故取计算时取淤泥层底标高为-9.64m),淤泥层承载力为40KPa,其内摩擦角?1取5°,粘结力c1为10kPa,天然容重γ1为18KN/m3。 -10.3~-14.0m为粉质粘土,内摩擦角?2为20°,粘结力c2为20kPa,天然容重γ2为18KN/m3。

拉森钢板桩围堰支护计算说明

拉森钢板桩支护计算单 一、 检算依据: 1、《建筑施工手册》 2、广雅大桥12#、16#墩地质图及广雅大桥钢板桩围堰施工方案 二、已知条件: 承台尺寸为(横桥向)×(纵桥向)× m ,开挖尺寸×,筑岛顶标高:495m ;常水位标高:+;承台顶标高:+;承台底标高:489m ;拟定开挖到基坑底后浇注一层的垫层,基坑底标高:。填土层厚米,下为卵石层。根据地质情况:取填土重度γ=m 3,内摩擦角φ=15o ,卵石重度γ= KN/m 3,内摩擦角φ=36o ,结合地质情况,采用拉森Ⅲ型钢板桩进行围堰施工。 三、计算: 按单层支撑和二层支撑两种情况进行检算 1、单层支护 1)、钢板桩围堰旁边的机械荷载取20KN/m 2, 且距离围堰距离为米。 钢板桩最小嵌入深度t ,由建筑施工手册 在米范围内取γ、φ的加权平均值: γ平均=(*+*)/= KN/m 3 φ平均=(15*+36*)/= 主动土压力系数:K a =-45Tan 2 (φ/2)=; 被动土压力系数:K p =+45Tan 2 ( φ/2)=。 基坑底面以下,支护结构设定弯矩零点位置距基坑底面的距离h :γ(H+h )K a =γKhK p h= K ——为被动土压力的修正系数,取。 2)、计算支点力米处:P 。=

基坑底钢板桩受力米处: 如图: 剪力图 弯矩图 最小嵌入深度t : t=。 t 。= h K -KK P 6a P 0 +?(γ= t=。= 已知外界荷载:q =Ka*30=m 2 求得最大弯矩M max =*m ,拉森Ⅲ型钢板桩截面模量W=1340cm 3,应力σ

=1000*1340=<175 Mpa满足要求。 2、多层支护 多层支护最小嵌入深度h:h=*h o =*n o *H=**= 第一层支撑设在+79m处,第二层支撑设在+处, 已知外界荷载: q=Ka*30=m2。 1)、工况一:当基坑开挖到第一层支撑+79m处时,相当于悬臂式支护结构,钢 板桩最大弯矩M max =*m,满足拉森钢板桩的承载要求,设立第一层支撑结构。2)、工况二:当基坑开挖到第二层支撑+77m处时,相当于单支点支护结构。支 点力T1=,钢板桩最大弯矩M max =*m 剪力图

30m简支箱梁计算书

30m预应力混凝土简支小箱梁计算书 一、主要设计标准 1、公路等级:城市支路,双向四车道 2、桥面宽度:3m人行道+0.25m路缘带+2x3.5m车行道+0.5m双黄线+2x3.5m 车行道+0.25m路缘带+3m人行道=21m 3、荷载等级:汽车-80级 4、设计时速:30Km/h 5、地震动峰值加速度0.2g 6、设计基准期:100年 二、计算依据、标准和规 1、《厂矿道路设计规》(GBJ22-87) 2、《公路桥涵设计通用规》(JTG D60-2004) 3、《公路钢筋混凝土及预应力混凝土桥涵设计规》(JTG D62-2004) 三、计算理论、荷载及方法 1、计算理论 桥梁纵向计算按照空间杆系理论,采用Midas Civil2012软件计算。 2、计算荷载 (1)自重:26KN/ m3 (2)桥面铺装:10cm沥青铺装层+8cm钢筋混凝土铺装 (3)人行道恒载:20KN/ m (4)预应力荷载:

采用4束5φs15.2和6束4φs15.2 fpk=1860MPa钢绞线,控应力1395MPa。(5)汽车荷载: 本桥由于是物流园区部道路,通行的重车较多,本次设计考虑《厂矿道路设计规》(GBJ22-87)汽车-80级,计算图示如下: 根据图示,汽车荷载全桥横桥向布置三辆车。 冲击系数按照《公路桥涵设计通用规》(JTG D60-2004)4.3.2条考虑。 (6)人群荷载:3.5 KN/ m2 (7)桥面梯度温度: 正温差:T1=14°,T2=5.5° 负温差:正温差效应乘以-0.5 3、计算方法

(1)将桥梁在纵横梁位置建立梁单元,然后采用虚拟梁考虑横向刚度,以此来建立模型。 (2)根据桥梁施工方法划分为四个施工阶段:架梁阶段、现浇横向湿接缝阶段、二期恒载阶段、收缩徐变阶段。 (3)进行荷载组合,求得构件在施工阶段和使用阶段时的应力、力和位移。(4)根据规规定的各项容许指标。按照A类构件验算是否满足规的各项规定。 四、计算模型 全桥采用空间梁单元建立模型,共划分为273节点和448个单元。全桥模型如下图: 全桥有限元模型图 五、计算结果 1、施工阶段法向压应力验算 (1)架梁阶段 架设阶段正截面上缘最小压应力为1.0MPa,最大压应力为2.7MPa;正截面下缘最小压应力为12.0MPa,最大压应力为13.7MPa。根据《公路钢筋混凝

承台(钢板桩围堰)

(一)钢板桩围堰承台施工 1、钢围堰制作。根据以往施工经验,水中系梁拟采用钢围堰施工。钢围堰用δ =10mm钢板焊制,内设纵横加劲肋,加劲肋为Ⅰ22工字钢,用Ⅰ28工字钢每隔2米设一道内支撑,围堰分片分节制作,接缝处用螺栓连接,中间夹橡胶板防水。钢围堰 焊接时,要安排有经验、技术好的电焊工施焊,保证钢板焊接质量。 2、钢围堰安装。钢管桩施工完毕后,将分块制作好的钢围堰运至钢围堰拼装现场。首节钢围堰拼装利用浮吊配合起吊架进行,拼装好后,用起吊架把首节围堰固定,用 浮吊对称接高围堰并加固围堰支撑,第二节围堰拼装好后,用起吊架起吊下沉,重复 上面操作,直到钢围堰全部拼装完毕,钢围堰快要着床时,即要对钢围堰进行精确定 位控制,用全站仪进行精确放样,制作导向架,准备钢围堰入土下沉。 3、钢围堰入土下沉。钢围堰下沉前需安排潜水员下水清理、打捞围堰范围内杂物。钢围堰的入土下沉采用不排水法下沉,根据工程地质报告和我公司以往的桥梁施工经验,采用高压射水和吸泥吹砂相结合的方法下沉,高压射水主要是破坏泥土层结构。 用吸泥吹砂法时要两边对称进行,同时向井内补水,保持井内外的水位相平。钢围堰 下沉过程要不停地观测、纠偏,保证沉井正确、竖直、平稳下沉。钢围堰入土达到设 计标高时,潜水员下水探测围堰内河床是否平整,特别是拐角处一定要整平并达到设 计标高。 4、封底。钢围堰下沉程序结束后,立即作好封底的一切准备工作,首先安排潜水员下水探明水底的水流情况及钢围堰周围情况,钢围堰底部有内外空洞的地方应立即 抛石、垒砂袋堵住空洞,围堰内基底亦要找平,最后浇筑封底砼,封底砼要有良好的 和易性、流动性,砼坍落度控制在22~24cm之间。确保封底砼中不含夹层,在人员、机械全部准备好后,在统一指挥下,迅速将水下封底砼浇筑完毕。派专人测量砼封底 厚度,观测钢围堰内水位情况,保证内外水位差不超过十公分。待封底砼达到一定强 度后,即可抽水浇筑系梁。

承台基坑开挖钢板桩围堰施工方案

承台基坑开挖钢板桩围堰施工方案

厦门市环XX域XX大桥工程 XX大桥承台基坑开挖 钢板桩围堰专项施工方案 、 厦门市环XX域XX大桥项目经理部 2010年12月28日

目录 1、编制依据 (2) 2、工程概况 (2) 2.1、工程简介 (2) 2.2、承台、桥台、桥墩尺寸变化情况 .. 2 2.3、地质情况 (3) (5) 2.2、施打钢板桩 (7) 2.3、基坑开挖 (9) 2.4、混凝土封底垫层施工 (9) 2.5、钢板桩内支撑加固 (9) 2.6、钢护筒割除、桩头处理 (11) 4、钢板桩支护计算 (11) 4.1、钢板桩围堰设计的总体思路 (11) 4.2、设计资料 (12) 4.3、荷载计算 (14) 4.4、钢板桩受力验算 (17) 4.5、内支撑体系计算 (23) 4.6、基坑底部的隆起验算 (26) 4.7、基坑底管涌验算 (27) 4.8、坑底渗水量计算 (27) 5、基坑开挖测量与监控 (28) 5.1、基坑监测变形一览表 (28) 5.2工艺原理 (28) 5.3监测频率 (28)

5.4监控预警指标 (29) 6、质量保证措施 (30) 6.1、建立质量管理保证体系 (30) 6.2、质量保证措施 (30) 7、安全保证措施及安全应预案 (33) 7.1、生产安全管理措施 (33) 7.2、安全保证措施 (34) 7.3、安全预防措施 (34) 7.4、安全应急预案 (35) 8、文明施工措施 (41) 8.1、本工程施工期间内文明生产目标 . 41 8.2、文明施工保证措施 (42) 8.3、环境保护措施 (42)

水中钢板桩围堰计算及施工应用

水中钢板桩围堰计算及施工应用 摘要:介绍临海大桥主塔横系梁钢板桩围堰设计计算和应用,供同类型桥梁施工借鉴。 关键词:潮汐地区;水中钢板桩围堰;设计计算;应用 1、概况 1.1工程概况 临海大桥位于浙江省临海市区中心,横跨灵江,是临海市江南分区与老城区的交通要道。桥梁总长度746m,其中主桥306m,北引桥216m,南引桥224m。主桥采用(36+110+160)m预应力砼独塔单索面斜拉桥,桥面宽31.2m。 主塔基础位于灵江江心,采用分离式承台钻孔桩基础,两承台之间设横系梁连接。横系梁按预应力构件设计,施加预应力用以平衡倾斜塔柱的水平推力,系梁为矩形截面,宽度为6.0m,高度为3. 0m,长31.532m。 1.2水文地质情况 桥址段灵江为典型半日潮,既受洪水控制,又受潮水控制。5年一遇最高水位为+5.0m。横系梁顶面标高+1.8m,河床顶面标高-2.5m,地质报告中河床顶面以下约11m为淤泥质粘土。 2、钢板桩围堰结构 钢板桩围堰沿横系梁两侧设置,两端与承台钢套箱连接,围堰长31.532m,宽10.6m,钢板桩长15m。钢板桩围堰顶面标高设置为+5.5m,高出最高施工水位0.5m。钢板桩施工完成并抛填

片石挤淤至-2.5m左右后,然后浇筑50cm封底混凝土。围堰内设置一层水平支撑梁和支撑柱,支撑梁采用2I40,支撑柱采用直径2 2.5cm、壁厚5mm的钢管。考虑到横系梁施工和施工后支撑拆除方便,支撑尽量设置在横系梁顶面以上。 3、设计计算 3.1设计说明 3.1.1计算水位取+2.5m;钢板桩采用IV 型拉森桩,重量75kg/m,每1米宽截面模量W=2037cm3,允许应力为[σ]=180 Mpa 。 3.1.2土质按地质报告提供参数。 3.2钢板桩入土深度验算 钢板桩围堰结构如图所示,围堰内抽水后水头差为7.5m,由此引起的水渗流,其最短流程为紧靠板桩的2h,故在此流程中,水对土粒渗透的力,其方向应是垂直向上。对于较薄且面积较大的封底混凝土,按不考虑封底混凝土作用时的涌流问题近似进行计算比较偏于安全。现近似地以此流程的渗流来检算坑底的涌流问题,要求垂直向上的渗透力不超过土在水中的密度,故安全条件如公式所示:式中:-安全系数;-水力梯度; -分别为水的密度及土在水中的密度,; ,其中G 为土粒的比重;n 为土的孔隙率以小数计。 土层按淤泥质粘土,查地质报告中G=1.7、n=0.590,h= 7m,安全系数取1.4。

承台(钢板桩)计算单

基坑钢板桩支护计算单 根据本工程现场实际情况,主墩承台靠河岸侧采用拉森Ⅳ钢板桩进行防护。 1、求钢板桩插入深度 K a=tg2(45-φ/2)= tg2(45-15.4/2)=0.4404 K p=tg2(45+φ/2)= tg2(45+15.4/2)=1.1851 e a2=γhK a=20x2.5x0.4404=21.101 KPa u=γhK a /γ(K p - K a)= 20x2.5x0.4404/20x(1.1851-0.4404)=1.48 ∑p=21.101x2.5/2+1.48x21.101/2=26.38+15.61=41.99 KPa a=2h/3=2x2.5/3=1.67m

m=6∑p/γ(K p - K a)(h+u)2 =6x41.99/20x(1.1851-0.4404)x(2.5+1.48)2=1.07 n=6∑p/γ(K p - K a)(h+u)3 =6x41.99/20x(1.1851-0.4404)x(2.5+1.48)3=0.45 查布鲁姆理论的计算曲线,得 ξ=1.26 X=ξ(h+u)=1.26x(2.5+1.48)=5m t=1.2X+u=1.2x5+1.48=7.48m 桩总长:2.5+7.48=9.98m 取10.0m。 2、求最大弯矩 最大弯矩位置: X m2=2∑p/γ(K p -K a)= 2x41.99/20x(1.1851-0.4404)=5.64 X m=2.37 最大弯矩: M max=∑p(h+u+X m-a)- γ(K p -K a) X m3/6 =41.99x(3.98+2.37-1.67)-20x(1.1851-0.4404)x2.373/6 =163.47KN·m 3、钢板桩应力 拉森Ⅳ钢板桩:W=2037cm3 σ= M max/W=163.47x104/2037=802.5 KN/cm2<1700 KN/cm2(可)

相关文档
最新文档