二项分布概念与图表和查表方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二项分布概念及图表

二项分布就是重复n次独立的伯努利试验。在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互独立,与其它各次试验结果无关,事件发生与否的概率在每一次独立试验中都保持不变,则这一系列试验总称为n重伯努利实验,当试验次数为1时,二项分布服从0-1分布。

目录

1 定义

▪统计学定义

▪医学定义

2 概念

3 性质

4 图形特点

5 应用条件

6 应用实例

)。如果进行次伯努利试验,取得成功次数为的概率可用下面的二项分布概率公式来描述:

二项分布公式

二项分布公式

P(ξ=K)= C(n,k) * p^k * (1-p)^(n-k),其中C(n, k) =n!/(k!(n-k)!),注意:第二个等号后面的括号里的是上标,表示的是方幂。

二项分布

以用于可靠性试验。可靠性试验常常是投入n个相同的式样进行试验T小时,而只允许k个式样失败,应用二项分布可以得到通过试验的概率。

面向上的平均次数为5次(μ= np=),正面向上的散布程度为√10×(1/2)×(1/2)= 1.58(次),这是根据理论的计算,而在实际试验中,有的人可得10个正面向上,有人得9个、8个……,人数越多,正面向上的平均数越接近5,分散程度越接近1.58。

图形特点

(1)当(n+1)p不为整数时,二项概率P{X=k}在k=[(n+1)p]时达到最大值;

(2)当(n+1)p为整数时,二项概率P{X=k}在k=(n+1)p和k=(n+1)p-1时达到最大值。

注:[x]为不超过x的最大整数。

应用条件

1.各观察单位只能具有相互对立的一种结果,如阳性或阴性,生存或死亡等,属于两分类资料。

2.已知发生某一结果(阳性)的概率为π,其对立结果的概率为1-π,实际工作中要求π是从大量观察中获得比较稳定的数值。

二项分布公式

3.n次试验在相同条件下进行,且各个观察单位的观察结果相互独立,即每个观察单位的观察结果不会影响到其他观察单位的结果。如要求疾病无传染性、无家族性等。

应用实例

二项分布在心理与教育研究中,主要用于解决含有机遇性质的问题。所谓机遇问题,即指在实验或调查中,实验结果可能是由猜测而造成的。比如,选择题目的回答,划对划错,可能完全由猜测造成。凡此类问题,欲区分由猜测而造成的结果与真实的结果之间的界限,就要应用二项分布来解决。下面给出一个例子。

已知有正误题10题,问答题者答对几题才能认为他是真会,或者说答对几题,才能认为不是出于猜测因素?

。,故此二项分布接近正态分布:

附表 1 二项分布表

P {X ≤ x } = ∑

n

p k (1- p )n -k

k k =0 k

x

查表方法:本表对于n、p、x给出二项分布函数P(x;n,p)的数值。例:对于n=11,p=0.02和x=0,P(x;n,p)=0.8007。

相关文档
最新文档