等差等比数列知识点总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.等差数列:

一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数d ,那么这个数列就叫做等差数列,这个常数d 叫做等差数列的公差,即

d a a n n =--1(d 为常数)(2≥n );.

2.等差中项:

(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2

b

a A +=或

b a A +=2 (

2

{}

n a 是等差数列

)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a

3.等差数列的通项公式:

一般地,如果等差数列{}n a 的首项是1a ,公差是d ,可以得到等差数列的通项公式为:

()d n a a n 11-+=

推广: d m n a a m n )(-+=. 从而m

n a a d m

n --=; 4.等差数列的前n 项和公式:

1()2n n n a a S +=

1(1)2n n na d -=+211

()22

d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 5.等差数列的判定方法

(1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列. (2) 等差中项:数列{}n a 是等差数列

)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a .

(3) 数列{}n a 是等差数列⇔b kn a n +=(其中b k ,是常数)。 (4) 数列{}n a 是等差数列⇔2n S An Bn =+,(其中A 、B 是常数)。 6.等差数列的证明方法

定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列.

(1)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有

2m n p a a a +=.

(2) 若{n a }是等差数列,则232,,n n n n n S S S S S -- ,…也成等差数列

(3)设数列{}n a 是等差数列,d 为公差,奇S 是奇数项的和,偶S 是偶数项项的

和,n S 是前n 项的和 1.当项数为偶数n 2时,

()

121135212

n n n n a a S a a a a na --+=+++⋅⋅⋅+==奇 ()

22246212

n n n n a a S a a a a na ++=+++⋅⋅⋅+=

=偶 ()11=n n n n S S na na n a a nd ++-=-=-偶奇 11n n n n S na a S na a ++==奇偶

2、当项数为奇数12+n 时,则

21(21)(1)1n S S S n a S n a S n S S a S na S n +⎧=+=+=+⎧+⎪⎪⇒⇒=⎨

⎨-==⎪⎪⎩⎩

n+1n+1

奇偶奇奇n+1n+1奇偶偶偶 (其中a n+1是项数为2n+1的等差数列的中间项). 1、等比数列的定义:()()*1

2,n

n a q q n n N a -=≠≥∈0且,q 称为公比 2、通项公式:

()11110,0n n

n n a a a q q A B a q A B q

-==

=⋅⋅≠⋅≠,首项:1a ;公比:q

推广:n m n m n n n m m a a a q q q a --=⇔=

⇔=3、等比中项:

(1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2A ab =

A = 注意:同号的两个数才有等比中项,并且它们的等比中项有两个(两个等比中项互为相反数)

(2)数列{}n a 是等比数列211n n n a a a -+⇔=⋅ 4、等比数列的前n 项和n S 公式:

(1)当1q =时,1n S na = (2)当1q ≠时,()11111n n n a q a a q

S q

q

--=

=

-- 11''11n n n a a

q A A B A B A q q

=

-=-⋅=---(,,','A B A B 为常数)

5、等比数列的判定方法:

(1)用定义:对任意的n ,都有1

1(0){}n n n n n n

a a qa q q a a a ++==≠⇔或为常数,为等比数列

(2)等比中项:21111(0){}n n n n n n a a a a a a +-+-=≠⇔为等比数列 (3)通项公式:()0{}n n n a A B A B a =⋅⋅≠⇔为等比数列 6、等比数列的证明方法:

依据定义:若

()()*1

2,n

n a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=⇔为等比数列 7、等比数列的性质:

(1)若*(,,,)m n s t m n s t N +=+∈,则n m s t a a a a ⋅=⋅。特别的,当2m n k +=时,得2n m k a a a ⋅= 注:12132n n n a a a a a a --⋅=⋅=⋅⋅⋅

(2)如果{}n a 是各项均为正数的等比数列,则数列{log }a n a 是等差数列 (3)若{}n a 为等比数列,则数列n S ,2n n S S -,32,n n S S -⋅⋅⋅,成等比数列 (4)在等比数列{}n a 中,当项数为*2()n n N ∈时,1S S q

=奇偶

相关文档
最新文档