高中数学不等式经典方法总结

合集下载

高中数学不等式解题方法全归纳

高中数学不等式解题方法全归纳

高中数学不等式解题方法全归纳大家好,今天咱们来聊聊高中数学里的不等式。

这个话题呢,看起来有点吓人,但其实掌握了几个方法,解起来也就像吃饭喝水那么简单了。

我们就像个探险家,一步步揭开不等式的神秘面纱吧!1. 不等式基础知识1.1 不等式的基本概念首先,不等式呢,其实就是用来比较两个数值之间大小关系的。

最常见的有“<”、“>”、“≤”、“≥”这四种符号。

比如,3 < 5,这里表示3小于5。

其实,不等式就像是一道门,我们要找出哪一方在门的左边,哪一方在右边。

1.2 不等式的基本性质要解不等式,得先了解几个基本性质。

比如说,加减乘除这几个操作在不等式中是怎么表现的。

举个简单的例子:加减法:如果你在不等式的两边都加上或减去一个相同的数,结果不等式的方向不会改变。

比如,3 < 5,加2后变成了5 < 7。

乘除法:如果你在不等式的两边都乘以一个正数,结果不等式的方向也不会改变。

但如果你乘或除以负数,不等式的方向就会翻转。

比如,2 < 4,当你乘以1时,就变成了2 > 4。

2. 不等式的常见解法2.1 线性不等式的解法线性不等式是最简单的一类不等式。

比如,2x + 3 < 7。

这种情况,我们可以通过移项和合并同类项来解。

步骤如下:1. 移项:把常数项移到另一边。

2x < 7 3。

2. 化简:化简右边的数值。

2x < 4。

3. 除以系数:最后,除以2,得到x < 2。

这时候,不等式就解出来了。

简单吧?2.2 二次不等式的解法二次不等式可能有点复杂,但不怕,我们一步步来。

假如有一个不等式x^2 4 < 0。

解这个不等式可以分为几个步骤:1. 解对应的方程:先解x^2 4 = 0。

这个方程的解是x = ±2。

2. 画图分析:我们可以把这个方程的解标在数轴上,x = 2和x = 2。

然后就可以用测试点法或者符号法来判断在哪些区间内不等式成立。

不等式的方法与技巧

不等式的方法与技巧

不等式的方法与技巧解不等式是数学中的一个重要问题,也是解决实际问题的基础。

在解不等式时,常常需要运用一些方法和技巧来简化和求解。

下面将介绍一些常用的方法和技巧。

1.转化为等价不等式:有时候,我们可以通过转化为等价不等式来简化求解过程。

例如,对于不等式x>3和x≥2,可以分别转化为等价不等式x-3>0和x-2≥0。

这样一来,我们只需要求解x-3>0和x-2≥0即可。

2.合并同类项:当不等式中存在同类项时,可以通过合并同类项来简化不等式。

例如,对于不等式3x+4>2x-1,可以合并同类项得到x>-5、这样一来,不等式中只剩下一个未知数,求解起来更加方便。

3.交换两边的值:当不等式中的大小关系不确定时,可以通过交换两边的值来确定不等式的方向。

例如,对于不等式3x<2x+1,可以交换两边的值得到2x>1、这样一来,不等式中的x的系数变小了,可以更加方便地求解。

4.乘除同一个正数:当不等式中存在未知数的乘除项时,可以通过乘除同一个正数来简化不等式。

例如,对于不等式2x+1>3,可以先将两边同时减去1,得到2x>2,然后再除以2,得到x>1、这样一来,不等式的系数就被消去了,求解起来更加方便。

5.乘除同一个负数:当不等式中存在未知数的乘除项时,可以通过乘除同一个负数来改变不等式的方向。

例如,对于不等式2x+1<3,可以先将两边同时减去1,得到2x<2,然后再除以2,得到x<1、这样一来,不等式的方向被改变了,求解起来更加方便。

6.分段讨论法:当不等式中存在多组解时,可以将不等式拆分成多个子区间,然后分别讨论每个子区间上的不等式。

例如,对于不等式,x-2,<3,可以分别讨论x<2,2≤x<5和x≥5三个子区间上的不等式。

这样一来,不等式的解集就可以根据每个子区间的解集来确定了。

7.图像法:当不等式中存在绝对值函数、二次函数等特殊函数时,可以通过绘制函数的图像来求解不等式。

高中数学不等式的解题方法与技巧

高中数学不等式的解题方法与技巧

高中数学不等式的解题方法与技巧
高中数学不等式的解题方法与技巧有以下几点:
1. 确定不等式的范围:首先要确定不等式的变量范围,例如确
定变量为正数、自然数等,以便后续的推导和计算。

2. 利用基本不等式:基本不等式是指常见的数学不等式,例如
平均不等式、柯西-施瓦茨不等式、均方根不等式等。

通过运用这些
基本不等式,可以简化和推导复杂的不等式。

3. 分析不等式的性质:通过观察不等式的形式和特点,可以得
出不等式的一些性质。

例如,不等式是否对称、是否单调递增等,这些性质可以为解题提供线索。

4. 使用增减法:对于复杂的不等式,可以通过增减法将不等式
变换成简单的形式。

增减法是指在不等式两边同时加减相同的数,从而改变不等式的形式。

通过多次的增减操作,可以逐步简化不等式的形式。

5. 运用数学归纳法:对于涉及自然数的不等式,可以使用数学
归纳法进行证明。

数学归纳法是通过证明某个命题对于自然数n成立,然后再证明对于n+1也成立,从而得出该命题对于所有自然数成立的结论。

6. 剖析复杂不等式:对于特别复杂的不等式,可以使用分段函数、图像、积分等方法进行剖析。

这些方法可以将不等式转化为求解函数的最值或积分的问题,进而求解不等式。

总之,解决高中数学不等式需要灵活运用各种方法和技巧,通过
观察、推导和计算,找到合适的途径来简化不等式、得出结论。

掌握了这些解题方法与技巧,可以提高解决数学不等式问题的能力。

不等式的解题方法与技巧

不等式的解题方法与技巧

不等式的解题方法与技巧不等式是数学中的一个重要概念,解不等式不仅是中学阶段数学学习的一部分,也是高中阶段进一步学习函数与分析的基础。

下面将介绍一些解不等式的常用方法和技巧。

1.基本不等式性质对于两个不等式a<b和c<d,可以根据其性质进行合并或分拆:-合并:a+b<c+d-分拆:a-b>c-d2.不等式化简对于复杂的不等式,可以通过一系列的等价变形将其化简为简单的形式。

常用的等价变形方法有:- 同乘或同除以一个正数:如果a<b,则对于正数x,有ax<bx;如果a<b且x>0,则有ax<bx;如果a<b且x<0,则有ax>bx。

-同加或同减一个具体数:如果a<b,则对于任意实数x,有a+x<b+x,即a+c<b+c;同理,a-c<b-c。

-综合运用:通过多次变换,将不等式化为更简洁的形式。

3.不等式乘法法则不等式乘法法则用于解决乘法不等式的问题。

对于两个正数a和b,以及一个不等式c<d,有以下结论:- 如果a<b且c<d,则ac<bd。

- 如果a<b且c>d,则ac>bd。

- 如果a<b且c=d,则ac=bd。

注意:当a和b中至少一个为负数时,上述法则不适用。

4.不等式绝对值性质当不等式中含有绝对值时,可以利用绝对值的性质进行求解。

对于实数a和b,可以根据绝对值性质得到以下结果:-如果,a,<,b,则a^2<b^2-如果,a,>,b,则a^2>b^2-如果,a,=,b,则a^2=b^25.不等式取正负号问题当不等式的系数为负数时,可以通过取正负号的方式,将其转化为求解不等式的问题。

具体方法如下:-如果a<0,则对不等式两边同时取负号,得到-a>-b。

-如果a>0,则对不等式两边同时取正号,得到a<b。

6.解多项式不等式对于多项式不等式,可以通过求解其零点,确定其正负性。

完整版)高中数学不等式知识点总结

完整版)高中数学不等式知识点总结

完整版)高中数学不等式知识点总结1、不等式的基本性质不等式有以下基本性质:①对称性:a>b等价于b<a。

②传递性:a>b。

b>c则a>c。

③可加性:a>b等价于a+c>b+c,其中c为任意实数。

同向可加性:a>b,c>d,则a+c>b+d。

异向可减性:a>b,cb-d。

④可积性:a>b,c>0则ac>bc,a>b,c<0则ac<bc。

⑤同向正数可乘性:a>b>0,c>d>0则ac>bd。

异向正数可除性:a>b>0,0bc。

a>b>0,则a^n>b^n,其中n为正整数且n>1.⑦开方法则:a>b>0,则√a>√b。

⑧倒数法则:a>b>0,则1/a<1/b。

2、几个重要不等式以下是几个重要的不等式:a/b+b/a>=2,当且仅当a=b时取等号。

a^2+b^2>=2ab,当且仅当a=b时取等号。

a+b/2>=√ab,当且仅当a=b时取等号。

a+b+c/3>=∛abc,当且仅当a=b=c时取等号。

a^2+b^2+c^2>=ab+bc+ca,当且仅当a=b=c时取等号。

a+b+c>=3√abc,当且仅当a=b=c时取等号。

a/b+b/c+c/a>=3,当且仅当a=b=c时取等号。

a-b|<=|a-c|+|c-b|,对任意实数a,b,c成立。

3、几个著名不等式以下是几个著名的不等式:a-b|<=√(a^2+b^2),对任意实数a,b成立。

a+b)/2<=√(a^2+b^2),对任意实数a,b成立。

a+b/2<=√(a^2+1)√(b^2+1),对任意实数a,b成立。

a+b)/2<=√(a^2-ab+b^2),对任意实数a,b成立。

a+b)/2>=√ab,对任意正实数a,b成立。

高中数学经典的不等式汇总15

高中数学经典的不等式汇总15

.
②式得证.
由于指数不等式也可以由函数单调性得到,
故此法称为“单调性法”.
1

n k1
1 k!


n n

(n
n
1)

(n
n
2)

...

(n

k n

1)

n
1
1 11 n
1 2 n
1
k1 k !
k2 k!
k2 k!

2

n k2
1 k(k
1)

2

n k2

k
1
1

1 k

21 1 3 ② n

1 n2

...
Cnn

1 nn

1
Cn1

1 n

2
即:

1

1 n
n

2

由二项式定理并采用放缩法得:


1

1 n
n

1
n
Cnk
k1

1 nk

1

n k1
k
n! !(n
k
)!

1 nk

1

n k1
1 k!
(n

n! k )! nk

本题由二项式中,分子由从 n 开始的 k 个递减数连乘,分母由 k 个 n 连乘,得到的分数必
定小于 1 . 于是得到: (1 1 )n 3 . n

高中不等式技巧大总结二

高中不等式技巧大总结二

高中不等式技巧大总结二四、判别式法判别式法话不多说,懂的都懂,直接上题例4.1非负实数x,y满足x^{2}+4y^{2}+4xy+4x^{2}y^{2}=32,则x+2y的最小值为解:令x+2y=t,则2y=t-x,t^{2}+(x(t-x))^{2}=32\\即-x^{2}+tx=\sqrt{32-t^{2}},\Delta=t^{2}-4\sqrt{32-t^{2}}>0\\t^{4}-16t^{2}-512\geq0,即t=x+2y\geq4ps:判别式法以x为主元,通过x在实数内必定有一解得到参数t的范围例4.2实数x,y满足4x^{2}+4y^{2}-5xy=5,求x^{2}+y^{2}的最值解:令x^{2}+y^{2}=t由题意得(4x^{2}+4y^{2})^{2}=(5xy)^{2},即(4t-5)^{2}=25x^{2}(t-x^{2)}25x^{4}-25tx^{2}+(4t-5)^{2}=0, \Delta=25\cdot25t^{2}-25\cdot4(4t-5)^{2}\geq0解得 (13t-10)(3t-10)\leq0 ,故最大值为 \frac{10}{3} ,最小值为 \frac{10}{13}例4.3已知a,b为实数,且a^{2}+b^{2}-ab=1,求a^{2}+ab 的最值解:令a^{2}+ab=t,\frac{a^{2}+b^{2}-ab}{a^{2}+ab}=\frac{1}{t}设\frac{b}{a}=m,则原式为\frac{1+m^{2}-m}{1+m}=\frac{1}{t},化简可得m^{2}-m(t-1)+t-1=0\Delta=(t+1)^{2}-4t(t-1)\geq0,解得1-\frac{2\sqrt{3}}{3}\leq t\leq1+\frac{2\sqrt{3}}{3}ps:观察式子为齐次,故通过相除来达到减元的目的习题4.3.1若3x^{2}+3y^{2}-xy=20,求8x^{2}+23y^{2}的最大值(答案为160,emmm似乎计算量有点大)例4.4已知a^{2}+b^{2}=1求a+2b的最大值解:令a+2b=t,则原式等于(t-2b)^{2}+b^{2}=1,化简得t^{2}-4tb+5b^{2}=1\\\Delta=16t^{2}-20t^{2}+20\geq0 ,故最大值为 \sqrt{5}ps:此题可用于均值配凑,图形结合,也可平方化为齐次!(另外,例题1.6也可用判别式法,不过要用多次且计算量大)五、三角换元法三角换元一般是基于三角函数本身有界性来解题的,然后辅助角公式很重要。

高中数学不等式解题技巧

高中数学不等式解题技巧

高中数学不等式解题技巧高中数学中,不等式是一个重要的知识点,也是考试中常见的题型之一。

解不等式题目需要一定的技巧和方法,下面将介绍一些常见的解题技巧,帮助高中学生更好地应对不等式题目。

1. 转化形式有时候,我们可以通过转化不等式的形式来简化问题。

例如,对于不等式3x-2>5,我们可以将其转化为3x>7,进一步得到x>7/3。

这样,我们就得到了不等式的解集。

2. 加减法原则对于不等式中的加减法,我们需要注意一些原则。

当不等式的两边同时加上(或减去)一个数时,不等号的方向不变。

例如,对于不等式2x+3>7,我们可以将其化简为2x>4,进一步得到x>2。

3. 乘法原则对于不等式中的乘法,我们同样需要注意一些原则。

当不等式的两边同时乘以一个正数时,不等号的方向不变。

例如,对于不等式2x<8,我们可以将其化简为x<4。

但是,当不等式的两边同时乘以一个负数时,不等号的方向需要改变。

例如,对于不等式-2x>8,我们需要将其乘以-1,同时改变不等号的方向,得到2x<-8,进一步得到x<-4。

4. 绝对值不等式绝对值不等式是高中数学中常见的题型之一。

解绝对值不等式的关键是找到绝对值的取值范围。

例如,对于不等式|2x-3|<7,我们可以将其拆分为两个不等式2x-3<7和2x-3>-7,得到x<5和x>-2。

综合起来,我们可以得到-2<x<5,即解集为(-2, 5)。

5. 二次函数不等式二次函数不等式也是高中数学中常见的题型之一。

对于二次函数不等式,我们可以通过求解二次函数的零点来确定不等式的解集。

例如,对于不等式x^2-4x+3>0,我们可以将其化简为(x-1)(x-3)>0,得到x<1或x>3。

综合起来,我们可以得到解集为(-∞, 1)∪(3, +∞)。

综上所述,解不等式题目需要一定的技巧和方法。

高中不等式知识点总结

高中不等式知识点总结

高中不等式知识点总结一、学问点1.不等式性质比较大小方法:(1)作差比较法(2)作商比较法不等式的基本性质①对称性:abba②传递性:ab,bcac③可加性:aba+cb+c④可积性:ab,c0acbc;ab,c0acbc;⑤加法法则:ab,cda+cb+d⑥乘法法则:ab0,cd0acbd⑦乘方法则:ab0,anbn(n∈N)⑧开方法则:ab0,2.算术平均数与几何平均数定理:(1)假如a、b∈R,那么a2+b2≥2ab(当且仅当a=b时等号)(2)假如a、b∈R+,那么(当且仅当a=b时等号)推广:假如为实数,则重要结论1)假如积xy是定值P,那么当x=y时,和x+y有最小值2;(2)假如和x+y是定值S,那么当x=y时,和xy有最大值S2/4。

3.证明不等式的常用方法:比较法:比较法是最基本、最重要的方法。

当不等式的两边的差能分解因式或能配成平方和的形式,则选择作差比较法;当不等式的两边都是正数且它们的商能与1比较大小,则选择作商比较法;遇到肯定值或根式,我们还可以考虑作平方差。

综合法:从已知或已证明过的不等式出发,依据不等式的性质推导出欲证的不等式。

综合法的放缩常常用到均值不等式。

分析法:不等式两边的联系不够清楚,通过查找不等式成立的充分条件,逐步将欲证的不等式转化,直到查找到易证或已知成立的结论。

4.不等式的解法(1)不等式的有关概念同解不等式:两个不等式假如解集相同,那么这两个不等式叫做同解不等式。

同解变形:一个不等式变形为另一个不等式时,假如这两个不等式是同解不等式,那么这种变形叫做同解变形。

提问:请说出我们以前解不等式中常用到的同解变形去分母、去括号、移项、合并同类项(2)不等式axb的解法①当a0时不等式的解集是{x|xb/a};②当a0时不等式的解集是{x|x③当a=0时,b0,其解集是R;b0,其解集是ф。

(3)一元二次不等式与一元二次方程、二次函数之间的关系(4)肯定值不等式|x|0)的解集是{x|-aoo-a 0 a|x|a(a0)的解集是{x|x-a或xa},几何表示为:oo-a0a小结:解肯定值不等式的关键是-去肯定值符号(整体思想,分类讨论)转化为不含肯定值的不等式,通常有下列三种解题思路:(1)定义法:利用肯定值的意义,通过分类讨论的方法去掉肯定值符号;(2)公式法:|f(x)|af(x)a或f(x)-a;|f(x)|a-a(3)平方法:|f(x)|a(a0)f2(x)a2;|f(x)|a(a0)f2(x)a2;(4)几何意义。

高中数学不等式公式总结

高中数学不等式公式总结

高中数学不等式公式总结高中数学不等式公式总结不等式是数学中的一个重要概念,它在各个领域都有广泛的应用。

在高中数学中,不等式也是一个重要的学习内容。

下面,我们将对高中数学中的不等式公式进行总结。

1. 常见的不等式类型在高中数学中,常见的不等式类型有:- 大于等于不等式:a >= b,a > b,a <= b- 大于小于不等式:a > b,a < b,a <= b- 等于不等式:a = b,a > b,a < b- 小于等于不等式:a < b,a <= b,a >= b2. 不等式的解法不等式的解法是解决不等式问题的关键。

常见的不等式的解法有:- 化简:将不等式转化为同除以一个非零数,解出不等式的值。

- 移项:将不等式中的项逐步移项,化简不等式,解出不等式的值。

- 合并同类项:将不等式的同类项合并,化简不等式,解出不等式的值。

- 代入解法:将代入的数或式子代入不等式中,解出不等式的值。

3. 不等式的应用不等式在数学中有广泛的应用,尤其是在代数、几何、三角函数等领域。

在代数中,不等式可以用来解决方程、不等式、矩阵等。

在几何中,不等式可以用来解决向量、平面图形等。

在三角函数中,不等式可以用来解决三角函数的最大值、最小值、周期等问题。

4. 不等式的拓展在解决不等式问题时,除了掌握常见的不等式类型和解法外,还需要掌握一些不等式的拓展。

常见的不等式的拓展有:- 区间端点不等式:对于区间 [a,b],如果 a < c < b,则 a 和 b 的中点 c 的取值范围应该大于等于 a 和 b 的平均值。

- 区间端点不等式的应用:例如,在区间 [a,b] 中,如果 a > c > b,则 a 和b 的中点 c 的取值范围应该大于等于 a 和 b 的平均值。

- 不等式的平均值不等式:对于任意的实数 a 和 b,如果 a > b,则 a 和 b 的平均值应该大于等于 a 和 b 的最大公约数。

高中卷5不等式的解题方法与技巧

高中卷5不等式的解题方法与技巧

高中卷5不等式的解题方法与技巧不等式是数学中重要的概念之一,也是高中数学中常见的题型。

解决不等式问题需要运用一些常见的方法和技巧。

接下来,我将继续介绍不等式的解题方法和技巧。

1.绝对值不等式的解法:当不等式中含有绝对值时,可以先讨论绝对值内外的两种情况,再进行讨论。

例如:,x-a,<b时,可以讨论x-a<b和-x+a<b两种情况。

2.平方不等式的解法:当不等式中含有平方时,可以利用平方的非负性质来解决问题。

若平方项为非负数,则可以将不等式拆分为两个不等式,其中一个不等式是平方项为0的情况。

例如:x^2-4>0,可以拆分为x^2>4和x^2≠0两个不等式,再求解。

3.乘法原理的运用:乘法原理指的是当两个因子相乘为0时,至少有一个因子为0。

在不等式的求解过程中,可以运用乘法原理来判断不等式的解集。

例如:(x-2)(x+3)>0时,可以得到x-2>0和x+3>0两个不等式,再求解。

4.开方不等式的解法:当不等式中含有开方时,需要注意开方的正负性。

如果开方项是正数,那么开方不会影响不等式的方向;如果开方项是负数,那么开方需要改变不等式的方向。

例如:√(x-1)>2时,可以得到x-1>4和x-1<0两个不等式,再求解。

5.引入辅助变量的解法:有时候,我们可以通过引入一个辅助变量来转化原不等式,使得解题更加方便。

例如:求证a(a-1)(a-2)<0,我们可以引入辅助变量x=a-1,原不等式变为x(x+1)(x-1)<0,再求解。

6.不等式的乘方求解法:对于不等式的乘方,可以利用不等式的性质进行推导。

例如:x^3-3x^2>0时,可以将不等式分解为x^2(x-3)>0,再求解。

7.不等式的递减递增性分析法:不等式的递减递增性是指不等式随自变量增大而增大,或随自变量减小而减小的性质。

通过分析不等式的递减递增性,可以得到不等式的解集。

高中证明不等式的四大方法

高中证明不等式的四大方法

高中证明不等式的四大方法
研究不等式是很重要的,它作为数学、物理和其他领域的基础,对日常生活也有着十分重要的意义。

高中时期学习不等式的过程中,常常会遇到如何证明不等式所带来的问题,证明不等式一般可以有四种方法:
一、函数极值法
函数极值法是借助函数及其导数的性质来证明不等式,判断函数的极值的性质,然后用极值来证明不等式。

这种方法适用于不等式中带有 x 的函数及其导数,比如函数 f ( x ) = x^2 + ax + b ( a,b 为常数) 的大于、小于及其证明,都可以用函数极值法来证明。

二、不等式组合法
不等式组合法是利用不等式和其他熟悉的性质,把不等式组合起来,以有效证明一个不等式的方法,一般可用自然数的定理、AM-GM 定理、费马平方和定理、牛顿黎曼不等式等方法结合不等式证明原不等式。

三、几何法
几何法是一种综合的方法,它的核心是运用间接证明的思想,通过几何形象中的定理,证明几何形象和不等式之间的关系,如正方形边长和正数之间的关系等。

四、数学归纳法
数学归纳法是一种经典的元素数学思想,包括数学归纳和数学归纳法,它利用数学归纳法的思想,由简到难,从某一特定情况,以及一切类似的情况中得出一般性的结论和推论,最终证明某个不等式。

以上就是证明不等式的四大方法。

不等式是所有科目中都有用到的知识,学习不等式也需要一定技巧,上面介绍的四大方法可以帮助我们更好的学习不等式,并有助于我们准确地研究不等式。

在数学学习中,不要把不等式搞混、弄回,按照上面介绍的四大方法认真学习,才能更好的掌握不等式的学习方法,正确地解答各种不等式的问题。

基本不等式题型总结(经典,非常好,学生评价高)

基本不等式题型总结(经典,非常好,学生评价高)

基本不等式一. 基本不等式①公式:a bab ( a 0,b 0) ,常用 a b 2 ab 2②升级版:a2b2 a b2ab a,b R 22选择次序:考试中,优先选择原公式,其次是升级版二.考试题型【题型 1】基本不等式求最值求最值使用原则:一正二定三相等一正:指的是注意 a, b 范围为正数。

二定:指的是 ab 是定值为常数三相等:指的是取到最值时a b典型例题:例 1 .求y x1( x 0) 的值域2x剖析: x 范围为负,提负号(或使用对钩函数图像办理)解: y ( x 1 )Q x 0x 02xx1 2 ( x) ( 1)22x2xx1获得 y ( , 2]22x例 2 .求y1的值域2x ( x 3)x31解: y2x(“添项”,可经过减 3 再加 3,利用基本不等式后可出现定值)x 312(x 3) 6x31Q x 3 x 3 02( x 3) 2 2x3y 2 2 6 ,即y 2 26,例 3.求y sin x2(0 x ) 的值域sin x剖析: sinx 的范围是 (0,1) ,不可以用基本不等式,当 y 取到最小值时, sin x 的值是 2 ,但 2 不在范围内解:令 t sin x, t(0,1)2y t是对钩函数,利用图像可知:t在 (0,1)上是单减函数,因此 t 21代入获得)3,(注: 3 是将 tty (3, )注意:使用基本不等式时,注意y 取到最值,x有没有在范围内,假如不在,就不可以用基本不等式,要借助对钩函数图像来求值域。

例 4. 求 yx 22x 1( x 2) 的值域x2剖析:先换元,令 t x 2 , t 0 ,此中 x t 2(t 2)22(t 2) 1 t 2 6t 11 解: ytt6ttQ tt12 t1 6 8y [8, )tt总 之 : 形 如 ycx 2dxf0,c 0) 的 函 数 , 一 般 可 通 过 换 元 法 等 价 变 形 化 为ax b (aytpt 的取值范围;( p 为常数 ) 型函数,要注意 t【失误与防备】1. 使用基本不等式求最值,其失误的真实原由是对其前提 “一正、二定、三相等 ”的忽略. 要利用基本不等式求最值,这三个条件缺一不行.2 .在运用重要不等式时,要特别注意 “拆 ”“拼 ”“凑 ”等技巧,使其知足重要不等式中“正 ”“定 ”“等 ”的条件.3.连续使用公式时取 等号的条件很严格 ,要求同时知足任何一次的字母取值存在且一致.【题型 2】 条件是 a b 或 ab 为定值,求最值(值域) (简)例 5.若 x0, y 0 且 xy 18 ,则 xy 的最大值是 ________.分析:因为 x0, y 0 ,则 x y 2 xy ,因此 2 xy 18 ,则 xy 的最大值为 81例 6. 已知 x, y 为正实数,且知足4x 3 y 12 ,则 xy 的最大值为 ________.4x 3 yx 3分析: Q 4x3y2 4x 3y ∴ 4 3xy 12 ,2 时, xyxy 3 当且仅当3 y 12即4x y2获得最大值 3 .例 7. 已知 m 0, n0 ,且 mn 81,则 m n 的最小值为 ________.分析: Q m0,n 0 ,m n2 mn 18 ,当且仅当 m n 9 时,等号建立.总结:此种题型:和定积最大,积定和最小【题型 3】条件是 ab 或 11为定值,求最值(范围) (难)a b方法:将 1整体代入已知x 0, y 0 且 x y 1 ,则11 例 8.x的最小值是 ________________y分析: Q x y 11 1 ( x y)(1 1) 2y x 2 2y x4x yxyx yx y因此最小值是4例 9. 已知 a0,b 0 , a b 2 ,则 y1 4a 的最小值是 ________.b分析: Q ab2 a b12则 1 4 (1 4)( a b) 1 b 2a2 5 b 2a 52 b 2a9 a b a b22 2a b2 2a b 22a b2因此最小值是92例 10.已知 x0, y 0,且12 1, 求 x 2 y 的最小值是 ____________xy分析:Q12 1, xy则 x 2 y (12)( x 2 y) 12 y 2x45 2 2 y 2 x9x yxyx y进而最小值为 9【题型4】已知a b 与 ab 关系式,求取值范围例11.若正数a, b知足ab a b 3 ,求ab 及 a b 的取值范围.分析:把 ab 与 a b 当作两个未知数,先要用基本不等式消元解:⑴求 ab 的范围① Q ab a b3(需要消去a baabb :①孤立条件的 3 ,a b ②a b 2 ab ③将a b 替代)②a b 2 ab③ab 3 2 ab (消 a b 结束,下边把ab 当作整体,换元,求ab 范围)令 t ab (t 0) ,则ab 3 2 ab 变为 t 232t解得 t 3 或 t 1 (舍去),进而 ab9⑵求 a b 的范围(需要消去 ab :①孤立条件的 ab ② ab (a b)2③将 ab 替代)2a b2Q ab a b 3,, ab2a b2a b(消 ab 结束,下边把a b 当作整体,换元,求 a b 范围)32令 t a b (t0)t 2则有t3, 4t12 t 2, t 24t 12 0 ,获得 t 6 或 t 2 (舍去)2获得 a b6。

最新高中数学23个经典不等式归纳汇总

最新高中数学23个经典不等式归纳汇总

最新高中数学23个经典不等式归纳汇总一、均值不等式:均值不等式是不等式理论中的重要分支,其中最基本的是算术平均数和几何平均数之间的关系。

1.算术均值不等式(AM-GM):对于非负实数 x1 , x2 , x3 ,⋯, xn , 有以下不等式成立:(x1 + x2 + x3 + ⋯ + xn) / n ≥ √(x1 · x2 · x3 ⋯ xn)证明:令a = (x1 + x2 + x3 + ⋯ + xn) / n,其中x1, x2, x3,⋯, xn为非负实数。

令 b = √(x1 · x2 · x3 ⋯ xn) ,则要证明的不等式即为 a ≥ b。

根据均值不等式的性质,两个算术均值之间有一个几何均值,即a≥b。

2. 加权平均值不等式 (Chebyshev 不等式):对于非负实数 x1 , x2 , x3 ,⋯, xn 和 w1 , w2 , w3 ,⋯, wn 为正实数,并且 w1 + w2 + w3 + ⋯ + wn = 1,有以下不等式成立:w1x1 + w2x2 + w3x3 + ⋯ + wn xn ≥ (x1^w1 · x2^w2 · x3^w3 ⋯xn^wn)证明:将w1x1 + w2x2 + w3x3 + ⋯ + wn xn 展开为 w1/x1 + w2/x2 +w3/x3 + ⋯ + wn/xn,利用 AM-GM 不等式即可证明。

即 w1x1 + w2x2 + w3x3 + ⋯ + wn xn ≥(x1^w1 · x2^w2 · x3^w3 ⋯ xn^wn)二、特殊不等式:特殊不等式是指在一些特殊条件下成立的不等式,是数学中的一种重要类型。

1. 柯西不等式 (Cauchy-Schwarz):对于任意实数 a1, a2, a3,⋯, an 和 b1, b2, b3,⋯, bn,有以下不等式成立:(a1b1 + a2b2 + a3b3 + ⋯ + anbn)^2 ≤ (a1^2 + a2^2 + a3^2 + ⋯+ an^2)· (b1^2 + b2^2 + b3^2 + ⋯ + bn^2)证明:考虑函数 f(t) = (a1t + a2t + a3t + ⋯ + ant)^2 ,求导可证明。

高中数学解解不等式的常用技巧和方法

高中数学解解不等式的常用技巧和方法

高中数学解解不等式的常用技巧和方法在高中数学学习中,不等式是一个重要的知识点,也是考试中常常出现的题型。

解不等式需要我们掌握一些常用的技巧和方法,本文将介绍一些常见的解不等式的技巧,并通过具体的例题加以说明。

一、一元一次不等式一元一次不等式是最简单的不等式形式,其解法与一元一次方程类似。

我们以以下例题为例:例题1:解不等式2x + 1 > 5。

解法:首先将不等式转化为等价的形式:2x + 1 - 5 > 0,化简得2x - 4 > 0。

然后解这个一元一次方程,得到x > 2。

所以不等式2x + 1 > 5的解集为x > 2。

这个例题中的关键是将不等式转化为等价的形式,然后通过解方程的方法得到解集。

这是解一元一次不等式的常用技巧。

二、一元二次不等式一元二次不等式是高中数学中较为复杂的不等式形式,我们需要通过一些特殊的方法来解决。

以下是一个例题:例题2:解不等式x^2 - 4x + 3 > 0。

解法:首先我们需要求出不等式的零点,即将不等式转化为等式x^2 - 4x + 3 = 0。

通过因式分解或配方法,我们得到(x - 1)(x - 3) > 0。

然后我们需要绘制函数图像来确定不等式的解集。

绘制函数y = x^2 - 4x + 3的图像,我们可以发现函数的零点为x = 1和x = 3,这两个点将实数轴分成了三个区间:(-∞, 1),(1, 3),(3, +∞)。

然后我们取每个区间内的一个测试点,例如选取x = 0,2,4。

将这些测试点代入原不等式,我们可以得到以下结果:当x = 0时,左边为3,右边为0,不满足不等式;当x = 2时,左边为-1,右边为0,不满足不等式;当x = 4时,左边为3,右边为0,满足不等式。

根据测试点的结果,我们可以得到不等式的解集为x < 1或x > 3。

这个例题中的关键是通过绘制函数图像和选取测试点的方法确定不等式的解集。

高中数学基本不等式常用方法

高中数学基本不等式常用方法

高中数学基本不等式常用方法
高中数学基本不等式常用的方法有:
1. 分段讨论法:这种方法主要应用于处理不同区间上的不等式问题。

在解决这类问题时,需要将整体划分为若干个区间,对每个区间分别进行讨论,然后将结果综合起来。

2. 平方平均数与算术平均数、几何平均数、调和平均数之间的关系:对于非负实数 a 和 b,有如下关系:平方平均数≥ 算术平均数≥ 几何平均数≥ 调和平均数。

当且仅当 a = b 时,等号成立。

3. 调整系数:在处理某些特定类型的不等式问题时,可以通过调整系数来简化问题。

4. 换元法:对于一些复杂的不等式问题,可以通过引入新变量进行换元,将复杂的问题转化为简单的问题。

常用的换元方法有三角换元和代数换元。

5. 构造法:对于一些含有参数和绝对值的二次函数的最值问题,可以通过构造法来解决。

首先考虑区间的端点和中点,然后借助绝对值不等式进行合理配凑,最后得到所求的最优解。

6. 反证法:当直接证明某个命题困难时,可以尝试使用反证法。

首先作出与求证结论相反的假设,然后通过正确的推理导出矛盾,最后说明假设不成立,从而肯定原命题成立。

7. 放缩法:通过合理地放大或缩小某些量,将原不等式转化为易于处理的形式,从而解决问题。

8. 数学归纳法:对于一些与自然数相关的不等式问题,可以使用数学归纳法进行证明。

以上方法仅供参考,可以根据具体的问题选择合适的方法进行解答。

高中数学中的不等式求解方法

高中数学中的不等式求解方法

高中数学中的不等式求解方法在高中数学学科中,不等式是一个重要的概念。

不等式的求解是解决不等式问题的关键步骤。

本文将介绍高中数学中常见的不等式求解方法,帮助同学们更好地理解和应用这些方法。

1. 一元一次不等式的求解方法一元一次不等式是高中数学中最简单的不等式形式,形如ax + b > 0的形式。

对于这类不等式,我们可以使用如下方法求解:(1)根据不等式中的不等号确定等于零的条件,即ax + b = 0。

解这个方程可以得到不等式的临界点。

(2)根据临界点将数轴分成若干个区间。

(3)选取区间内的一组值代入原不等式,判断符号。

(4)根据符号判断确定不等式的解集。

2. 一元二次不等式的求解方法一元二次不等式是比一元一次不等式更复杂的一种形式。

解决一元二次不等式的关键是找到二次函数的图像与x轴夹角所对应的区间。

(1)将不等式化为标准形式,即ax² + bx + c > 0。

(2)使用一元二次方程求根公式,求出二次函数的根。

(3)根据二次函数开口方向,绘制二次函数的图像。

(4)根据图像与x轴夹角所对应的区间,确定不等式的解集。

3. 绝对值不等式的求解方法绝对值不等式是一个常见的不等式形式。

它的解决方法主要有以下两种情况:(1)当绝对值不等式中的绝对值表达式大于等于零时,拆分绝对值不等式,将问题转化为一元一次不等式求解。

(2)当绝对值不等式中的绝对值表达式小于零时,证明无解。

4. 有理不等式的求解方法有理不等式是指包含有理函数的不等式。

解决有理不等式的关键是确定有理函数的零点和极值点,然后根据区间判断符号。

(1)将有理不等式转化为相应的分式。

(2)求出分式的分母为零的根和分式的分子为零的根作为不等式的临界点。

(3)根据临界点将数轴分成若干个区间。

(4)选取区间内的一组值带入原不等式,判断符号。

(5)根据符号判断确定不等式的解集。

5. 复合不等式的求解方法复合不等式是指将多个不等式联立起来,通过求解这个系统不等式来得到满足条件的解集。

高中不等式知识点总结

高中不等式知识点总结

高中不等式知识点总结不等式是高中数学中的重要内容,它不仅在数学领域有着广泛的应用,还对培养我们的逻辑思维和解题能力起着关键作用。

下面我们来对高中不等式的知识点进行一个全面的总结。

一、不等式的基本性质1、对称性:若\(a > b\),则\(b < a\);若\(a < b\),则\(b > a\)。

2、传递性:若\(a > b\)且\(b > c\),则\(a > c\)。

3、加法法则:若\(a > b\),则\(a + c > b + c\)。

4、乘法法则:若\(a > b\),\(c > 0\),则\(ac > bc\);若\(a > b\),\(c < 0\),则\(ac < bc\)。

二、一元一次不等式形如\(ax + b > 0\)(或\(< 0\))的不等式称为一元一次不等式。

解一元一次不等式的一般步骤:1、去分母(若有分母)。

2、去括号。

3、移项:把含未知数的项移到一边,常数项移到另一边。

4、合并同类项。

5、系数化为\(1\):根据不等式的性质,若系数为正,不等号方向不变;若系数为负,不等号方向改变。

三、一元二次不等式形如\(ax^2 + bx + c > 0\)(或\(< 0\))(\(a ≠ 0\))的不等式称为一元二次不等式。

其解法可以通过判别式\(\Delta = b^2 4ac\)来判断:当\(\Delta > 0\)时,方程\(ax^2 + bx + c = 0\)有两个不同的实根\(x_1\),\(x_2\)(\(x_1 < x_2\)),则不等式的解集为\(x < x_1\)或\(x > x_2\)(大于取两边);\(x_1 < x <x_2\)(小于取中间)。

当\(\Delta = 0\)时,方程有两个相等的实根\(x_0\),不等式的解集为\(x ≠ x_0\)(\(a > 0\));\(x 为全体实数\)(\(a < 0\))。

当\(\Delta < 0\)时,方程无实根,不等式的解集为\(a > 0\)时,\(x\)为全体实数;\(a < 0\)时,无解。

高中数学不等式经典方法总结

高中数学不等式经典方法总结

高中数学不等式经典方法(fāngfǎ)总结高中数学不等式经典(jīngdiǎn)方法总结次不等式:一元(yī yuán)二一元(yī yuán)一次不等式的解轴表示〕例1、关于(guānyú)某围.例2.关于某的不等式对所有实数某∈R都成立,求a的取值范围.例3、假设关于某的不等式某2a某a0的解集为(,),那么实数a的取值范围是______________;假设关于某的不等式某2a某a3的解集不是空集,那么实数a的取值范围是______________。

〔-4,0〕,,62,几个重要不等式〔1〕假设aR,那么|a|0,a2某(3a)某2a1022法:〔依据、步骤、注意的问题,利用数ylog2(a某2a某1)的不等式在(2,0)上恒成立,求实数a的取值范〔2〕假设a、bR,那么a2b22ab(或a2b22|ab|2ab)〔当仅当a=b时取等号〕〔3〕如果a,b都是正数,那么(4)假设a、b、cR,那么abab〔当仅当.2a=b时取等号〕一正、二定、三相等.abc3abc〔当仅当3a=b=c时取等号〕ba(5)假设ab0,那么2〔当仅当ab22a=b时取等号〕2|某|a某a某a或某a;|某|a某(6)a0时,〔7〕假设a、bR,那么||a||b|||ab||a||b|a2a某a常用不等式22ababab2(根据目标不等式左右的运算结构选用);〔1〕2211ab〔2〕a、b、cR,a2b2c2abbcca〔当且仅当abc时,取等号〕;〔3〕假设ab0,m0,那么babm〔糖水的浓度问题〕。

如am如果正数a、b满足abab3,那么ab的取值范围是_________〔答:9,〕常用不等式的放缩法:①1n(n2)n1n(n1)nn(n1)n1n②n1n性1nn112n1nn1nn1(n1)利用函数的单调简单的一元高次不等式的解法:标根法:其步骤是:〔1〕分解成假设干个一次因式的积,并使每一个因式中最高次项的系数为正;〔2〕将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶弹回;〔3〕根据曲线显现f(某)的符号变化规律,写出不等式的解集。

八种方法解决高中数学不等式问题

八种方法解决高中数学不等式问题

八种方法解决高中数学不等式问题下面用八种方法解决高中数学常见的不等式问题: 例题:224x y ,求34x y 的最大值.【解法一】柯西不等式先备知识:柯西不等式(二维下的)解:3,4,,a b c x d y ,由柯西不等式得:222223434x y x y 所以:3410x y ,当且仅当34x y ,即68,55x y 时,取得最大值10.【总结】柯西不等式常用,建议理解记忆。

【解法二】线性规划解:令34x y t ,则344t y x (将t 看作是直线的截距,转化为求直线截距的范围) ,x y 满足直线方程344t y x ,也满足方程224x y ,因此:显然,由图像得: 2.5104t t .【总结】数形结合典型做法,但是线性规划新高考不考。

建议从数形结合角度理解。

【解法三】判别式法解:令34x y t ,则344t y x ,代入方程:224x y ,得: 223444t x x , 整理,得:222534016816t x tx ………………(*) 一元二次方程(*)有解,则:2232544081616t t210010t t . 【总结】常用方法之一,解决“条件极值”问题的常用手段。

【解法四】三角换元224x y 22144x y ,不妨令:cos ,sin 22x y x x . 则:34346cos 8sin 10cos sin 10sin 1055x y x x x x x,(3tan 4 ). 【总结】三角换元、参数法建议学有余力的同学适当了解。

【解法五】对偶式先备知识: 34x y 的对偶式为43x y2223492416x y x xy y (1)2224316249x y x xy y (2)(1)+(2),得:222234432525100x y x y x y223410043100x y x y .【总结】进阶方法,学有余力可了解。

【解法六】向量法(类似柯西不等式)34x y 可以看作向量 3,4,,a b x y 的数量积:34a b x y .所以:cos ,10a b a b a b.【总结】注意观察代数式的结构特征。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次不等式:一元一次不等式的解法:(依据、步骤、注意的问题,利用数轴表示) 例1、已知关于x 的不等式在(–2,0)上恒成立,求实数a 的取值范围.例2.关于x 的不等式对所有实数x ∈R 都成立,求a 的取值范围.例3、若关于x 的不等式02>--a ax x 的解集为),(+∞-∞,则实数a 的取值范围是______________;若关于x 的不等式32-≤--a ax x 的解集不是空集,则实数a 的取值范围是______________。

(-4,0), (][)+∞-∞-,26,几个重要不等式 (1)0,0||,2≥≥∈aa R a 则若(2))2||2(2,2222ab ab b a ab b a R b a ≥≥+≥+∈+或则、若(当仅当a=b 时取等号) (3)如果a ,b 都是正数,那么.2a b ab +≤(当仅当a=b 时取等号)一正、二定、三相等.3,3a b c a b c R abc +++∈≥(4)若、、则(当仅当a=b=c 时取等号)0,2b aab a b >+≥(5)若则(当仅当a=b 时取等号)2222(6)0||;||a x a x a x a x a x a x a a x a >>⇔>⇔<-><⇔<⇔-<<时,或(7)||||||||||||,b a b a b a R b a +≤±≤-∈则、若常用不等式(1)2222211a b a b ab a b++≥≥≥+(根据目标不等式左右的运算结构选用); (2)a 、b 、c ∈R ,222a b c ab bc ca ++≥++(当且仅当a b c ==时,取等号);22(3)210x a x a +-+-<)1(log 22++-=ax ax y(3)若0,0a b m >>>,则b b ma a m+<+(糖水的浓度问题)。

如 如果正数a 、b 满足3++=b a ab ,则ab 的取值范围是_________(答:[)9,+∞) 常用不等式的放缩法:①21111111(2)1(1)(1)1n nn n n n n n n n-==-≥++-- 111)2n nn n ==≥+-利用函数的单调性简单的一元高次不等式的解法:标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶弹回;(3)根据曲线显现()f x 的符号变化规律,写出不等式的解集。

如(1)解不等式2(1)(2)0x x -+≥。

(答:{|1x x ≥或2}x =-);(2)不等式(0x -的解集是____(答:{|3x x ≥或1}x =-);(3)设函数()f x 、()g x 的定义域都是R ,且()0f x ≥的解集为{|12}x x ≤<,()0g x ≥的解集为∅,则不等式()()0f x g x >的解集为______(答:(,1)[2,)-∞+∞);(4)要使满足关于x 的不等式0922<+-a x x (解集非空)的每一个x 的值至少满足不等式08603422<+-<+-x x x x 和中的一个,则实数a 的取值范围是______.(答:81[7,)8) 分式不等式的解法:先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。

解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。

如(1)解不等式25123xx x -<---(答:(1,1)(2,3)-); (2)关于x 的不等式0>-b ax 的解集为),1(+∞,则关于x 的不等式02>-+x bax 的解集为_____(答:),2()1,(+∞--∞ ). 绝对值不等式的解法:(1)分段讨论法(最后结果应取各段的并集):如21--+x x >a 在R x ∈上有解,则a 的取值范围是(()3,∞-)(2)利用绝对值的定义;a x a )0a (a x <<-⇔><, a x a x )0a (a x >-<⇔>>或 (3)数形结合;如解不等式|||1|3x x +->(答:(,1)(2,)-∞-+∞)(4)两边平方:如若不等式|32||2|x x a +≥+对x R ∈恒成立,则实数a 的取值范围为______。

(答:4{}3)含参不等式的解法:求解通法是“定义域为前提,函数增减性为基础,分类讨论是关键.”注意解完之后要写上:“综上,原不等式的解集是…”。

注意:按参数讨论,最后按参数取值分别说明其解集;但若按未知数讨论,最后应求并集.如(1)若2log 13a <,则a 的取值范围是__________(答:1a >或203a <<);(2)解不等式2()1ax x a R ax >∈-(答:0a =时,{|x 0}x <;0a >时,1{|x x a >或0}x <;0a <时,1{|0}x x a<<或0}x <)提醒:(1)解不等式是求不等式的解集,最后务必有集合的形式表示;(2)不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值。

如关于x 的不等式0>-b ax 的解集为)1,(-∞,则不等式02>+-bax x 的解集为__________(答:(-1,2)) 含绝对值不等式的性质:a b 、同号或有0⇔||||||a b a b +=+≥||||||||a b a b -=-; a b 、异号或有0⇔||||||a b a b -=+≥||||||||a b a b -=+.如设2()13f x x x =-+,实数a 满足||1x a -<,求证:|()()|2(||1)f x f a a -<+不等式的恒成立,能成立,恰成立等问题:不等式恒成立问题的常规处理方式?(常应用函数方程思想和“分离变量法”转化为最值问题,也可抓住所给不等式的结构特征,利用数形结合法) 1).恒成立问题若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A > 若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <如(1)设实数,x y 满足22(1)1x y +-=,当0x y c ++≥时,c 的取值范围是______(答:2(1)4()(1)1x f x x x ++=>-+)1,+∞); (2)不等式a x x >-+-34对一切实数x 恒成立,求实数a 的取值范围_____(答:1a <); (3)若不等式)1(122->-x m x 对满足2≤m 的所有m 都成立,则x 的取值范围_____(答:(712-,312+)); (4)若不等式na n n1)1(2)1(+-+<-对于任意正整数n 恒成立,则实数a 的取值范围是_____(答:3[2,)2-);(5)若不等式22210x mx m -++>对01x ≤≤的所有实数x 都成立,求m 的取值范围.(答:12m >-)2).能成立问题若在区间D 上存在实数x 使不等式()A x f >成立,则等价于在区间D 上()max f x A >; 若在区间D 上存在实数x 使不等式()B x f <成立,则等价于在区间D 上的()min f x B <.如 已知不等式a x x <-+-34在实数集R上的解集不是空集,求实数a 的取值范围____(答:1a >)两个重要函数:|||1|3x x +-> 函数y=x+x1练习:1、已若1x >,求4231x x ++-的最小值. 已知x <45,求函数y=4x-2+541-x 的最大值2、知,R x y +∈且191xy+=,则x y +的最小值是_____________.若21x y +=,则24x y +的最小值是______3、知a ,b ,c ,d 均为实数,有下列命题: <1>若ab bc ad >->00,,则c ad b ->0;<2>若ab c a db>->00,,则bc ad ->0 <3>若bc ad c adb->->00,,则ab >0其中正确命题是()4.求函数的最小值.5、求证:2221111223n ++++< 231124(1)2(1)(1)()22327x x x x x -=⋅--≤= 二元一次不等式组与简单线性规划问题1.二元一次不等式表示的平面区域:直线l : ax+by+c=0把直角坐标平面分成了三个部分: (1)直线l 上的点(x,y )的坐标满足ax+by+c=0(2)直线l 一侧的平面区域内的点(x,y )的坐标都满足ax+by+c>0 (3)直线l 另一侧的平面区域内的点(x,y )的坐标满足ax+by+c<0所以,只需在直线l 的某一侧的平面区域内,任取一特殊点(x 0 , y 0),从a 0x+b 0y+c 值的正负,即可判断不等式表示的平面区域。

2.线性规划:如果两个变量x,y 满足一组一次不等式,求这两个变量的一个线性函数的最大值或最小值,称这个线性函数为目标函数,称一次不等式组为约束条件,像这样的问题叫作二元线性规划问题。

其中,满足约束条件的解(x,y)称为可行解,由所有可行解组成的集合称为可行域,使目标函数取得最大值和最小值的可行解称为这个问题的最优解。

3.线性规划问题应用题的求解步骤:(1)先写出决策变量,找出约束条件和线性目标函数;(2)作出相应的可行域;(3)确定最优解例题分析:例1.若A 为不等式组002x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当a 从-2连续变化到1时,动直线x y a +=扫过A 中的那部分区域的面积为 ( )A .34B .1C .74D .5例2.如果点P 在平面区域⎪⎩⎪⎨⎧≥-≤-+≥+-01202022y y x y x 上,点O 在曲线1)2(22=++y x 上,那么的||PQ 最小值为() (A)23 (B)154- (C)122- (D)12-例3、已知实数,x y 满足3025000x y x y x y +-≥⎧⎪+-≤⎪⎨≥⎪⎪≥⎩,则2y x -的最大值是_________. 1、点P (x ,y )在直线4x + 3y = 0上,且满足-14≤x -y ≤7,则点P 到坐标原点距离的取值范围是() A. [0,5]B. [0,10]C. [5,10]D. [5,15]2.已知变量x y ,满足约束条件20170x y x x y -+⎧⎪⎨⎪+-⎩≤,≥,≤,则y x 的取值范围是()A .⎥⎦⎤⎢⎣⎡6,59B .[)965⎛⎤-∞+∞ ⎥⎝⎦,, C .(][)36-∞+∞,, D .[36],3.设D 是不等式组⎪⎪⎩⎪⎪⎨⎧≥≤≤≥+≤+1,40,32102y x y x y x ,表示的平面区域,则D 中的点P (x ,y )到直线x +y =10距离的最大值是.4.已知1,10,220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩则22x y +的最小值是.例1.C; 例2. A; 例3、___0_____.1、B; 2.A; 3.24; 4. 5 ;。

相关文档
最新文档